Skip to content

galafis/genomic-data-analysis-pipeline

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

95 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ‡§πŸ‡· Pipeline de AnΓ‘lise de Dados GenΓ΄micos

Hero Image

Status do Projeto

VersΓ£o LicenΓ§a Linguagens

Um pipeline completo e modular para anΓ‘lise de dados genΓ΄micos, incluindo processamento de dados de sequenciamento de prΓ³xima geraΓ§Γ£o (NGS), anΓ‘lise multi-Γ΄mica, e visualizaΓ§Γ£o avanΓ§ada de resultados. Este projeto implementa fluxos de trabalho reproduzΓ­veis para anΓ‘lise de DNA-seq, RNA-seq, single-cell, e ChIP-seq utilizando tecnologias de ponta em bioinformΓ‘tica.

πŸ“‹ Índice

πŸ” VisΓ£o Geral

Este pipeline de anΓ‘lise genΓ΄mica foi desenvolvido para processar e analisar diversos tipos de dados de sequenciamento de prΓ³xima geraΓ§Γ£o (NGS), incluindo DNA-seq, RNA-seq, single-cell RNA-seq e ChIP-seq. O sistema Γ© altamente modular e escalΓ‘vel, permitindo execuΓ§Γ£o em ambientes HPC (High-Performance Computing) e nuvem, com suporte para processamento paralelo e distribuΓ­do.

O projeto implementa as melhores prΓ‘ticas em bioinformΓ‘tica e utiliza ferramentas state-of-the-art para cada etapa do processamento, desde o controle de qualidade inicial atΓ© a visualizaΓ§Γ£o final dos resultados. Todos os fluxos de trabalho sΓ£o implementados usando sistemas de gerenciamento de workflows (Nextflow, Snakemake e CWL), garantindo reprodutibilidade e portabilidade.

✨ Funcionalidades

AnΓ‘lise Multi-Γ΄mica

  • DNA-seq: Chamada de variantes (SNPs, indels, CNVs, SVs), anotaΓ§Γ£o funcional, anΓ‘lise de impacto
  • RNA-seq: QuantificaΓ§Γ£o de expressΓ£o gΓͺnica, anΓ‘lise diferencial, splicing alternativo
  • Single-cell RNA-seq: Clustering celular, trajetΓ³rias de diferenciaΓ§Γ£o, identificaΓ§Γ£o de marcadores
  • ChIP-seq: IdentificaΓ§Γ£o de picos, anΓ‘lise de motivos, integraΓ§Γ£o com dados de expressΓ£o

Gerenciamento de Workflows

  • ImplementaΓ§Γ£o em mΓΊltiplos sistemas (Nextflow, Snakemake, CWL)
  • Rastreamento completo de proveniΓͺncia de dados
  • Reprodutibilidade garantida via containerizaΓ§Γ£o (Docker, Singularity)
  • Suporte para execuΓ§Γ£o em ambientes HPC e nuvem (AWS, GCP, Azure)

Machine Learning GenΓ΄mico

  • Modelos de deep learning para prediΓ§Γ£o de fenΓ³tipos
  • AnΓ‘lise de associaΓ§Γ£o genΓ΄mica (GWAS)
  • IntegraΓ§Γ£o multi-Γ΄mica via tΓ©cnicas de aprendizado de mΓ‘quina
  • SeleΓ§Γ£o de features biolΓ³gicas relevantes

VisualizaΓ§Γ΅es AvanΓ§adas

  • Dashboards interativos com R Shiny
  • VisualizaΓ§Γ΅es genΓ΄micas com IGV.js
  • GrΓ‘ficos circulares com Circos
  • Heatmaps, PCA, t-SNE, UMAP para anΓ‘lise exploratΓ³ria

πŸ› οΈ Tecnologias Utilizadas

Linguagens de ProgramaΓ§Γ£o

  • R: AnΓ‘lise estatΓ­stica, visualizaΓ§Γ£o, pacotes Bioconductor
  • Python: Processamento de dados, machine learning, pipelines
  • Bash: Scripts de automaΓ§Γ£o e integraΓ§Γ£o
  • Nextflow/Groovy: DefiniΓ§Γ£o de workflows principais
  • CWL/YAML: DefiniΓ§Γ£o de workflows alternativos

Frameworks e Bibliotecas

  • Bioconductor: DESeq2, edgeR, limma, GenomicRanges
  • Scikit-learn/TensorFlow/PyTorch: Modelos de machine learning
  • Scanpy/Seurat: AnΓ‘lise de dados single-cell
  • Biopython/Bioperl: Processamento de sequΓͺncias

Ferramentas de BioinformΓ‘tica

  • BWA/Bowtie2/STAR: Alinhamento de sequΓͺncias
  • GATK/FreeBayes/Strelka2: Chamada de variantes
  • Salmon/Kallisto: QuantificaΓ§Γ£o de RNA
  • MACS2/Homer: AnΓ‘lise de ChIP-seq
  • VEP/SnpEff/ANNOVAR: AnotaΓ§Γ£o de variantes

Infraestrutura

  • Docker/Singularity: ContainerizaΓ§Γ£o
  • Kubernetes: OrquestraΓ§Γ£o de containers
  • AWS Batch/GCP/Azure: ComputaΓ§Γ£o em nuvem
  • Slurm/PBS/SGE: Gerenciamento de jobs em HPC

πŸ“ Estrutura do Projeto

genomic-data-analysis-pipeline/
β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ preprocessing/         # MΓ³dulos de prΓ©-processamento e QC
β”‚   β”œβ”€β”€ alignment/             # MΓ³dulos de alinhamento
β”‚   β”œβ”€β”€ variant_calling/       # MΓ³dulos de chamada de variantes
β”‚   β”œβ”€β”€ annotation/            # MΓ³dulos de anotaΓ§Γ£o
β”‚   β”œβ”€β”€ visualization/         # MΓ³dulos de visualizaΓ§Γ£o
β”‚   └── workflows/             # DefiniΓ§Γ΅es de workflows
β”œβ”€β”€ scripts/                   # Scripts utilitΓ‘rios
β”œβ”€β”€ workflows/
β”‚   β”œβ”€β”€ nextflow/              # Workflows em Nextflow
β”‚   β”œβ”€β”€ snakemake/             # Workflows em Snakemake
β”‚   └── cwl/                   # Workflows em CWL
β”œβ”€β”€ containers/                # DefiniΓ§Γ΅es de containers
β”œβ”€β”€ config/                    # Arquivos de configuraΓ§Γ£o
β”œβ”€β”€ data/                      # Dados de exemplo
β”œβ”€β”€ docs/                      # DocumentaΓ§Γ£o
β”œβ”€β”€ results/                   # DiretΓ³rio para resultados
β”œβ”€β”€ tests/                     # Testes automatizados
β”œβ”€β”€ environment.yml            # Ambiente Conda
β”œβ”€β”€ nextflow.config            # ConfiguraΓ§Γ£o Nextflow
β”œβ”€β”€ Snakefile                  # Arquivo principal Snakemake
└── README.md                  # Este arquivo

πŸš€ InstalaΓ§Γ£o

PrΓ©-requisitos

  • Git
  • Conda/Miniconda
  • Docker ou Singularity (opcional, mas recomendado)
  • Java 8+ (para Nextflow)

InstalaΓ§Γ£o via Conda

# Clone o repositΓ³rio
git clone https://github.com/galafis/genomic-data-analysis-pipeline.git
cd genomic-data-analysis-pipeline

# Crie e ative o ambiente Conda
conda env create -f environment.yml
conda activate genomic-pipeline

# Instale o Nextflow
curl -s https://get.nextflow.io | bash

InstalaΓ§Γ£o via Docker

# Pull da imagem Docker
docker pull galafis/genomic-pipeline:latest

# Execute o container
docker run -it -v $(pwd):/data galafis/genomic-pipeline:latest

πŸ“Š Uso

ExecuΓ§Γ£o de Workflows

Nextflow

# Workflow de DNA-seq
nextflow run workflows/nextflow/dna_seq.nf \
  --reads "data/samples/*/fastq/*.fastq.gz" \
  --genome "data/reference/genome.fa" \
  --outdir "results/dna_seq"

# Workflow de RNA-seq
nextflow run workflows/nextflow/rna_seq.nf \
  --reads "data/samples/*/fastq/*.fastq.gz" \
  --genome "data/reference/genome.fa" \
  --annotation "data/reference/genes.gtf" \
  --outdir "results/rna_seq"

# Workflow de single-cell RNA-seq
nextflow run workflows/nextflow/scrna_seq.nf \
  --reads "data/samples/*/fastq/*.fastq.gz" \
  --genome "data/reference/genome.fa" \
  --annotation "data/reference/genes.gtf" \
  --outdir "results/scrna_seq"

Snakemake

# Workflow de DNA-seq
snakemake --configfile config/dna_seq_config.yaml --cores 8

# Workflow de RNA-seq
snakemake --configfile config/rna_seq_config.yaml --cores 8

# Workflow de ChIP-seq
snakemake --configfile config/chip_seq_config.yaml --cores 8

ExecuΓ§Γ£o em HPC

# ExecuΓ§Γ£o em cluster Slurm
nextflow run workflows/nextflow/dna_seq.nf \
  -profile slurm \
  --reads "data/samples/*/fastq/*.fastq.gz" \
  --genome "data/reference/genome.fa" \
  --outdir "results/dna_seq"

ExecuΓ§Γ£o na Nuvem

# ExecuΓ§Γ£o na AWS
nextflow run workflows/nextflow/dna_seq.nf \
  -profile aws \
  --reads "s3://my-bucket/samples/*/fastq/*.fastq.gz" \
  --genome "s3://my-bucket/reference/genome.fa" \
  --outdir "s3://my-bucket/results/dna_seq"

πŸ”„ Fluxos de Trabalho

DNA-seq

  1. Controle de qualidade (FastQC)
  2. Trimagem de adaptadores (Trimmomatic/fastp)
  3. Alinhamento ao genoma de referΓͺncia (BWA-MEM)
  4. Processamento de alinhamentos (SAMtools, Picard)
  5. Chamada de variantes (GATK HaplotypeCaller, FreeBayes)
  6. AnotaΓ§Γ£o de variantes (VEP, SnpEff)
  7. AnΓ‘lise de impacto funcional
  8. VisualizaΓ§Γ£o e relatΓ³rios

RNA-seq

  1. Controle de qualidade (FastQC)
  2. Trimagem de adaptadores (Trimmomatic/fastp)
  3. Alinhamento ao genoma/transcriptoma (STAR, Salmon)
  4. QuantificaΓ§Γ£o de expressΓ£o gΓͺnica
  5. AnΓ‘lise de expressΓ£o diferencial (DESeq2, edgeR)
  6. AnΓ‘lise de enriquecimento funcional (GO, KEGG)
  7. VisualizaΓ§Γ£o e relatΓ³rios

Single-cell RNA-seq

  1. Controle de qualidade (FastQC)
  2. DemultiplexaΓ§Γ£o de cΓ©lulas
  3. QuantificaΓ§Γ£o de expressΓ£o por cΓ©lula
  4. Filtragem e normalizaΓ§Γ£o
  5. ReduΓ§Γ£o de dimensionalidade (PCA, t-SNE, UMAP)
  6. Clustering e identificaΓ§Γ£o de tipos celulares
  7. AnΓ‘lise de trajetΓ³rias celulares
  8. VisualizaΓ§Γ£o e relatΓ³rios

ChIP-seq

  1. Controle de qualidade (FastQC)
  2. Trimagem de adaptadores (Trimmomatic/fastp)
  3. Alinhamento ao genoma (Bowtie2)
  4. Chamada de picos (MACS2)
  5. AnΓ‘lise de motivos (HOMER)
  6. IntegraΓ§Γ£o com dados de expressΓ£o
  7. VisualizaΓ§Γ£o e relatΓ³rios

πŸ“ˆ VisualizaΓ§Γ΅es

O pipeline gera diversas visualizaΓ§Γ΅es interativas e estΓ‘ticas:

  • Dashboards Shiny: ExploraΓ§Γ£o interativa de resultados
  • VisualizaΓ§Γ΅es genΓ΄micas: NavegaΓ§Γ£o de variantes e anotaΓ§Γ΅es
  • Heatmaps: ExpressΓ£o gΓͺnica, correlaΓ§Γ΅es
  • GrΓ‘ficos de reduΓ§Γ£o de dimensionalidade: PCA, t-SNE, UMAP
  • GrΓ‘ficos circulares: VisualizaΓ§Γ£o de variantes no genoma
  • Redes de interaΓ§Γ£o: InteraΓ§Γ΅es gene-gene, proteΓ­na-proteΓ­na

πŸ“ Exemplos

AnΓ‘lise de Variantes SomΓ‘ticas em CΓ’ncer

nextflow run workflows/nextflow/somatic_variant_calling.nf \
  --tumor "data/samples/tumor/fastq/*.fastq.gz" \
  --normal "data/samples/normal/fastq/*.fastq.gz" \
  --genome "data/reference/genome.fa" \
  --outdir "results/somatic_variants"

AnΓ‘lise de ExpressΓ£o Diferencial

nextflow run workflows/nextflow/differential_expression.nf \
  --condition1 "data/samples/treatment/fastq/*.fastq.gz" \
  --condition2 "data/samples/control/fastq/*.fastq.gz" \
  --genome "data/reference/genome.fa" \
  --annotation "data/reference/genes.gtf" \
  --outdir "results/diff_expression"

AnΓ‘lise de Single-cell de CΓ©lulas Tumorais

nextflow run workflows/nextflow/tumor_scrna_seq.nf \
  --reads "data/samples/tumor_10x/fastq/*.fastq.gz" \
  --genome "data/reference/genome.fa" \
  --annotation "data/reference/genes.gtf" \
  --outdir "results/tumor_scrna"

πŸ‘₯ ContribuiΓ§Γ£o

ContribuiΓ§Γ΅es sΓ£o bem-vindas! Por favor, sinta-se Γ  vontade para enviar pull requests, criar issues ou sugerir melhorias.

  1. FaΓ§a um fork do projeto
  2. Crie sua branch de feature (git checkout -b feature/amazing-feature)
  3. Commit suas mudanΓ§as (git commit -m 'Add some amazing feature')
  4. Push para a branch (git push origin feature/amazing-feature)
  5. Abra um Pull Request

πŸ“„ LicenΓ§a

Este projeto estΓ‘ licenciado sob a licenΓ§a MIT - veja o arquivo LICENSE para detalhes.

πŸ“ž Contato

Gabriel Demetrios Lafis - GitHub

Link do projeto: https://github.com/galafis/genomic-data-analysis-pipeline


πŸ‡¬πŸ‡§ Genomic Data Analysis Pipeline

Hero Image

Project Status

Version License Languages

A comprehensive and modular pipeline for genomic data analysis, including next-generation sequencing (NGS) data processing, multi-omics analysis, and advanced result visualization. This project implements reproducible workflows for DNA-seq, RNA-seq, single-cell, and ChIP-seq analysis using state-of-the-art bioinformatics technologies.

πŸ“‹ Table of Contents

πŸ” Overview

This genomic analysis pipeline was developed to process and analyze various types of next-generation sequencing (NGS) data, including DNA-seq, RNA-seq, single-cell RNA-seq, and ChIP-seq. The system is highly modular and scalable, allowing execution in HPC (High-Performance Computing) environments and cloud, with support for parallel and distributed processing.

The project implements best practices in bioinformatics and uses state-of-the-art tools for each processing step, from initial quality control to final result visualization. All workflows are implemented using workflow management systems (Nextflow, Snakemake, and CWL), ensuring reproducibility and portability.

✨ Features

Multi-omics Analysis

  • DNA-seq: Variant calling (SNPs, indels, CNVs, SVs), functional annotation, impact analysis
  • RNA-seq: Gene expression quantification, differential analysis, alternative splicing
  • Single-cell RNA-seq: Cell clustering, differentiation trajectories, marker identification
  • ChIP-seq: Peak identification, motif analysis, integration with expression data

Workflow Management

  • Implementation in multiple systems (Nextflow, Snakemake, CWL)
  • Complete data provenance tracking
  • Guaranteed reproducibility via containerization (Docker, Singularity)
  • Support for execution in HPC and cloud environments (AWS, GCP, Azure)

Genomic Machine Learning

  • Deep learning models for phenotype prediction
  • Genome-wide association analysis (GWAS)
  • Multi-omic integration via machine learning techniques
  • Selection of relevant biological features

Advanced Visualizations

  • Interactive dashboards with R Shiny
  • Genomic visualizations with IGV.js
  • Circular plots with Circos
  • Heatmaps, PCA, t-SNE, UMAP for exploratory analysis

πŸ› οΈ Technologies Used

Programming Languages

  • R: Statistical analysis, visualization, Bioconductor packages
  • Python: Data processing, machine learning, pipelines
  • Bash: Automation and integration scripts
  • Nextflow/Groovy: Main workflow definitions
  • CWL/YAML: Alternative workflow definitions

Frameworks and Libraries

  • Bioconductor: DESeq2, edgeR, limma, GenomicRanges
  • Scikit-learn/TensorFlow/PyTorch: Machine learning models
  • Scanpy/Seurat: Single-cell data analysis
  • Biopython/Bioperl: Sequence processing

Bioinformatics Tools

  • BWA/Bowtie2/STAR: Sequence alignment
  • GATK/FreeBayes/Strelka2: Variant calling
  • Salmon/Kallisto: RNA quantification
  • MACS2/Homer: ChIP-seq analysis
  • VEP/SnpEff/ANNOVAR: Variant annotation

Infrastructure

  • Docker/Singularity: Containerization
  • Kubernetes: Container orchestration
  • AWS Batch/GCP/Azure: Cloud computing
  • Slurm/PBS/SGE: HPC job management

πŸ“ Project Structure

genomic-data-analysis-pipeline/
β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ preprocessing/         # Preprocessing and QC modules
β”‚   β”œβ”€β”€ alignment/             # Alignment modules
β”‚   β”œβ”€β”€ variant_calling/       # Variant calling modules
β”‚   β”œβ”€β”€ annotation/            # Annotation modules
β”‚   β”œβ”€β”€ visualization/         # Visualization modules
β”‚   └── workflows/             # Workflow definitions
β”œβ”€β”€ scripts/                   # Utility scripts
β”œβ”€β”€ workflows/
β”‚   β”œβ”€β”€ nextflow/              # Nextflow workflows
β”‚   β”œβ”€β”€ snakemake/             # Snakemake workflows
β”‚   └── cwl/                   # CWL workflows
β”œβ”€β”€ containers/                # Container definitions
β”œβ”€β”€ config/                    # Configuration files
β”œβ”€β”€ data/                      # Example data
β”œβ”€β”€ docs/                      # Documentation
β”œβ”€β”€ results/                   # Directory for results
β”œβ”€β”€ tests/                     # Automated tests
β”œβ”€β”€ environment.yml            # Conda environment
β”œβ”€β”€ nextflow.config            # Nextflow configuration
β”œβ”€β”€ Snakefile                  # Main Snakemake file
└── README.md                  # This file

πŸš€ Installation

Prerequisites

  • Git
  • Conda/Miniconda
  • Docker or Singularity (optional, but recommended)
  • Java 8+ (for Nextflow)

Installation via Conda

# Clone the repository
git clone https://github.com/galafis/genomic-data-analysis-pipeline.git
cd genomic-data-analysis-pipeline

# Create and activate the Conda environment
conda env create -f environment.yml
conda activate genomic-pipeline

# Install Nextflow
curl -s https://get.nextflow.io | bash

Installation via Docker

# Pull the Docker image
docker pull galafis/genomic-pipeline:latest

# Run the container
docker run -it -v $(pwd):/data galafis/genomic-pipeline:latest

πŸ“Š Usage

Running Workflows

Nextflow

# DNA-seq workflow
nextflow run workflows/nextflow/dna_seq.nf \
  --reads "data/samples/*/fastq/*.fastq.gz" \
  --genome "data/reference/genome.fa" \
  --outdir "results/dna_seq"

# RNA-seq workflow
nextflow run workflows/nextflow/rna_seq.nf \
  --reads "data/samples/*/fastq/*.fastq.gz" \
  --genome "data/reference/genome.fa" \
  --annotation "data/reference/genes.gtf" \
  --outdir "results/rna_seq"

# Single-cell RNA-seq workflow
nextflow run workflows/nextflow/scrna_seq.nf \
  --reads "data/samples/*/fastq/*.fastq.gz" \
  --genome "data/reference/genome.fa" \
  --annotation "data/reference/genes.gtf" \
  --outdir "results/scrna_seq"

Snakemake

# DNA-seq workflow
snakemake --configfile config/dna_seq_config.yaml --cores 8

# RNA-seq workflow
snakemake --configfile config/rna_seq_config.yaml --cores 8

# ChIP-seq workflow
snakemake --configfile config/chip_seq_config.yaml --cores 8

Running on HPC

# Running on Slurm cluster
nextflow run workflows/nextflow/dna_seq.nf \
  -profile slurm \
  --reads "data/samples/*/fastq/*.fastq.gz" \
  --genome "data/reference/genome.fa" \
  --outdir "results/dna_seq"

Running on Cloud

# Running on AWS
nextflow run workflows/nextflow/dna_seq.nf \
  -profile aws \
  --reads "s3://my-bucket/samples/*/fastq/*.fastq.gz" \
  --genome "s3://my-bucket/reference/genome.fa" \
  --outdir "s3://my-bucket/results/dna_seq"

πŸ”„ Workflows

DNA-seq

  1. Quality control (FastQC)
  2. Adapter trimming (Trimmomatic/fastp)
  3. Alignment to reference genome (BWA-MEM)
  4. Alignment processing (SAMtools, Picard)
  5. Variant calling (GATK HaplotypeCaller, FreeBayes)
  6. Variant annotation (VEP, SnpEff)
  7. Functional impact analysis
  8. Visualization and reporting

RNA-seq

  1. Quality control (FastQC)
  2. Adapter trimming (Trimmomatic/fastp)
  3. Alignment to genome/transcriptome (STAR, Salmon)
  4. Gene expression quantification
  5. Differential expression analysis (DESeq2, edgeR)
  6. Functional enrichment analysis (GO, KEGG)
  7. Visualization and reporting

Single-cell RNA-seq

  1. Quality control (FastQC)
  2. Cell demultiplexing
  3. Per-cell expression quantification
  4. Filtering and normalization
  5. Dimensionality reduction (PCA, t-SNE, UMAP)
  6. Clustering and cell type identification
  7. Cell trajectory analysis
  8. Visualization and reporting

ChIP-seq

  1. Quality control (FastQC)
  2. Adapter trimming (Trimmomatic/fastp)
  3. Alignment to genome (Bowtie2)
  4. Peak calling (MACS2)
  5. Motif analysis (HOMER)
  6. Integration with expression data
  7. Visualization and reporting

πŸ“ˆ Visualizations

The pipeline generates various interactive and static visualizations:

  • Shiny Dashboards: Interactive exploration of results
  • Genomic Visualizations: Navigation of variants and annotations
  • Heatmaps: Gene expression, correlations
  • Dimensionality Reduction Plots: PCA, t-SNE, UMAP
  • Circular Plots: Visualization of variants across the genome
  • Interaction Networks: Gene-gene, protein-protein interactions

πŸ“ Examples

Somatic Variant Analysis in Cancer

nextflow run workflows/nextflow/somatic_variant_calling.nf \
  --tumor "data/samples/tumor/fastq/*.fastq.gz" \
  --normal "data/samples/normal/fastq/*.fastq.gz" \
  --genome "data/reference/genome.fa" \
  --outdir "results/somatic_variants"

Differential Expression Analysis

nextflow run workflows/nextflow/differential_expression.nf \
  --condition1 "data/samples/treatment/fastq/*.fastq.gz" \
  --condition2 "data/samples/control/fastq/*.fastq.gz" \
  --genome "data/reference/genome.fa" \
  --annotation "data/reference/genes.gtf" \
  --outdir "results/diff_expression"

Single-cell Analysis of Tumor Cells

nextflow run workflows/nextflow/tumor_scrna_seq.nf \
  --reads "data/samples/tumor_10x/fastq/*.fastq.gz" \
  --genome "data/reference/genome.fa" \
  --annotation "data/reference/genes.gtf" \
  --outdir "results/tumor_scrna"

πŸ‘₯ Contributing

Contributions are welcome! Please feel free to submit pull requests, create issues, or suggest improvements.

  1. Fork the project
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add some amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ“ž Contact

Gabriel Demetrios Lafis - GitHub

Project Link: https://github.com/galafis/genomic-data-analysis-pipeline

About

Advanced data science project: genomic-data-analysis-pipeline

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published