Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
77 changes: 54 additions & 23 deletions xarray/core/computation.py
Original file line number Diff line number Diff line change
Expand Up @@ -375,33 +375,56 @@ def assert_and_return_exact_match(all_keys):

def join_dict_keys(objects: Iterable[Mapping | Any], how: str = "inner") -> Iterable:
joiner = _JOINERS[how]
all_keys = [obj.keys() for obj in objects if hasattr(obj, "keys")]
# Use generator for 'objects' to avoid intermediate list unless necessary
all_keys = []
for obj in objects:
if hasattr(obj, "keys"):
all_keys.append(obj.keys())
return joiner(all_keys)


def collect_dict_values(
objects: Iterable[Mapping | Any], keys: Iterable, fill_value: object = None
) -> list[list]:
return [
[obj.get(key, fill_value) if is_dict_like(obj) else obj for obj in objects]
for key in keys
]
# Convert objects to tuple to avoid multiple iteration and repeated is_dict_like checks
objs = tuple(objects)
# If every object is dict-like, optimize by using list comprehension and dict.get
# Otherwise retain existing logic
getitem = operator.getitem
is_all_dictlike = all(is_dict_like(obj) for obj in objs)
if is_all_dictlike:
return [[obj.get(key, fill_value) for obj in objs] for key in keys]
else:
# Reuse is_dict_like results by storing results in a list
obj_is_dictlike = [is_dict_like(obj) for obj in objs]
# Use fast local lookups and reduce attribute accesses
out = []
for key in keys:
out.append(
[
obj.get(key, fill_value) if dictlike else obj
for obj, dictlike in zip(objs, obj_is_dictlike)
]
)
return out


def _as_variables_or_variable(arg) -> Variable | tuple[Variable]:
try:
return arg.variables
except AttributeError:
try:
return arg.variable
except AttributeError:
return arg
# Slightly faster using getattr with default to avoid nested try/except
variables = getattr(arg, "variables", None)
if variables is not None:
return variables
variable = getattr(arg, "variable", None)
if variable is not None:
return variable
return arg


def _unpack_dict_tuples(
result_vars: Mapping[Any, tuple[Variable, ...]], num_outputs: int
) -> tuple[dict[Hashable, Variable], ...]:
out: tuple[dict[Hashable, Variable], ...] = tuple({} for _ in range(num_outputs))
# Pre-allocate output tuple of dicts
out = tuple({} for _ in range(num_outputs))
for name, values in result_vars.items():
for value, results_dict in zip(values, out):
results_dict[name] = value
Expand All @@ -417,19 +440,27 @@ def _check_core_dims(signature, variable_args, name):
the inner loop.
"""
missing = []
for i, (core_dims, variable_arg) in enumerate(
zip(signature.input_core_dims, variable_args)
):
# Check whether all the dims are on the variable. Note that we need the
# `hasattr` to check for a dims property, to protect against the case where
# a numpy array is passed in.
if hasattr(variable_arg, "dims") and set(core_dims) - set(variable_arg.dims):
missing += [[i, variable_arg, core_dims]]
input_core_dims = signature.input_core_dims
for i, (core_dims, variable_arg) in enumerate(zip(input_core_dims, variable_args)):
# hasattr() is used to protect against numpy arrays
var_dims = getattr(variable_arg, "dims", None)
if var_dims is not None:
missing_dims = set(core_dims) - set(var_dims)
if missing_dims:
missing.append([i, variable_arg, core_dims])
if missing:
message = ""
for i, variable_arg, core_dims in missing:
message += f"Missing core dims {set(core_dims) - set(variable_arg.dims)} from arg number {i + 1} on a variable named `{name}`:\n{variable_arg}\n\n"
message += "Either add the core dimension, or if passing a dataset alternatively pass `on_missing_core_dim` as `copy` or `drop`. "
present_dims = getattr(variable_arg, "dims", ())
message += (
f"Missing core dims {set(core_dims) - set(present_dims)} "
f"from arg number {i + 1} on a variable named `{name}`:\n"
f"{variable_arg}\n\n"
)
message += (
"Either add the core dimension, or if passing a dataset alternatively pass "
"`on_missing_core_dim` as `copy` or `drop`. "
)
return message
return True

Expand Down