# workflow-fairbase.yml
project:
name: "Workflow-Fairbase"
description: "Generative AI Platform for Automated Workflows"
version: "1.0.0"
type: "AI-Powered Workflow Automation"
status: "Active Development"
architecture:
framework: "Microservices with Event-Driven Architecture"
components:
- "AI Orchestration Engine"
- "Workflow Designer"
- "Model Management"
- "Data Processing Pipeline"
- "API Gateway"
- "Monitoring & Analytics"
core_features:
generative_ai_workflows:
- "Text Generation & Summarization"
- "Code Generation & Automation"
- "Image Generation & Processing"
- "Document Analysis & Processing"
- "Data Transformation Pipelines"
- "Multi-Modal AI Operations"
workflow_capabilities:
- "Visual Workflow Builder"
- "Conditional Logic & Branching"
- "Error Handling & Retry Mechanisms"
- "Parallel Processing"
- "Human-in-the-Loop Steps"
- "Version Control & Rollbacks"
technology_stack:
backend:
language: "Python 3.11+"
framework: "FastAPI"
orchestration: "Prefect + Celery"
database: "PostgreSQL + Redis"
messaging: "RabbitMQ"
vector_store: "Pinecone / Weaviate"
frontend:
framework: "React 18 + TypeScript"
state_management: "Zustand"
styling: "Tailwind CSS"
visualization: "React Flow"
ai_models:
language_models:
- "OpenAI GPT-4"
- "Anthropic Claude"
- "Llama 2"
- "Custom Fine-tuned Models"
image_models:
- "Stable Diffusion"
- "DALL-E 3"
- "Midjourney API"
embeddings:
- "OpenAI Embeddings"
- "Sentence Transformers"
infrastructure:
containerization: "Docker + Kubernetes"
cloud_platform: "Google Cloud Platform"
monitoring: "Prometheus + Grafana"
logging: "ELK Stack"
ci_cd: "GitHub Actions"
project_structure:
fairbase-core/
├── ai_orchestrator/
│ ├── model_manager/
│ ├── prompt_engine/
│ └── response_parser/
├── workflow_engine/
│ ├── executor/
│ ├── scheduler/
│ └── monitor/
├── data_processor/
│ ├── transformers/
│ ├── validators/
│ └── enhancers/
└── api_gateway/
├── rest_api/
├── websocket/
└── webhook/
fairbase-ui/
├── workflow_designer/
├── model_playground/
├── analytics_dashboard/
└── admin_console/
fairbase-integrations/
├── google_cloud/
├── aws_services/
├── azure_ai/
└── custom_apis/# core/ai_orchestrator.py
from typing import Dict, Any, List, Optional
from enum import Enum
import asyncio
from pydantic import BaseModel
import logging
class AIModelType(Enum):
TEXT_GENERATION = "text_generation"
CODE_GENERATION = "code_generation"
IMAGE_GENERATION = "image_generation"
TEXT_EMBEDDING = "text_embedding"
SPEECH_TO_TEXT = "speech_to_text"
TEXT_TO_SPEECH = "text_to_speech"
class ModelRequest(BaseModel):
model_type: AIModelType
provider: str
model_name: str
input_data: Dict[str, Any]
parameters: Dict[str, Any]
context: Optional[Dict[str, Any]] = None
class ModelResponse(BaseModel):
success: bool
output: Any
metadata: Dict[str, Any]
error: Optional[str] = None
class AIOrchestrator:
def __init__(self):
self.model_registry = {}
self.providers = {}
self.logger = logging.getLogger(__name__)
async def register_model(self, model_config: Dict[str, Any]):
"""Register AI model with configuration"""
model_id = model_config["id"]
self.model_registry[model_id] = model_config
self.logger.info(f"Registered model: {model_id}")
async def execute_workflow_step(self, step_config: Dict[str, Any], input_data: Any) -> ModelResponse:
"""Execute a single AI workflow step"""
try:
model_request = ModelRequest(
model_type=step_config["model_type"],
provider=step_config["provider"],
model_name=step_config["model_name"],
input_data=input_data,
parameters=step_config.get("parameters", {}),
context=step_config.get("context", {})
)
return await self._call_model(model_request)
except Exception as e:
self.logger.error(f"Workflow step execution failed: {str(e)}")
return ModelResponse(
success=False,
output=None,
metadata={},
error=str(e)
)
async def _call_model(self, request: ModelRequest) -> ModelResponse:
"""Make actual API call to AI model"""
# Implementation for different providers
if request.provider == "openai":
return await self._call_openai(request)
elif request.provider == "anthropic":
return await self._call_anthropic(request)
elif request.provider == "huggingface":
return await self._call_huggingface(request)
elif request.provider == "custom":
return await self._call_custom_model(request)
else:
raise ValueError(f"Unsupported provider: {request.provider}")
async def _call_openai(self, request: ModelRequest) -> ModelResponse:
"""Call OpenAI models"""
# Implementation for OpenAI API calls
pass
async def _call_anthropic(self, request: ModelRequest) -> ModelResponse:
"""Call Anthropic Claude models"""
# Implementation for Anthropic API calls
pass
async def _call_huggingface(self, request: ModelRequest) -> ModelResponse:
"""Call Hugging Face models"""
# Implementation for Hugging Face API calls
pass
async def _call_custom_model(self, request: ModelRequest) -> ModelResponse:
"""Call custom deployed models"""
# Implementation for custom model endpoints
pass# core/workflow_engine.py
from typing import Dict, List, Any, Optional
from pydantic import BaseModel
import networkx as nx
import asyncio
from datetime import datetime
import uuid
class WorkflowNode(BaseModel):
id: str
type: str
config: Dict[str, Any]
next_nodes: List[str]
conditions: Optional[Dict[str, Any]] = None
class WorkflowExecution(BaseModel):
execution_id: str
workflow_id: str
status: str
start_time: datetime
end_time: Optional[datetime] = None
current_node: Optional[str] = None
results: Dict[str, Any] = {}
errors: List[str] = []
class WorkflowEngine:
def __init__(self, ai_orchestrator):
self.ai_orchestrator = ai_orchestrator
self.workflows = {}
self.executions = {}
self.graph = nx.DiGraph()
async def create_workflow(self, name: str, nodes: List[WorkflowNode]) -> str:
"""Create a new workflow"""
workflow_id = str(uuid.uuid4())
# Build workflow graph
for node in nodes:
self.graph.add_node(node.id, **node.dict())
for next_node in node.next_nodes:
self.graph.add_edge(node.id, next_node)
self.workflows[workflow_id] = {
"id": workflow_id,
"name": name,
"nodes": {node.id: node for node in nodes},
"graph": self.graph.copy(),
"created_at": datetime.now()
}
return workflow_id
async def execute_workflow(self, workflow_id: str, initial_input: Dict[str, Any]) -> str:
"""Execute a workflow"""
execution_id = str(uuid.uuid4())
execution = WorkflowExecution(
execution_id=execution_id,
workflow_id=workflow_id,
status="running",
start_time=datetime.now(),
results={"initial_input": initial_input}
)
self.executions[execution_id] = execution
# Start execution in background
asyncio.create_task(self._run_workflow(execution, initial_input))
return execution_id
async def _run_workflow(self, execution: WorkflowExecution, input_data: Any):
"""Execute workflow steps"""
workflow = self.workflows[execution.workflow_id]
graph = workflow["graph"]
# Find start nodes (nodes with no incoming edges)
start_nodes = [node for node in graph.nodes() if graph.in_degree(node) == 0]
for start_node in start_nodes:
await self._execute_node(execution, start_node, input_data)
async def _execute_node(self, execution: WorkflowExecution, node_id: str, input_data: Any):
"""Execute a single workflow node"""
workflow = self.workflows[execution.workflow_id]
node = workflow["nodes"][node_id]
execution.current_node = node_id
try:
if node.type == "ai_model":
result = await self.ai_orchestrator.execute_workflow_step(
node.config, input_data
)
if result.success:
execution.results[node_id] = result.output
# Execute next nodes
for next_node in node.next_nodes:
await self._execute_node(execution, next_node, result.output)
else:
execution.errors.append(f"Node {node_id} failed: {result.error}")
elif node.type == "condition":
# Evaluate condition and choose next node
condition_result = self._evaluate_condition(node.conditions, input_data)
next_node = condition_result.get("next_node")
if next_node:
await self._execute_node(execution, next_node, input_data)
elif node.type == "data_transform":
# Transform data
transformed_data = self._transform_data(node.config, input_data)
for next_node in node.next_nodes:
await self._execute_node(execution, next_node, transformed_data)
elif node.type == "human_approval":
# Wait for human approval
await self._wait_for_approval(execution, node_id, input_data)
except Exception as e:
execution.errors.append(f"Node {node_id} execution error: {str(e)}")
execution.status = "failed"
def _evaluate_condition(self, conditions: Dict[str, Any], data: Any) -> Dict[str, Any]:
"""Evaluate conditional logic"""
# Implementation for condition evaluation
pass
def _transform_data(self, config: Dict[str, Any], data: Any) -> Any:
"""Transform data according to configuration"""
# Implementation for data transformation
pass
async def _wait_for_approval(self, execution: WorkflowExecution, node_id: str, data: Any):
"""Wait for human approval in the workflow"""
# Implementation for human-in-the-loop approval
pass// frontend/components/WorkflowDesigner.tsx
import React, { useState, useCallback } from 'react';
import ReactFlow, {
Node,
Edge,
addEdge,
Connection,
useNodesState,
useEdgesState,
Controls,
Background,
MiniMap,
} from 'reactflow';
import 'reactflow/dist/style.css';
import ModelNode from './nodes/ModelNode';
import ConditionNode from './nodes/ConditionNode';
import DataTransformNode from './nodes/DataTransformNode';
import HumanApprovalNode from './nodes/HumanApprovalNode';
const nodeTypes = {
modelNode: ModelNode,
conditionNode: ConditionNode,
dataTransformNode: DataTransformNode,
humanApprovalNode: HumanApprovalNode,
};
interface WorkflowDesignerProps {
workflow?: any;
onWorkflowChange: (workflow: any) => void;
}
const WorkflowDesigner: React.FC<WorkflowDesignerProps> = ({
workflow,
onWorkflowChange,
}) => {
const [nodes, setNodes, onNodesChange] = useNodesState([]);
const [edges, setEdges, onEdgesChange] = useEdgesState([]);
const [selectedNode, setSelectedNode] = useState<Node | null>(null);
const onConnect = useCallback(
(params: Connection) => setEdges((eds) => addEdge(params, eds)),
[setEdges]
);
const addNode = useCallback((type: string, position: { x: number; y: number }) => {
const newNode: Node = {
id: `${type}-${Date.now()}`,
type,
position,
data: {
label: `${type} Node`,
config: {},
onConfigChange: (config: any) => handleNodeConfigChange(newNode.id, config)
},
};
setNodes((nds) => nds.concat(newNode));
}, [setNodes]);
const handleNodeConfigChange = (nodeId: string, config: any) => {
setNodes((nds) =>
nds.map((node) =>
node.id === nodeId
? { ...node, data: { ...node.data, config } }
: node
)
);
};
const exportWorkflow = useCallback(() => {
const workflowData = {
nodes: nodes.map(node => ({
id: node.id,
type: node.type,
config: node.data.config,
position: node.position,
})),
edges: edges.map(edge => ({
source: edge.source,
target: edge.target,
})),
};
onWorkflowChange(workflowData);
}, [nodes, edges, onWorkflowChange]);
return (
<div className="workflow-designer" style={{ height: '100vh', width: '100%' }}>
<div className="designer-toolbar">
<div className="node-palette">
<button onClick={() => addNode('modelNode', { x: 100, y: 100 })}>
AI Model
</button>
<button onClick={() => addNode('conditionNode', { x: 100, y: 100 })}>
Condition
</button>
<button onClick={() => addNode('dataTransformNode', { x: 100, y: 100 })}>
Data Transform
</button>
<button onClick={() => addNode('humanApprovalNode', { x: 100, y: 100 })}>
Human Approval
</button>
</div>
<button onClick={exportWorkflow} className="export-button">
Export Workflow
</button>
</div>
<ReactFlow
nodes={nodes}
edges={edges}
onNodesChange={onNodesChange}
onEdgesChange={onEdgesChange}
onConnect={onConnect}
nodeTypes={nodeTypes}
onNodeClick={(_, node) => setSelectedNode(node)}
fitView
>
<Background />
<Controls />
<MiniMap />
</ReactFlow>
{selectedNode && (
<div className="node-properties-panel">
<h3>Node Properties</h3>
{/* Node-specific configuration forms would go here */}
</div>
)}
</div>
);
};
export default WorkflowDesigner;# api/main.py
from fastapi import FastAPI, HTTPException, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import Dict, Any, List
import uuid
from datetime import datetime
from core.ai_orchestrator import AIOrchestrator, ModelRequest
from core.workflow_engine import WorkflowEngine, WorkflowNode
app = FastAPI(title="Workflow-Fairbase API", version="1.0.0")
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Initialize core components
ai_orchestrator = AIOrchestrator()
workflow_engine = WorkflowEngine(ai_orchestrator)
# API Models
class CreateWorkflowRequest(BaseModel):
name: str
description: str
nodes: List[Dict[str, Any]]
class ExecuteWorkflowRequest(BaseModel):
workflow_id: str
input_data: Dict[str, Any]
parameters: Dict[str, Any] = {}
class ModelRegistrationRequest(BaseModel):
model_config: Dict[str, Any]
# API Routes
@app.get("/")
async def root():
return {"message": "Workflow-Fairbase Generative AI Platform"}
@app.post("/workflows")
async def create_workflow(request: CreateWorkflowRequest):
"""Create a new workflow"""
try:
workflow_nodes = [
WorkflowNode(**node_data) for node_data in request.nodes
]
workflow_id = await workflow_engine.create_workflow(
request.name, workflow_nodes
)
return {
"workflow_id": workflow_id,
"name": request.name,
"status": "created"
}
except Exception as e:
raise HTTPException(status_code=400, detail=str(e))
@app.post("/workflows/{workflow_id}/execute")
async def execute_workflow(
workflow_id: str,
request: ExecuteWorkflowRequest,
background_tasks: BackgroundTasks
):
"""Execute a workflow"""
try:
execution_id = await workflow_engine.execute_workflow(
workflow_id, request.input_data
)
return {
"execution_id": execution_id,
"workflow_id": workflow_id,
"status": "started"
}
except Exception as e:
raise HTTPException(status_code=400, detail=str(e))
@app.get("/executions/{execution_id}")
async def get_execution_status(execution_id: str):
"""Get execution status and results"""
execution = workflow_engine.executions.get(execution_id)
if not execution:
raise HTTPException(status_code=404, detail="Execution not found")
return execution.dict()
@app.post("/models/register")
async def register_model(request: ModelRegistrationRequest):
"""Register a new AI model"""
try:
await ai_orchestrator.register_model(request.model_config)
return {"status": "model_registered"}
except Exception as e:
raise HTTPException(status_code=400, detail=str(e))
@app.post("/models/execute")
async def execute_model(request: ModelRequest):
"""Execute a single model"""
try:
response = await ai_orchestrator._call_model(request)
return response.dict()
except Exception as e:
raise HTTPException(status_code=400, detail=str(e))
# Health check
@app.get("/health")
async def health_check():
return {
"status": "healthy",
"timestamp": datetime.now(),
"version": "1.0.0"
}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)# docker-compose.yml
version: '3.8'
services:
api:
build: .
ports:
- "8000:8000"
environment:
- DATABASE_URL=postgresql://user:password@db:5432/fairbase
- REDIS_URL=redis://redis:6379
- RABBITMQ_URL=amqp://guest:guest@rabbitmq:5672
depends_on:
- db
- redis
- rabbitmq
db:
image: postgres:15
environment:
- POSTGRES_DB=fairbase
- POSTGRES_USER=user
- POSTGRES_PASSWORD=password
volumes:
- postgres_data:/var/lib/postgresql/data
redis:
image: redis:7-alpine
ports:
- "6379:6379"
rabbitmq:
image: rabbitmq:3-management
ports:
- "5672:5672"
- "15672:15672"
frontend:
build: ./fairbase-ui
ports:
- "3000:3000"
depends_on:
- api
volumes:
postgres_data:# deployment/kubernetes/deployment.yml
apiVersion: apps/v1
kind: Deployment
metadata:
name: workflow-fairbase-api
spec:
replicas: 3
selector:
matchLabels:
app: workflow-fairbase-api
template:
metadata:
labels:
app: workflow-fairbase-api
spec:
containers:
- name: api
image: workflow-fairbase:latest
ports:
- containerPort: 8000
env:
- name: DATABASE_URL
valueFrom:
secretKeyRef:
name: db-secret
key: url
resources:
requests:
memory: "512Mi"
cpu: "250m"
limits:
memory: "1Gi"
cpu: "500m"
---
apiVersion: v1
kind: Service
metadata:
name: workflow-fairbase-service
spec:
selector:
app: workflow-fairbase-api
ports:
- protocol: TCP
port: 80
targetPort: 8000
type: LoadBalancerThis Workflow-Fairbase platform provides:
- Visual Workflow Builder - Drag-and-drop interface for creating AI workflows
- Multi-Model Orchestration - Support for various AI providers and models
- Conditional Logic - Smart routing and decision making in workflows
- Human-in-the-Loop - Approval steps and human intervention points
- Real-time Monitoring - Live execution tracking and debugging
- Scalable Architecture - Microservices-based, cloud-native design
- Content Generation Pipelines - Automated blog posts, social media content
- Code Generation Workflows - Automated code review, testing, deployment
- Data Processing Pipelines - AI-powered data transformation and analysis
- Customer Support Automation - Intelligent ticket routing and response
- Document Processing - Automated document analysis and summarization
The platform is designed to be extensible and can integrate with various AI models and external services!