Skip to content

L9Sneaky/Disaster-Response-Project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Disaster Response Pipeline Project

Intro Pic

Table of Contents

  1. Description
  2. Getting Started
    1. Dependencies
    2. Installing
    3. Executing Program
  3. Authors
  4. License
  5. Acknowledgement

Description

This Project is part of Data Science Nanodegree Program by Udacity. The initial dataset contains pre-labelled tweet and messages from real-life disaster. The aim of the project is to build a Natural Language Processing tool that categorize messages.

The Project is divided in the following Sections:

  1. Data Processing, ETL Pipeline to extract data from source, clean data and save them in a proper databse structure
  2. Machine Learning Pipeline to train a model able to classify text message in categories
  3. Web App to show model results in real time.

Getting Started

Dependencies

  • Python 3+
  • Machine Learning Libraries: NumPy, SciPy, Pandas, Sciki-Learn
  • Natural Language Process Libraries: NLTK
  • SQLlite Database Libraqries: SQLalchemy
  • Web App and Data Visualization: Flask, Plotly

Installing

Clone this GIT repository:

git clone https://github.com/L9Sneaky/Disaster-Response-Project.git

Executing Program:

  1. Run the following commands in the project's root directory to set up your database and model.

    • To run ETL pipeline that cleans data and stores in database python data/process_data.py data/disaster_messages.csv data/disaster_categories.csv data/DisasterResponse.db
    • To run ML pipeline that trains classifier and saves python models/train_classifier.py data/DisasterResponse.db models/classifier.pkl
  2. Run the following command in the app's directory to run your web app. python run.py

  3. Go to http://0.0.0.0:3001/

Authors

License

License: MIT

Acknowledgements

  • Udacity for providing such a complete Data Science Nanodegree Program

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published