Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions timm/data/loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -229,7 +229,7 @@ def create_loader(
worker_seeding: str = 'all',
tf_preprocessing: bool = False,
balance_classes: bool = False,
dataset_csv_path: Optional[str] = None
samples_csv_path: Optional[str] = None
):
"""

Expand Down Expand Up @@ -274,7 +274,7 @@ def create_loader(
worker_seeding: Control worker random seeding at init.
tf_preprocessing: Use TF 1.0 inference preprocessing for testing model ports.
balance_classes: Sample classes with uniform probability
dataset_csv_path: Path to dataset csv, used for class balancing
samples_csv_path: Path to dataset csv, used for class balancing

Returns:
DataLoader
Expand Down Expand Up @@ -333,9 +333,9 @@ def create_loader(
else:
assert num_aug_repeats == 0, "RepeatAugment not currently supported in non-distributed or IterableDataset use"
if balance_classes:
assert dataset_csv_path, "Provide csv with labels to use balance_classes."
dataset_csv = pd.read_csv(dataset_csv_path)
all_labels = dataset_csv["label"].values
assert samples_csv_path, "Provide csv with labels to use balance_classes."
samples_csv = pd.read_csv(samples_csv_path)
all_labels = samples_csv["label"].values
unique, counts = np.unique(all_labels, return_counts=True)
unique_counts = {v: c for v, c in zip(unique, counts)}
label_weights = np.array([1 / unique_counts[num] for num in all_labels])
Expand Down