Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
107 changes: 107 additions & 0 deletions Tasks/daily tasks/Ananthu Ajay/day5_Task4.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,107 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim

transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(
(0.5, 0.5, 0.5),
(0.5, 0.5, 0.5)
)
]
)

trainset = torchvision.datasets.CIFAR10(
root='./data',
train=True,
download=True,
transform=transform
)

testset = torchvision.datasets.CIFAR10(
root='./data',
train=False,
download=False,
transform=transform
)

trainloader = torch.utils.data.DataLoader(
trainset,
batch_size=4,
shuffle=True,
num_workers=0
)

testloader = torch.utils.data.DataLoader(
testset,
batch_size=4,
shuffle=False,
num_workers=0
)

classes = (
'plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck'
)

class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x


net = Net()

loss_function = nn.CrossEntropyLoss()
optimizer = optim.SGD(
net.parameters(),
lr=1
)

for epoch in range(3):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# data = (inputs, labels)
inputs, labels = data
optimizer.zero_grad()

outputs = net(inputs)
loss = loss_function(outputs, labels)
loss.backward()
optimizer.step()

running_loss = running_loss + loss.item()
if i % 2000 == 1999:
print(
'[%d, %5d] loss: %.3f' %
(epoch + 1, i+1, running_loss/2000)
)
running_loss = 0.0
print("vola")

#When learning rate = 0.001 and epoch =2
#[2, 12000] loss: 1.881
#When learning rate = 0.01 and epoch =2
#[2, 12000] loss: 1.285
#When learning rate = 0.1 and epoch =3
#[3, 12000] loss: 1.156
#When learning rate = 1 and epoch =3
#[3, 12000] loss: 1.973