Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@ version = "0.14.3"
ArrayLayouts = "4c555306-a7a7-4459-81d9-ec55ddd5c99a"
FillArrays = "1a297f60-69ca-5386-bcde-b61e274b549b"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
MatrixFactorizations = "a3b82374-2e81-5b9e-98ce-41277c0e4c87"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"

Expand Down
187 changes: 187 additions & 0 deletions src/generic/diagblockview.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,187 @@
using BandedMatrices, BlockBandedMatrices, BlockArrays

import LinearAlgebra.BLAS: @blasfunc, BlasInt, require_one_based_indexing, chkstride1
import LinearAlgebra.LAPACK: chklapackerror, liblapack

for (tpqrt,elty) in ((:dtpqrt2_,:Float64),)
@eval function tpqrt2!(l_in::Integer, A::AbstractMatrix{$elty}, B::AbstractMatrix{$elty}, T::AbstractMatrix{$elty})
require_one_based_indexing(A, B, T)
chkstride1(A,B,T)
m = BlasInt(size(B, 1))
n = BlasInt(size(B, 2))
l = BlasInt(l_in)
if !(min(m,n) ≥ l ≥ 0)
throw(DimensionMismatch("too many $l"))
end
if size(A) ≠ (n,n)
throw(DimensionMismatch("A has size $(size(A)), but needs size ($n,$n)"))
end
if size(T) ≠ (n,n)
throw(DimensionMismatch("T has size $(size(T)), but needs size ($n,$n)"))
end
lda = BlasInt(max(1,stride(A, 2)))
ldb = BlasInt(max(1,stride(B, 2)))
ldt = BlasInt(max(1,stride(T,2)))

info = Ref{BlasInt}()
ccall((@blasfunc($tpqrt), liblapack), Cvoid,
(Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt},
Ptr{$elty}, Ref{BlasInt},
Ptr{$elty}, Ref{BlasInt},
Ptr{$elty}, Ref{BlasInt},
Ptr{BlasInt}),
m, n, l, A, lda, B, ldb, T, ldt, info)
chklapackerror(info[])
A, B, T
end
end

for (tpqrt,elty) in ((:dtpqrt_,:Float64),)
@eval function tpqrt!(l_in::Integer, nb_in::Integer, A::AbstractMatrix{$elty}, B::AbstractMatrix{$elty}, T::AbstractMatrix{$elty}, work::AbstractArray{$elty})
require_one_based_indexing(A, B, T)
chkstride1(A,B,T)
m = BlasInt(size(B, 1))
n = BlasInt(size(B, 2))
l = BlasInt(l_in)
nb = BlasInt(nb_in)
if !(min(m,n) ≥ l ≥ 0)
throw(DimensionMismatch("too many $l"))
end
if size(A) ≠ (n,n)
throw(DimensionMismatch("A has size $(size(A)), but needs size ($n,$n)"))
end
if size(T,2) ≠ n
throw(DimensionMismatch("T has $(size(T,2)) columns, but needs $n"))
end
if !(n ≥ nb ≥ 1)
throw(DimensionMismatch("nb is invalid"))
end
if length(work) ≠ nb*n
throw(DimensionMismatch("work has length $(length(work)), but needs length $(nb*n)"))
end
lda = BlasInt(max(1,stride(A, 2)))
ldb = BlasInt(max(1,stride(B, 2)))
ldt = BlasInt(max(1,stride(T,2)))

info = Ref{BlasInt}()
ccall((@blasfunc($tpqrt), liblapack), Cvoid,
(Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt},
Ptr{$elty}, Ref{BlasInt},
Ptr{$elty}, Ref{BlasInt},
Ptr{$elty}, Ref{BlasInt},
Ptr{$elty}, Ptr{BlasInt}),
m, n, l, nb, A, lda, B, ldb, T, ldt, work, info)
chklapackerror(info[])
A, B, T
end
end

tpqrt!(l::Integer, A::AbstractMatrix, B::AbstractMatrix, τ::AbstractVector, work::AbstractVector) =
tpqrt!(l, 1, A, B, permutedims(τ), work)

n = 2000
A = randn(n,n)
B = randn(n,n)
τ = similar(A,n)
work = similar(τ)
@time tpqrt!(n, copy(A), copy(B), τ, work);

A = randn(n,n)
B = randn(n,n)
nb = 32
T = similar(A,nb,n)
work = similar(τ,nb*n)
@time tpqrt!(n, nb, copy(A), copy(B), T, work);


T = similar(A,n,n)
@time tpqrt2!(n, A, B, T);


A = randn(n,n)
B = randn(n,n)
T = similar(A,1,n)
work = similar(T)

A2,B2,T2 = tpqrt!(n,1,copy(A), copy(B), copy(T), work)

A2,B2,T2 = tpqrt2!(n,copy(A), copy(B), copy(T))

@time qr(A);

@time qr([Matrix(UpperTriangular(A)); Matrix(UpperTriangular(B))]).T;
@time LinearAlgebra.qrfactUnblocked!([UpperTriangular(A); UpperTriangular(B)]).τ;

A2
B2

T2



F = LinearAlgebra.qrfactUnblocked!([A; B])
F.factors
F.τ

FA = LinearAlgebra.qrfactUnblocked!(copy(A))

FA.Q'*A

B

FA.factors

# DTPQRT2
import BandedMatrices: bandeddata
import Base: to_indices, iterate, length, getindex, view, unsafe_view, SubArray, @_inline_meta, viewindexing, ensure_indexable, index_dimsum, reindex, strides, unsafe_convert
import BlockArrays: BlockSlice


struct DiagBlock
block::Int
end

struct DiagBlockSlice
block::Int
inds::NTuple{2,UnitRange{Int}}
end

iterate(d::DiagBlockSlice, st...) = iterate(d.inds, st...)
length(d::DiagBlockSlice) = length(d.inds)

@inline function to_indices(A, inds, I::Tuple{DiagBlock})
l,u = bandwidths(A)
l += 1
K = I[1].block
DiagBlockSlice(K,((K-1)*l+1:K*l,(K-1)*l+1:K*l))
end
viewindexing(I::DiagBlockSlice) = IndexCartesian()
ensure_indexable(I::DiagBlockSlice) = I
view(A::AbstractMatrix, I::DiagBlock) = SubArray(A, to_indices(A, (I,)))
reindex(B::DiagBlockSlice, I::Tuple) = reindex(B.inds, I)
function SubArray(parent::AbstractMatrix, indices::DiagBlockSlice)
@_inline_meta
SubArray(IndexStyle(viewindexing(indices), IndexStyle(parent)), parent, ensure_indexable(indices), index_dimsum(indices...))
end

function strides(V::SubArray{<:Any,2,<:Any,DiagBlockSlice})
A = parent(V)
data = bandeddata(A)
(stride(data,1),stride(data,2)-1)
end

function unsafe_convert(::Type{Ptr{T}}, V::SubArray{<:Any,2,<:Any,DiagBlockSlice}) where T
A = parent(V)
data = bandeddata(A)
s,t = strides(data)
K = parentindices(V)
_,jr = K
p = unsafe_convert(Ptr{T}, data)
K.block == 1 && return p+s*bandwidth(A,2)
p + t*(first(kr)-1)
end


A = brand(10,10,3,3)
V = view(A,DiagBlock(1))
BLAS.gemv('N',1.0,V,randn(4))