forked from andypetrella/pipeline
-
Notifications
You must be signed in to change notification settings - Fork 0
Large Cluster Fun
Chris Fregly edited this page Jun 30, 2016
·
10 revisions
- Everyone runs
stop-all-services.sh
- Master runs
start-spark-master-only.sh
- Workers run
start-spark-worker-only.sh
- Master navigates to
http://<master-ip>:6060
to show all the workers - Master
spark-submit
's a large job - Master navigates to
http://<master-ip>:4040
to show the details of the submitted large job
-
--num-executors
can exceed the total available executors - the job just won't use them all -
--executor-memory
cannot exceed a single executor's memory or the job will hang - Use
--total-executor-cores
, not--executor-cores
-
--total-executor-cores
can exceed the total available cores - the job just won't use them all - Set the number of partitions (last parameter) to 5x the number of
--total-executor-cores
spark-submit --repositories $SPARK_REPOSITORIES --jars $SPARK_SUBMIT_JARS --packages $SPARK_SUBMIT_PACKAGES --class org.apache.spark.examples.SparkPi --master spark://<master-ip>:7077 --num-executors 500 --executor-memory 48g --total-executor-cores 1000 $SPARK_HOME/lib/spark-examples*.jar 5000
spark-submit --repositories $SPARK_REPOSITORIES --jars $SPARK_SUBMIT_JARS --packages $SPARK_SUBMIT_PACKAGES --class com.advancedspark.ml.graph.SimilarityPathway --master spark://<master-ip>:7077 --num-executors 500 --executor-memory 48g --total-executor-cores 1000 /root/pipeline/myapps/spark/ml/target/scala-2.10/ml_2.10-1.0.jar
spark-submit --repositories $SPARK_REPOSITORIES --jars $SPARK_SUBMIT_JARS --packages $SPARK_SUBMIT_PACKAGES --class com.advancedspark.ml.recommendation.ALS --master spark://<master-ip>:7077 --num-executors 500 --executor-memory 48g --total-executor-cores 1000 /root/pipeline/myapps/spark/ml/target/scala-2.10/ml_2.10-1.0.jar
Environment Setup
Demos
6. Serve Batch Recommendations
8. Streaming Probabilistic Algos
9. TensorFlow Image Classifier
Active Research (Unstable)
15. Kubernetes Docker Spark ML
Managing Environment
15. Stop and Start Environment