Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 7 additions & 7 deletions README.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -42,17 +42,17 @@ In addition to data frames/tibbles, dplyr makes working with other computational

- [arrow](https://arrow.apache.org/docs/r/) for larger-than-memory datasets, including on remote cloud storage like AWS S3, using the Apache Arrow C++ engine, [Acero](https://arrow.apache.org/docs/cpp/streaming_execution.html).

- [dtplyr](https://dtplyr.tidyverse.org/) for large, in-memory datasets.
Translates your dplyr code to high performance
[data.table](https://rdatatable.gitlab.io/data.table/) code.

- [dbplyr](https://dbplyr.tidyverse.org/) for data stored in a relational
database. Translates your dplyr code to SQL.

- [duckplyr](https://tidyverse.github.io/duckplyr/) for using [duckdb](https://duckdb.org) on large, in-memory datasets with zero extra copies. Translates your dplyr code to high performance duckdb queries with an automatic R fallback when translation isn't possible.
- [dtplyr](https://dtplyr.tidyverse.org/) for large, in-memory datasets.
Translates your dplyr code to high performance
[data.table](https://rdatatable.gitlab.io/data.table/) code.

- [duckdb](https://duckdb.org/docs/api/r) for large datasets that are
still small enough to fit on your computer.
- [duckplyr](https://duckplyr.tidyverse.org/) for large, in-memory
datasets. Translates your dplyr code to high performance
[duckdb](https://duckdb.org) queries with zero extra copies and
an automatic R fallback when translation isn’t possible.

- [sparklyr](https://spark.rstudio.com) for very large datasets stored in
[Apache Spark](https://spark.apache.org).
Expand Down
39 changes: 18 additions & 21 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -44,20 +44,17 @@ alternative backends:
Apache Arrow C++ engine,
[Acero](https://arrow.apache.org/docs/cpp/streaming_execution.html).

- [dtplyr](https://dtplyr.tidyverse.org/) for large, in-memory datasets.
Translates your dplyr code to high performance
[data.table](https://rdatatable.gitlab.io/data.table/) code.

- [dbplyr](https://dbplyr.tidyverse.org/) for data stored in a
relational database. Translates your dplyr code to SQL.

- [duckplyr](https://tidyverse.github.io/duckplyr/) for using
[duckdb](https://duckdb.org) on large, in-memory datasets with zero
extra copies. Translates your dplyr code to high performance duckdb
queries with an automatic R fallback when translation isn’t possible.
- [dtplyr](https://dtplyr.tidyverse.org/) for large, in-memory datasets.
Translates your dplyr code to high performance
[data.table](https://rdatatable.gitlab.io/data.table/) code.

- [duckdb](https://duckdb.org/docs/api/r) for large datasets that are
still small enough to fit on your computer.
- [duckplyr](https://duckplyr.tidyverse.org/) for large, in-memory
datasets. Translates your dplyr code to high performance
[duckdb](https://duckdb.org) queries with zero extra copies and an
automatic R fallback when translation isn’t possible.

- [sparklyr](https://spark.rstudio.com) for very large datasets stored
in [Apache Spark](https://spark.apache.org).
Expand Down Expand Up @@ -94,8 +91,8 @@ library(dplyr)
starwars |>
filter(species == "Droid")
#> # A tibble: 6 × 14
#> name height mass hair_color skin_color eye_color birth_year sex gender
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
#> name height mass hair_color skin_color eye_color birth_year sex gender
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 C-3PO 167 75 <NA> gold yellow 112 none masculi…
#> 2 R2-D2 96 32 <NA> white, blue red 33 none masculi…
#> 3 R5-D4 97 32 <NA> white, red red NA none masculi…
Expand All @@ -109,12 +106,12 @@ starwars |>
select(name, ends_with("color"))
#> # A tibble: 87 × 4
#> name hair_color skin_color eye_color
#> <chr> <chr> <chr> <chr>
#> 1 Luke Skywalker blond fair blue
#> 2 C-3PO <NA> gold yellow
#> 3 R2-D2 <NA> white, blue red
#> 4 Darth Vader none white yellow
#> 5 Leia Organa brown light brown
#> <chr> <chr> <chr> <chr>
#> 1 Luke Skywalker blond fair blue
#> 2 C-3PO <NA> gold yellow
#> 3 R2-D2 <NA> white, blue red
#> 4 Darth Vader none white yellow
#> 5 Leia Organa brown light brown
#> # ℹ 82 more rows

starwars |>
Expand All @@ -134,7 +131,7 @@ starwars |>
arrange(desc(mass))
#> # A tibble: 87 × 14
#> name height mass hair_color skin_color eye_color birth_year sex gender
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 Jabba De… 175 1358 <NA> green-tan… orange 600 herm… mascu…
#> 2 Grievous 216 159 none brown, wh… green, y… NA male mascu…
#> 3 IG-88 200 140 none metal red 15 none mascu…
Expand All @@ -158,9 +155,9 @@ starwars |>
#> species n mass
#> <chr> <int> <dbl>
#> 1 Droid 6 69.8
#> 2 Gungan 3 74
#> 2 Gungan 3 74
#> 3 Human 35 81.3
#> 4 Kaminoan 2 88
#> 4 Kaminoan 2 88
#> 5 Mirialan 2 53.1
#> # ℹ 4 more rows
```
Expand Down