Skip to content
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 7 additions & 1 deletion minecraft_copilot_ml/__main__.py
Original file line number Diff line number Diff line change
Expand Up @@ -118,7 +118,11 @@ def collate_fn(batch: List[Tuple[np.ndarray, np.ndarray, np.ndarray]]) -> Tuple[
val_schematics_dataset, batch_size=batch_size, collate_fn=collate_fn
)

model = UNet3d(unique_blocks_dict, unique_counts_coefficients=unique_counts_coefficients)
model = UNet3d(
unique_blocks_dict,
unique_counts_coefficients=unique_counts_coefficients,
train_len_dataloader=len(train_schematics_dataloader),
)
csv_logger = CSVLogger(save_dir=path_to_output)
model_checkpoint = ModelCheckpoint(path_to_output, monitor="val_loss", save_top_k=1, save_last=True, mode="min")
trainer = pl.Trainer(logger=csv_logger, callbacks=model_checkpoint, max_epochs=epochs, log_every_n_steps=1)
Expand All @@ -129,12 +133,14 @@ def collate_fn(batch: List[Tuple[np.ndarray, np.ndarray, np.ndarray]]) -> Tuple[
best_model = UNet3d.load_from_checkpoint(
model_checkpoint.best_model_path,
unique_blocks_dict=unique_blocks_dict,
train_len_dataloader=len(train_schematics_dataloader),
unique_counts_coefficients=unique_counts_coefficients,
)
torch.save(best_model, os.path.join(path_to_output, "best_model.pth"))
last_model = UNet3d.load_from_checkpoint(
model_checkpoint.last_model_path,
unique_blocks_dict=unique_blocks_dict,
train_len_dataloader=len(train_schematics_dataloader),
unique_counts_coefficients=unique_counts_coefficients,
)
torch.save(last_model, os.path.join(path_to_output, "last_model.pth"))
Expand Down
48 changes: 48 additions & 0 deletions minecraft_copilot_ml/metrics_graph.ipynb

Large diffs are not rendered by default.

10 changes: 7 additions & 3 deletions minecraft_copilot_ml/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
from typing import Any, Dict, Optional, Tuple

import numpy as np
import pytorch_lightning as pl
import lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
Expand All @@ -23,11 +23,13 @@ def forward(self, x: torch.Tensor) -> torch.Tensor:
class UNet3d(pl.LightningModule):
def __init__(
self,
train_len_dataloader: int,
unique_blocks_dict: Dict[str, int],
unique_counts_coefficients: Optional[np.ndarray] = None,
latent_dim: int = 64,
unique_counts_coefficients: Optional[np.ndarray] = None,
):
super(UNet3d, self).__init__()
self.train_len_dataloader = train_len_dataloader
self.unique_blocks_dict = unique_blocks_dict
self.reverse_unique_blocks_dict = {v: k for k, v in unique_blocks_dict.items()}
self.latent_dim = latent_dim
Expand Down Expand Up @@ -127,7 +129,9 @@ def validation_step(self, batch: Tuple[np.ndarray, np.ndarray, np.ndarray], batc
return self.step(batch, batch_idx, "val")

def configure_optimizers(self) -> Any:
return torch.optim.Adam(self.parameters(), lr=1e-3)
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=1e-3, total_steps=self.train_len_dataloader)
return [optimizer], [scheduler]

def on_train_start(self) -> None:
print(self)