Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 20 additions & 0 deletions clone_or_update_deep_live_cam.bat
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
@echo off
REM clone_or_update_deep_live_cam.bat - Clone or update Deep-Live-Cam repo in a separate folder and sync to local working folder
SET REPO_URL=https://github.com/hacksider/Deep-Live-Cam.git
SET TARGET_DIR=Deep-Live-Cam-remote
SET LOCAL_DIR=Deep-Live-Cam

IF EXIST %TARGET_DIR% (
echo Updating existing repo in %TARGET_DIR% ...
cd %TARGET_DIR%
git pull
cd ..
) ELSE (
echo Cloning repo to %TARGET_DIR% ...
git clone %REPO_URL% %TARGET_DIR%
)

REM Sync updated code to local working folder (excluding .git and models)
xcopy %TARGET_DIR% %LOCAL_DIR% /E /H /Y /EXCLUDE:exclude.txt

echo Done. Latest code is in %LOCAL_DIR%.
20 changes: 20 additions & 0 deletions clone_or_update_deep_live_cam.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
#!/bin/zsh
# clone_or_update_deep_live_cam.sh - Clone or update Deep-Live-Cam repo in a separate folder (macOS/Linux)
REPO_URL="https://github.com/hacksider/Deep-Live-Cam.git"
TARGET_DIR="Deep-Live-Cam-remote"

if [ -d "$TARGET_DIR" ]; then
echo "Updating existing repo in $TARGET_DIR ..."
cd "$TARGET_DIR"
git pull
cd ..
else
echo "Cloning repo to $TARGET_DIR ..."
git clone "$REPO_URL" "$TARGET_DIR"
fi

# Sync updated code to local working folder (excluding .git and models)
LOCAL_DIR="Deep-Live-Cam"
rsync -av --exclude='.git' --exclude='models' --exclude='*.pth' --exclude='*.onnx' "$TARGET_DIR"/ "$LOCAL_DIR"/

echo "Done. Latest code is in $LOCAL_DIR."
4 changes: 4 additions & 0 deletions exclude.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
.git
models
*.pth
*.onnx
44 changes: 44 additions & 0 deletions install_macos.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
#!/bin/bash
# Deep-Live-Cam macOS Automated Setup
set -e

# 1. Ensure Homebrew is installed
if ! command -v brew &> /dev/null; then
echo "Homebrew not found. Please install Homebrew first: https://brew.sh/"
exit 1
fi

# 2. Install Python 3.10 and tkinter
brew install [email protected] [email protected]

# 3. Create and activate virtual environment
PYTHON_BIN=$(brew --prefix [email protected])/bin/python3.10
$PYTHON_BIN -m venv venv
source venv/bin/activate

# 4. Upgrade pip and install dependencies
pip install --upgrade pip
pip install -r requirements.txt

# 5. Download models if not present
mkdir -p models
if [ ! -f models/GFPGANv1.4.pth ]; then
curl -L -o models/GFPGANv1.4.pth "https://huggingface.co/hacksider/deep-live-cam/resolve/main/GFPGANv1.4.pth"
fi
if [ ! -f models/inswapper_128_fp16.onnx ]; then
curl -L -o models/inswapper_128_fp16.onnx "https://huggingface.co/hacksider/deep-live-cam/resolve/main/inswapper_128_fp16.onnx"
fi

# 6. Run instructions for user

echo "\nSetup complete!"
echo "To activate your environment and run Deep-Live-Cam, use one of the following commands:"
echo ""
echo "# For CUDA (Nvidia GPU, if supported):"
echo "source venv/bin/activate && python run.py --execution-provider cuda"
echo ""
echo "# For Apple Silicon (M1/M2/M3) CoreML:"
echo "source venv/bin/activate && python3.10 run.py --execution-provider coreml"
echo ""
echo "# For CPU only:"
echo "source venv/bin/activate && python run.py"
36 changes: 36 additions & 0 deletions install_windows.bat
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
@echo off
REM Deep-Live-Cam Windows Automated Setup

REM 1. Create virtual environment
python -m venv venv
if errorlevel 1 (
echo Failed to create virtual environment. Ensure Python 3.10+ is installed and in PATH.
exit /b 1
)

REM 2. Activate virtual environment
call venv\Scripts\activate
if errorlevel 1 (
echo Failed to activate virtual environment.
exit /b 1
)

REM 3. Install dependencies
pip install --upgrade pip
pip install -r requirements.txt
if errorlevel 1 (
echo Failed to install dependencies.
exit /b 1
)

REM 4. Download models (manual step if not present)
echo Downloading models (if not already in models/)...
if not exist models\GFPGANv1.4.pth (
powershell -Command "Invoke-WebRequest -Uri https://huggingface.co/hacksider/deep-live-cam/resolve/main/GFPGANv1.4.pth -OutFile models\GFPGANv1.4.pth"
)
if not exist models\inswapper_128_fp16.onnx (
powershell -Command "Invoke-WebRequest -Uri https://huggingface.co/hacksider/deep-live-cam/resolve/main/inswapper_128_fp16.onnx -OutFile models\inswapper_128_fp16.onnx"
)

REM 5. Run the app
python run.py
48 changes: 27 additions & 21 deletions modules/capturer.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,29 +4,35 @@


def get_video_frame(video_path: str, frame_number: int = 0) -> Any:
"""Extract a specific frame from a video file, with color correction if enabled."""
capture = cv2.VideoCapture(video_path)

# Set MJPEG format to ensure correct color space handling
capture.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'MJPG'))

# Only force RGB conversion if color correction is enabled
if modules.globals.color_correction:
capture.set(cv2.CAP_PROP_CONVERT_RGB, 1)

frame_total = capture.get(cv2.CAP_PROP_FRAME_COUNT)
capture.set(cv2.CAP_PROP_POS_FRAMES, min(frame_total, frame_number - 1))
has_frame, frame = capture.read()

if has_frame and modules.globals.color_correction:
# Convert the frame color if necessary
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

capture.release()
return frame if has_frame else None
try:
# Set MJPEG format to ensure correct color space handling
capture.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'MJPG'))
# Only force RGB conversion if color correction is enabled
if modules.globals.color_correction:
capture.set(cv2.CAP_PROP_CONVERT_RGB, 1)
frame_total = capture.get(cv2.CAP_PROP_FRAME_COUNT)
capture.set(cv2.CAP_PROP_POS_FRAMES, min(frame_total, frame_number - 1))
has_frame, frame = capture.read()
if has_frame and modules.globals.color_correction:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return frame if has_frame else None
Comment on lines +11 to +20
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

issue (code-quality): Extract code out into function (extract-method)

except Exception as e:
print(f"Error extracting video frame: {e}")
return None
finally:
capture.release()


def get_video_frame_total(video_path: str) -> int:
"""Return the total number of frames in a video file."""
capture = cv2.VideoCapture(video_path)
video_frame_total = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
capture.release()
return video_frame_total
try:
video_frame_total = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
return video_frame_total
Comment on lines +32 to +33
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

suggestion (code-quality): Inline variable that is immediately returned (inline-immediately-returned-variable)

Suggested change
video_frame_total = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
return video_frame_total
return int(capture.get(cv2.CAP_PROP_FRAME_COUNT))

except Exception as e:
print(f"Error getting video frame total: {e}")
return 0
finally:
capture.release()
30 changes: 20 additions & 10 deletions modules/cluster_analysis.py
Original file line number Diff line number Diff line change
@@ -1,32 +1,42 @@
import numpy as np
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from typing import Any
from typing import Any, List, Tuple


def find_cluster_centroids(embeddings, max_k=10) -> Any:
def find_cluster_centroids(embeddings: List[Any], max_k: int = 10) -> Any:
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

issue: Handle empty embeddings list in find_cluster_centroids

Add a check to return an empty list if embeddings is empty to prevent indexing errors in cluster_centroids.

"""Find optimal cluster centroids for a set of embeddings using KMeans."""
inertia = []
cluster_centroids = []
K = range(1, max_k+1)

for k in K:
kmeans = KMeans(n_clusters=k, random_state=0)
kmeans.fit(embeddings)
inertia.append(kmeans.inertia_)
cluster_centroids.append({"k": k, "centroids": kmeans.cluster_centers_})
try:
kmeans = KMeans(n_clusters=k, random_state=0)
kmeans.fit(embeddings)
inertia.append(kmeans.inertia_)
cluster_centroids.append({"k": k, "centroids": kmeans.cluster_centers_})
except Exception as e:
print(f"KMeans failed for k={k}: {e}")

if len(inertia) < 2:
return cluster_centroids[0]['centroids'] if cluster_centroids else []

diffs = [inertia[i] - inertia[i+1] for i in range(len(inertia)-1)]
optimal_centroids = cluster_centroids[diffs.index(max(diffs)) + 1]['centroids']

return optimal_centroids

def find_closest_centroid(centroids: list, normed_face_embedding) -> list:

def find_closest_centroid(centroids: List[Any], normed_face_embedding: Any) -> Tuple[int, Any]:
"""Find the index and value of the centroid closest to the given embedding."""
try:
centroids = np.array(centroids)
normed_face_embedding = np.array(normed_face_embedding)
similarities = np.dot(centroids, normed_face_embedding)
closest_centroid_index = np.argmax(similarities)

return closest_centroid_index, centroids[closest_centroid_index]
except ValueError:
return None
except Exception as e:
print(f"Error in find_closest_centroid: {e}")
return -1, None
Loading