-
Notifications
You must be signed in to change notification settings - Fork 243
Adding Estimate NPU Latency pass and unit test #2178
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,74 @@ | ||
# | ||
github-advanced-security[bot] marked this conversation as resolved.
Fixed
Show fixed
Hide fixed
|
||
# Copyright (C) 2025, Advanced Micro Devices, Inc. All rights reserved. | ||
# SPDX-License-Identifier: MIT | ||
# | ||
|
||
import logging | ||
|
||
from olive.hardware.accelerator import AcceleratorSpec | ||
from olive.model import ONNXModelHandler | ||
from olive.passes import Pass | ||
from olive.passes.pass_config import BasePassConfig, PassConfigParam | ||
|
||
logger = logging.getLogger(__name__) | ||
|
||
|
||
class EstimateNPULatency(Pass): | ||
"""Returns latency estimates for the model.""" | ||
|
||
@classmethod | ||
def _default_config(cls, accelerator_spec: AcceleratorSpec) -> dict[str, PassConfigParam]: | ||
return { | ||
"target_device": PassConfigParam( | ||
type_=str, required=False, description="Target device type", default_value="stx" | ||
) | ||
} | ||
|
||
@classmethod | ||
def validate_config(cls, config: type[BasePassConfig], accelerator_spec: AcceleratorSpec) -> bool: | ||
if not super().validate_config(config, accelerator_spec): | ||
return False | ||
|
||
if config.target_device and config.target_device not in ["stx"]: | ||
logger.warning("Unsupported target device type: %s", config.target_device) | ||
return False | ||
|
||
return True | ||
|
||
def _run_for_config( | ||
self, model: ONNXModelHandler, config: BasePassConfig, output_model_path: str | ||
) -> ONNXModelHandler: | ||
perf_installed = True | ||
try: | ||
from estimator.config import EstimatorSettings | ||
from estimator.run import run_perf_estimate | ||
except ImportError: | ||
perf_installed = False | ||
logger.warning("Estimator module not found. Skipping EstimateNPULatency pass.") | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I think instead of raising a warning, it might be better to fail with import a helpful import error which tells what package to install. since olive caches runs, to rerun the pass with the dependency installed, they would have to clean the cache or delete the cached run that skipped the estimation. |
||
|
||
if not isinstance(model, ONNXModelHandler): | ||
raise ValueError("Model must be an instance of ONNXModelHandler") | ||
|
||
input_model_path = model.model_path | ||
|
||
# Bypass if perf estimator package not installed | ||
if perf_installed: | ||
EstimatorSettings.model_path = f"{input_model_path}" | ||
|
||
# Override default parameters if specified | ||
if config.target_device: | ||
EstimatorSettings.target_device = config.target_device | ||
EstimatorSettings.initialized = True | ||
|
||
logger.info( | ||
"Running perf estimator for model path: %s and target device: %s", | ||
input_model_path, | ||
EstimatorSettings.target_device, | ||
) | ||
|
||
run_perf_estimate(EstimatorSettings) | ||
|
||
logger.info("Finish running perf estimator pass") | ||
|
||
# Return the original model as is | ||
return model |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
# | ||
# Copyright (C) 2025, Advanced Micro Devices, Inc. All rights reserved. | ||
# SPDX-License-Identifier: MIT | ||
# | ||
import os | ||
from pathlib import Path | ||
|
||
import onnx | ||
|
||
from olive.passes.olive_pass import create_pass_from_dict | ||
from olive.passes.onnx.vitis_ai.estimate_npu_latency import EstimateNPULatency | ||
from test.utils import get_onnx_model | ||
|
||
|
||
class TestEstimateNPULatency: | ||
"""Test cases for EstimateNPULatency pass.""" | ||
|
||
def test_estimate_latency_basic(self, tmp_path): | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. please also add the required dependency to the requirements-test.txt under |
||
"""Test Perf Estimator call with automatic Olive version.""" | ||
# Setup | ||
input_model = get_onnx_model() | ||
config = {} | ||
p = create_pass_from_dict(EstimateNPULatency, config, disable_search=True) | ||
output_folder = str(tmp_path / "onnx") | ||
|
||
# Execute | ||
output_model = p.run(input_model, output_folder) | ||
|
||
# Assert we created output csv for latency results | ||
estimates_csv = f"{os.path.dirname(input_model.model_path)}/concise_summary" | ||
assert Path(estimates_csv).exists() | ||
|
||
# Assert | ||
assert Path(output_model.model_path).exists() | ||
# Load the output model and check graph name | ||
onnx_model = onnx.load_model(output_model.model_path) | ||
assert onnx_model.graph.name == "main_graph" |
Uh oh!
There was an error while loading. Please reload this page.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
could you add a
"module_dependencies"
option like under the autoawqquantizer pass for the package required to run this estimation?