Bladder Cancer Recurrence Prediction using Multi-modal Data
This repository contains code, models, and instructions for reproducing experiments for Task 3 of the CHIMERA Challenge.
Task 3 focuses on predicting patient survival risk using multi-modal data:
- Histopathology slides
- RNA expression
- Clinical features
Figure 1: Framework of the proposed method. Patch features are first extracted using the UNI model, and the slide representation is obtained using ABMIL. The RNA embedding is compressed via the RNA encoder. The slide representation, compressed RNA embedding, and clinical data are then input to the fusion module. Finally, the risk score is predicted using a fully connected layer (predictor).
The CHIMERA Task 3 dataset must be downloaded from the official challenge website.
Organize the data as follows:
CHIM_Rec_ostu_10x/
├── pt_files/ # Patch feature files for each slide
├── seqs/ # RNA sequences or embeddings
├── clinics/ # Clinical data files
gene_order.json # Gene order reference for RNA data
clinical_preprocessor.pkl # Preprocessing object for clinical features
Run the complete workflow for Task 3 in sequence:
# 1️⃣ Patch Extraction
python create_patches_fp.py \
--source .../bladder-cancer-tissue-biopsy-wsi \
--source_mask .../tissue-mask \
--save_dir ./Bladder_10x_ \
--patch_level 1 \
--patch_size 224 \
--step_size 224 \
--seg \
--patch
# 2️⃣ Feature Extraction
python extract_features.py \
--data_h5_dir Bladder_10x \
--data_slide_dir .../bladder-cancer-tissue-biopsy-wsi \
--csv_path Bladder_10x/process_list_autogen.csv \
--feat_dir ./CHIM_Rec_ostu_10x/feat_uni \
--batch_size 256 \
--slide_ext .tif
# Coords Extraction
python coord.py
# 3️⃣ Training
python train.py \
--model_type pg \
--exp_code PG_10x_CLIN_RNA_3e-1 \
--reg 3e-1
# 4️⃣ Evaluation
python eval.py \
--models_exp_code PG_10x_CLIN_RNA_3e-1_s2021 \
--save_exp_code PG_10x_CLIN_RNA_3e-1 \
--model_typ pgWe evaluated three multimodal fusion strategies for survival prediction: ABMIL Surv (simple concatenation), ABMIL Surv PG (low-rank bilinear fusion between modality pairs), and ABMIL Surv PG Res (fusion with residual connections). Figure 2 illustrates these architectures, and Table 1 summarizes their internal validation performance.
| Model | Fusion Strategy | C-index |
|---|---|---|
| ABMIL Surv | Simple concatenation | 0.88 |
| ABMIL Surv PG | Low-rank bilinear fusion | 0.91 |
| ABMIL Surv PG Res | Fusion + residual branch | 0.91 |
Figure 3: Training and validation loss. |
Figure 4: Training and validation C-index. |
Figure 5: Kaplan–Meier curves for high- vs. low-risk patients.
Highlights:
- Our method achieved 2nd place on the final test phase.
This repository is licensed under MIT License.


