A lightweight motion-induced sparse representation system for epistemic validation of multi-sensor environmental anomalies on Raspberry Pi 5B.
This system generates a sparse, motion-based representation to validate whether multi-sensor anomalies (IMU, acoustic, atmospheric) correspond to real environment-level structural responses. The camera is NOT a detector—it's a validator.
# Install dependencies
pip install -r requirements.txt
# Run the visualizer demo
python demo/visualizer.py
# Use in your code
from src.agent.coherence_oracle import CoherenceOracle
oracle = CoherenceOracle(camera_id=0)
signal = oracle.get_coherence_signal()
print(f"Scene coherence: {signal.scene_coherence:.2f}")
print(f"Disturbance type: {signal.disturbance_type}")Camera Frame (720p)
↓
FAST Feature Detection (500 keypoints)
↓
Lucas-Kanade Optical Flow
↓
Motion Vector Field (8x6 grid)
↓
Spatial Coherence Analysis
↓
CoherenceSignal → Agentic AI Layer
| Metric | Range | Meaning |
|---|---|---|
scene_coherence |
0.0-1.0 | Correlation of motion across spatial cells |
motion_intensity |
0.0-1.0 | Normalized motion magnitude |
disturbance_type |
NONE/LOCALIZED/SCENE_LEVEL | Classification of motion pattern |
visual_confidence |
0.0-1.0 | Trust in the visual assessment |
false_positive_risk |
0.0-1.0 | Likelihood other sensors have false positive |
- Target: <20ms per frame
- Processing rate: 15 FPS
- Tested on: Raspberry Pi 5B
Camera/
├── src/
│ ├── config.py # Configuration constants
│ ├── camera/ # Frame capture
│ ├── motion/ # Feature detection & optical flow
│ ├── representation/ # Sparse coherence grid
│ └── agent/ # Oracle interface
├── tests/ # Unit tests
├── demo/ # Visualization tools
└── requirements.txt