Skip to content

Sedimark/Sedimark-Toolbox

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

76 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸš€ Sedimark Toolbox

A comprehensive deployment solution for data pipelines, machine learning workflows, and NGSI-LD context broker services. This repository provides Docker-based deployments for the complete Sedimark ecosystem.

πŸ“‹ Table of Contents

πŸ—οΈ Architecture Overview

The Sedimark Toolbox provides two main deployment scenarios:

  1. AI/ML Pipeline Toolbox - Complete machine learning workflow management
  2. NGSI-LD Context Broker - Standards-compliant context information management

High Level Architecture

The architecture enables seamless integration between data ingestion, processing, model training, and deployment workflows.

πŸ“¦ Repository Structure

Sedimark-Toolbox/
β”œβ”€β”€ πŸ“ toolbox_deployment/          # AI/ML Pipeline Services
β”‚   β”œβ”€β”€ 🐳 docker-compose.yaml     # Main toolbox orchestration
β”‚   β”œβ”€β”€ πŸ”§ .env                    # Environment configuration
β”‚   β”œβ”€β”€ 🐳 MLflow                  # MLflow Dockerfile
β”‚   β”œβ”€β”€ 🐳 MinioInit               # Minio initialization
β”‚   β”œβ”€β”€ πŸ”§ init.sh                 # Minio setup script
β”‚   └── πŸ“– README.md               # Toolbox documentation
β”‚
β”œβ”€β”€ πŸ“ ngsild_broker_deployment/    # Context Broker Services
β”‚   β”œβ”€β”€ 🐳 docker-compose.yml      # Stellio broker setup
β”‚   β”œβ”€β”€ πŸ”§ .env                    # Broker configuration
β”‚   └── πŸ“– README.md               # Broker documentation
β”‚
β”œβ”€β”€ πŸ“ images/                      # Documentation assets
β”‚   └── πŸ–ΌοΈ main-arhitecture.png
β”‚
β”œβ”€β”€ πŸ“– README.md                    # This file
└── πŸ“ .gitattributes              # Git LFS configuration

⚑ Quick Start

Complete Deployment

# Clone the repository
git clone https://github.com/Sedimark/Sedimark-Toolbox.git
cd Sedimark-Toolbox

# Create shared network (required for inter-service communication)
docker network create shared_network

# Deploy AI/ML Toolbox
cd toolbox_deployment
docker-compose up -d

# Deploy NGSI-LD Broker (optional, in separate terminal)
cd ../ngsild_broker_deployment
docker-compose up -d

πŸ”§ Prerequisites

  • Docker (v20.10+) & Docker Compose (v2.0+)
  • Git with LFS support
  • 8GB+ RAM recommended for full deployment
  • Ports available: 3000, 5000, 6789, 8001, 8080, 8083-8085, 9000-9001, 10100

🚒 Deployment Options

1. AI/ML Pipeline Toolbox

Deploy the complete machine learning workflow stack:

cd toolbox_deployment
docker-compose up -d

Includes:

  • πŸ”¬ MLflow - Experiment tracking and model registry
  • πŸ—„οΈ PostgreSQL - Metadata storage
  • πŸ“¦ MinIO - Artifact storage (S3-compatible)
  • πŸͺ„ MageAI - Data pipeline orchestration
  • πŸ”— APIs - REST interfaces for workflow management
  • πŸŽ›οΈ Orchestrator UI - Web-based management interface

2. NGSI-LD Context Broker

Deploy the standards-compliant context information management system:

cd ngsild_broker_deployment
docker-compose up -d

Includes:

  • 🌟 Stellio - NGSI-LD compliant context broker
  • πŸ—„οΈ PostgreSQL with TimescaleDB - Time-series data storage
  • πŸ”„ Kafka - Event streaming platform

🌐 Service Access

AI/ML Toolbox Services

Service URL Purpose Credentials
πŸŽ›οΈ Orchestrator http://localhost:3000 Workflow Management UI -
πŸ”¬ MLflow http://localhost:5000 ML Experiment Tracking admin / password1234
πŸͺ„ MageAI http://localhost:6789 Data Pipeline IDE [email protected] / admin
πŸ“¦ MinIO Console http://localhost:9001 Object Storage UI admin / minio_sedimark
πŸ”— Mage API http://localhost:8085 Pipeline API -
πŸ“Š MLflow API http://localhost:8001 Model Registry API -

NGSI-LD Broker Services

Service URL Purpose
🌟 Stellio API http://localhost:8080 Context Broker API
πŸ” Search Service http://localhost:8083 Entity Search API
πŸ“‘ Subscription Service http://localhost:8084 Notification Management

πŸ“š Component Documentation

Core Repositories

External Components

βš™οΈ Configuration

Environment Variables

Both deployments use .env files for configuration:

Key Configuration Areas

  1. Authentication Settings - User credentials and access control
  2. Network Configuration - Port mappings and service discovery
  3. Storage Configuration - Database connections and object storage
  4. Integration Settings - API endpoints and service URLs

Customization

For detailed configuration options, refer to:


🀝 Contributing

Contributions are welcome! Please refer to the individual component repositories for development guidelines.

πŸ“„ License

This project is licensed under MIT LICENSE

πŸ†˜ Support

For issues and support:

  1. Check the component-specific README files
  2. Review the individual repository documentation
  3. Create an issue in the relevant component repository

About

Deployment for Sedimark Toolbox to deploy an instance of it and connect to the Sedimark Marketplace

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages