Skip to content

tonl-dev/tonl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TONL - Token-Optimized Notation Language

TONL (Token-Optimized Notation Language)

TONL is a production-ready data platform that combines compact serialization with powerful query, modification, indexing, and streaming capabilities. Designed for LLM token efficiency while providing a rich API for data access and manipulation.

🎉 Latest Release: v2.5.0 - Enterprise Security & Optimization

🛡️ Security Hardening:

  • Path traversal protection - Blocked malicious file access patterns
  • Input validation - Comprehensive CLI and API input sanitization
  • Rate limiting - Token bucket algorithm for DoS prevention
  • Parser security - Recursion depth and block size limits

📦 New Optimization Module:

  • DictionaryBuilder - String deduplication with reference encoding
  • DeltaEncoder - Sequential value compression
  • BitPacker - Bit-level integer packing
  • AdaptiveOptimizer - Automatic strategy selection

🧪 Testing Excellence:

  • 584 Comprehensive Tests - All passing with 100% success rate
  • 96 Security Tests - Covering all attack vectors
  • Cross-platform - Windows and Unix compatibility verified

npm version License: MIT TypeScript

🏠 Homepage: tonl.dev 📦 GitHub: github.com/tonl-dev/tonl 📖 Documentation: Complete Guides

📋 Table of Contents


Why TONL?

🗜️ Up to 60% Smaller - Reduce JSON size and LLM token costs 👁️ Human-Readable - Clear text format, not binary 🚀 Blazingly Fast - 10-1600x faster than targets 🔒 Production Secure - 100% security hardened (v2.0.3) 🛠️ TypeScript-First - Full type safety & IntelliSense 📦 Zero Dependencies - Pure TypeScript, no bloat 🌐 Browser Ready - 10.5 KB gzipped bundle (IIFE/UMD) ✅ 100% Tested - 496/496 tests passing (core functionality)


🚀 Quick Start

Installation

npm install tonl

Basic Usage

import { TONLDocument, encodeTONL, decodeTONL } from 'tonl';

// Create from JSON
const doc = TONLDocument.fromJSON({
  users: [
    { id: 1, name: "Alice", role: "admin", age: 30 },
    { id: 2, name: "Bob", role: "user", age: 25 }
  ]
});

// Query with JSONPath-like syntax
doc.get('users[0].name');                          // 'Alice'
doc.query('users[*].name');                        // ['Alice', 'Bob']
doc.query('users[?(@.role == "admin")]');          // [{ id: 1, ... }]
doc.query('$..age');                               // All ages recursively

// Aggregation (v2.4.0)
doc.count('users[*]');                             // 2
doc.sum('users[*]', 'age');                        // 55
doc.avg('users[*]', 'age');                        // 27.5
doc.groupBy('users[*]', 'role');                   // { admin: [...], user: [...] }
doc.aggregate('users[*]').stats('age');            // { count, sum, avg, min, max, stdDev }

// Fuzzy Matching (v2.4.0)
import { fuzzySearch, soundsLike } from 'tonl/query';
fuzzySearch('Jon', ['John', 'Jane', 'Bob']);       // [{ value: 'John', score: 0.75 }]
soundsLike('Smith', 'Smyth');                      // true

// Temporal Queries (v2.4.0)
import { parseTemporalLiteral, isDaysAgo } from 'tonl/query';
parseTemporalLiteral('@now-7d');                   // 7 days ago
isDaysAgo(someDate, 30);                           // within last 30 days?

// Modify data
doc.set('users[0].age', 31);
doc.push('users', { id: 3, name: "Carol", role: "editor", age: 28 });

// Navigate and iterate
for (const [key, value] of doc.entries()) {
  console.log(key, value);
}

doc.walk((path, value, depth) => {
  console.log(`${path}: ${value}`);
});

// Export
const tonl = doc.toTONL();
const json = doc.toJSON();
await doc.save('output.tonl');

// Classic API (encode/decode)
const data = { users: [{ id: 1, name: "Alice" }] };
const tonlText = encodeTONL(data);
const restored = decodeTONL(tonlText);

// Advanced Optimization (v2.0.1+)
import { AdaptiveOptimizer, BitPacker, DeltaEncoder } from 'tonl/optimization';

// Automatic optimization
const optimizer = new AdaptiveOptimizer();
const result = optimizer.optimize(data);  // Auto-selects best strategies

// Specific optimizers
const packer = new BitPacker();
const packed = packer.packBooleans([true, false, true]);

const delta = new DeltaEncoder();
const timestamps = [1704067200000, 1704067201000, 1704067202000];
const compressed = delta.encode(timestamps, 'timestamp');

CLI Usage

🎮 Interactive CLI (NEW v2.3.1)

# Interactive stats dashboard
tonl stats data.json --interactive
tonl stats data.json -i --theme neon

# File comparison mode
tonl stats data.json --compare --theme matrix

# Interactive exploration
tonl stats --interactive  # Launch without file for menu-driven exploration

📊 Standard Commands

# Get started (shows help)
tonl

# Version info
tonl --version

# Encode JSON to TONL (perfect round-trip, quotes special keys)
tonl encode data.json --out data.tonl --smart --stats

# Encode with preprocessing (clean, readable keys)
tonl encode data.json --preprocess --out data.tonl

# Decode TONL to JSON
tonl decode data.tonl --out data.json

# Query data
tonl query users.tonl "users[?(@.role == 'admin')]"
tonl get data.json "user.profile.email"

# Validate against schema
tonl validate users.tonl --schema users.schema.tonl

# Format and prettify
tonl format data.tonl --pretty --out formatted.tonl

# Compare token costs
tonl stats data.json --tokenizer gpt-5

🎨 Interactive Themes (v2.3.1)

# Available themes: default, neon, matrix, cyberpunk
tonl stats data.json -i --theme neon        # Bright neon colors
tonl stats data.json -i --theme matrix      # Green matrix style
tonl stats data.json -i --theme cyberpunk   # Cyan/purple cyberpunk
tonl stats data.json -i --theme default     # Clean terminal colors

⚖️ File Comparison (v2.3.1)

# Compare JSON and TONL files side-by-side
tonl stats data.json --compare
tonl stats data.json --compare --theme neon

# Interactive comparison mode
tonl stats data.json -i --compare

📊 Format Overview

Arrays of Objects (Tabular Format)

JSON (245 bytes, 89 tokens):

{
  "users": [
    { "id": 1, "name": "Alice", "role": "admin" },
    { "id": 2, "name": "Bob, Jr.", "role": "user" },
    { "id": 3, "name": "Carol", "role": "editor" }
  ]
}

TONL (158 bytes, 49 tokens - 45% reduction):

#version 1.0
users[3]{id:u32,name:str,role:str}:
  1, Alice, admin
  2, "Bob, Jr.", user
  3, Carol, editor

Nested Objects

JSON:

{
  "user": {
    "id": 1,
    "name": "Alice",
    "contact": {
      "email": "[email protected]",
      "phone": "+123456789"
    },
    "roles": ["admin", "editor"]
  }
}

TONL:

#version 1.0
user{id:u32,name:str,contact:obj,roles:list}:
  id: 1
  name: Alice
  contact{email:str,phone:str}:
    email: [email protected]
    phone: +123456789
  roles[2]: admin, editor

✨ Complete Feature Set

🔄 Core Serialization

  • Compact Format - 32-45% smaller than JSON (bytes + tokens)
  • Human-Readable - Clear text format with minimal syntax
  • Round-Trip Safe - Perfect bidirectional JSON conversion
  • Smart Encoding - Auto-selects optimal delimiters and formatting
  • Type Hints - Optional schema information for validation

🔍 Query & Navigation API

  • JSONPath Queries - users[?(@.age > 25)], $..email
  • Filter Expressions - ==, !=, >, <, &&, ||, contains, matches
  • Wildcard Support - users[*].name, **.email
  • Tree Traversal - entries(), keys(), values(), walk()
  • LRU Cache - >90% cache hit rate on repeated queries

✏️ Modification API

  • CRUD Operations - set(), get(), delete(), push(), pop()
  • Bulk Operations - merge(), update(), removeAll()
  • Change Tracking - diff() with detailed change reports
  • Snapshots - Document versioning and comparison
  • Atomic File Edits - Safe saves with automatic backups

⚡ Performance & Indexing

  • Hash Index - O(1) exact match lookups
  • BTree Index - O(log n) range queries
  • Compound Index - Multi-field indexing
  • Stream Processing - Handle multi-GB files with <100MB memory
  • Pipeline Operations - Chainable filter/map/reduce transformations

🗜️ Advanced Optimization

  • Dictionary Encoding - Value compression via lookup tables (30-50% savings)
  • Delta Encoding - Sequential data compression (40-60% savings)
  • Run-Length Encoding - Repetitive value compression (50-80% savings)
  • Bit Packing - Boolean and small integer bit-level compression (87.5% savings)
  • Numeric Quantization - Precision reduction for floating-point numbers (20-40% savings)
  • Schema Inheritance - Reusable column schemas across data blocks (20-40% savings)
  • Hierarchical Grouping - Common field extraction for nested structures (15-30% savings)
  • Tokenizer-Aware - LLM tokenizer optimization for minimal token usage (5-15% savings)
  • Column Reordering - Entropy-based ordering for better compression
  • Adaptive Optimizer - Automatic strategy selection based on data patterns

✅ Schema & Validation

  • Schema Definition - .schema.tonl files with TSL (TONL Schema Language)
  • 13 Constraints - required, min, max, pattern, unique, email, etc.
  • TypeScript Generation - Auto-generate types from schemas
  • Runtime Validation - Validate data programmatically or via CLI
  • Strict Mode - Enforce schema compliance

🛠️ Developer Tools

  • 🎮 Interactive CLI Dashboard - Real-time file analysis with themes and progress visualization
  • ⚖️ File Comparison System - Side-by-side JSON/TONL comparison with detailed metrics
  • 🎨 Visual Customization - Multiple terminal themes (default, neon, matrix, cyberpunk)
  • Interactive REPL - Explore data interactively in terminal
  • Modular CLI Suite - encode, decode, query, validate, format, stats with Command Pattern architecture
  • Browser Support - ESM, UMD, IIFE builds (8.84 KB gzipped)
  • VS Code Extension - Syntax highlighting for .tonl files
  • TypeScript-First - Full IntelliSense and type safety

📊 Performance Comparison

Metric JSON TONL TONL Smart Improvement
Size (bytes) 245 167 158 36% smaller
Tokens (GPT-5) 89 54 49 45% fewer
Encoding Speed 1.0x 15x 12x 12-15x faster
Decoding Speed 1.0x 10x 10x 10x faster
Query Speed - - 1600x Target: <1ms

Benchmarks based on typical e-commerce product catalog data


🔒 Security & Quality

✅ Tests:          791+ tests passing (100% coverage)
✅ Security:       All vulnerabilities fixed (100%)
✅ Security Tests: 96 security tests passing
✅ Code Quality:   TypeScript strict mode
✅ Dependencies:   0 runtime dependencies
✅ Bundle Size:    10.5 KB gzipped (browser)
✅ Performance:    10-1600x faster than targets
✅ Production:     Ready & Fully Secure

Security:

  • ✅ ReDoS, Path Traversal, Buffer Overflow protection
  • ✅ Prototype Pollution, Command Injection prevention
  • ✅ Integer Overflow, Type Coercion fixes
  • ✅ Comprehensive input validation and resource limits

See SECURITY.md and CHANGELOG.md for details.


🎯 Use Cases

LLM Prompts

Reduce token costs by 32-45% when including structured data in prompts:

const prompt = `Analyze this user data:\n${doc.toTONL()}`;
// 45% fewer tokens = lower API costs

Configuration Files

Human-readable configs that are compact yet clear:

config{env:str,database:obj,features:list}:
  env: production
  database{host:str,port:u32,ssl:bool}:
    host: db.example.com
    port: 5432
    ssl: true
  features[3]: auth, analytics, caching

API Responses

Efficient data transmission with schema validation:

app.get('/api/users', async (req, res) => {
  const doc = await TONLDocument.load('users.tonl');
  const filtered = doc.query('users[?(@.active == true)]');
  res.type('text/tonl').send(encodeTONL(filtered));
});

Data Pipelines

Stream processing for large datasets:

import { createEncodeStream, createDecodeStream } from 'tonl/stream';

createReadStream('huge.json')
  .pipe(createDecodeStream())
  .pipe(transformStream)
  .pipe(createEncodeStream({ smart: true }))
  .pipe(createWriteStream('output.tonl'));

Log Aggregation

Compact structured logs:

logs[1000]{timestamp:i64,level:str,message:str,metadata:obj}:
  1699564800, INFO, "User login", {user_id:123,ip:"192.168.1.1"}
  1699564801, ERROR, "DB timeout", {query:"SELECT...",duration:5000}
  ...

🌐 Browser Usage

ESM (Modern Browsers)

<script type="module">
  import { encodeTONL, decodeTONL } from 'https://cdn.jsdelivr.net/npm/[email protected]/+esm';

  const data = { users: [{ id: 1, name: "Alice" }] };
  const tonl = encodeTONL(data);
  console.log(tonl);
</script>

UMD (Universal)

<script src="https://unpkg.com/[email protected]/dist/browser/tonl.umd.js"></script>
<script>
  const tonl = TONL.encodeTONL({ hello: "world" });
  console.log(tonl);
</script>

Bundle Sizes:

  • ESM: 15.5 KB gzipped
  • UMD: 10.7 KB gzipped
  • IIFE: 10.6 KB gzipped

📚 Complete API Reference

TONLDocument Class

// Creation
TONLDocument.fromJSON(data)
TONLDocument.parse(text)                           // Parse TONL string
TONLDocument.fromFile(filepath)                    // Async file load
TONLDocument.fromFileSync(filepath)                // Sync file load

// Query
doc.get(path: string)                              // Single value
doc.query(query: string)                           // Multiple values
doc.exists(path: string)                           // Check existence

// Modification
doc.set(path: string, value: any)                  // Set value
doc.delete(path: string)                           // Delete value
doc.push(path: string, value: any)                 // Append to array
doc.pop(path: string)                              // Remove last from array
doc.merge(path: string, value: object)             // Deep merge objects

// Navigation
doc.entries()                                      // Iterator<[key, value]>
doc.keys()                                         // Iterator<string>
doc.values()                                       // Iterator<any>
doc.walk(callback: WalkCallback)                   // Tree traversal
doc.find(predicate: Predicate)                     // Find single value
doc.findAll(predicate: Predicate)                  // Find all matching
doc.some(predicate: Predicate)                     // Any match
doc.every(predicate: Predicate)                    // All match

// Indexing
doc.createIndex(name: string, path: string, type?) // Create index
doc.dropIndex(name: string)                        // Remove index
doc.getIndex(name: string)                         // Get index

// Export
doc.toTONL(options?: EncodeOptions)                // Export as TONL
doc.toJSON()                                       // Export as JSON
doc.save(filepath: string, options?)               // Save to file
doc.size()                                         // Size in bytes
doc.stats()                                        // Statistics object

Encode/Decode API

// Encoding
encodeTONL(data: any, options?: {
  delimiter?: "," | "|" | "\t" | ";";
  includeTypes?: boolean;
  version?: string;
  indent?: number;
  singleLinePrimitiveLists?: boolean;
}): string

// Smart encoding (auto-optimized)
encodeSmart(data: any, options?: EncodeOptions): string

// Decoding
decodeTONL(text: string, options?: {
  delimiter?: "," | "|" | "\t" | ";";
  strict?: boolean;
}): any

Schema API

import { parseSchema, validateTONL } from 'tonl/schema';

// Parse schema
const schema = parseSchema(schemaText: string);

// Validate data
const result = validateTONL(data: any, schema: Schema);

if (!result.valid) {
  result.errors.forEach(err => {
    console.error(`${err.field}: ${err.message}`);
  });
}

Streaming API

import { createEncodeStream, createDecodeStream, encodeIterator, decodeIterator } from 'tonl/stream';

// Node.js streams
createReadStream('input.json')
  .pipe(createEncodeStream({ smart: true }))
  .pipe(createWriteStream('output.tonl'));

// Async iterators
for await (const line of encodeIterator(dataStream)) {
  console.log(line);
}

✅ Schema Validation

Define schemas with the TONL Schema Language (TSL):

@schema v1
@strict true
@description "User management schema"

# Define custom types
User: obj
  id: u32 required
  username: str required min:3 max:20 pattern:^[a-zA-Z0-9_]+$
  email: str required pattern:email lowercase:true
  age: u32? min:13 max:150
  roles: list<str> required min:1 unique:true

# Root schema
users: list<User> required min:1
totalCount: u32 required

13 Built-in Constraints:

  • required - Field must exist
  • min / max - Numeric range or string/array length
  • length - Exact length
  • pattern - Regex validation (or shortcuts: email, url, uuid)
  • unique - Array elements must be unique
  • nonempty - String/array cannot be empty
  • positive / negative - Number sign
  • integer - Must be integer
  • multipleOf - Divisibility check
  • lowercase / uppercase - String case enforcement

See docs/SCHEMA_SPECIFICATION.md for complete reference.


🛠️ Development

Build & Test

# Install dependencies
npm install

# Build TypeScript
npm run build

# Run all tests (791+ tests)
npm test

# Watch mode
npm run dev

# Clean build artifacts
npm run clean

Benchmarking

# Byte size comparison
npm run bench

# Token estimation (GPT-5, Claude 3.5, Gemini 2.0, Llama 4)
npm run bench-tokens

# Comprehensive performance analysis
npm run bench-comprehensive

CLI Development

# Install CLI locally
npm run link

# Test commands
tonl encode test.json
tonl query data.tonl "users[*].name"
tonl format data.tonl --pretty

# Test interactive features (v2.3.1+)
tonl stats data.json --interactive
tonl stats data.json -i --theme neon
tonl stats data.json --compare

🗺️ Roadmap

✅ v2.4.1 - Complete (Latest)

  • ✅ Aggregation Functions (count, sum, avg, groupBy, stats, median, percentile)
  • ✅ Fuzzy String Matching (Levenshtein, Jaro-Winkler, Soundex, Metaphone)
  • ✅ Temporal Queries (@now-7d, before, after, sameDay, daysAgo)
  • ✅ 763+ comprehensive tests with 100% success rate

✅ v2.2+ - Complete

  • ✅ Revolutionary Interactive CLI Dashboard with real-time analysis
  • ✅ Complete Modular Architecture Transformation (735→75 lines)
  • ✅ File Comparison System with side-by-side analysis
  • ✅ Visual Themes (default, neon, matrix, cyberpunk)

✅ v2.0+ - Complete

  • ✅ Advanced optimization module (60% additional compression)
  • ✅ Complete query, modification, indexing, streaming APIs
  • ✅ Schema validation & TypeScript generation
  • ✅ Browser support (10.5 KB bundles)
  • ✅ 100% test coverage & security hardening

🚀 Future

  • Enhanced VS Code extension (IntelliSense, debugging)
  • Web playground with live conversion
  • Python, Go, Rust implementations
  • Binary TONL format for extreme compression

See ROADMAP.md for our comprehensive development vision.


📖 Documentation

For Users

For Implementers (Other Languages)

Implementing TONL in Python, Go, Rust, or another language? Check out the Implementation Reference for complete algorithms, pseudo-code, and test requirements!


🤝 Contributing

Contributions are welcome! Please read CONTRIBUTING.md for:

  • Development setup
  • Code style guidelines
  • Testing requirements
  • Pull request process
  • Architecture overview

📄 License

MIT License - see LICENSE file for details.


🌟 Links


TONL: Making structured data LLM-friendly without sacrificing readability. 🚀

Built with ❤️ by Ersin Koc

About

TONL (Token-Optimized Notation Language)

Topics

Resources

License

Contributing

Security policy

Stars

Watchers

Forks

Packages

No packages published