|
| 1 | +import pytest |
| 2 | +import numpy as np |
| 3 | + |
| 4 | + |
| 5 | +from hyperactive import Hyperactive |
| 6 | +from hyperactive.optimizers.strategies import CustomOptimizationStrategy |
| 7 | +from hyperactive.optimizers import HillClimbingOptimizer |
| 8 | + |
| 9 | +from ._parametrize import optimizers |
| 10 | + |
| 11 | + |
| 12 | +def objective_function(opt): |
| 13 | + score = -(opt["x1"] * opt["x1"] + opt["x2"] * opt["x2"]) |
| 14 | + return score |
| 15 | + |
| 16 | + |
| 17 | +search_space = { |
| 18 | + "x1": list(np.arange(-3, 3, 1)), |
| 19 | + "x2": list(np.arange(-3, 3, 1)), |
| 20 | +} |
| 21 | + |
| 22 | + |
| 23 | +@pytest.mark.parametrize(*optimizers) |
| 24 | +def test_strategy_combinations_0(Optimizer): |
| 25 | + optimizer1 = Optimizer() |
| 26 | + optimizer2 = HillClimbingOptimizer() |
| 27 | + |
| 28 | + opt_strat = CustomOptimizationStrategy() |
| 29 | + opt_strat.add_optimizer(optimizer1, duration=0.5) |
| 30 | + opt_strat.add_optimizer(optimizer2, duration=0.5) |
| 31 | + |
| 32 | + n_iter = 4 |
| 33 | + |
| 34 | + hyper = Hyperactive() |
| 35 | + hyper.add_search( |
| 36 | + objective_function, |
| 37 | + search_space, |
| 38 | + optimizer=opt_strat, |
| 39 | + n_iter=n_iter, |
| 40 | + memory=False, |
| 41 | + initialize={"random": 1}, |
| 42 | + ) |
| 43 | + hyper.run() |
| 44 | + |
| 45 | + search_data = hyper.search_data(objective_function) |
| 46 | + |
| 47 | + optimizer1 = hyper.opt_pros[0].optimizer_setup_l[0]["optimizer"] |
| 48 | + optimizer2 = hyper.opt_pros[0].optimizer_setup_l[1]["optimizer"] |
| 49 | + |
| 50 | + assert len(search_data) == n_iter |
| 51 | + |
| 52 | + assert len(optimizer1.search_data) == 2 |
| 53 | + assert len(optimizer2.search_data) == 2 |
| 54 | + |
| 55 | + assert optimizer1.best_score <= optimizer2.best_score |
0 commit comments