Releases: optimagic-dev/optimagic
v0.5.2
Summary
This minor release adds support for two additional optimizer libraries:
- Nevergrad: A library for gradient-free optimization developed by Facebook Research.
- Bayesian Optimization: A library for constrained bayesian global optimization with Gaussian processes.
In addition, this release includes several bug fixes and improvements to the documentation. Many contributions in this release were made by Google Summer of Code (GSoC) 2025 applicants, with @gauravmanmode and @spline2hg being the accepted contributors.
Pull Requests
- #620 Uses interactive plotly figures in documentation (@timmens).
- #618 Improves bounds processing when no bounds are specified (@timmens).
- #615 Adds pre-commit hook that checks mypy version consistency (@timmens).
- #613 Exposes converter functionality (@spline2hg).
- #612 Fixes results processing to work with new cobyla optimizer (@janosg).
- #610 Adds
needs_boundsandsupports_infinite_boundsfields to algorithm info (@gauravmanmode). - #608 Adds support for plotly >= 6 (@hmgaudecker, @timmens).
- #607 Returns
run_explorationsresults in a dataclass (@r3kste). - #605 Enhances batch evaluator checking and processing, introduces the internal
BatchEvaluatorLiteralliteral, and updates CHANGES.md (@janosg, @timmens). - #602 Adds optimizer wrapper for bayesian-optimization package (@spline2hg).
- #601 Updates pre-commit hooks and fixes mypy issues (@janosg).
- #598 Fixes and adds links to GitHub in the documentation (@hamogu).
- #594 Refines newly added optimizer wrappers (@janosg).
- #591 Adds multiple optimizers from the nevergrad package (@gauravmanmode).
- #589 Rewrites the algorithm selection pre-commit hook in pure Python to address issues with bash scripts on Windows (@timmens).
- #586 and #592 Ensure the SciPy
dispparameter is exposed for the following SciPy algorithms: slsqp, neldermead, powell, conjugate_gradient, newton_cg, cobyla, truncated_newton, trust_constr (@sefmef, @TimBerti). - #585 Exposes all parameters of SciPy's BFGS optimizer in optimagic (@TimBerti).
- #582 Adds support for handling infinite gradients during optimization (@Aziz-Shameem).
- #579 Implements a wrapper for the PSO optimizer from the nevergrad package (@r3kste).
- #578 Integrates the
intersphinx-registrypackage into the documentation for automatic linking to up-to-date external documentation (@Schefflera-Arboricola). - #576 Wraps oneplusone optimizer from nevergrad (@gauravmanmode, @gulshan-123).
- #572 and #573 Fix bugs in error handling for parameter selector processing and constraints checking (@hmgaudecker).
- #570 Adds a how-to guide for adding algorithms to optimagic and improves internal documentation (@janosg).
- #569 Implements a threading batch evaluator (@spline2hg).
- #568 Introduces an initial wrapper for the migrad optimizer from the iminuit package (@spline2hg).
- #567 Makes the
funargument optional whenfun_and_jacis provided (@gauravmanmode). - #563 Fixes a bug in input harmonization for history plotting (@gauravmanmode).
- #552 Refactors and extends the
Historyclass, removing the internalHistoryArraysclass (@timmens). - #485 Adds bootstrap weights functionality (@alanlujan91).
v0.5.1
Summary
This is a minor release that introduces the new algorithm selection tool and several
small improvements.
To learn more about the algorithm selection feature check out the following resources:
Pull Requests
- #549 Add support for Python 3.13 (@timmens)
- #550 and #534 implement the new algorithm selection tool (@janosg)
- #548 and #531 improve the documentation (@ChristianZimpelmann)
- #544 Adjusts the results processing of the nag optimizers to be compatible
with the latest releases (@timmens) - #543 Adds support for numpy 2.x (@timmens)
- #536 Adds a how-to guide for choosing local optimizers (@mpetrosian)
- #535 Allows algorithm classes and instances in estimation functions
(@timmens) - #532 Makes several small improvements to the documentation (@janosg)
v0.5.0
Summary
This is a major release with several breaking changes and deprecations. In this
release we started implementing two major enhancement proposals and renamed the package
from estimagic to optimagic (while keeping the estimagic namespace for the estimation
capabilities).
The implementation of the two enhancement proposals is not complete and will likely
take until version 0.6.0. However, all breaking changes and deprecations (with the
exception of a minor change in benchmarking) are already implemented such that updating
to version 0.5.0 is future proof.
Pull Requests
- #500 removes the dashboard, the support for simopt optimizers and the
derivative_plot(@janosg) - #502 renames estimagic to optimagic (@janosg)
- #504 aligns
maximizeandminimizemore closely with scipy. All related
deprecations and breaking changes are listed below. As a result, scipy code that uses
minimize with the argumentsx0,fun,jacandmethodwill run without changes
in optimagic. Similarly, toOptimizeResultgets some aliases so it behaves more
like SciPy's. - #506 introduces the new
Boundsobject and deprecateslower_bounds,
upper_bounds,soft_lower_boundsandsoft_upper_bounds(@janosg) - #507 updates the infrastructure so we can make parallel releases under the names
optimagicandestimagic(@timmens) - #508 introduces the new
ScalingOptionsobject and deprecates the
scaling_optionsargument ofmaximizeandminimize(@timmens) - #512 implements the new interface for objective functions and derivatives
(@janosg) - #513 implements the new
optimagic.MultistartOptionsobject and deprecates the
multistart_optionsargument ofmaximizeandminimize(@timmens) - #514 and #516 introduce the
NumdiffResultobject that is returned from
first_derivativeandsecond_derivative. It also fixes several bugs in the
pytree handling infirst_derivativeandsecond_derivativeand deprecates
Richardson Extrapolation and thekey(@timmens) - #517 introduces the new
NumdiffOptionsobject for configuring numerical
differentiation during optimization or estimation (@timmens) - #519 rewrites the logging code and introduces new
LogOptionsobjects
(@schroedk) - #521 introduces the new internal algorithm interface.
(@janosg and @mpetrosian) - #522 introduces the new
Constraintobjects and deprecates passing
dictionaries or lists of dictionaries as constraints (@timmens)
Breaking changes
- When providing a path for the argument
loggingof the functions
maximizeandminimizeand the file already exists, the default
behavior is to raise an error now. Replacement or extension
of an existing file must be explicitly configured. - The argument
if_table_existsinlog_optionshas no effect anymore and a
corresponding warning is raised. OptimizeResult.historyis now aoptimagic.Historyobject instead of a
dictionary. Dictionary style access is implemented but deprecated. Other dictionary
methods might not work.- The result of
first_derivativeandsecond_derivativeis now a
optimagic.NumdiffResultobject instead of a dictionary. Dictionary style access is
implemented but other dictionary methods might not work. - The dashboard is removed
- The
derivative_plotis removed. - Optimizers from Simopt are removed.
- Passing callables with the old internal algorithm interface as
algorithmto
minimizeandmaximizeis not supported anymore. Use the new
Algorithmobjects instead. For examples see: https://tinyurl.com/24a5cner
Deprecations
- The
criterionargument ofmaximizeandminimizeis renamed tofun(as in
SciPy). - The
derivativeargument ofmaximizeandminimizeis renamed tojac(as
in SciPy) - The
criterion_and_derivativeargument ofmaximizeandminimizeis renamed
tofun_and_jacto align it with the other names. - The
criterion_kwargsargument ofmaximizeandminimizeis renamed to
fun_kwargsto align it with the other names. - The
derivative_kwargsargument ofmaximizeandminimizeis renamed to
jac_kwargsto align it with the other names. - The
criterion_and_derivative_kwargsargument ofmaximizeandminimizeis
renamed tofun_and_jac_kwargsto align it with the other names. - Algorithm specific convergence and stopping criteria are renamed to align them more
with NlOpt and SciPy names.convergence_relative_criterion_tolerance->convergence_ftol_relconvergence_absolute_criterion_tolerance->convergence_ftol_absconvergence_relative_params_tolerance->convergence_xtol_relconvergence_absolute_params_tolerance->convergence_xtol_absconvergence_relative_gradient_tolerance->convergence_gtol_relconvergence_absolute_gradient_tolerance->convergence_gtol_absconvergence_scaled_gradient_tolerance->convergence_gtol_scaledstopping_max_criterion_evaluations->stopping_maxfunstopping_max_iterations->stopping_maxiter
- The arguments
lower_bounds,upper_bounds,soft_lower_boundsand
soft_upper_boundsare deprecated and replaced byoptimagic.Bounds. This affects
maximize,minimize,estimate_ml,estimate_msm,slice_plotand several
other functions. - The
log_optionsargument ofminimizeandmaximizeis deprecated. Instead,
LogOptionsobjects can be passed under theloggingargument. - The class
OptimizeLogReaderis deprecated and redirects to
SQLiteLogReader. - The
scaling_optionsargument ofmaximizeandminimizeis deprecated. Instead a
ScalingOptionsobject can be passed under thescalingargument that was previously
just a bool. - Objective functions that return a dictionary with the special keys "value",
"contributions" and "root_contributions" are deprecated. Instead, likelihood and
least-squares functions are marked with amark.likelihoodormark.least_squares
decorator. There is a detailed how-to guide that shows the new behavior. This affects
maximize,minimize,slice_plotand other functions that work with objective
functions. - The
multistart_optionsargument ofminimizeandmaximizeis deprecated. Instead,
aMultistartOptionsobject can be passed under themultistartargument. - Richardson Extrapolation is deprecated in
first_derivativeandsecond_derivative - The
keyargument is deprecated infirst_derivativeandsecond_derivative - Passing dictionaries or lists of dictionaries as
constraintstomaximizeor
minimizeis deprecated. Use the newConstraintobjects instead.
v0.5.0rc2
v0.5.0rc1
First release candidate for version 0.5.0
Summary
This is a major release with several breaking changes and deprecations. In this
release we started implementing two major enhancement proposals and renamed the package
from estimagic to optimagic (while keeping the estimagic namespace for the estimation
capabilities).
The implementation of the two enhancement proposals is not complete and will likely
take until version 0.6.0. However, all breaking changes and deprecations (with the
exception of a minor change in benchmarking) are already implemented such that updating
to version 0.5.0 is future proof.
Pull Requests
- #500 removes the dashboard, the support for simopt optimizers and the
derivative_plot(@janosg) - #502 renames estimagic to optimagic (@janosg)
- #504 aligns
maximizeandminimizemore closely with scipy. All related
deprecations and breaking changes are listed below. As a result, scipy code that uses
minimize with the argumentsx0,fun,jacandmethodwill run without changes
in optimagic. Similarly, toOptimizeResultgets some aliases so it behaves more
like SciPy's. - #506 introduces the new
Boundsobject and deprecateslower_bounds,
upper_bounds,soft_lower_boundsandsoft_upper_bounds(@janosg) - #507 updates the infrastructure so we can make parallel releases under the names
optimagicandestimagic(@timmens) - #508 introduces the new
ScalingOptionsobject and deprecates the
scaling_optionsargument ofmaximizeandminimize(@timmens) - #512 implements the new interface for objective functions and derivatives
(@janosg) - #513 implements the new
optimagic.MultistartOptionsobject and deprecates the
multistart_optionsargument ofmaximizeandminimize(@timmens) - #514 and #516 introduce the
NumdiffResultobject that is returned from
first_derivativeandsecond_derivative. It also fixes several bugs in the
pytree handling infirst_derivativeandsecond_derivativeand deprecates
Richardson Extrapolation and thekey(@timmens) - #517 introduces the new
NumdiffOptionsobject for configuring numerical
differentiation during optimization or estimation (@timmens) - #519 rewrites the logging code and introduces new
LogOptionsobjects
({ghuser}schroedk) - #521 introduces the new internal algorithm interface.
(@janosg and @mpetrosian) - #522 introduces the new
Constraintobjects and deprecates passing
dictionaries or lists of dictionaries as constraints (@timmens)
Breaking changes
- When providing a path for the argument
loggingof the functions
maximizeandminimizeand the file already exists, the default
behavior is to raise an error now. Replacement or extension
of an existing file must be explicitly configured. - The argument
if_table_existsinlog_optionshas no effect anymore and a
corresponding warning is raised. OptimizeResult.historyis now aoptimagic.Historyobject instead of a
dictionary. Dictionary style access is implemented but deprecated. Other dictionary
methods might not work.- The result of
first_derivativeandsecond_derivativeis now a
optimagic.NumdiffResultobject instead of a dictionary. Dictionary style access is
implemented but other dictionary methods might not work. - The dashboard is removed
- The
derivative_plotis removed. - Optimizers from Simopt are removed.
- Passing callables with the old internal algorithm interface as
algorithmto
minimizeandmaximizeis not supported anymore. Use the new
Algorithmobjects instead. For examples see: https://tinyurl.com/24a5cner
Deprecations
- The
criterionargument ofmaximizeandminimizeis renamed tofun(as in
SciPy). - The
derivativeargument ofmaximizeandminimizeis renamed tojac(as
in SciPy) - The
criterion_and_derivativeargument ofmaximizeandminimizeis renamed
tofun_and_jacto align it with the other names. - The
criterion_kwargsargument ofmaximizeandminimizeis renamed to
fun_kwargsto align it with the other names. - The
derivative_kwargsargument ofmaximizeandminimizeis renamed to
jac_kwargsto align it with the other names. - The
criterion_and_derivative_kwargsargument ofmaximizeandminimizeis
renamed tofun_and_jac_kwargsto align it with the other names. - Algorithm specific convergence and stopping criteria are renamed to align them more
with NlOpt and SciPy names.convergence_relative_criterion_tolerance->convergence_ftol_relconvergence_absolute_criterion_tolerance->convergence_ftol_absconvergence_relative_params_tolerance->convergence_xtol_relconvergence_absolute_params_tolerance->convergence_xtol_absconvergence_relative_gradient_tolerance->convergence_gtol_relconvergence_absolute_gradient_tolerance->convergence_gtol_absconvergence_scaled_gradient_tolerance->convergence_gtol_scaledstopping_max_criterion_evaluations->stopping_maxfunstopping_max_iterations->stopping_maxiter
- The arguments
lower_bounds,upper_bounds,soft_lower_boundsand
soft_upper_boundsare deprecated and replaced byoptimagic.Bounds. This affects
maximize,minimize,estimate_ml,estimate_msm,slice_plotand several
other functions. - The
log_optionsargument ofminimizeandmaximizeis deprecated. Instead,
LogOptionsobjects can be passed under theloggingargument. - The class
OptimizeLogReaderis deprecated and redirects to
SQLiteLogReader. - The
scaling_optionsargument ofmaximizeandminimizeis deprecated. Instead a
ScalingOptionsobject can be passed under thescalingargument that was previously
just a bool. - Objective functions that return a dictionary with the special keys "value",
"contributions" and "root_contributions" are deprecated. Instead, likelihood and
least-squares functions are marked with amark.likelihoodormark.least_squares
decorator. There is a detailed how-to guide that shows the new behavior. This affects
maximize,minimize,slice_plotand other functions that work with objective
functions. - The
multistart_optionsargument ofminimizeandmaximizeis deprecated. Instead,
aMultistartOptionsobject can be passed under themultistartargument. - Richardson Extrapolation is deprecated in
first_derivativeandsecond_derivative - The
keyargument is deprecated infirst_derivativeandsecond_derivative - Passing dictionaries or lists of dictionaries as
constraintstomaximizeor
minimizeis deprecated. Use the newConstraintobjects instead.
v0.4.7
v0.4.7
This release contains minor improvements and bug fixes. It is the last release before
the package will be renamed to optimagic and two large enhancement proposals will be
implemented.
- #490 adds the attribute
optimize_resultto theMomentsResultclass (@timmens) - #483 fixes a bug in the handling of keyword arguments in
bootstrap(@alanlujan91) - #477 allows to use an identity weighting matrix in MSM estimation (@sidd3888)
- #473 fixes a bug where bootstrap keyword arguments were ignored
get_moments_cov(@timmens) - #467, #478, #479 and #480 improve the documentation (@mpetrosian, @segsell, and @timmens)
v0.4.6
This release drastically improves the optimizer benchmarking capabilities, especially
with noisy functions and parallel optimizers. It makes tranquilo and numba optional
dependencies and is the first version of estimagic to be compatible with Python
3.11.
- #464 Makes tranquilo and numba optional dependencies (@janosg)
- #461 Updates docstrings for procss_benchmark_results (@segsell)
- #460 Fixes several bugs in the processing of benchmark results with noisy
functions (@janosg) - #459 Prepares benchmarking functionality for parallel optimizers
(@mpetrosian and @janosg) - #457 Removes some unused files (@segsell)
- #455 Improves a local pre-commit hook (@ChristianZimpelmann)
v0.4.5
- #379 Improves the estimation table (@ChristianZimpelmann)
- #445 fixes line endings in local pre-commit hook (@ChristianZimpelmann)
- #443, #444, #445, #446, #448 and #449 are a major
refactoring of tranquilo (@timmens and @janosg) - #441 Adds an aggregated convergence plot for benchmarks (@mpetrosian)
- #435 Completes the cartis-roberts benchmark set (@segsell)
v0.4.4
- #437 removes fuzzywuzzy as dependency (@aidatak97)
- #432 makes logging compatible with sqlalchemy 2.x (@janosg)
- #430 refactors the getter functions in Tranquilo (@janosg)
- #427 improves pre-commit setup (@timmens and @hmgaudecker)
- #425 improves handling of notebooks in documentation (@baharcos)
- #423 and #399 add code to calculate poisdeness constants (@segsell)
- #420 improve CI infrastructure (@hmgaudecker, @janosg)
- #407 adds global optimizers from scipy (@baharcos)