Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 24 additions & 20 deletions src/statistics/descriptive.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,33 +47,37 @@ def correlation(df: pd.DataFrame) -> dict[Tuple[str, str], float]:
]
n_cols = len(numeric_columns)
result = {}

# Extract numeric columns as arrays up front for efficient access
data = {col: df[col].to_numpy() for col in numeric_columns}
isnan = {col: np.isnan(data[col]) for col in numeric_columns}

for i in range(n_cols):
col_i = numeric_columns[i]
arr_i = data[col_i]
isnan_i = isnan[col_i]
for j in range(n_cols):
col_j = numeric_columns[j]
values_i = []
values_j = []
for k in range(len(df)):
if not pd.isna(df.iloc[k][col_i]) and not pd.isna(df.iloc[k][col_j]):
values_i.append(df.iloc[k][col_i])
values_j.append(df.iloc[k][col_j])
n = len(values_i)
if n == 0:
arr_j = data[col_j]
isnan_j = isnan[col_j]
# Mask for rows where both values are NOT nan
valid_mask = ~(isnan_i | isnan_j)
if not np.any(valid_mask):
result[(col_i, col_j)] = np.nan
continue
mean_i = sum(values_i) / n
mean_j = sum(values_j) / n
var_i = sum((x - mean_i) ** 2 for x in values_i) / n
var_j = sum((x - mean_j) ** 2 for x in values_j) / n
std_i = var_i**0.5
std_j = var_j**0.5
if std_i == 0 or std_j == 0:
x = arr_i[valid_mask]
y = arr_j[valid_mask]
n = x.shape[0]
mean_x = np.sum(x) / n
mean_y = np.sum(y) / n
var_x = np.sum((x - mean_x) ** 2) / n
var_y = np.sum((y - mean_y) ** 2) / n
std_x = var_x**0.5
std_y = var_y**0.5
if std_x == 0 or std_y == 0:
result[(col_i, col_j)] = np.nan
continue
cov = (
sum((values_i[k] - mean_i) * (values_j[k] - mean_j) for k in range(n))
/ n
)
corr = cov / (std_i * std_j)
cov = np.sum((x - mean_x) * (y - mean_y)) / n
corr = cov / (std_x * std_y)
result[(col_i, col_j)] = corr
return result