Skip to content
View Sazwan96's full-sized avatar
👏
Sponsors I need for Ai 2025
👏
Sponsors I need for Ai 2025

Block or report Sazwan96

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Maximum 250 characters. Please don't include any personal information such as legal names or email addresses. Markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
Sazwan96/README.md

Hi there 👋

Workflow-Fairbase: Generative AI Platform

# workflow-fairbase.yml
project:
  name: "Workflow-Fairbase"
  description: "Generative AI Platform for Automated Workflows"
  version: "1.0.0"
  type: "AI-Powered Workflow Automation"
  status: "Active Development"

architecture:
  framework: "Microservices with Event-Driven Architecture"
  components:
    - "AI Orchestration Engine"
    - "Workflow Designer"
    - "Model Management"
    - "Data Processing Pipeline"
    - "API Gateway"
    - "Monitoring & Analytics"

core_features:
  generative_ai_workflows:
    - "Text Generation & Summarization"
    - "Code Generation & Automation"
    - "Image Generation & Processing"
    - "Document Analysis & Processing"
    - "Data Transformation Pipelines"
    - "Multi-Modal AI Operations"

  workflow_capabilities:
    - "Visual Workflow Builder"
    - "Conditional Logic & Branching"
    - "Error Handling & Retry Mechanisms"
    - "Parallel Processing"
    - "Human-in-the-Loop Steps"
    - "Version Control & Rollbacks"

technology_stack:
  backend:
    language: "Python 3.11+"
    framework: "FastAPI"
    orchestration: "Prefect + Celery"
    database: "PostgreSQL + Redis"
    messaging: "RabbitMQ"
    vector_store: "Pinecone / Weaviate"

  frontend:
    framework: "React 18 + TypeScript"
    state_management: "Zustand"
    styling: "Tailwind CSS"
    visualization: "React Flow"

  ai_models:
    language_models: 
      - "OpenAI GPT-4"
      - "Anthropic Claude"
      - "Llama 2"
      - "Custom Fine-tuned Models"
    image_models:
      - "Stable Diffusion"
      - "DALL-E 3"
      - "Midjourney API"
    embeddings:
      - "OpenAI Embeddings"
      - "Sentence Transformers"

  infrastructure:
    containerization: "Docker + Kubernetes"
    cloud_platform: "Google Cloud Platform"
    monitoring: "Prometheus + Grafana"
    logging: "ELK Stack"
    ci_cd: "GitHub Actions"

project_structure:
  fairbase-core/
    ├── ai_orchestrator/
    │   ├── model_manager/
    │   ├── prompt_engine/
    │   └── response_parser/
    ├── workflow_engine/
    │   ├── executor/
    │   ├── scheduler/
    │   └── monitor/
    ├── data_processor/
    │   ├── transformers/
    │   ├── validators/
    │   └── enhancers/
    └── api_gateway/
        ├── rest_api/
        ├── websocket/
        └── webhook/

  fairbase-ui/
    ├── workflow_designer/
    ├── model_playground/
    ├── analytics_dashboard/
    └── admin_console/

  fairbase-integrations/
    ├── google_cloud/
    ├── aws_services/
    ├── azure_ai/
    └── custom_apis/
# core/ai_orchestrator.py
from typing import Dict, Any, List, Optional
from enum import Enum
import asyncio
from pydantic import BaseModel
import logging

class AIModelType(Enum):
    TEXT_GENERATION = "text_generation"
    CODE_GENERATION = "code_generation"
    IMAGE_GENERATION = "image_generation"
    TEXT_EMBEDDING = "text_embedding"
    SPEECH_TO_TEXT = "speech_to_text"
    TEXT_TO_SPEECH = "text_to_speech"

class ModelRequest(BaseModel):
    model_type: AIModelType
    provider: str
    model_name: str
    input_data: Dict[str, Any]
    parameters: Dict[str, Any]
    context: Optional[Dict[str, Any]] = None

class ModelResponse(BaseModel):
    success: bool
    output: Any
    metadata: Dict[str, Any]
    error: Optional[str] = None

class AIOrchestrator:
    def __init__(self):
        self.model_registry = {}
        self.providers = {}
        self.logger = logging.getLogger(__name__)
    
    async def register_model(self, model_config: Dict[str, Any]):
        """Register AI model with configuration"""
        model_id = model_config["id"]
        self.model_registry[model_id] = model_config
        self.logger.info(f"Registered model: {model_id}")
    
    async def execute_workflow_step(self, step_config: Dict[str, Any], input_data: Any) -> ModelResponse:
        """Execute a single AI workflow step"""
        try:
            model_request = ModelRequest(
                model_type=step_config["model_type"],
                provider=step_config["provider"],
                model_name=step_config["model_name"],
                input_data=input_data,
                parameters=step_config.get("parameters", {}),
                context=step_config.get("context", {})
            )
            
            return await self._call_model(model_request)
            
        except Exception as e:
            self.logger.error(f"Workflow step execution failed: {str(e)}")
            return ModelResponse(
                success=False,
                output=None,
                metadata={},
                error=str(e)
            )
    
    async def _call_model(self, request: ModelRequest) -> ModelResponse:
        """Make actual API call to AI model"""
        # Implementation for different providers
        if request.provider == "openai":
            return await self._call_openai(request)
        elif request.provider == "anthropic":
            return await self._call_anthropic(request)
        elif request.provider == "huggingface":
            return await self._call_huggingface(request)
        elif request.provider == "custom":
            return await self._call_custom_model(request)
        else:
            raise ValueError(f"Unsupported provider: {request.provider}")
    
    async def _call_openai(self, request: ModelRequest) -> ModelResponse:
        """Call OpenAI models"""
        # Implementation for OpenAI API calls
        pass
    
    async def _call_anthropic(self, request: ModelRequest) -> ModelResponse:
        """Call Anthropic Claude models"""
        # Implementation for Anthropic API calls
        pass
    
    async def _call_huggingface(self, request: ModelRequest) -> ModelResponse:
        """Call Hugging Face models"""
        # Implementation for Hugging Face API calls
        pass
    
    async def _call_custom_model(self, request: ModelRequest) -> ModelResponse:
        """Call custom deployed models"""
        # Implementation for custom model endpoints
        pass
# core/workflow_engine.py
from typing import Dict, List, Any, Optional
from pydantic import BaseModel
import networkx as nx
import asyncio
from datetime import datetime
import uuid

class WorkflowNode(BaseModel):
    id: str
    type: str
    config: Dict[str, Any]
    next_nodes: List[str]
    conditions: Optional[Dict[str, Any]] = None

class WorkflowExecution(BaseModel):
    execution_id: str
    workflow_id: str
    status: str
    start_time: datetime
    end_time: Optional[datetime] = None
    current_node: Optional[str] = None
    results: Dict[str, Any] = {}
    errors: List[str] = []

class WorkflowEngine:
    def __init__(self, ai_orchestrator):
        self.ai_orchestrator = ai_orchestrator
        self.workflows = {}
        self.executions = {}
        self.graph = nx.DiGraph()
    
    async def create_workflow(self, name: str, nodes: List[WorkflowNode]) -> str:
        """Create a new workflow"""
        workflow_id = str(uuid.uuid4())
        
        # Build workflow graph
        for node in nodes:
            self.graph.add_node(node.id, **node.dict())
            for next_node in node.next_nodes:
                self.graph.add_edge(node.id, next_node)
        
        self.workflows[workflow_id] = {
            "id": workflow_id,
            "name": name,
            "nodes": {node.id: node for node in nodes},
            "graph": self.graph.copy(),
            "created_at": datetime.now()
        }
        
        return workflow_id
    
    async def execute_workflow(self, workflow_id: str, initial_input: Dict[str, Any]) -> str:
        """Execute a workflow"""
        execution_id = str(uuid.uuid4())
        execution = WorkflowExecution(
            execution_id=execution_id,
            workflow_id=workflow_id,
            status="running",
            start_time=datetime.now(),
            results={"initial_input": initial_input}
        )
        
        self.executions[execution_id] = execution
        
        # Start execution in background
        asyncio.create_task(self._run_workflow(execution, initial_input))
        
        return execution_id
    
    async def _run_workflow(self, execution: WorkflowExecution, input_data: Any):
        """Execute workflow steps"""
        workflow = self.workflows[execution.workflow_id]
        graph = workflow["graph"]
        
        # Find start nodes (nodes with no incoming edges)
        start_nodes = [node for node in graph.nodes() if graph.in_degree(node) == 0]
        
        for start_node in start_nodes:
            await self._execute_node(execution, start_node, input_data)
    
    async def _execute_node(self, execution: WorkflowExecution, node_id: str, input_data: Any):
        """Execute a single workflow node"""
        workflow = self.workflows[execution.workflow_id]
        node = workflow["nodes"][node_id]
        
        execution.current_node = node_id
        
        try:
            if node.type == "ai_model":
                result = await self.ai_orchestrator.execute_workflow_step(
                    node.config, input_data
                )
                
                if result.success:
                    execution.results[node_id] = result.output
                    
                    # Execute next nodes
                    for next_node in node.next_nodes:
                        await self._execute_node(execution, next_node, result.output)
                else:
                    execution.errors.append(f"Node {node_id} failed: {result.error}")
                    
            elif node.type == "condition":
                # Evaluate condition and choose next node
                condition_result = self._evaluate_condition(node.conditions, input_data)
                next_node = condition_result.get("next_node")
                if next_node:
                    await self._execute_node(execution, next_node, input_data)
                    
            elif node.type == "data_transform":
                # Transform data
                transformed_data = self._transform_data(node.config, input_data)
                for next_node in node.next_nodes:
                    await self._execute_node(execution, next_node, transformed_data)
                    
            elif node.type == "human_approval":
                # Wait for human approval
                await self._wait_for_approval(execution, node_id, input_data)
                
        except Exception as e:
            execution.errors.append(f"Node {node_id} execution error: {str(e)}")
            execution.status = "failed"
    
    def _evaluate_condition(self, conditions: Dict[str, Any], data: Any) -> Dict[str, Any]:
        """Evaluate conditional logic"""
        # Implementation for condition evaluation
        pass
    
    def _transform_data(self, config: Dict[str, Any], data: Any) -> Any:
        """Transform data according to configuration"""
        # Implementation for data transformation
        pass
    
    async def _wait_for_approval(self, execution: WorkflowExecution, node_id: str, data: Any):
        """Wait for human approval in the workflow"""
        # Implementation for human-in-the-loop approval
        pass
// frontend/components/WorkflowDesigner.tsx
import React, { useState, useCallback } from 'react';
import ReactFlow, {
  Node,
  Edge,
  addEdge,
  Connection,
  useNodesState,
  useEdgesState,
  Controls,
  Background,
  MiniMap,
} from 'reactflow';
import 'reactflow/dist/style.css';

import ModelNode from './nodes/ModelNode';
import ConditionNode from './nodes/ConditionNode';
import DataTransformNode from './nodes/DataTransformNode';
import HumanApprovalNode from './nodes/HumanApprovalNode';

const nodeTypes = {
  modelNode: ModelNode,
  conditionNode: ConditionNode,
  dataTransformNode: DataTransformNode,
  humanApprovalNode: HumanApprovalNode,
};

interface WorkflowDesignerProps {
  workflow?: any;
  onWorkflowChange: (workflow: any) => void;
}

const WorkflowDesigner: React.FC<WorkflowDesignerProps> = ({
  workflow,
  onWorkflowChange,
}) => {
  const [nodes, setNodes, onNodesChange] = useNodesState([]);
  const [edges, setEdges, onEdgesChange] = useEdgesState([]);
  const [selectedNode, setSelectedNode] = useState<Node | null>(null);

  const onConnect = useCallback(
    (params: Connection) => setEdges((eds) => addEdge(params, eds)),
    [setEdges]
  );

  const addNode = useCallback((type: string, position: { x: number; y: number }) => {
    const newNode: Node = {
      id: `${type}-${Date.now()}`,
      type,
      position,
      data: { 
        label: `${type} Node`,
        config: {},
        onConfigChange: (config: any) => handleNodeConfigChange(newNode.id, config)
      },
    };

    setNodes((nds) => nds.concat(newNode));
  }, [setNodes]);

  const handleNodeConfigChange = (nodeId: string, config: any) => {
    setNodes((nds) =>
      nds.map((node) =>
        node.id === nodeId
          ? { ...node, data: { ...node.data, config } }
          : node
      )
    );
  };

  const exportWorkflow = useCallback(() => {
    const workflowData = {
      nodes: nodes.map(node => ({
        id: node.id,
        type: node.type,
        config: node.data.config,
        position: node.position,
      })),
      edges: edges.map(edge => ({
        source: edge.source,
        target: edge.target,
      })),
    };

    onWorkflowChange(workflowData);
  }, [nodes, edges, onWorkflowChange]);

  return (
    <div className="workflow-designer" style={{ height: '100vh', width: '100%' }}>
      <div className="designer-toolbar">
        <div className="node-palette">
          <button onClick={() => addNode('modelNode', { x: 100, y: 100 })}>
            AI Model
          </button>
          <button onClick={() => addNode('conditionNode', { x: 100, y: 100 })}>
            Condition
          </button>
          <button onClick={() => addNode('dataTransformNode', { x: 100, y: 100 })}>
            Data Transform
          </button>
          <button onClick={() => addNode('humanApprovalNode', { x: 100, y: 100 })}>
            Human Approval
          </button>
        </div>
        
        <button onClick={exportWorkflow} className="export-button">
          Export Workflow
        </button>
      </div>

      <ReactFlow
        nodes={nodes}
        edges={edges}
        onNodesChange={onNodesChange}
        onEdgesChange={onEdgesChange}
        onConnect={onConnect}
        nodeTypes={nodeTypes}
        onNodeClick={(_, node) => setSelectedNode(node)}
        fitView
      >
        <Background />
        <Controls />
        <MiniMap />
      </ReactFlow>

      {selectedNode && (
        <div className="node-properties-panel">
          <h3>Node Properties</h3>
          {/* Node-specific configuration forms would go here */}
        </div>
      )}
    </div>
  );
};

export default WorkflowDesigner;
# api/main.py
from fastapi import FastAPI, HTTPException, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import Dict, Any, List
import uuid
from datetime import datetime

from core.ai_orchestrator import AIOrchestrator, ModelRequest
from core.workflow_engine import WorkflowEngine, WorkflowNode

app = FastAPI(title="Workflow-Fairbase API", version="1.0.0")

# CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Initialize core components
ai_orchestrator = AIOrchestrator()
workflow_engine = WorkflowEngine(ai_orchestrator)

# API Models
class CreateWorkflowRequest(BaseModel):
    name: str
    description: str
    nodes: List[Dict[str, Any]]

class ExecuteWorkflowRequest(BaseModel):
    workflow_id: str
    input_data: Dict[str, Any]
    parameters: Dict[str, Any] = {}

class ModelRegistrationRequest(BaseModel):
    model_config: Dict[str, Any]

# API Routes
@app.get("/")
async def root():
    return {"message": "Workflow-Fairbase Generative AI Platform"}

@app.post("/workflows")
async def create_workflow(request: CreateWorkflowRequest):
    """Create a new workflow"""
    try:
        workflow_nodes = [
            WorkflowNode(**node_data) for node_data in request.nodes
        ]
        
        workflow_id = await workflow_engine.create_workflow(
            request.name, workflow_nodes
        )
        
        return {
            "workflow_id": workflow_id,
            "name": request.name,
            "status": "created"
        }
    except Exception as e:
        raise HTTPException(status_code=400, detail=str(e))

@app.post("/workflows/{workflow_id}/execute")
async def execute_workflow(
    workflow_id: str,
    request: ExecuteWorkflowRequest,
    background_tasks: BackgroundTasks
):
    """Execute a workflow"""
    try:
        execution_id = await workflow_engine.execute_workflow(
            workflow_id, request.input_data
        )
        
        return {
            "execution_id": execution_id,
            "workflow_id": workflow_id,
            "status": "started"
        }
    except Exception as e:
        raise HTTPException(status_code=400, detail=str(e))

@app.get("/executions/{execution_id}")
async def get_execution_status(execution_id: str):
    """Get execution status and results"""
    execution = workflow_engine.executions.get(execution_id)
    if not execution:
        raise HTTPException(status_code=404, detail="Execution not found")
    
    return execution.dict()

@app.post("/models/register")
async def register_model(request: ModelRegistrationRequest):
    """Register a new AI model"""
    try:
        await ai_orchestrator.register_model(request.model_config)
        return {"status": "model_registered"}
    except Exception as e:
        raise HTTPException(status_code=400, detail=str(e))

@app.post("/models/execute")
async def execute_model(request: ModelRequest):
    """Execute a single model"""
    try:
        response = await ai_orchestrator._call_model(request)
        return response.dict()
    except Exception as e:
        raise HTTPException(status_code=400, detail=str(e))

# Health check
@app.get("/health")
async def health_check():
    return {
        "status": "healthy",
        "timestamp": datetime.now(),
        "version": "1.0.0"
    }

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)
# docker-compose.yml
version: '3.8'

services:
  api:
    build: .
    ports:
      - "8000:8000"
    environment:
      - DATABASE_URL=postgresql://user:password@db:5432/fairbase
      - REDIS_URL=redis://redis:6379
      - RABBITMQ_URL=amqp://guest:guest@rabbitmq:5672
    depends_on:
      - db
      - redis
      - rabbitmq

  db:
    image: postgres:15
    environment:
      - POSTGRES_DB=fairbase
      - POSTGRES_USER=user
      - POSTGRES_PASSWORD=password
    volumes:
      - postgres_data:/var/lib/postgresql/data

  redis:
    image: redis:7-alpine
    ports:
      - "6379:6379"

  rabbitmq:
    image: rabbitmq:3-management
    ports:
      - "5672:5672"
      - "15672:15672"

  frontend:
    build: ./fairbase-ui
    ports:
      - "3000:3000"
    depends_on:
      - api

volumes:
  postgres_data:
# deployment/kubernetes/deployment.yml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: workflow-fairbase-api
spec:
  replicas: 3
  selector:
    matchLabels:
      app: workflow-fairbase-api
  template:
    metadata:
      labels:
        app: workflow-fairbase-api
    spec:
      containers:
      - name: api
        image: workflow-fairbase:latest
        ports:
        - containerPort: 8000
        env:
        - name: DATABASE_URL
          valueFrom:
            secretKeyRef:
              name: db-secret
              key: url
        resources:
          requests:
            memory: "512Mi"
            cpu: "250m"
          limits:
            memory: "1Gi"
            cpu: "500m"
---
apiVersion: v1
kind: Service
metadata:
  name: workflow-fairbase-service
spec:
  selector:
    app: workflow-fairbase-api
  ports:
  - protocol: TCP
    port: 80
    targetPort: 8000
  type: LoadBalancer

This Workflow-Fairbase platform provides:

🚀 Key Features

  1. Visual Workflow Builder - Drag-and-drop interface for creating AI workflows
  2. Multi-Model Orchestration - Support for various AI providers and models
  3. Conditional Logic - Smart routing and decision making in workflows
  4. Human-in-the-Loop - Approval steps and human intervention points
  5. Real-time Monitoring - Live execution tracking and debugging
  6. Scalable Architecture - Microservices-based, cloud-native design

💡 Use Cases

  • Content Generation Pipelines - Automated blog posts, social media content
  • Code Generation Workflows - Automated code review, testing, deployment
  • Data Processing Pipelines - AI-powered data transformation and analysis
  • Customer Support Automation - Intelligent ticket routing and response
  • Document Processing - Automated document analysis and summarization

The platform is designed to be extensible and can integrate with various AI models and external services!

@Sazwan96's activity is private