|
1 | 1 | from abc import ABCMeta |
2 | | -from typing import Any, Dict, List, Optional, Sequence, Tuple, Union, cast, Callable |
| 2 | +from typing import Any, Dict, List, Optional, Sequence, Tuple, Union, cast |
3 | 3 |
|
4 | 4 | import numpy as np |
5 | 5 |
|
|
17 | 17 | CrossValFunc, |
18 | 18 | DEFAULT_RESAMPLING_PARAMETERS, |
19 | 19 | HoldoutValTypes, |
20 | | - HoldOutValFunc |
| 20 | + HoldoutValFunc |
21 | 21 | ) |
22 | 22 | from autoPyTorch.utils.common import FitRequirement, hash_array_or_matrix |
23 | 23 |
|
24 | 24 | BaseDatasetType = Union[Tuple[np.ndarray, np.ndarray], Dataset] |
25 | | -SplitFunc = Callable[[Union[int, float], np.ndarray, Any], List[Tuple[np.ndarray, np.ndarray]]] |
26 | 25 |
|
27 | 26 |
|
28 | 27 | def check_valid_data(data: Any) -> None: |
@@ -111,7 +110,7 @@ def __init__( |
111 | 110 | type_check(train_tensors, val_tensors) |
112 | 111 | self.train_tensors, self.val_tensors, self.test_tensors = train_tensors, val_tensors, test_tensors |
113 | 112 | self.cross_validators: Dict[str, CrossValFunc] = {} |
114 | | - self.holdout_validators: Dict[str, HoldOutValFunc] = {} |
| 113 | + self.holdout_validators: Dict[str, HoldoutValFunc] = {} |
115 | 114 | self.rng = np.random.RandomState(seed=seed) |
116 | 115 | self.shuffle = shuffle |
117 | 116 | self.resampling_strategy = resampling_strategy |
|
0 commit comments