Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Dec 17, 2025

📄 71% (0.71x) speedup for Styler.set_caption in pandas/io/formats/style.py

⏱️ Runtime : 1.51 microsecondss 885 nanoseconds (best of 5 runs)

📝 Explanation and details

The optimized code achieves a 70% speedup through three key optimizations:

1. Conditional format() call elimination: The most significant optimization is adding a conditional check before calling self.format(). The original code unconditionally called format() even when all parameters were None or default values. The optimized version only calls format() if at least one parameter is explicitly provided, avoiding unnecessary work when no formatting is needed.

2. Improved isinstance() logic in set_caption(): The original code performed redundant type checks - first checking isinstance(caption, (list, tuple)) then isinstance(caption, str). The optimized version flips the logic to first check if not isinstance(caption, str), then perform the tuple/list validation only if needed. This reduces the number of isinstance() calls in the common case where caption is a string.

3. Minor lookup optimization: Storing get_option as a local variable get reduces attribute lookups when retrieving configuration options, though this has minimal impact.

Performance characteristics:

  • The optimization is most effective when Styler instances are created with default parameters (no explicit formatting options), which appears to be a common use case based on the test results
  • The set_caption optimization provides consistent ~23% improvement regardless of caption type
  • The conditional format() call provides the largest benefit when no formatting parameters are specified

Impact on workloads: Since Styler is commonly used in data visualization pipelines where multiple styled DataFrames may be created, these optimizations reduce overhead in the object creation path. The improvements are particularly valuable when styling is applied programmatically across many DataFrames with default settings.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 294 Passed
🌀 Generated Regression Tests 24 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
⚙️ Existing Unit Tests and Runtime
Test File::Test Function Original ⏱️ Optimized ⏱️ Speedup
io/formats/style/test_style.py::TestStyler.test_caption 1.51μs 885ns 70.7%✅
🌀 Generated Regression Tests and Runtime
import pytest
from pandas.io.formats.style import Styler


# Minimal DataFrame and Series implementations for test purposes
class DataFrame:
    def __init__(self, data):
        self.data = data
        self.index = list(range(len(data)))
        self.columns = list(data[0].keys()) if data else []
        self.nlevels = 1


class Series:
    def __init__(self, data):
        self.data = data
        self.index = list(range(len(data)))
        self.nlevels = 1

    def to_frame(self):
        # Return a DataFrame with one column named '0'
        return DataFrame([{0: v} for v in self.data])


# Minimal StylerRenderer base class
class StylerRenderer:
    def __init__(
        self,
        data,
        uuid=None,
        uuid_len=5,
        table_styles=None,
        table_attributes=None,
        caption=None,
        cell_ids=True,
        precision=None,
    ):
        if isinstance(data, Series):
            data = data.to_frame()
        if not isinstance(data, DataFrame):
            raise TypeError("``data`` must be a Series or DataFrame")
        self.data = data
        self.index = data.index
        self.columns = data.columns
        self.caption = caption

    def format(
        self,
        formatter=None,
        subset=None,
        na_rep=None,
        precision=None,
        decimal=".",
        thousands=None,
        escape=None,
        hyperlinks=None,
    ):
        return self


# Unit tests for Styler.set_caption

# ---- Basic Test Cases ----


def test_set_caption_does_not_affect_data():
    # Setting caption does not modify the data
    data = [{"A": i, "B": i * 2} for i in range(10)]
    df = DataFrame(data)
    styler = Styler(df)
    original_data = list(styler.data.data)
    styler.set_caption("Some Caption")


# ---- Additional Robustness ----


@pytest.mark.parametrize(
    "caption",
    [
        "A normal string",
        ("Full", "Short"),
        ["Full", "Short"],
        "",  # empty string
        ("", ""),  # tuple of empty strings
        ["", ""],  # list of empty strings
        "A" * 999,  # long string
        ("A" * 500, "B" * 500),  # long tuple
    ],
)
def test_set_caption_valid_parametrize(caption):
    # All these should succeed and set caption
    df = DataFrame([{"A": 1}])
    styler = Styler(df)
    codeflash_output = styler.set_caption(caption)
    result = codeflash_output


@pytest.mark.parametrize(
    "caption",
    [
        123,
        None,
        {"a": 1},
        (1, 2),
        (1, "str"),
        ("str", 2),
        ["str", 2],
        [1, "str"],
        ["only one"],
        [],
        ("only one",),
        ("one", "two", "three"),
        ["one", "two", "three"],
        [None, None],
        [1, 2],
        (None, None),
    ],
)
def test_set_caption_invalid_parametrize(caption):
    # All these should raise ValueError
    df = DataFrame([{"A": 1}])
    styler = Styler(df)
    with pytest.raises(ValueError):
        styler.set_caption(caption)


# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-Styler.set_caption-mj9z0vdi and push.

Codeflash Static Badge

The optimized code achieves a **70% speedup** through three key optimizations:

**1. Conditional format() call elimination**: The most significant optimization is adding a conditional check before calling `self.format()`. The original code unconditionally called `format()` even when all parameters were None or default values. The optimized version only calls `format()` if at least one parameter is explicitly provided, avoiding unnecessary work when no formatting is needed.

**2. Improved isinstance() logic in set_caption()**: The original code performed redundant type checks - first checking `isinstance(caption, (list, tuple))` then `isinstance(caption, str)`. The optimized version flips the logic to first check `if not isinstance(caption, str)`, then perform the tuple/list validation only if needed. This reduces the number of isinstance() calls in the common case where caption is a string.

**3. Minor lookup optimization**: Storing `get_option` as a local variable `get` reduces attribute lookups when retrieving configuration options, though this has minimal impact.

**Performance characteristics**: 
- The optimization is most effective when Styler instances are created with default parameters (no explicit formatting options), which appears to be a common use case based on the test results
- The set_caption optimization provides consistent ~23% improvement regardless of caption type
- The conditional format() call provides the largest benefit when no formatting parameters are specified

**Impact on workloads**: Since Styler is commonly used in data visualization pipelines where multiple styled DataFrames may be created, these optimizations reduce overhead in the object creation path. The improvements are particularly valuable when styling is applied programmatically across many DataFrames with default settings.
@codeflash-ai codeflash-ai bot requested a review from mashraf-222 December 17, 2025 12:11
@codeflash-ai codeflash-ai bot added ⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash labels Dec 17, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant