Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
35 commits
Select commit Hold shift + click to select a range
8f0a7bb
Add folder
Jun 3, 2025
59694a9
Added folder
Jun 3, 2025
262fdb4
Update README.md
claimiris Jun 3, 2025
16cbea5
Moved file under missing-semester-lec6 folder
claimiris Jun 3, 2025
9933401
Added folder
Jun 3, 2025
bd27223
Upload .sh and screenshot files
claimiris Jun 3, 2025
0698c9d
Added a README.md
Jun 3, 2025
4f45820
Update README.md
claimiris Jun 3, 2025
edd0f10
Add README.md
Jun 3, 2025
5851a66
Revert "Add README.md"
Jun 3, 2025
b9e864f
Add folder and README.md
Jun 3, 2025
7e92aa6
Update README.md
claimiris Jun 3, 2025
ba1eef0
Upload .sh files
claimiris Jun 3, 2025
2ba1b98
Update conversion.sh
claimiris Jun 3, 2025
6e0a522
Add folder and file
Jun 3, 2025
7d3a90b
Update README.md
claimiris Jun 3, 2025
dabce43
Add ProbStats folder with Assignment1.ipynb
claimiris Jul 10, 2025
0ef479e
Adds ProbStats2.ipynb
claimiris Jul 10, 2025
a8f0378
Delete ProbStats folder from Gowri
claimiris Jul 10, 2025
8022aec
Moves file
claimiris Jul 10, 2025
62c2fa8
Upload ProbStats1.ipynb
claimiris Jul 10, 2025
2db5b7b
Upload updated ProbStats1.ipynb
claimiris Jul 10, 2025
3583f89
Adds Assignment ipynb file
claimiris Aug 17, 2025
37e32bf
Updated
claimiris Aug 17, 2025
30aa3cd
Deletes file
claimiris Aug 17, 2025
8c90f98
Updates
claimiris Aug 17, 2025
1432983
Deletes file
claimiris Aug 17, 2025
1e7aad5
Deletes folder
claimiris Aug 17, 2025
14eca25
Uploads updated file
claimiris Aug 17, 2025
aeb5bf8
Uploads image
claimiris Aug 17, 2025
fdee344
Renames folder
claimiris Aug 17, 2025
4c534cc
Update Assignment 4.ipynb
claimiris Aug 17, 2025
ad17a0c
Renames files
claimiris Aug 17, 2025
cf8ccec
Merge branch 'main' of https://github.com/claimiris/open-lecture-assi…
claimiris Aug 17, 2025
01f9980
Update ML.ipynb
claimiris Aug 18, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file added Gowri/assignment_1/.gitkeep
Empty file.
5 changes: 5 additions & 0 deletions Gowri/assignment_1/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
# Conversion of .jpeg, .png to .jpg

#### Multiple government and exam application sites require image uploading, specifically in .jpg file format. Mutiple free file format conversion sites on the internet have a limit on the number of file conversion allowed at a time. To ease the conversion process I've written an elementary Bash script to perfom the conversion.

#### I've demonstrated the same in a temporary directory on a few image files. sed command is used to remove Windows-style carriage return characters (\r) from the script file before running.
7 changes: 7 additions & 0 deletions Gowri/assignment_1/conversion.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
#!/usr/bin/env bash

for file in *.jpeg *.png; do
filename=${file%.*}
mv "$file" "$filename.jpg"
done

Binary file added Gowri/assignment_1/output_screenshot.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
267 changes: 267 additions & 0 deletions Gowri/assignment_2/ProbStats1.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,267 @@
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"source": [
"##Q1\n",
"\n",
"Given $Y=|Z|$\n",
"$$\n",
"\\begin{align}\n",
"& Z \\sim N(0,1) \\\\\n",
"& f_z(z)=\\frac{1}{\\sqrt{2 \\pi}} e^{-\\frac{z^2}{2}}\n",
"\\end{align}\n",
"$$\n",
"\n",
"Using CDF,\n",
"$$\n",
"\\begin{align}\n",
"F_Y(y) & =P(Y \\leq y) \\\\\n",
" &=P(|Z| \\leq y) \\\\\n",
" &=P(-y \\leq Z \\leq y) \\\\\n",
"F_Y(y) & =F_z(y)-F_z(-y)\n",
"\\end{align}\n",
"$$\n",
"\n",
"Differentiating both sides with respect to y to get the PDF,\n",
"$$\n",
"\\begin{align}\n",
"\\frac{d F_Y(y)}{dy} = f_Y(y) \\\\\n",
"f_Y(y) = f_Z(y) + f_Y(-y) \\\\\n",
"\\end{align}\n",
"$$\n",
"\n",
"$$\n",
"\\begin{align}\n",
"= \\frac{2}{\\sqrt{2\\pi}} e^{-\\frac{y^2}{2}} \\\\\n",
"= {\\sqrt\\frac{2}{\\pi}} e^{-\\frac{y^2}{2}}, y \\geq 0\n",
"\\end{align}\n",
"$$\n",
"\n",
"Finding Expectation,\n",
"\n",
"$$\n",
"\\begin{align}\n",
"E[Y] = \\int_{-\\infty}^{+\\infty} yf_Y(y)dy \\\n",
"& = \\int_{-\\infty}^{+\\infty} y \\sqrt{\\frac{2}{\\pi}} e^{-\\frac{y^2}{2}} dy\n",
"\\end{align}\n",
"$$\n",
"\n",
"Substituting $\\frac{y^2}{2} = t$\n",
"\n",
"$$\n",
"\\frac{2y}{2} dy = dt\n",
"$$\n",
"\n",
"$$\n",
"\\begin{align}\n",
"E[Y] = \\sqrt{\\frac{2}{\\pi}} \\int_{0}^{\\infty} e^{-t} dt\n",
"= \\sqrt{\\frac{2}{\\pi}} \\left( -e^{-t} \\right) \\bigg|_{0}^{\\infty} = \\sqrt{\\frac{2}{\\pi}}\n",
"\\end{align}\n",
"$$\n",
"\n",
"Finding $E[Y^2]$,\n",
"$$\n",
"\\begin{align}\n",
"E[Y^2]=E[Z^2]\\\n",
"& =\\sigma_Z^2 +\\mu_z^2 =1\n",
"\\end{align}\n",
"$$\n",
"\n",
"Finding Variance,\n",
"$$\n",
"\\text{Var}(Y) = E[Y^2] - \\left( E[Y] \\right)^2 \\\\\n",
"= 1 - \\frac{2}{\\pi}\n",
"$$\n",
"\n",
"Finding $E[Y^3]$,\n",
"$$\n",
"\\begin{align}\n",
"E[Y^3] = \\int_{-\\infty}^{+\\infty} y^3 \\, f_Y(y) \\, dy\n",
"= \\int_{-\\infty}^{0} y^3 \\times 0 dy + \\int_{0}^{\\infty} y^3 \\sqrt{\\frac{2}{\\pi}} e^{-\\frac{y^2}{2}} \\, dy\n",
"\\end{align}\n",
"$$\n",
"\n",
"Substituting $\\frac{y^2}{2} = t$, \n",
"$$\n",
"\\frac{2y}{2} dy = dt\n",
"$$\n",
"\n",
"$$\n",
"E[Y^3] = \\int_{0}^{\\infty} 2t \\sqrt{\\frac{2}{\\pi}} e^{-t} \\, dt = 2 \\sqrt{\\frac{2}{\\pi}} \\int_{0}^{\\infty} t e^{-t} \\, dt\n",
"$$\n",
"\n",
"$$\n",
"E[Y^3] = 2 \\sqrt{\\frac{2}{\\pi}} \\times 1\n",
"$$\n"
],
"metadata": {
"id": "ykfcZwlAqB1q"
}
},
{
"cell_type": "markdown",
"source": [
"##Q2\n",
"(a) \n",
"By LOTUS,\n",
"\n",
"$E[g(X)] = \\sum_{x} g(x) f_X(x) $\n",
"\n",
"$$\n",
"E[X g(X)] = \\sum_{x} x g(X) \\frac{\\lambda^x e^{-\\lambda}}{x!}\n",
"= e^{-\\lambda} \\sum_{x=1}^\\infty g(X) \\frac{\\lambda^x}{(x-1)!} + 0\n",
"$$\n",
"\n",
"$$\n",
"\\lambda E[g(X+1)] = \\sum_{x} g(X+1) \\frac{\\lambda^{x+1} e^{-\\lambda}}{x!}\n",
"= e^{-\\lambda} \\sum_{x=0}^\\infty g(X+1) \\frac{\\lambda^{x+1}}{x!}\n",
"$$\n",
"\n",
"Both expansions give equivalent results. Hence proved.\n",
"\n",
"(b)\n",
"\n",
"$$\n",
"E(X) = \\lambda \\quad \\text{and} \\quad \\text{Var}(X) = \\lambda\n",
"$$\n",
"\n",
"For $g(X) = X^2$:\n",
"\n",
"$$\n",
"E(X^3) = \\lambda E[(X+1)^2] = \\lambda [E(X^2) + 1 + 2E(X)]\n",
"$$\n",
"\n",
"$Var(X)= E[X^2]-(E[X])^2$ \n",
"$E[X^2]= \\lambda+\\lambda^2$\n",
"\n",
"$$\n",
"E(X^3) = \\lambda [1 + 2\\lambda + \\lambda + \\lambda^2]\n",
"= \\lambda^3 + 3\\lambda^2 + \\lambda\n",
"$$"
],
"metadata": {
"id": "Jx81KSD877va"
}
},
{
"cell_type": "markdown",
"source": [
"##Q3\n",
"\n",
"Given,\n",
"\n",
"$$\n",
"T_1 \\sim \\text{Exp}(\\lambda_1), \\quad T_2 \\sim \\text{Exp}(\\lambda_2)\n",
"$$\n",
"\n",
"The exponential distribution probability density function:\n",
"$$\n",
"f_X(x) =\n",
"\\begin{cases}\n",
"\\lambda e^{-\\lambda x}, & x > 0, \\lambda > 0 \\\\\n",
"0\\quad \\quad, & \\text{otherwise}\n",
"\\end{cases}\n",
"$$\n",
"\n",
"Calculating $P( T_1 \\lt T_2 )$, \n",
"\n",
"Since the random variables are independent,\n",
"$$\n",
"P(T_1 < T_2) = \\int_{0}^{\\infty} \\int_{t_1}^{\\infty} f_{T_1}(t_1) f_{T_2}(t_2) \\, dt_2 \\, dt_1\n",
"$$\n",
"\n",
"$$\n",
"= \\lambda_1 \\lambda_2 \\int_{0}^{\\infty} \\int_{t_1}^{\\infty} e^{-\\lambda_1 t_1 - \\lambda_2 t_2} \\, dt_2 \\, dt_1\n",
"$$\n",
"\n",
"First integrating over $t_2$:\n",
"\n",
"$$\n",
"= \\lambda_1 \\int_{0}^{\\infty} e^{-\\lambda_1 t_1} \\left( \\int_{t_1}^{\\infty} \\lambda_2 e^{-\\lambda_2 t_2} \\, dt_2 \\right) dt_1 \\\\\n",
"= \\lambda_1 \\int_{0}^{\\infty} e^{-\\lambda_1 t_1} e^{-\\lambda_2 t_1} \\, dt_1 \\\\\n",
"= \\lambda_1 \\int_{0}^{\\infty} e^{-(\\lambda_1 + \\lambda_2) t_1} \\, dt_1 \\\\\n",
"= \\frac{\\lambda_1}{\\lambda_1 + \\lambda_2}\n",
"$$"
],
"metadata": {
"id": "N5dPrGkV_Iph"
}
},
{
"cell_type": "markdown",
"source": [
"##Q4\n",
"(a) \n",
"Let $X$ be a binary random variable representing the transmitted message:\n",
"$$\n",
"X = \\begin{cases}\n",
"1 & \\text{if message is } yes \\\\\n",
"0 & \\text{if message is } no\n",
"\\end{cases}\n",
"$$\n",
"\n",
"The noisy channel is modeled as additive Gaussian noise:\n",
"$Y \\sim \\mathcal{N}(0, \\sigma^2)$\n",
"\n",
"The received signal $Z$ is,\n",
"$Z = X + Y$ \n",
"\n",
"The probability of correct interpretation is:\n",
"$$\n",
"\\begin{align}\n",
"P(\\text{correct}) &= P(Z > \\tfrac{1}{2} \\mid X = 1)P(X = 1) \\\\\n",
"&\\quad + P(Z < \\tfrac{1}{2} \\mid X = 0)P(X = 0)\n",
"\\end{align}\n",
"$$\n",
"\n",
"$$\n",
"\\begin{align}\n",
"P(\\text{correct}) &= P(X = 1)P(Y > -\\tfrac{1}{2}) + P(X = 0)P(Y < \\tfrac{1}{2}) \\\\\n",
"&= P(X = 1)[1 - \\Phi(-\\tfrac{1}{2\\sigma})] + P(X = 0)\\Phi(\\tfrac{1}{2\\sigma}) \\\\\n",
"&= \\Phi(\\tfrac{1}{2\\sigma})[P(X = 1) + P(X = 0)] \\\\\n",
"&\\text{Since it is sure that the message is transmitted, } P(X = 1) + P(X = 0) = 1\\\\\n",
"&= \\Phi(\\tfrac{1}{2\\sigma})\n",
"\\end{align}\n",
"$$\n",
"where $\\Phi$ is the standard normal CDF. \n",
"Hence, the probability that the received signal falls in the correct decision region is $\\Phi(\\frac{1}{2\\sigma})$ \n"
],
"metadata": {
"id": "6tRmfWmVNuc1"
}
},
{
"cell_type": "markdown",
"source": [
"Behavior of the probability as noise varies extremely: \n",
"Variation in noise can be interpreted using the variance of the distribution. \n",
"As the noise becomes very small, $\\sigma \\to 0$: \n",
"$\\lim_{\\sigma \\to 0} \\Phi(\\frac{1}{2\\sigma}) = \\Phi(+\\infty) = 1$\n",
"\n",
"Intuitively, the probability of correctly interpreting the message tends to 1 as noise becomes negligible.\n",
"As noise becomes very large, $\\sigma \\rightarrow \\infty$: \n",
"$\\lim_{\\sigma \\to \\infty} \\Phi(\\frac{1}{2\\sigma}) = \\Phi(0) = \\frac{1}{2}$\n",
"\n",
"Intuitively, we understand that as $\\sigma \\rightarrow \\infty$ the spread of the data is very large and the actual message and noise conflate into being correctly interpreted only half the time. The probability degrades to $\\frac{1}{2}$ ."
],
"metadata": {
"id": "v3e2SLMjWbjJ"
}
}
]
}
Loading