Skip to content
This repository was archived by the owner on Aug 28, 2025. It is now read-only.
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 5 additions & 3 deletions templates/titanic/.meta.yml
Original file line number Diff line number Diff line change
@@ -1,14 +1,16 @@
title: Solving Titanic dataset with Lightning Flash
author: PL team
created: 2021-10-15
updated: 2021-12-10
updated: 2022-04-10
license: CC
build: 0
description: |
This is a template to show how to contribute a tutorial.
requirements:
- https://github.com/PyTorchLightning/lightning-flash/archive/refs/tags/0.5.2.zip#egg=lightning-flash[tabular]
- matplotlib
- lightning-flash[tabular]>=0.7
- torchmetrics<0.8 # collision with `pytorch-tabular` which require PL 1.3.6
- pandas>=1.0
- matplotlib>=3.0
- seaborn
accelerator:
- CPU
Expand Down
19 changes: 14 additions & 5 deletions templates/titanic/tutorial.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@
target_fields="Survived",
train_file=csv_train,
val_split=0.1,
batch_size=8,
batch_size=32,
)

# %% [markdown]
Expand All @@ -49,7 +49,7 @@
model = TabularClassifier.from_data(
datamodule,
learning_rate=0.1,
optimizer="Adam",
optimizer="AdamW",
n_a=8,
gamma=0.3,
)
Expand Down Expand Up @@ -81,20 +81,29 @@
sns.relplot(data=metrics, kind="line")
plt.gca().set_ylim([0, 1.25])
plt.gcf().set_size_inches(10, 5)
plt.grid()

# %% [markdown]
# ## 4. Generate predictions from a CSV

# %%
df_test = pd.read_csv(csv_test)

predictions = model.predict(csv_test)
print(predictions[0])
dm = TabularClassificationData.from_data_frame(
predict_data_frame=df_test,
parameters=datamodule.parameters,
batch_size=datamodule.batch_size,
)
preds = trainer.predict(model, datamodule=dm, output="classes")
print(preds[0][:10])

# %%
import itertools # noqa: E402]

import numpy as np # noqa: E402]

assert len(df_test) == len(predictions)
predictions = list(itertools.chain(*preds))
# assert len(df_test) == len(predictions)

df_test["Survived"] = np.argmax(predictions, axis=-1)
df_test.set_index("PassengerId", inplace=True)
Expand Down