We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
1 parent e6b18cc commit b9aef6dCopy full SHA for b9aef6d
chapter_optimization/convexity.md
@@ -215,7 +215,7 @@ $$f(\lambda x + (1-\lambda) x') \leq \lambda f(x) + (1-\lambda) f(x') \leq b.$$
215
即对于所有$\mathbf{x} \in \mathbb{R}^n$,$\mathbf{x}^\top \mathbf{H} \mathbf{x} \geq 0$.
216
例如,函数$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|^2$是凸的,因为$\nabla^2 f = \mathbf{1}$,即其导数是单位矩阵。
217
218
-更正式地讲,$f$为凸函数,当且仅当任意二次可微一维函数$f: \mathbb{R}^n \rightarrow \mathbb{R}$是凸的。
+更正式地讲,$f$为凸函数,当且仅当任意二次可微一维函数$f: \mathbb{R} \rightarrow \mathbb{R}$是凸的。
219
对于任意二次可微多维函数$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$,
220
它是凸的当且仅当它的Hessian$\nabla^2f\succeq 0$。
221
0 commit comments