- Overview
- The Problem
- The SSZ Solution
- Theoretical Foundations
- Installation
- Quick Start
- API Reference
- Application Examples
- Test Suite
- Visualizations
- Physical Results
- Experimental Validation
- Project Structure
- FAQ
- References
- Contributing
- Authors & License
SSZ-Qubits applies the Segmented Spacetime (SSZ) framework to quantum computing. It provides tools for analyzing and minimizing gravitational effects on qubit systems.
"Qubits don't just exist in space—they exist in segments of spacetime."
SSZ (Segmented Spacetime) is a theoretical framework that treats spacetime as a discrete structure, rather than a continuous manifold as in classical General Relativity (GR).
Qubits are extremely sensitive to:
- Time dilation from gravitational fields
- Phase shifts from height differences
- Decoherence from segment mismatch
SSZ quantifies these effects and enables their compensation.
| Problem | Description | Impact |
|---|---|---|
| Decoherence | Loss of quantum coherence | Computational errors |
| Timing errors | Asynchronous gate operations | Wrong results |
| Spatial drift | Position-dependent phase errors | Unpredictable errors |
| Gravitational gradients | Height-dependent time dilation | Systematic errors |
Even micrometer-scale height differences between qubits lead to measurable effects!
1 μm height difference -> ΔXi ~ 10⁻²² -> ~10⁻²² s/s time drift
1 mm height difference -> ΔXi ~ 10⁻¹⁹ -> ~10⁻¹⁹ s/s (0.1 attosecond/s) time drift
Note: These effects are extremely small at Earth's surface but accumulate
over millions of gate operations. For satellite-to-ground links (Δh ~ 400 km),
the effect becomes significant: ΔXi ~ 10⁻¹¹ -> ~1.4 rad/s phase drift at 5 GHz.
These effects are often dismissed as "hardware drift" or "unexplained decoherence" in classical qubit physics.
SSZ provides a geometric framework with:
Quantifies the local spacetime structure:
Xi(r) = r_s / (2r)
where r_s is the Schwarzschild radius.
Determines local clock rates:
D_SSZ = 1 / (1 + Xi)
Defines optimal qubit placement regions where Xi variation is minimal.
Enables gravity-aware quantum error correction.
Controls segment saturation in strong fields:
φ = (1 + √5) / 2 = 1.618033988749895
SSZ distinguishes two regimes based on field strength:
Xi(r) = r_s / (2r)
dXi/dr = -r_s / (2r²)
D_SSZ = 1 / (1 + Xi) ≈ 1 - Xi + O(Xi²)
Example Earth:
- r_s = 8.87 mm
- r = 6.371×10⁶ m (Earth radius)
- Xi = 6.96×10⁻¹⁰
- D_SSZ = 0.999999999303892
Xi(r) = 1 - exp(-φ × r / r_s)
dXi/dr = (φ / r_s) × exp(-φ × r / r_s)
Important: In the strong field, D_SSZ remains finite at the horizon (D_SSZ ≈ 0.555), while GR predicts a singularity.
| Constant | Symbol | Value | Unit |
|---|---|---|---|
| Speed of light | c | 299792458 | m/s |
| Gravitational constant | G | 6.67430×10⁻¹¹ | m³/(kg·s²) |
| Planck constant | ℏ | 1.054571817×10⁻³⁴ | J·s |
| Golden Ratio | φ | 1.6180339887498948 | - |
| Earth mass | M_E | 5.972×10²⁴ | kg |
| Earth radius | R_E | 6.371×10⁶ | m |
r_s = 2GM / c²
| Object | Schwarzschild Radius |
|---|---|
| Earth | 8.87 mm |
| Sun | 2.95 km |
| Sagittarius A* | 12 million km |
- Python 3.8 or higher
- pip (Python Package Manager)
# Clone repository
git clone https://github.com/error-wtf/ssz-qubits.git
cd ssz-qubits
# Install dependencies
pip install -r requirements.txt
# Verify installation
python -c "from ssz_qubits import *; print('SSZ-Qubits successfully installed!')"numpy>=1.20.0
pytest>=7.0.0
matplotlib>=3.5.0
# All tests
python run_tests.py
# Or with pytest
pytest tests/ -vExpected output:
============================= 113 passed in 0.54s ==============================
from ssz_qubits import Qubit, QubitPair, analyze_qubit_segment, qubit_pair_segment_mismatch
# Create qubit at sea level
q1 = Qubit(id="Q1", x=0, y=0, z=0)
# Create qubit 1 cm higher
q2 = Qubit(id="Q2", x=0, y=0, z=0.01)
# Analyze single qubit
analysis = analyze_qubit_segment(q1)
print(f"Xi = {analysis.xi:.6e}")
print(f"D_SSZ = {analysis.time_dilation:.15f}")
# Analyze qubit pair
pair = QubitPair(q1, q2)
mismatch = qubit_pair_segment_mismatch(pair)
print(f"Delta Xi = {mismatch['delta_xi']:.6e}")python demo.pyThe demo shows 9 different use cases:
- Basic SSZ Physics
- Single Qubit Analysis
- Qubit Pair Mismatch
- Coherent Zones
- Array Optimization
- Gate Timing Corrections
- Decoherence Analysis
- Experimental Validation
- Practical System Design
from ssz_qubits import C, G, HBAR, M_EARTH, R_EARTH, PHI
C # Speed of light [m/s]
G # Gravitational constant [m³/(kg·s²)]
HBAR # Reduced Planck constant [J·s]
M_EARTH # Earth mass [kg]
R_EARTH # Earth radius [m]
PHI # Golden RatioCalculates the Schwarzschild radius.
r_s = schwarzschild_radius(M_EARTH) # 8.87e-3 mCalculates the segment density Xi.
xi = xi_segment_density(R_EARTH, M_EARTH) # 6.96e-10
xi = xi_segment_density(r, M, regime='weak') # Force weak field
xi = xi_segment_density(r, M, regime='strong') # Force strong fieldCalculates the gradient dXi/dr.
grad = xi_gradient(R_EARTH, M_EARTH) # -1.09e-16 /mCalculates SSZ time dilation D_SSZ.
d = ssz_time_dilation(R_EARTH, M_EARTH) # 0.999999999303892from ssz_qubits import Qubit
q = Qubit(
id="Q1", # Unique ID
x=0, # X position [m]
y=0, # Y position [m]
z=0, # Height above reference [m]
coherence_time_T2=100e-6, # T2 time [s] (default: 100 μs)
gate_time=50e-9 # Gate time [s] (default: 50 ns)
)
# Properties
q.radius_from_earth_center # Distance from Earth centerfrom ssz_qubits import QubitPair
pair = QubitPair(q1, q2)
# Properties
pair.separation # Spatial separation [m]
pair.height_difference # Height difference [m]analysis = analyze_qubit_segment(q, M_EARTH)
# Returns: SegmentAnalysis with:
# .xi - Segment density
# .gradient - dXi/dr
# .time_dilation - D_SSZ
# .radius - Distance from centermismatch = qubit_pair_segment_mismatch(pair, M_EARTH)
# Returns: Dict with:
# 'delta_xi' - Xi difference
# 'delta_time_dilation' - D_SSZ difference
# 'phase_drift_per_gate' - Phase drift per gate
# 'decoherence_enhancement' - Decoherence factorh_min, h_max = segment_coherent_zone(0, 1e-18, M_EARTH)
# Returns: Tuple (min_height, max_height) in metersqubits = optimize_qubit_array(16, base_height=0, max_separation=1e-3)
# Returns: List of n optimally placed qubitsuniformity = array_segment_uniformity(qubits, M_EARTH)
# Returns: Dict with:
# 'xi_mean' - Mean Xi
# 'xi_std' - Standard deviation
# 'xi_min' - Minimum
# 'xi_max' - Maximum
# 'xi_range' - Range
# 'uniformity' - Uniformity score (0-1)correction = gate_timing_correction(q, M_EARTH)
# Returns: Correction factor for gate timetiming = two_qubit_gate_timing(pair, M_EARTH)
# Returns: Dict with:
# 'optimal_gate_time' - Optimal gate duration
# 'timing_asymmetry' - Required timing asymmetry
# 'max_fidelity_loss' - Maximum fidelity loss
# 'd_qubit_a' - D_SSZ for qubit A
# 'd_qubit_b' - D_SSZ for qubit Bgamma = ssz_decoherence_rate(q, M_EARTH)
# Returns: SSZ-induced decoherence rate [1/s]T2_eff = effective_T2(q, M_EARTH)
# Returns: Effective T2 time under SSZ influence [s]T2_pair = pair_decoherence_time(pair, M_EARTH)
# Returns: Pair decoherence time [s]Problem: Minimize SSZ mismatch between qubits in an array.
from ssz_qubits import optimize_qubit_array, array_segment_uniformity, M_EARTH
# Optimize 100-qubit array
qubits = optimize_qubit_array(100, base_height=0, max_separation=5e-3)
# Check uniformity
uniformity = array_segment_uniformity(qubits, M_EARTH)
print(f"Xi uniformity: {uniformity['uniformity']:.6f}")
print(f"Xi range: {uniformity['xi_range']:.6e}")Problem: Find the height range where Xi variation stays below a tolerance.
from ssz_qubits import segment_coherent_zone, M_EARTH
# Find zone with tolerance 10⁻¹⁸
h_min, h_max = segment_coherent_zone(0, 1e-18, M_EARTH)
print(f"Coherent zone: {h_min*1e6:.1f} μm to {h_max*1e6:.1f} μm")
print(f"Zone width: {(h_max-h_min)*1e6:.1f} μm")Problem: Compensate time dilation in two-qubit gates.
from ssz_qubits import Qubit, QubitPair, two_qubit_gate_timing, M_EARTH
q1 = Qubit(id="Q1", x=0, y=0, z=0, gate_time=50e-9)
q2 = Qubit(id="Q2", x=0, y=0, z=10e-3, gate_time=50e-9) # 10 mm higher
pair = QubitPair(q1, q2)
timing = two_qubit_gate_timing(pair, M_EARTH)
print(f"Optimal gate time: {timing['optimal_gate_time']*1e9:.6f} ns")
print(f"Timing asymmetry: {timing['timing_asymmetry']:.6e}")Problem: Determine the SSZ contribution to decoherence.
from ssz_qubits import Qubit, ssz_decoherence_rate, effective_T2, M_EARTH
q = Qubit(id="Q1", x=0, y=0, z=0, coherence_time_T2=100e-6)
gamma = ssz_decoherence_rate(q, M_EARTH)
T2_eff = effective_T2(q, M_EARTH)
print(f"Intrinsic T2: {q.coherence_time_T2*1e6:.1f} μs")
print(f"Effective T2: {T2_eff*1e6:.3f} μs")
print(f"SSZ contribution: {(1 - T2_eff/q.coherence_time_T2)*100:.2f}%")Problem: Calculate time drift between remote qubits.
from ssz_qubits import ssz_time_dilation, R_EARTH, M_EARTH
# Two stations with 100 m height difference
h1 = 0 # Sea level
h2 = 100 # 100 m higher
d1 = ssz_time_dilation(R_EARTH + h1, M_EARTH)
d2 = ssz_time_dilation(R_EARTH + h2, M_EARTH)
delta_d = d2 - d1
drift_per_hour = delta_d * 3600 * 1e9 # ns/hour
print(f"Time drift: {drift_per_hour:.3f} ns/hour")| Category | Tests | Description |
|---|---|---|
| Physics | 17 | Physical formulas |
| Edge Cases | 25 | Extreme values, error handling |
| Validation | 17 | Experimental validation |
| Applications | 15 | Practical applications |
| Total | 74 |
# All tests with detailed output
python run_tests.py
# Single test file
pytest tests/test_ssz_physics.py -v
# With pytest (faster)
pytest tests/ -v --tb=short- Schwarzschild radius validation
- Segment density calculations
- Time dilation verification
- Gradient consistency
- Physical limits
- Golden ratio properties
- Strong field behavior
- Extreme radii (near r_s to 1 AU)
- Extreme masses (0 to black holes)
- Unusual qubit configurations
- Numerical precision
- Error handling
- Special qubit properties
- QEC edge cases
- GR weak-field comparison
- GPS satellite time dilation
- Pound-Rebka experiment
- NIST optical clocks
- Tokyo Skytree experiment
- Theoretical consistency
- Dimensional analysis
- Segmented time logic as qubit clock
- Decoherence as geometry phenomenon
- Gravity-induced drift prediction
- Segment-aware QEC
- Quantum communication sync
python visualize_ssz_qubits.pyimport matplotlib.pyplot as plt
import numpy as np
from ssz_qubits import ssz_time_dilation, R_EARTH, M_EARTH
heights = np.linspace(0, 1000, 100) # 0 to 1000 m
d_ssz = [ssz_time_dilation(R_EARTH + h, M_EARTH) for h in heights]
plt.plot(heights, d_ssz)
plt.xlabel('Height [m]')
plt.ylabel('D_SSZ')
plt.title('SSZ Time Dilation vs Height')
plt.savefig('my_plot.png')| Parameter | Value |
|---|---|
| Xi | 6.961078×10⁻¹⁰ |
| D_SSZ | 0.999999999303892 |
| dXi/dr | -1.093×10⁻¹⁶ /m |
| r_s (Earth) | 8.87 mm |
| Height Difference | ΔXi | Time Drift |
|---|---|---|
| 1 μm | ~10⁻²² | Measurable |
| 10 μm | ~10⁻²¹ | Significant |
| 100 μm | ~10⁻²⁰ | Critical |
| 1 mm | ~10⁻¹⁹ | ~0.01 ps/s |
| 10 mm | ~10⁻¹⁸ | ~0.1 ps/s |
| Tolerance | Zone Width |
|---|---|
| 10⁻¹⁶ | 458 mm |
| 10⁻¹⁷ | 46 mm |
| 10⁻¹⁸ | 4.6 mm |
| 10⁻¹⁹ | 458 μm |
| 10⁻²⁰ | 46 μm |
| Aspect | GR | SSZ |
|---|---|---|
| Spacetime | Continuous | Discrete |
| At horizon | D = 0 (singularity) | D = 0.555 (finite) |
| Weak field | D ≈ 1 - r_s/2r | D = 1/(1+Xi) ≈ same |
| Quantization | No | Yes (φ-based) |
| Parameter | SSZ Prediction | Measured | Status |
|---|---|---|---|
| Time drift | ~45 μs/day | ~45 μs/day | ✓ MATCH |
| Position error | ~11 km/day | ~10 km/day | ✓ MATCH |
| Parameter | SSZ Prediction | Measured | Status |
|---|---|---|---|
| Redshift | 2.46×10⁻¹⁵ | (2.57±0.26)×10⁻¹⁵ | ✓ MATCH |
| Parameter | SSZ Prediction | Status |
|---|---|---|
| 33 cm height difference | Measurable | ✓ MATCH |
| Parameter | SSZ Prediction | Status |
|---|---|---|
| 450 m height difference | Measurable | ✓ MATCH |
ssz-qubits/
├── ssz_qubits.py # Core module
├── ssz_entanglement.py # Entanglement module (Paper B support)
├── ssz_paper_a_support.py # Paper A dedicated functions
├── demo.py # Interactive demo (9 demos)
├── run_tests.py # Test runner
├── visualize_ssz_qubits.py # Visualization (6 plots)
├── test_paper_consistency.py # Paper equation verification
├── final_summary.py # Repository summary
├── requirements.txt # Dependencies
├── README.md # This file
├── PAPER_SUPPORT.md # Paper support documentation
├── LICENSE # Anti-Capitalist License v1.4
│
├── docs/
│ ├── SSZ_FORMULA_DOCUMENTATION.md # Formula documentation
│ ├── SSZ_MATHEMATICAL_PHYSICS.md # Math/physics foundations
│ ├── SSZ_QUBIT_APPLICATIONS.md # Practical applications
│ └── SSZ_QUBIT_THEORY_SUMMARY.md # Theory summary
│
├── tests/
│ ├── test_ssz_physics.py # Physics tests
│ ├── test_edge_cases.py # Edge case tests
│ ├── test_validation.py # Validation tests
│ ├── test_ssz_qubit_applications.py # Application tests
│ ├── test_entanglement.py # Entanglement tests (23)
│ └── test_paper_a_support.py # Paper A support tests (16)
│
├── outputs/ # Generated plots
│ ├── time_dilation_vs_height.png
│ ├── qubit_pair_mismatch.png
│ ├── coherent_zone.png
│ ├── qubit_array_analysis.png
│ ├── ssz_vs_gr_comparison.png
│ └── golden_ratio_structure.png
│
└── reports/ # Test reports
├── RUN_SUMMARY.md
└── full-output.md
Functions for analyzing gravitational effects on entangled qubit pairs:
entangled_pair_phase_drift()- Phase drift for entangled pairsbell_state_fidelity()- F = cos²(ΔΦ/2)chsh_parameter()- S = 2√2·cos(ΔΦ) for fixed settingscharacteristic_time_T_SSZ()- Time for π phase accumulationcorrection_interval()- Gates before correction neededis_in_coherent_zone()- Check if pair is in same zoneanalyze_entangled_pair()- Complete analysis
Dedicated functions for Paper A claims:
gr_time_dilation_weak_field()- GR comparisoncompare_ssz_gr()- SSZ vs GR analysisfidelity_reduction_small_angle()- 1-F ≈ ΔΦ²/4verify_linear_scaling()- Verify |ΔΦ| ∝ |Δh|verify_numerical_stability()- Closed-form stabilitycoherent_zone_analysis()- Complete zone analysisdecoherence_enhancement_factor()- 1 + (ΔΞ/Ξ_ref)²
Q: What is the difference between SSZ and General Relativity?
A: GR treats spacetime as a continuous manifold. SSZ treats spacetime as a discrete structure with measurable segments. In the weak field (like on Earth), both yield nearly identical results. The difference appears in strong fields: SSZ avoids the singularity at the Schwarzschild horizon.
Q: Why is the Golden Ratio φ important?
A: φ = (1+√5)/2 controls the saturation rate of segment density in the strong field. The formula Xi = 1 - exp(-φ×r/r_s) ensures that Xi reaches a finite value (about 0.8) at r = r_s, instead of diverging.
Q: Is SSZ experimentally confirmed?
A: SSZ reproduces all known experimental results (GPS, Pound-Rebka, atomic clocks) in the weak field. Predictions for strong fields (black holes) are not yet directly testable.
Q: Which Python version is required?
A: Python 3.8 or higher.
Q: How accurate are the calculations?
A: Calculations use 64-bit floating point (numpy.float64) with precision of about 15-16 significant digits.
Q: Can I integrate SSZ with my qubit simulator?
A: Yes! SSZ-Qubits is designed as a Python module and can be integrated into any Python-based simulator. Simply import the required functions.
Q: Why are some values 0.000000e+00?
A: For optimized arrays with constant height, Xi variation is exactly zero. This is not an error but the desired result of optimization.
Q: How large is the SSZ effect on typical qubits?
A: At 1 mm height difference, ΔXi is about 10⁻¹⁹, leading to a time drift of ~0.01 ps/s. For typical gate times of 50 ns, the direct effect is small but accumulates over many operations.
Q: Should I implement SSZ corrections in my quantum computer?
A: For current quantum computers with few qubits and short coherence times, other error sources (thermal noise, EM interference) are dominant. SSZ becomes relevant for:
- Large qubit arrays (>100 qubits)
- Long coherence times (>1 ms)
- Precise timing requirements (<1 ps)
- Distributed quantum systems
Q: What is a "coherent zone"?
A: A coherent zone is a height range where Xi variation stays below a certain tolerance. All qubits within this zone have nearly identical segment properties, minimizing mismatch errors.
- Casu, L. & Wrede, C. (2025). "Segmented Spacetime: A Discrete Framework for Quantum Gravity" (in preparation)
- Casu, L. & Wrede, C. (2025). "SSZ Applications in Quantum Computing" (in preparation)
- Pound, R.V. & Rebka, G.A. (1960). "Apparent Weight of Photons". Physical Review Letters, 4(7), 337-341.
- Chou, C.W. et al. (2010). "Optical Clocks and Relativity". Science, 329(5999), 1630-1633.
- Takamoto, M. et al. (2020). "Test of general relativity by a pair of transportable optical lattice clocks". Nature Photonics, 14, 411-415.
- Ashby, N. (2003). "Relativity in the Global Positioning System". Living Reviews in Relativity, 6(1).
- Will, C.M. (2014). "The Confrontation between General Relativity and Experiment". Living Reviews in Relativity, 17(1).
We welcome contributions! Please see our Contributing Guidelines for details.
# Fork and clone
git clone https://github.com/YOUR_USERNAME/ssz-qubits.git
cd ssz-qubits
# Create feature branch
git checkout -b feature/your-feature
# Make changes, then test
python run_tests.py
# Submit pull request- 🔬 Experimental validation with real qubit hardware
- 🔗 Integration with Qiskit, Cirq, or other quantum frameworks
- 📚 Documentation improvements and tutorials
- 🧪 Additional tests and edge cases
- 🚀 Performance optimizations
Carmen Wrede - Theoretical Physics, SSZ Theory
Lino Casu - Implementation, Qubit Applications
- Email: [email protected]
- GitHub: github.com/error-wtf
- Repository: github.com/error-wtf/ssz-qubits
This project is licensed under the Anti-Capitalist Software License v1.4.
This license permits:
- Use for non-commercial purposes
- Modification and redistribution
- Academic and research purposes
This license prohibits:
- Commercial use by capitalist enterprises
- Use for military purposes
- Use for surveillance
Full license text: LICENSE
© 2025 Carmen Wrede & Lino Casu
"Qubits don't just exist in space—they exist in segments of spacetime."





