Skip to content

smirk-dev/VideoCraft-first-iteration

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

63 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

๐ŸŽฌ VideoCraft - AI-Powered Video Editing Assistant

VideoCraft Banner

Python Streamlit PyTorch License

An intelligent video editing assistant that revolutionizes post-production workflows through AI-powered content analysis and automated suggestion generation

๐Ÿš€ Quick Start โ€ข ๐Ÿค– AI Models โ€ข ๐Ÿ“– Documentation โ€ข ๐Ÿ”ง Development


๐Ÿ“‹ Table of Contents


๐Ÿ“ Project Structure

VideoCraft/
โ”œโ”€โ”€ ๐Ÿ“„ main.py                     # Main Streamlit application
โ”œโ”€โ”€ ๐Ÿ“„ config.yaml                 # Configuration settings
โ”œโ”€โ”€ ๐Ÿ“„ requirements.txt            # Python dependencies
โ”œโ”€โ”€ ๐Ÿ“„ LICENSE                     # Project license
โ”œโ”€โ”€ ๐Ÿ“„ README.md                   # This file
โ”‚
โ”œโ”€โ”€ ๐Ÿ“ src/                        # Core source code
โ”‚   โ”œโ”€โ”€ ๐Ÿ“ ai_models/              # AI/ML models
โ”‚   โ”‚   โ”œโ”€โ”€ emotion_detector.py    # Emotion detection system
โ”‚   โ”‚   โ”œโ”€โ”€ sentiment_analyzer.py  # Text sentiment analysis
โ”‚   โ”‚   โ”œโ”€โ”€ visual_analyzer.py     # Computer vision models
โ”‚   โ”‚   โ””โ”€โ”€ user_learning_system.py # Personalization AI
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ ๐Ÿ“ processors/             # Data processing modules
โ”‚   โ”‚   โ”œโ”€โ”€ audio_analyzer.py      # Audio analysis & processing
โ”‚   โ”‚   โ”œโ”€โ”€ scene_detector.py      # Scene change detection
โ”‚   โ”‚   โ”œโ”€โ”€ script_parser.py       # Script/subtitle parsing
โ”‚   โ”‚   โ””โ”€โ”€ video_analyzer.py      # Video content analysis
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ ๐Ÿ“ suggestions/            # AI suggestion engines
โ”‚   โ”‚   โ”œโ”€โ”€ cut_suggester.py       # Intelligent cut recommendations
โ”‚   โ”‚   โ””โ”€โ”€ transition_recommender.py # Transition suggestions
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ ๐Ÿ“ ui/                     # User interface components
โ”‚   โ”‚   โ”œโ”€โ”€ suggestion_panel.py    # Suggestions display
โ”‚   โ”‚   โ””โ”€โ”€ timeline_viewer.py     # Timeline visualization
โ”‚   โ”‚
โ”‚   โ””โ”€โ”€ ๐Ÿ“ utils/                  # Utility modules
โ”‚       โ”œโ”€โ”€ cloud_integration.py   # Cloud processing support
โ”‚       โ”œโ”€โ”€ file_handler.py        # File I/O operations
โ”‚       โ””โ”€โ”€ timeline_sync.py       # Timeline synchronization
โ”‚
โ”œโ”€โ”€ ๐Ÿ“ docs/                       # Documentation & reports
โ”‚   โ”œโ”€โ”€ ๐Ÿ“ reports/                # Analysis & performance reports
โ”‚   โ”œโ”€โ”€ ๐Ÿ“ fixes/                  # Development fix logs
โ”‚   โ””โ”€โ”€ ๐Ÿ“„ README.md               # Documentation index
โ”‚
โ”œโ”€โ”€ ๐Ÿ“ scripts/                    # Development & testing scripts
โ”‚   โ”œโ”€โ”€ ๐Ÿ“ setup/                  # Setup & installation utilities
โ”‚   โ”œโ”€โ”€ ๐Ÿ“ test_scripts/           # Testing & validation scripts
โ”‚   โ””โ”€โ”€ ๐Ÿ“„ README.md               # Scripts directory guide
โ”‚
โ””โ”€โ”€ ๐Ÿ“ tests/                      # Unit & integration tests
    โ””โ”€โ”€ test_*.py                  # Test modules

๐ŸŽฏ Project Overview

VideoCraft is a cutting-edge AI-powered video editing assistant designed to streamline and enhance the post-production workflow for content creators, filmmakers, and video editors. By leveraging state-of-the-art machine learning models, VideoCraft automatically analyzes video content, audio tracks, and scripts to provide intelligent suggestions for cuts, transitions, and editing decisions.

๐ŸŒŸ Key Capabilities

  • Intelligent Scene Detection: Automatically identifies optimal cut points based on visual content changes
  • Emotional Arc Analysis: Tracks emotional progression through dialogue, speech patterns, and visual cues
  • Multi-Modal Content Understanding: Combines video, audio, and text analysis for comprehensive insights
  • Real-Time Processing: Advanced UI with progress tracking and live status updates
  • Professional Workflow Integration: Export suggestions compatible with major editing software

๐ŸŽฌ Who Is This For?

  • Content Creators: YouTube creators, social media producers, and digital marketers
  • Filmmakers: Independent filmmakers, documentary producers, and video artists
  • Editors: Professional video editors looking to accelerate their workflow
  • Educators: Film students and video production instructors
  • Developers: AI researchers and developers interested in multimodal content analysis

โœจ Core Features

๐ŸŽฏ Advanced Video Analysis

Scene Change Detection

  • Visual Content Analysis: Uses computer vision to identify scene boundaries
  • Statistical Methods: Histogram-based and pixel difference analysis
  • AI-Enhanced Detection: CLIP model integration for semantic scene understanding
  • Adaptive Thresholds: Configurable sensitivity for different content types

Audio Processing & Analysis

  • Speech Emotion Recognition: Real-time emotion detection in spoken dialogue
  • Speaker Diarization: Automatic identification of speaker changes
  • Audio Energy Analysis: Rhythm and pacing analysis for cut timing
  • Music Synchronization: Beat detection for music-synced cuts

Script & Text Analysis

  • Natural Language Processing: Advanced sentiment and emotion analysis
  • Dialogue Parsing: Support for multiple subtitle formats (SRT, VTT, ASS)
  • Emotional Beat Detection: Identifies dramatic moments and pacing changes
  • Timeline Synchronization: Automatic alignment of script to video timeline

๐Ÿš€ Enhanced User Interface

Drag-and-Drop File Upload

  • Multi-Format Support: Video (MP4, AVI, MOV, MKV), Audio (MP3, WAV, AAC), Scripts (TXT, SRT, VTT)
  • Large File Handling: Support for video files up to 2GB, audio up to 500MB
  • Real-Time Validation: Instant feedback on file types and sizes
  • Visual Feedback: Animated upload areas with hover effects

Real-Time Progress Tracking

  • Step-by-Step Breakdown: Detailed progress indicators for each processing stage
  • Visual Progress Bars: Gradient-styled progress indicators with animations
  • Status Updates: Live text updates describing current operations
  • Error Handling: Comprehensive error reporting with recovery suggestions

Advanced Filtering & Sorting

  • Multi-Criteria Filtering: Filter by confidence, type, time range, emotions
  • Priority-Based Sorting: Sort suggestions by importance and relevance
  • Interactive Controls: Real-time filter application with immediate results
  • Custom Presets: Save and load filter configurations

Preview & Thumbnails

  • Automatic Thumbnail Generation: Video previews generated at optimal timestamps
  • Hover Effects: Interactive thumbnail previews with smooth animations
  • Responsive Design: Optimized for desktop, tablet, and mobile viewing
  • Fast Loading: Efficient thumbnail caching and compression

๐ŸŽ›๏ธ Professional Tools

Interactive Timeline Visualization

  • Multi-Track Display: Separate tracks for video, audio, and script analysis
  • Zoom & Pan: Detailed timeline navigation with smooth interactions
  • Suggestion Overlay: Visual markers for all AI-generated suggestions
  • Export Integration: Direct export to popular editing software formats

Batch Processing & Export

  • Multiple File Processing: Analyze multiple videos in sequence
  • Format Conversion: Export suggestions in various formats (XML, EDL, CSV)
  • Metadata Preservation: Maintain all analysis data and confidence scores
  • Integration APIs: Direct integration with Adobe Premiere, DaVinci Resolve, Final Cut Pro

๐Ÿค– AI Models & Technologies

๐Ÿง  Core AI Models

1. CLIP (Contrastive Language-Image Pre-training)

  • Model: openai/clip-vit-base-patch32
  • Purpose: Visual content understanding and scene analysis
  • Capabilities:
    • Scene boundary detection through visual similarity analysis
    • Object and activity recognition in video frames
    • Semantic understanding of visual content
    • Cross-modal video-text matching
  • Technical Details:
    • Vision Transformer (ViT) architecture with 32x32 patch size
    • 151M parameters optimized for real-time inference
    • Multi-scale feature extraction for temporal analysis
    • GPU acceleration with automatic CPU fallback

2. Emotion Recognition Models

Text Emotion Analysis
  • Model: j-hartmann/emotion-english-distilroberta-base
  • Purpose: Analyze emotional content in scripts and dialogue
  • Capabilities:
    • Multi-class emotion classification (Joy, Sadness, Anger, Fear, Surprise, Neutral)
    • Confidence scoring for emotional predictions
    • Contextual understanding of emotional transitions
    • Support for multiple languages and dialects
  • Technical Details:
    • DistilRoBERTa architecture for efficient processing
    • Fine-tuned on comprehensive emotion datasets
    • 82M parameters with optimized inference pipeline
Speech Emotion Recognition
  • Model: ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition
  • Purpose: Detect emotions from speech audio
  • Capabilities:
    • Real-time emotion detection from audio waveforms
    • Speaker-independent emotion recognition
    • Temporal emotion tracking throughout speech segments
    • Robustness to background noise and audio quality variations
  • Technical Details:
    • Wav2Vec2 architecture with cross-lingual speech representations
    • 317M parameters trained on diverse speech datasets
    • Support for multiple audio formats and sample rates

3. Facial Expression Analysis

  • Model: trpakov/vit-face-expression
  • Purpose: Analyze facial expressions in video content
  • Capabilities:
    • Real-time facial emotion detection from video frames
    • Multi-face tracking and expression analysis
    • Temporal consistency in emotion tracking
    • Integration with scene change detection
  • Technical Details:
    • Vision Transformer adapted for facial expression recognition
    • Optimized for diverse lighting conditions and face orientations
    • Efficient processing with face detection pipeline

4. Advanced NLP Pipeline

  • Framework: spaCy with custom emotion models
  • Purpose: Comprehensive text analysis and processing
  • Capabilities:
    • Named entity recognition for character identification
    • Dependency parsing for dialogue structure analysis
    • Sentiment analysis with fine-grained scoring
    • Temporal relationship extraction from scripts
  • Technical Details:
    • Multi-language support with optimized tokenizers
    • Custom training pipelines for domain-specific terminology
    • Integration with external knowledge bases

๐Ÿ”ฌ Computer Vision Pipeline

Scene Detection Algorithms

  1. Histogram-Based Analysis: Statistical comparison of color distributions
  2. Optical Flow Detection: Motion vector analysis for scene transitions
  3. Edge Detection: Structural change analysis using Sobel and Canny filters
  4. Deep Learning Integration: CLIP-based semantic scene understanding

Frame Processing Pipeline

  • Adaptive Sampling: Intelligent frame selection for optimal processing speed
  • Multi-Resolution Analysis: Process at multiple scales for different features
  • Temporal Consistency: Ensure smooth transitions and avoid false positives
  • Memory Optimization: Efficient buffer management for large video files

๐ŸŽต Audio Processing Engine

Feature Extraction

  • Spectral Analysis: MFCC, chroma, and spectral centroid extraction
  • Temporal Features: Zero-crossing rate, energy, and rhythm analysis
  • Harmonic Analysis: Pitch tracking and harmonic content analysis
  • Noise Reduction: Advanced filtering for clean audio analysis

Speaker Diarization

  • Voice Activity Detection: Accurate speech/non-speech segmentation
  • Speaker Clustering: Unsupervised clustering of speaker embeddings
  • Change Point Detection: Precise identification of speaker transitions
  • Confidence Scoring: Reliability metrics for speaker change suggestions

๐Ÿš€ Installation & Setup

๐Ÿ“‹ Prerequisites

  • Python: Version 3.11 or higher
  • Operating System: Windows 10/11, macOS 10.15+, or Linux Ubuntu 18.04+
  • Memory: Minimum 8GB RAM (16GB recommended for large videos)
  • Storage: At least 5GB free space for models and cache
  • GPU: Optional but recommended (CUDA-compatible GPU for acceleration)

๐Ÿ”ง Installation Methods

Method 1: Automated Setup (Recommended)

# Clone the repository
git clone https://github.com/smirk-dev/VideoCraft.git
cd VideoCraft

# Run automated setup script (Windows)
.\setup_venv.ps1

# For macOS/Linux
chmod +x setup_venv.sh
./setup_venv.sh

Method 2: Manual Installation

# Create virtual environment
python -m venv videocraft_env

# Activate virtual environment
# Windows
.\videocraft_env\Scripts\Activate.ps1
# macOS/Linux
source videocraft_env/bin/activate

# Install dependencies
pip install -r requirements.txt

# Run setup script
python setup.py

Method 3: Docker Installation

# Build Docker image
docker build -t videocraft .

# Run container with GPU support
docker run --gpus all -p 8501:8501 videocraft

# Or CPU-only
docker run -p 8501:8501 videocraft

๐Ÿ” Dependency Details

Core Dependencies

# AI/ML Framework
torch>=2.6.0                     # PyTorch for deep learning
torchvision>=0.23.0             # Computer vision utilities
transformers>=4.48.0            # Hugging Face transformers
sentence-transformers==3.0.1    # Sentence embeddings

# Video/Audio Processing
opencv-python-headless==4.10.0.84  # Computer vision
moviepy==1.0.3                     # Video processing
librosa==0.10.2                    # Audio analysis
scenedetect==0.6.4                 # Scene detection
pydub==0.25.1                      # Audio manipulation

# NLP & Text Processing
spacy>=3.8.0                    # Natural language processing
nltk>=3.9.1                     # Text analysis toolkit

# Data Science
pandas>=2.2.3                   # Data manipulation
numpy>=2.0.2,<2.2.0            # Numerical computing
scikit-learn==1.5.1            # Machine learning utilities
scipy>=1.11.0                   # Scientific computing

# UI Framework
streamlit==1.36.0               # Web application framework
plotly==5.22.0                  # Interactive visualizations
streamlit-timeline==0.0.2       # Timeline components

Security Updates

  • PyTorch โ‰ฅ2.6.0: Required for CVE-2025-32434 security fix
  • NumPy โ‰ฅ2.0.2: Compatibility with latest PyTorch versions
  • Transformers โ‰ฅ4.48.0: Latest security and performance updates

โš™๏ธ Configuration

Environment Variables

# Create .env file from template
cp .env.example .env

# Configure settings
VIDEOCRAFT_MODEL_CACHE_DIR=./models
VIDEOCRAFT_MAX_VIDEO_SIZE=2048  # MB
VIDEOCRAFT_ENABLE_GPU=true
VIDEOCRAFT_LOG_LEVEL=INFO

Model Configuration

# config.yaml
models:
  clip:
    model_name: "openai/clip-vit-base-patch32"
    device: "auto"  # auto, cpu, cuda
    cache_dir: "./models"
  
  emotion:
    text_model: "j-hartmann/emotion-english-distilroberta-base"
    speech_model: "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
    
processing:
  video:
    max_fps: 30
    frame_skip: 5
    max_resolution: [1920, 1080]
  
  audio:
    sample_rate: 16000
    chunk_duration: 10  # seconds
    
suggestions:
  confidence_threshold: 0.7
  max_suggestions: 50

Streamlit Configuration

# .streamlit/config.toml
[server]
maxUploadSize = 2048  # 2GB
maxMessageSize = 2048
fileWatcherType = "auto"

[theme]
primaryColor = "#667eea"
backgroundColor = "#ffffff"
secondaryBackgroundColor = "#f8f9ff"
textColor = "#2c3e50"

๐Ÿ“– Usage Guide

๐ŸŽฌ Getting Started

1. Launch the Application

# Activate virtual environment if not already active
source videocraft_env/bin/activate  # macOS/Linux
# or
.\videocraft_env\Scripts\Activate.ps1  # Windows

# Start the application
streamlit run main.py

The application will open in your default web browser at http://localhost:8501

2. Upload Your Content

Video Upload
  • Supported Formats: MP4, AVI, MOV, MKV, WebM
  • Maximum Size: 2GB (configurable)
  • Optimal Settings: 1080p resolution, 30fps or less
  • Upload Methods:
    • Drag and drop into the designated area
    • Click "Browse files" button
    • Paste file path directly
Script Upload (Optional)
  • Supported Formats: TXT, SRT, VTT, ASS
  • Maximum Size: 500KB
  • Content: Dialogue, subtitles, or scene descriptions
  • Encoding: UTF-8 recommended
Audio Upload (Optional)
  • Supported Formats: MP3, WAV, AAC, FLAC
  • Maximum Size: 500MB
  • Use Cases: Separate audio track or music overlay

3. Configure Analysis Settings

Analysis Options
  • Analyze Video Content: Enable visual scene detection and content analysis
  • Analyze Audio: Enable speech emotion and speaker change detection
  • Analyze Script: Enable text-based emotion and dialogue analysis
Sensitivity Settings
  • Emotion Change Threshold (0.1-1.0): How dramatic emotional changes must be
  • Scene Change Threshold (0.1-1.0): Sensitivity to visual scene transitions
  • Minimum Cut Interval (1-30 seconds): Minimum time between suggested cuts

4. Process and Review

The processing pipeline includes:

  1. File Preparation: Upload validation and format conversion
  2. Content Analysis: Video, audio, and script processing
  3. AI Model Inference: Emotion detection and scene analysis
  4. Suggestion Generation: Cut and transition recommendations
  5. Results Compilation: Confidence scoring and ranking

๐ŸŽ›๏ธ Advanced Features

Real-Time Progress Tracking

  • Visual Progress Bar: Shows completion percentage with gradient styling
  • Step-by-Step Updates: Detailed description of current processing stage
  • Time Estimation: Approximate remaining processing time
  • Error Recovery: Automatic retry and fallback mechanisms

Advanced Filtering System

Confidence Filtering
  • Range Slider: Set minimum and maximum confidence levels
  • Dynamic Updates: Real-time filtering as you adjust settings
  • Confidence Scores: Detailed breakdown of model certainty
Content-Based Filtering
  • Suggestion Types: Filter by scene changes, emotion beats, speaker changes
  • Time Range: Focus on specific segments of your video
  • Emotion Filtering: Show only specific emotional content types
  • Priority Levels: Filter by suggestion importance (High, Medium, Low)
Advanced Options
  • Speaker Changes Only: Show only suggestions at speaker transitions
  • Music-Synced Cuts: Show only cuts aligned with musical elements
  • Minimum Cut Length: Filter out suggestions too close together
  • Preview Thumbnails: Toggle thumbnail displays for suggestions

Interactive Timeline

Navigation
  • Zoom Controls: Zoom in/out for detailed timeline inspection
  • Pan and Scroll: Navigate through long video timelines
  • Jump to Time: Click on any point to jump to specific timestamps
  • Multi-Track View: Separate lanes for different analysis types
Suggestion Management
  • Selection Tools: Select individual or multiple suggestions
  • Batch Operations: Apply actions to multiple suggestions at once
  • Export Options: Save suggestions in various formats
  • Integration: Direct export to editing software

๐Ÿ“Š Understanding Results

Suggestion Types

Scene Change Suggestions
  • Visual Transitions: Cuts based on significant visual changes
  • Confidence: Based on visual similarity analysis
  • Metadata: Color histogram differences, motion vectors
  • Timing: Precise frame-level timestamps
Emotion-Based Cuts
  • Text Emotions: Cuts at emotional beats in dialogue
  • Speech Emotions: Cuts based on vocal emotional changes
  • Visual Emotions: Cuts based on facial expression changes
  • Emotional Arc: Tracking emotional progression
Speaker Change Cuts
  • Dialogue Transitions: Automatic cuts at speaker changes
  • Voice Recognition: Speaker identification and clustering
  • Confidence Scoring: Reliability of speaker change detection
  • Context Awareness: Consideration of dialogue flow
Audio-Synced Cuts
  • Beat Detection: Cuts synchronized with musical beats
  • Audio Energy: Cuts at high/low energy moments
  • Silence Detection: Cuts at natural pauses
  • Rhythm Analysis: Cuts that maintain pacing

Confidence Scoring System

Score Interpretation
  • 90-100%: Extremely confident, almost certainly correct
  • 70-89%: High confidence, likely good cut points
  • 50-69%: Medium confidence, review recommended
  • 30-49%: Low confidence, use with caution
  • Below 30%: Very low confidence, manual review required
Factors Affecting Confidence
  • Visual Clarity: Image quality and lighting conditions
  • Audio Quality: Background noise and recording clarity
  • Content Complexity: Number of subjects and scene complexity
  • Model Certainty: Inherent model confidence in predictions

๐Ÿ—๏ธ Architecture

๐Ÿ“ Project Structure

VideoCraft/
โ”œโ”€โ”€ ๐Ÿ“„ README.md                    # Comprehensive project documentation
โ”œโ”€โ”€ ๐Ÿ“„ requirements.txt             # Python dependencies
โ”œโ”€โ”€ ๐Ÿ“„ config.yaml                  # Configuration settings
โ”œโ”€โ”€ ๐Ÿ“„ main.py                      # Main Streamlit application
โ”œโ”€โ”€ ๐Ÿ“„ setup.py                     # Installation and setup script
โ”œโ”€โ”€ ๐Ÿ“„ .env.example                 # Environment variables template
โ”œโ”€โ”€ ๐Ÿ“„ LICENSE                      # MIT license
โ”œโ”€โ”€ ๐Ÿ“„ ADVANCED_FEATURES.md         # Advanced features documentation
โ”œโ”€โ”€ ๐Ÿ“„ DEPENDENCY_RESOLUTION.md     # Dependency management guide
โ”œโ”€โ”€ ๐Ÿ“„ IMPLEMENTATION_COMPLETE.md   # Implementation status
โ”œโ”€โ”€ ๐Ÿ“„ PERFORMANCE_NOTES.md         # Performance optimization guide
โ”œโ”€โ”€ ๐Ÿ“„ UI_IMPROVEMENTS.md           # UI enhancement documentation
โ”œโ”€โ”€ ๐Ÿ“„ setup_venv.ps1               # Windows setup script
โ”‚
โ”œโ”€โ”€ ๐Ÿ—‚๏ธ .streamlit/                  # Streamlit configuration
โ”‚   โ””โ”€โ”€ ๐Ÿ“„ config.toml              # UI and server settings
โ”‚
โ”œโ”€โ”€ ๐Ÿ—‚๏ธ src/                         # Source code directory
โ”‚   โ”œโ”€โ”€ ๐Ÿ“„ __init__.py              # Package initialization
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ ๐Ÿ—‚๏ธ processors/              # Content processing modules
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“„ __init__.py
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“„ video_analyzer.py    # Video content analysis
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“„ audio_analyzer.py    # Audio processing and analysis
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“„ script_parser.py     # Text and script analysis
โ”‚   โ”‚   โ””โ”€โ”€ ๐Ÿ“„ scene_detector.py    # Scene boundary detection
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ ๐Ÿ—‚๏ธ ai_models/               # AI model implementations
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“„ __init__.py
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“„ emotion_detector.py  # Multi-modal emotion detection
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“„ sentiment_analyzer.py # Text sentiment analysis
โ”‚   โ”‚   โ””โ”€โ”€ ๐Ÿ“„ visual_analyzer.py   # Computer vision models
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ ๐Ÿ—‚๏ธ suggestions/             # Suggestion generation engines
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“„ __init__.py
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“„ cut_suggester.py     # Cut point recommendation
โ”‚   โ”‚   โ””โ”€โ”€ ๐Ÿ“„ transition_recommender.py # Transition suggestions
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ ๐Ÿ—‚๏ธ ui/                      # User interface components
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“„ __init__.py
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“„ timeline_viewer.py   # Interactive timeline display
โ”‚   โ”‚   โ””โ”€โ”€ ๐Ÿ“„ suggestion_panel.py  # Suggestion management UI
โ”‚   โ”‚
โ”‚   โ””โ”€โ”€ ๐Ÿ—‚๏ธ utils/                   # Utility functions
โ”‚       โ”œโ”€โ”€ ๐Ÿ“„ __init__.py
โ”‚       โ”œโ”€โ”€ ๐Ÿ“„ file_handler.py      # File operations and validation
โ”‚       โ””โ”€โ”€ ๐Ÿ“„ timeline_sync.py     # Timeline synchronization
โ”‚
โ”œโ”€โ”€ ๐Ÿ—‚๏ธ data/                        # Data storage directory
โ”‚   โ”œโ”€โ”€ ๐Ÿ—‚๏ธ cache/                   # Model and processing cache
โ”‚   โ””โ”€โ”€ ๐Ÿ—‚๏ธ output/                  # Generated outputs and exports
โ”‚
โ””โ”€โ”€ ๐Ÿ—‚๏ธ tests/                       # Test suite
    โ”œโ”€โ”€ ๐Ÿ“„ __init__.py
    โ”œโ”€โ”€ ๐Ÿ“„ test_processors.py       # Processor unit tests
    โ”œโ”€โ”€ ๐Ÿ“„ test_ai_models.py        # AI model tests
    โ””โ”€โ”€ ๐Ÿ“„ test_ui_components.py    # UI component tests

๐Ÿ”„ Processing Pipeline

1. Input Processing Stage

File Upload โ†’ Validation โ†’ Format Conversion โ†’ Temporary Storage
     โ†“
Metadata Extraction โ†’ Quality Assessment โ†’ Processing Queue

2. Content Analysis Stage

Video Analysis:
Raw Video โ†’ Frame Extraction โ†’ Scene Detection โ†’ Feature Extraction โ†’ CLIP Analysis

Audio Analysis:
Audio Track โ†’ Preprocessing โ†’ Feature Extraction โ†’ Emotion Detection โ†’ Speaker Analysis

Script Analysis:
Text Input โ†’ Tokenization โ†’ NLP Processing โ†’ Emotion Analysis โ†’ Timeline Alignment

3. AI Inference Stage

Parallel Processing:
โ”œโ”€โ”€ Visual Content Understanding (CLIP)
โ”œโ”€โ”€ Text Emotion Analysis (RoBERTa)
โ”œโ”€โ”€ Speech Emotion Detection (Wav2Vec2)
โ””โ”€โ”€ Facial Expression Analysis (ViT)
     โ†“
Feature Fusion โ†’ Temporal Alignment โ†’ Confidence Scoring

4. Suggestion Generation Stage

Multi-Modal Features โ†’ Cut Point Detection โ†’ Transition Recommendation
     โ†“
Confidence Scoring โ†’ Ranking โ†’ Filtering โ†’ Export Formatting

๐Ÿงฉ Component Architecture

Core Modules

VideoAnalyzer Class
class VideoAnalyzer:
    """Comprehensive video content analysis"""
    
    def __init__(self, config):
        self.clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
        self.face_detector = FaceDetector()
        self.config = config
    
    def analyze_video_timeline(self, video_path):
        """Analyze video content across timeline"""
        
    def detect_visual_emotions(self, frames):
        """Detect emotions from facial expressions"""
        
    def extract_video_features(self, video_path):
        """Extract comprehensive video features"""
AudioAnalyzer Class
class AudioAnalyzer:
    """Advanced audio processing and analysis"""
    
    def __init__(self, config):
        self.emotion_model = Wav2Vec2ForSequenceClassification.from_pretrained(
            "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
        )
        self.speaker_detector = SpeakerDetector()
    
    def analyze_speech_emotion(self, audio_path):
        """Detect emotions in speech"""
        
    def detect_speaker_changes(self, audio_path):
        """Identify speaker transition points"""
        
    def extract_audio_features(self, audio_path):
        """Extract spectral and temporal features"""
EmotionDetector Class
class EmotionDetector:
    """Multi-modal emotion detection system"""
    
    def __init__(self, config):
        self.text_model = AutoModelForSequenceClassification.from_pretrained(
            "j-hartmann/emotion-english-distilroberta-base"
        )
        self.speech_model = Wav2Vec2ForSequenceClassification.from_pretrained(
            "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
        )
    
    def detect_text_emotions(self, text):
        """Analyze emotions in text content"""
        
    def detect_speech_emotions(self, audio):
        """Analyze emotions in speech audio"""
        
    def fuse_emotion_predictions(self, text_emotions, speech_emotions):
        """Combine multi-modal emotion predictions"""

๐Ÿ”— Data Flow

Input โ†’ Processing โ†’ Output Flow

graph TD
    A[User Upload] โ†’ B[File Validation]
    B โ†’ C[Content Extraction]
    C โ†’ D[Parallel Analysis]
    D โ†’ E[Video Analysis]
    D โ†’ F[Audio Analysis]
    D โ†’ G[Script Analysis]
    E โ†’ H[Feature Fusion]
    F โ†’ H
    G โ†’ H
    H โ†’ I[Suggestion Generation]
    I โ†’ J[Ranking & Filtering]
    J โ†’ K[UI Display]
    K โ†’ L[Export Options]
Loading

โš™๏ธ Configuration

๐Ÿ”ง Configuration Files

config.yaml - Main Configuration

# Model Configuration
models:
  clip:
    model_name: "openai/clip-vit-base-patch32"
    device: "auto"  # auto, cpu, cuda, mps
    torch_dtype: "float32"
    cache_dir: "./models/clip"
    max_batch_size: 8
  
  emotion:
    text_model: "j-hartmann/emotion-english-distilroberta-base"
    speech_model: "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
    face_model: "trpakov/vit-face-expression"
    cache_dir: "./models/emotion"
  
  nlp:
    spacy_model: "en_core_web_sm"
    sentiment_model: "cardiffnlp/twitter-roberta-base-sentiment-latest"

# Processing Configuration
processing:
  video:
    max_fps: 30
    frame_skip: 5  # Process every 5th frame
    max_resolution: [1920, 1080]
    thumbnail_timestamp: 1.0  # Generate thumbnail at 1 second
    scene_detection_method: "combined"  # histogram, optical_flow, combined
  
  audio:
    sample_rate: 16000
    chunk_duration: 10  # seconds
    overlap_duration: 1  # seconds
    noise_reduction: true
    normalize_audio: true
  
  script:
    max_text_length: 10000  # characters
    emotion_confidence_threshold: 0.5
    speaker_detection_method: "regex"  # regex, nlp, manual

# Suggestion Configuration
suggestions:
  cut_suggestions:
    confidence_threshold: 0.7
    minimum_confidence: 0.3
    max_suggestions: 50
    min_cut_interval: 2.0  # seconds
    emotion_change_threshold: 0.6
    scene_change_threshold: 0.5
  
  transition_suggestions:
    enable_smart_transitions: true
    transition_types: ["cut", "fade", "dissolve", "wipe"]
    context_awareness: true
    music_sync: true

# File Handling
file_limits:
  video_max_size: 2048  # MB
  audio_max_size: 500   # MB
  script_max_size: 0.5  # MB
  supported_video_formats: ["mp4", "avi", "mov", "mkv", "webm"]
  supported_audio_formats: ["mp3", "wav", "aac", "flac"]
  supported_script_formats: ["txt", "srt", "vtt", "ass"]

# UI Configuration
ui:
  theme: "professional"  # professional, creative, minimal
  progress_animations: true
  thumbnail_previews: true
  real_time_updates: true
  advanced_filters: true
  
# Performance Configuration
performance:
  use_gpu: true
  mixed_precision: true
  model_parallelism: false
  batch_processing: true
  cache_embeddings: true
  prefetch_models: true

# Logging Configuration
logging:
  level: "INFO"  # DEBUG, INFO, WARNING, ERROR
  log_file: "videocraft.log"
  log_rotation: true
  max_log_size: "10MB"
  backup_count: 5

.streamlit/config.toml - UI Configuration

[global]
developmentMode = false

[server]
# File upload limits
maxUploadSize = 2048  # 2GB in MB
maxMessageSize = 2048
enableCORS = false
enableXsrfProtection = true

# Performance settings
runOnSave = true
fileWatcherType = "auto"
headless = false

[browser]
serverAddress = "localhost"
serverPort = 8501
gatherUsageStats = false

[theme]
# Professional color scheme
primaryColor = "#667eea"        # Primary accent color
backgroundColor = "#ffffff"     # Main background
secondaryBackgroundColor = "#f8f9ff"  # Secondary background
textColor = "#2c3e50"          # Text color

# Advanced theming
font = "sans serif"            # Font family
base = "light"                 # Base theme (light/dark)

[client]
showErrorDetails = true
toolbarMode = "minimal"

.env - Environment Variables

# Application Settings
VIDEOCRAFT_ENV=production
VIDEOCRAFT_DEBUG=false
VIDEOCRAFT_LOG_LEVEL=INFO

# Model Configuration
VIDEOCRAFT_MODEL_CACHE_DIR=./models
VIDEOCRAFT_USE_GPU=true
VIDEOCRAFT_MIXED_PRECISION=true

# File Settings
VIDEOCRAFT_MAX_VIDEO_SIZE=2048
VIDEOCRAFT_MAX_AUDIO_SIZE=500
VIDEOCRAFT_TEMP_DIR=./temp

# API Keys (if using external services)
HUGGINGFACE_API_KEY=your_hf_api_key_here
OPENAI_API_KEY=your_openai_api_key_here

# Database (for enterprise features)
DATABASE_URL=sqlite:///videocraft.db

# Security
SECRET_KEY=your-secret-key-here
ALLOWED_HOSTS=localhost,127.0.0.1

# Performance
MAX_WORKERS=4
BATCH_SIZE=8
CACHE_TTL=3600

๐ŸŽ›๏ธ Runtime Configuration

Dynamic Settings via UI

  • Processing Options: Toggle analysis types in real-time
  • Sensitivity Sliders: Adjust thresholds while processing
  • Filter Controls: Modify result filtering dynamically
  • Theme Selection: Switch between UI themes instantly

Advanced Configuration

  • Model Selection: Choose between different AI models
  • Performance Tuning: Adjust batch sizes and GPU usage
  • Export Formats: Configure output formats for different editors
  • Integration Settings: Set up connections to external tools

๐Ÿ“Š Performance

โšก Optimization Features

GPU Acceleration

  • Automatic Detection: Automatically detects and utilizes available GPUs
  • Mixed Precision: Uses FP16 for faster inference with minimal accuracy loss
  • Memory Management: Efficient GPU memory allocation and cleanup
  • Fallback Support: Seamless CPU fallback when GPU unavailable

Processing Optimizations

  • Batch Processing: Process multiple frames/segments simultaneously
  • Smart Sampling: Intelligent frame selection to reduce processing time
  • Parallel Pipelines: Concurrent video, audio, and text processing
  • Caching System: Cache model outputs to avoid reprocessing

Memory Management

  • Streaming Processing: Process large files without loading entirely into memory
  • Buffer Management: Efficient memory buffers for video frame processing
  • Model Optimization: Quantized models for reduced memory usage
  • Garbage Collection: Proactive memory cleanup during processing

๐Ÿ“ˆ Performance Metrics

Processing Speed Benchmarks

Video Processing (1080p, 10 minutes):
โ”œโ”€โ”€ Scene Detection: ~2-3 minutes
โ”œโ”€โ”€ Audio Analysis: ~1-2 minutes
โ”œโ”€โ”€ Text Processing: ~30 seconds
โ””โ”€โ”€ Total Pipeline: ~4-6 minutes

Model Loading Times:
โ”œโ”€โ”€ CLIP Model: ~10-15 seconds
โ”œโ”€โ”€ Emotion Models: ~5-10 seconds
โ”œโ”€โ”€ NLP Models: ~3-5 seconds
โ””โ”€โ”€ Total Initialization: ~20-30 seconds

Memory Usage:
โ”œโ”€โ”€ Base Application: ~500MB
โ”œโ”€โ”€ CLIP Model: ~1.5GB
โ”œโ”€โ”€ Emotion Models: ~800MB
โ”œโ”€โ”€ Processing Buffers: ~1-2GB
โ””โ”€โ”€ Peak Usage: ~4-5GB

Scalability Considerations

  • File Size Limits: Optimized for files up to 2GB
  • Concurrent Users: Single-user application optimized for desktop use
  • Processing Queue: Sequential processing with progress tracking
  • Resource Monitoring: Real-time memory and CPU usage tracking

๐Ÿ”ง Performance Tuning

Hardware Recommendations

Minimum Requirements
  • CPU: Intel Core i5 or AMD Ryzen 5 (4+ cores)
  • RAM: 8GB (16GB recommended)
  • Storage: 5GB free space (SSD recommended)
  • GPU: Optional (Intel UHD, AMD Radeon, or NVIDIA GTX 1050+)
Recommended Configuration
  • CPU: Intel Core i7/i9 or AMD Ryzen 7/9 (8+ cores)
  • RAM: 16GB+ DDR4
  • Storage: 20GB+ SSD with high read/write speeds
  • GPU: NVIDIA RTX 3060+ or equivalent with 8GB+ VRAM
Optimal Setup
  • CPU: Intel Core i9 or AMD Ryzen 9 (16+ cores)
  • RAM: 32GB+ DDR4/DDR5
  • Storage: NVMe SSD with 50GB+ free space
  • GPU: NVIDIA RTX 4070+ with 12GB+ VRAM

Configuration Optimization

# Performance tuning in config.yaml
performance:
  # GPU settings
  use_gpu: true
  mixed_precision: true
  gpu_memory_fraction: 0.8
  
  # Processing settings
  batch_size: 16  # Increase for more GPU memory
  num_workers: 8  # Match CPU cores
  frame_skip: 3   # Process every 3rd frame for speed
  
  # Caching settings
  enable_model_cache: true
  enable_result_cache: true
  cache_size_limit: "10GB"

๐Ÿ”ง Development Guide

๐Ÿ› ๏ธ Setting Up Development Environment

Development Dependencies

# Install development dependencies
pip install -r requirements-dev.txt

# Additional development tools
pip install black flake8 pytest pytest-cov pre-commit

Code Style and Formatting

# Code formatting with Black
black src/ tests/

# Linting with flake8
flake8 src/ tests/

# Type checking with mypy
mypy src/

Pre-commit Hooks

# Install pre-commit hooks
pre-commit install

# Run all hooks manually
pre-commit run --all-files

๐Ÿงช Testing

Running Tests

# Run all tests
pytest

# Run with coverage
pytest --cov=src --cov-report=html

# Run specific test modules
pytest tests/test_processors.py
pytest tests/test_ai_models.py

โšก Lightweight Test Mode

To enable fast test execution without heavy ML dependencies (torch, transformers, spaCy models, etc.), VideoCraft provides a lightweight mode that stubs expensive components.

Key points:

  • Activated automatically during pytest via tests/conftest.py (sets LIGHT_TEST_MODE=1).
  • Skips loading large models; provides simple stub analyzers & suggester implementations.
  • Suitable for CI smoke tests and contributor quick feedback loops.
  • Full functionality still requires installing all dependencies in requirements.txt.

Environment variable:

LIGHT_TEST_MODE=1

Minimal test dependencies are listed in requirements-test.txt:

pip install -r requirements-test.txt
pytest

When you want to run the full stack (with real model inference):

pip install -r requirements.txt
pytest -m "not slow"  # (If slow markers are later added)

Optional validation that heavy mode works (example):

$env:LIGHT_TEST_MODE=0
pytest tests/test_final_integration.py -k advanced

If a test is intentionally skipped in lightweight mode (e.g., advanced analyzer coverage), it will be reported with a skip reason so you can decide when to run full mode.

Recommended CI matrix (conceptual):

  • Job 1 (fast): install requirements-test.txt, run core & unit tests (under 1 minute)
  • Job 2 (full, optional nightly): install requirements.txt, run integration & model tests

Add a GitHub Actions snippet (example only):

jobs:
  fast-tests:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v4
      - uses: actions/setup-python@v5
        with:
          python-version: '3.11'
      - name: Install minimal deps
        run: pip install -r requirements-test.txt
      - name: Run fast tests
        run: pytest -q
  full-tests:
    if: github.event_name == 'schedule'
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v4
      - uses: actions/setup-python@v5
        with:
          python-version: '3.11'
      - name: Install full deps
        run: pip install -r requirements.txt
      - name: Run integration tests
        run: pytest -m "integration" -q || true  # allow failures initially

This separation keeps contributor workflows fast while preserving deep coverage in scheduled runs.

Test Structure

# Example test file: tests/test_processors.py
import pytest
from src.processors.video_analyzer import VideoAnalyzer

class TestVideoAnalyzer:
    @pytest.fixture
    def analyzer(self):
        config = {"models": {"clip": {"model_name": "openai/clip-vit-base-patch32"}}}
        return VideoAnalyzer(config)
    
    def test_video_analysis(self, analyzer):
        # Test video analysis functionality
        pass
    
    def test_scene_detection(self, analyzer):
        # Test scene detection
        pass

๐Ÿ“ Adding New Features

Adding a New AI Model

  1. Create Model Class:
# src/ai_models/new_model.py
class NewModel:
    def __init__(self, config):
        self.model = load_pretrained_model()
        self.config = config
    
    def predict(self, input_data):
        return self.model(input_data)
  1. Update Configuration:
# config.yaml
models:
  new_model:
    model_name: "huggingface/model-name"
    device: "auto"
  1. Integration:
# main.py or relevant processor
from src.ai_models.new_model import NewModel

new_model = NewModel(config)
predictions = new_model.predict(data)

Adding a New Processor

  1. Create Processor Class:
# src/processors/new_processor.py
class NewProcessor:
    def __init__(self, config):
        self.config = config
    
    def process(self, input_data):
        # Processing logic
        return processed_data
  1. Add to Main Pipeline:
# main.py
from src.processors.new_processor import NewProcessor

new_processor = NewProcessor(config)
results = new_processor.process(input_data)

Adding UI Components

  1. Create UI Module:
# src/ui/new_component.py
import streamlit as st

class NewComponent:
    def __init__(self, config):
        self.config = config
    
    def render(self, data):
        st.markdown("## New Component")
        # Render component
  1. Integrate in Main UI:
# main.py
new_component = NewComponent(config)
new_component.render(data)

๐Ÿ“š API Documentation

Core Classes Documentation

VideoAnalyzer API
class VideoAnalyzer:
    """
    Comprehensive video content analysis using computer vision models.
    
    Methods:
        analyze_video_timeline(video_path: str) -> Dict
        detect_scenes(video_path: str, method: str) -> List[float]
        extract_video_features(video_path: str) -> Dict
        detect_visual_emotions(frames: List[np.ndarray]) -> List[Dict]
    """
AudioAnalyzer API
class AudioAnalyzer:
    """
    Advanced audio processing and speech analysis.
    
    Methods:
        analyze_speech_emotion(audio_path: str) -> List[Dict]
        detect_speaker_changes(audio_path: str) -> List[float]
        extract_audio_features(audio_path: str) -> Dict
        analyze_audio_energy(audio_path: str) -> List[float]
    """
EmotionDetector API
class EmotionDetector:
    """
    Multi-modal emotion detection system.
    
    Methods:
        detect_text_emotions(text: str) -> Dict
        detect_speech_emotions(audio: np.ndarray) -> Dict
        analyze_facial_emotions(image: np.ndarray) -> Dict
        fuse_emotions(text_em: Dict, speech_em: Dict, visual_em: Dict) -> Dict
    """

๐Ÿš€ Deployment

Production Deployment

# Build production image
docker build -f Dockerfile.prod -t videocraft:prod .

# Deploy with docker-compose
docker-compose -f docker-compose.prod.yml up -d

# Or use cloud deployment
# AWS: Use ECS or EKS
# Google Cloud: Use Cloud Run or GKE
# Azure: Use Container Instances or AKS

Environment-Specific Configurations

# config/production.yaml
performance:
  use_gpu: true
  mixed_precision: true
  batch_size: 32
  
logging:
  level: "WARNING"
  log_file: "/var/log/videocraft.log"
  
security:
  enable_auth: true
  max_upload_size: 1024  # Reduced for production

๐Ÿค Contributing

๐ŸŒŸ How to Contribute

Types of Contributions

  • Bug Reports: Help us identify and fix issues
  • Feature Requests: Suggest new functionality or improvements
  • Code Contributions: Submit pull requests for bug fixes or features
  • Documentation: Improve documentation and examples
  • Testing: Add tests or improve test coverage
  • Performance: Optimize algorithms and resource usage

Contribution Workflow

  1. Fork the Repository: Create your own fork of the project
  2. Create Feature Branch: git checkout -b feature/amazing-feature
  3. Make Changes: Implement your feature or fix
  4. Add Tests: Ensure your changes are properly tested
  5. Update Documentation: Update relevant documentation
  6. Commit Changes: git commit -m 'Add amazing feature'
  7. Push to Branch: git push origin feature/amazing-feature
  8. Create Pull Request: Submit PR with detailed description

Development Guidelines

  • Code Style: Follow PEP 8 and use Black for formatting
  • Documentation: Include docstrings for all public methods
  • Testing: Maintain >90% test coverage
  • Performance: Consider performance impact of changes
  • Compatibility: Ensure backward compatibility when possible

Reporting Issues

## Bug Report Template

**Description**: Brief description of the issue

**Steps to Reproduce**:
1. Step one
2. Step two
3. Step three

**Expected Behavior**: What should happen

**Actual Behavior**: What actually happens

**Environment**:
- OS: [Windows/macOS/Linux]
- Python Version: [3.11.x]
- VideoCraft Version: [x.x.x]
- GPU: [NVIDIA RTX 3060 / None]

**Additional Context**: Any other relevant information

๐Ÿ† Recognition

Contributors

  • Core Developers: Lead development and architecture
  • Feature Contributors: Major feature implementations
  • Bug Hunters: Significant bug reports and fixes
  • Documentation Writers: Documentation improvements
  • Community Helpers: Support in discussions and issues

Acknowledgments

Special thanks to:

  • Hugging Face: For providing pre-trained models
  • Streamlit: For the excellent UI framework
  • PyTorch: For the deep learning foundation
  • OpenAI: For the CLIP model
  • Open Source Community: For inspiration and support

๐Ÿ“„ License

MIT License

MIT License

Copyright (c) 2025 VideoCraft Development Team

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

๐Ÿ“‹ Third-Party Licenses

AI Models

  • CLIP: MIT License (OpenAI)
  • RoBERTa Emotion: Apache 2.0 License
  • Wav2Vec2: MIT License (Facebook AI)
  • ViT Face Expression: Apache 2.0 License

Dependencies

  • PyTorch: BSD 3-Clause License
  • Transformers: Apache 2.0 License
  • Streamlit: Apache 2.0 License
  • OpenCV: Apache 2.0 License
  • Librosa: ISC License

๐Ÿ“ž Support & Contact

๐Ÿ†˜ Getting Help

Documentation

  • README: Comprehensive project overview (this document)
  • API Documentation: Detailed API reference
  • Tutorial Videos: Step-by-step usage guides
  • FAQ: Frequently asked questions

Community Support

  • GitHub Issues: Bug reports and feature requests
  • Discussions: General questions and community help
  • Wiki: Community-maintained documentation
  • Discord: Real-time chat support (coming soon)

Professional Support

  • Consulting: Custom implementation and integration
  • Training: Team training and workshops
  • Enterprise: Enterprise licensing and support

๐Ÿ“ง Contact Information


๐Ÿ”ฎ Roadmap & Future Features

๐Ÿš€ Upcoming Features

Short Term (v2.0)

  • Real-time Processing: Live video analysis during recording
  • Advanced Transitions: AI-generated custom transition effects
  • Multi-language Support: Support for non-English content
  • Batch Processing: Process multiple videos simultaneously
  • Cloud Integration: Cloud-based processing for large files

Medium Term (v3.0)

  • Collaborative Editing: Multi-user editing and review
  • Advanced AI Models: Latest transformer architectures
  • Mobile App: iOS and Android companion apps
  • Plugin System: Third-party plugin architecture
  • API Service: RESTful API for integration

Long Term (v4.0+)

  • Automated Editing: Full video editing with minimal input
  • Style Transfer: Apply editing styles from reference videos
  • Voice Cloning: Generate voiceovers and dubbing
  • 3D Scene Understanding: Advanced spatial video analysis
  • AR/VR Integration: Immersive editing experiences

๐ŸŽฏ Performance Goals

  • Processing Speed: 50% faster inference times
  • Memory Usage: 30% reduction in memory footprint
  • Model Accuracy: Improved confidence scores and accuracy
  • User Experience: Enhanced UI responsiveness and feedback
  • Compatibility: Support for more video formats and codecs

๐ŸŒŸ Star History

Star History Chart

Made with โค๏ธ by the VideoCraft Team

โฌ†๏ธ Back to Top

About

AI for film editing, Final Project for IIT Ropar

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •