Skip to content

Cherryga/FraudDetection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

72 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

💳 Fraud Detection System

A full-stack application designed to detect fraudulent transactions in real-time using machine learning.
This project integrates a Java Spring Boot backend, React frontend, and a Python Flask ML microservice with a MySQL database.


🚀 Features

  • 🔐 Real-time fraud prediction via REST API
  • 🧠 ML microservice using Random Forest Classifier for high accuracy
  • 🗂️ Modular architecture separating frontend, backend, and ML components
  • 📊 Transaction data dashboard for visual analysis (in progress)
  • 💾 Secure MySQL database integration for transaction storage
  • 💬 API communication between Java backend and Python ML model

🛠️ Tech Stack

Category Technologies
Backend Java, Spring Boot, REST APIs
Frontend React.js
Machine Learning Python, Flask, Scikit-learn
Database MySQL
Tools Git, GitHub, Postman, MySQL Workbench

🧠 Machine Learning Model

  • Dataset: Financial transactions with labeled fraud cases
  • Model: Random Forest Classifier trained for fraud detection
  • Handles imbalanced data using techniques like SMOTE or class weighting
  • Served via Flask API to provide real-time predictions

📁 Folder Structure


FraudDetection/
├── backend/          # Spring Boot backend source code
├── frontend/         # React frontend application
├── ml-model/         # Python Flask ML microservice
└── README.md         # This file


⚙️ Getting Started

Prerequisites

  • Java 11+ and Maven/Gradle for backend
  • Node.js and npm for frontend
  • Python 3.x with required packages (flask, scikit-learn, etc.)
  • MySQL server

Installation & Running

  1. Clone the repo
git clone https://github.com/Cherryga/FraudDetection.git
cd FraudDetection
  1. Start ML microservice
cd ml-model
pip install -r requirements.txt
python app.py
  1. Start backend
cd ../backend
# Run with IDE or:
./mvnw spring-boot:run
  1. Start frontend
cd ../frontend
npm install
npm start


📌 Project Status

  • Backend & ML microservice integrated ✅
  • Frontend UI functional with prediction feature ✅
  • Planned: Data visualization dashboard, explainability tools (SHAP/LIME) 🔜

👩‍💻 Authors

GitHub Cherry Garg LinkedIn Cherry Garg Email Cherry Garg GitHub Amishi Sharma LinkedIn Amishi Sharma Email Amishi Sharma


“Code is the silent guardian of secure transactions.” 🛡️

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •