Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 19 additions & 19 deletions src/set3B-Polynomial_Functions.mbx
Original file line number Diff line number Diff line change
Expand Up @@ -222,7 +222,7 @@ Saylor.org, pages 192-193-->
<sidebyside>
<figure xml:id="figure-graph-4-polynomials-1">
<image xml:id="graph-4-polynomials-1">
<latex-image-code><![CDATA[\begin{tikzpicture}
<latex-image-code><![CDATA[\begin{tikzpicture}
\draw[line width=0.55mm,black] (-5,0) -- (5,0);
\draw[line width=0.55mm,black] (0,-5) -- (0,5);
\node at (-5,-.2) {$-10$};
Expand All @@ -237,7 +237,7 @@ Saylor.org, pages 192-193-->
</figure>
<figure xml:id="figure-graph-4-polynomials-2">
<image xml:id="graph-4-polynomials-2">i
<latex-image-code><![CDATA[\begin{tikzpicture}
<latex-image-code><![CDATA[\begin{tikzpicture}
\draw[line width=0.55mm,black] (-5,0) -- (5,0);
\draw[line width=0.55mm,black] (0,-5) -- (0,5);
\node at (-5,-.2) {$-10$};
Expand All @@ -254,7 +254,7 @@ Saylor.org, pages 192-193-->
<sidebyside>
<figure xml:id="figure-graph-4-polynomials-3">
<image xml:id="graph-4-polynomials-3">
<latex-image-code><![CDATA[\begin{tikzpicture}
<latex-image-code><![CDATA[\begin{tikzpicture}
\draw[line width=0.55mm,black] (-5,0) -- (5,0);
\draw[line width=0.55mm,black] (0,-5) -- (0,5);
\node at (-5,-.2) {$-10$};
Expand All @@ -269,7 +269,7 @@ Saylor.org, pages 192-193-->
</figure>
<figure xml:id="figure-graph-4-polynomials-4">
<image xml:id="graph-4-polynomials-4">
<latex-image-code><![CDATA[\begin{tikzpicture}
<latex-image-code><![CDATA[\begin{tikzpicture}
\draw[line width=0.55mm,black] (-5,0) -- (5,0);
\draw[line width=0.55mm,black] (0,-5) -- (0,5);
\node at (-5,-.2) {$-10$};
Expand All @@ -282,14 +282,14 @@ Saylor.org, pages 192-193-->
\end{tikzpicture}]]></latex-image-code>
</image>
</figure>

</sidebyside>
</sbsgroup>
<p>Each of these graphs look quite different from each other, but share some characteristics.
<p>Each of these graphs look quite different from each other, but they do share some characteristics.
<ul>
<li>The graphs are all <q>connected</q> with smooth bends. They do not look like piece-wise functions.</li>
<li>The domain of each consists of all real numbers. (Why?)</li>
<li>The <q>ends</q> of the graph eventually settles into an upward or downward curve. (Note: The graph doesn't really <q>end</q>, it continues indefinitely, but if you go out far enough, eventually it will consistently move in one direction, either up or down.)</li>
<li>The <q>ends</q> of the graph eventually settles into an upward or downward curve. (Note: The graph doesn't really <q>end</q>, but it continues indefinitely. If you go out far enough, eventually it will consistently move in one direction, either up or down.)</li>
<li>The graphs all have one vertical intercept, but the number of horizontal intercepts varies from none to many.</li>
</ul>
</p>
Expand Down Expand Up @@ -330,10 +330,10 @@ Saylor.org, pages 192-193-->
</table>
<figure xml:id="figure-graph-xsq-plus-1"> <!--set3B-Polynomial_Functions_03.png-->
<image xml:id="graph-xsq-plus-1">
<latex-image-code><![CDATA[\begin{tikzpicture}
<latex-image-code><![CDATA[\begin{tikzpicture}
\draw[step=1cm,gray,very thin] (-5.9,-1.9) grid (5.9,5.9);;
\draw[line width=0.55mm,black,<->] (-5.9,0) -- (5.9,0);
\draw[line width=0.55mm,black,<->] (0,-1.9) -- (0,5.9);
\draw[line width=0.55mm,black,<->] (0,-1.9) -- (0,5.9);
\draw[line width=0.55mm,black] (-4 cm,3pt) -- (-4 cm,-3pt);
\draw[line width=0.55mm,black] (4 cm,3pt) -- (4 cm,-3pt);
\draw[line width=0.55mm,black] (3pt,4 cm) -- (-3pt,4 cm);
Expand All @@ -347,7 +347,7 @@ Saylor.org, pages 192-193-->
\fill (-1,2) circle (.1cm);
\fill (0,1) circle (.1cm);
\fill (1,2) circle (.1cm);
\fill (2,5) circle (.1cm);
\fill (2,5) circle (.1cm);
\end{tikzpicture}]]></latex-image-code>
</image>
</figure>
Expand Down Expand Up @@ -401,7 +401,7 @@ on the left side of NOT SURE WHETHER TO GO INTO THIS HERE OR IF THIS IS THE RIGH
<p>Plotting a few more points gives the graph:</p>
<figure xml:id="figure-graph--negative-xsq-minus-x-plus-2"> <!--set3B-Polynomial_Functions_04.png-->
<image xml:id="graph--negative-xsq-minus-x-plus-2">
<latex-image-code><![CDATA[\begin{tikzpicture}
<latex-image-code><![CDATA[\begin{tikzpicture}
\draw[step=1cm,gray,very thin] (-5.9,-4.9) grid (5.9,4.9);
\draw[line width=0.55mm,black,<->] (-5.9,0) -- (5.9,0);
\draw[line width=0.55mm,black,<->] (0,-4.9) -- (0,4.9);
Expand All @@ -418,7 +418,7 @@ on the left side of NOT SURE WHETHER TO GO INTO THIS HERE OR IF THIS IS THE RIGH
\node at (2.2,2.5) {\Large $g(x)=-x^2-x+2$};
\fill (-2,0) circle (.1cm);
\fill (0,2) circle (.1cm);
\fill (1,0) circle (.1cm);
\fill (1,0) circle (.1cm);
\end{tikzpicture}]]></latex-image-code>
</image>
</figure>
Expand All @@ -432,7 +432,7 @@ on the left side of NOT SURE WHETHER TO GO INTO THIS HERE OR IF THIS IS THE RIGH
<mrow>0 \amp = \frac{2}{7}x^3-\frac{1}{7}x^2-3x</mrow>
<mrow>\amp = \frac{1}{7}x(2x^2-x-21)</mrow>
<mrow>\amp = \frac{1}{7}x(2x- 7)(x+3)</mrow>
</md>So,
</md>So,
<md>
<mrow>\frac{1}{7}x\amp = 0\amp\amp\text{or}\amp 2x - 7 \amp = 0\amp\amp\text{or}\amp x + 3 \amp = 0</mrow>
<mrow>x\amp = 0\amp\amp\text{or}\amp x \amp = \frac{7}{2} \amp\amp\text{or}\amp x \amp = -3</mrow>
Expand All @@ -442,7 +442,7 @@ on the left side of NOT SURE WHETHER TO GO INTO THIS HERE OR IF THIS IS THE RIGH
<p>Plotting a few more points gives the graph:</p>
<figure xml:id="figure-graph-cubic"> <!--set3B-Polynomial_Functions_05.png-->
<image xml:id="graph-cubic">
<latex-image-code><![CDATA[\begin{tikzpicture}
<latex-image-code><![CDATA[\begin{tikzpicture}
\draw[step=1cm,gray,very thin] (-5.9,-4.9) grid (5.9,4.9);
\draw[line width=0.55mm,black,<->] (-5.9,0) -- (5.9,0);
\draw[line width=0.55mm,black,<->] (0,-4.9) -- (0,4.9);
Expand All @@ -459,7 +459,7 @@ on the left side of NOT SURE WHETHER TO GO INTO THIS HERE OR IF THIS IS THE RIGH
\node at (-3.5,3.5) {\Large $h(x)=\frac{2}{7}x^3-\frac{1}{7}x^2-3x$};
\fill (-3,0) circle (.1cm);
\fill (0,2) circle (.1cm);
\fill (3.5,0) circle (.1cm);
\fill (3.5,0) circle (.1cm);
\end{tikzpicture}]]></latex-image-code>
</image>
</figure>
Expand Down Expand Up @@ -499,7 +499,7 @@ on the left side of NOT SURE WHETHER TO GO INTO THIS HERE OR IF THIS IS THE RIGH
<p>Plot a few more points and we are done:</p>
<figure xml:id="figure-graph-quartic"> <!--set3B-Polynomial_Functions_06.png-->
<image xml:id="graph-quartic">
<latex-image-code><![CDATA[\begin{tikzpicture}
<latex-image-code><![CDATA[\begin{tikzpicture}
\draw[step=1cm,gray,very thin] (-5.9,-8.9) grid (5.9,1.9);
\draw[line width=0.55mm,black,<->] (-5.9,0) -- (5.9,0);
\draw[line width=0.55mm,black,<->] (0,-8.9) -- (0,1.9);
Expand All @@ -516,7 +516,7 @@ on the left side of NOT SURE WHETHER TO GO INTO THIS HERE OR IF THIS IS THE RIGH
\node at (-3.5,-6.5) {\Large $k(x)=x^4-2x^3-2x^2$};
\fill (-.732,0) circle (.1cm);
\fill (0,0) circle (.1cm);
\fill (2.732,0) circle (.1cm);
\fill (2.732,0) circle (.1cm);
\end{tikzpicture}]]></latex-image-code>
</image>
</figure>
Expand Down Expand Up @@ -566,7 +566,7 @@ on the left side of NOT SURE WHETHER TO GO INTO THIS HERE OR IF THIS IS THE RIGH
<p><alert>Note:</alert> Why study polynomials? What are they good for? Many functions are difficult to calculate without a calculator or computer, for example, trigonometric functions. How <em>DO</em> calculators or computers calculate values for these functions? The answer is based on polynomials which are easier to calculate since they only involve multiplying and addition/subtraction. The graph below shows how the polynomial <m>f(x) = x - \frac{1}{6}x^3 + \frac{1}{120}x^5</m> approximates the function <m>g(x) = \sin(x)</m> for <m>-3 \leq x \leq3</m>.</p>
<figure xml:id="figure-graph-sine-approx"> <!--set3B-Polynomial_Functions_07.png-->
<image xml:id="graph-sine-approx">
<latex-image-code><![CDATA[\begin{tikzpicture}
<latex-image-code><![CDATA[\begin{tikzpicture}
\draw[line width=0.55mm,black,<->] (-6,0) -- (6,0);
\draw[line width=0.55mm,black,<->] (0,-4) -- (0,4);
\foreach [evaluate=\x as \z using int(2*\x)] \x in {-5,...,5}
Expand All @@ -576,7 +576,7 @@ on the left side of NOT SURE WHETHER TO GO INTO THIS HERE OR IF THIS IS THE RIGH
\draw[line width=0.75mm, domain=-2.4:2.3,smooth,variable=\x,red] plot ({\x},{\x-2*\x*\x*\x/3+2*\x*\x*\x*\x*\x/15});
\draw[dashed, line width=0.75mm, blue](-5.5, .5) cos (-4.71,0) sin (-3.93,-.5) cos (-3.14,0) sin (-2.36,.5) cos (-1.57,0) sin (-.785,-.5) cos (0,0) sin (.785,.5) cos (1.57,0) sin (2.36,-.5) cos (3.14,0) sin (3.93,.5) cos (4.71,0) sin (5.5, -.5);
\node at (4,3.2) {\Large $f(x)=x - \frac{1}{6}x^3 + \frac{1}{120}x^5$};
\node at (4, -1) {\Large $g(x)=\sin(x)$};
\node at (4, -1) {\Large $g(x)=\sin(x)$};
\end{tikzpicture}]]></latex-image-code>
</image>
</figure>
Expand Down