@@ -1791,6 +1791,39 @@ def deconv2d_bilinear_upsampling_initializer(shape):
17911791 return bilinear_weights_init
17921792
17931793## Convolutional layer (Simplified)
1794+ def Conv1d (net , n_filter = 32 , filter_size = 5 , stride = 1 , act = None ,
1795+ padding = 'SAME' , use_cudnn_on_gpu = None ,data_format = None ,
1796+ W_init = tf .truncated_normal_initializer (stddev = 0.02 ),
1797+ b_init = tf .constant_initializer (value = 0.0 ),
1798+ W_init_args = {}, b_init_args = {}, name = 'conv1d' ,):
1799+ """Wrapper for :class:`Conv1dLayer`, if you don't understand how to use :class:`Conv1dLayer`, this function may be easier.
1800+
1801+ Parameters
1802+ ----------
1803+ net : TensorLayer layer.
1804+ n_filter : number of filter.
1805+ filter_size : an int.
1806+ stride : an int.
1807+ act : None or activation function.
1808+ others : see :class:`Conv1dLayer`.
1809+ """
1810+ if act is None :
1811+ act = tf .identity
1812+ net = Conv1dLayer (layer = net ,
1813+ act = act ,
1814+ shape = [filter_size , int (net .outputs .get_shape ()[- 1 ]), n_filter ],
1815+ stride = stride ,
1816+ padding = padding ,
1817+ use_cudnn_on_gpu = use_cudnn_on_gpu ,
1818+ data_format = data_format ,
1819+ W_init = W_init ,
1820+ b_init = b_init ,
1821+ W_init_args = W_init_args ,
1822+ b_init_args = b_init_args ,
1823+ name = name ,
1824+ )
1825+ return net
1826+
17941827def Conv2d (net , n_filter = 32 , filter_size = (3 , 3 ), strides = (1 , 1 ), act = None ,
17951828 padding = 'SAME' , W_init = tf .truncated_normal_initializer (stddev = 0.02 ), b_init = tf .constant_initializer (value = 0.0 ),
17961829 W_init_args = {}, b_init_args = {}, name = 'conv2d' ,):
0 commit comments