Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 12 additions & 6 deletions src/linalg.jl
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
# This file is a part of Julia. License is MIT: https://julialang.org/license

using LinearAlgebra: AbstractTriangular, StridedMaybeAdjOrTransMat, UpperOrLowerTriangular,
RealHermSymComplexHerm, checksquare, sym_uplo, wrap
RealHermSymComplexHerm, HermOrSym, checksquare, sym_uplo, wrap
using Random: rand!

const tilebufsize = 10800 # Approximately 32k/3
Expand Down Expand Up @@ -1210,6 +1210,9 @@ function nzrangelo(A, i, excl=false)
@inbounds r2 < r1 || rv[r1] >= i + excl ? r : (searchsortedfirst(view(rv, r1:r2), i + excl) + r1-1):r2
end

dot(x::AbstractVector, A::HermOrSym{<:Any,<:AbstractSparseMatrixCSC}, y::AbstractVector) =
_dot(x, parent(A), y, A.uplo == 'U' ? nzrangeup : nzrangelo, A isa Symmetric ? identity : real, A isa Symmetric ? transpose : adjoint)
# disambiguation
dot(x::AbstractVector, A::RealHermSymComplexHerm{<:Real,<:AbstractSparseMatrixCSC}, y::AbstractVector) =
_dot(x, parent(A), y, A.uplo == 'U' ? nzrangeup : nzrangelo, A isa Symmetric ? identity : real, A isa Symmetric ? transpose : adjoint)
function _dot(x::AbstractVector, A::AbstractSparseMatrixCSC, y::AbstractVector, rangefun::Function, diagop::Function, odiagop::Function)
Expand Down Expand Up @@ -1242,9 +1245,12 @@ function _dot(x::AbstractVector, A::AbstractSparseMatrixCSC, y::AbstractVector,
end
return r
end
dot(x::SparseVector, A::RealHermSymComplexHerm{<:Real,<:AbstractSparseMatrixCSC}, y::SparseVector) =
_dot(x, parent(A), y, A.uplo == 'U' ? nzrangeup : nzrangelo, A isa Symmetric ? identity : real)
function _dot(x::SparseVector, A::AbstractSparseMatrixCSC, y::SparseVector, rangefun::Function, diagop::Function)
dot(x::AbstractSparseVector, A::HermOrSym{<:Any,<:AbstractSparseMatrixCSC}, y::AbstractSparseVector) =
_dot(x, parent(A), y, A.uplo == 'U' ? nzrangeup : nzrangelo, A isa Symmetric ? identity : real, A isa Symmetric ? transpose : adjoint)
# disambiguation
dot(x::AbstractSparseVector, A::RealHermSymComplexHerm{<:Real,<:AbstractSparseMatrixCSC}, y::AbstractSparseVector) =
_dot(x, parent(A), y, A.uplo == 'U' ? nzrangeup : nzrangelo, A isa Symmetric ? identity : real, A isa Symmetric ? transpose : adjoint)
function _dot(x::AbstractSparseVector, A::AbstractSparseMatrixCSC, y::AbstractSparseVector, rangefun::Function, diagop::Function, odiagop::Function)
m, n = size(A)
length(x) == m && n == length(y) ||
throw(DimensionMismatch("x has length $(length(x)), A has size ($m, $n), y has length $(length(y))"))
Expand Down Expand Up @@ -1275,7 +1281,7 @@ function _dot(x::SparseVector, A::AbstractSparseMatrixCSC, y::SparseVector, rang
A_ptr_lo = first(rangefun(A, xi, true))
A_ptr_hi = last(rangefun(A, xi, true))
if A_ptr_lo <= A_ptr_hi
r += dot(xv, _spdot((a, y) -> a'y, A_ptr_lo, A_ptr_hi, Arowval, Anzval,
r += dot(xv, _spdot((a, y) -> odiagop(a)*y, A_ptr_lo, A_ptr_hi, Arowval, Anzval,
1, length(ynzind), ynzind, ynzval))
end
end
Expand Down Expand Up @@ -2241,7 +2247,7 @@ end
# return F
# end
# end
function factorize(A::LinearAlgebra.RealHermSymComplexHerm{Float64,<:AbstractSparseMatrixCSC})
function factorize(A::RealHermSymComplexHerm{Float64,<:AbstractSparseMatrixCSC})
F = cholesky(A; check = false)
if LinearAlgebra.issuccess(F)
return F
Expand Down
5 changes: 3 additions & 2 deletions test/linalg.jl
Original file line number Diff line number Diff line change
Expand Up @@ -954,12 +954,13 @@ end
@test dot(x, A, y) ≈ dot(x, Av, y)
end

for (T, trans) in ((Float64, Symmetric), (ComplexF64, Symmetric), (ComplexF64, Hermitian)), uplo in (:U, :L)
for T in (Float64, ComplexF64, Quaternion{Float64}), trans in (Symmetric, Hermitian), uplo in (:U, :L)
B = sprandn(T, 10, 10, 0.2)
x = sprandn(T, 10, 0.4)
xd = Vector(x)
S = trans(B'B, uplo)
Sd = trans(Matrix(B'B), uplo)
@test dot(x, S, x) ≈ dot(x, Sd, x) ≈ dot(Vector(x), S, Vector(x)) ≈ dot(Vector(x), Sd, Vector(x))
@test dot(x, S, x) ≈ dot(x, Sd, x) ≈ dot(xd, S, xd) ≈ dot(xd, Sd, xd)
end
end

Expand Down
Loading