@@ -4,7 +4,7 @@ jupytext:
44 extension : .md
55 format_name : myst
66 format_version : 0.13
7- jupytext_version : 1.16.1
7+ jupytext_version : 1.16.6
88kernelspec :
99 display_name : Python 3 (ipykernel)
1010 language : python
@@ -434,7 +434,7 @@ for μ, σ in zip(μ_vals, σ_vals):
434434 u = scipy.stats.norm(μ, σ)
435435 ax.plot(x_grid, u.pdf(x_grid),
436436 alpha=0.5, lw=2,
437- label=f '$\mu={μ}, \sigma={σ}$')
437+ label=rf '$\mu={μ}, \sigma={σ}$')
438438ax.set_xlabel('x')
439439ax.set_ylabel('PDF')
440440plt.legend()
@@ -449,7 +449,7 @@ for μ, σ in zip(μ_vals, σ_vals):
449449 u = scipy.stats.norm(μ, σ)
450450 ax.plot(x_grid, u.cdf(x_grid),
451451 alpha=0.5, lw=2,
452- label=f '$\mu={μ}, \sigma={σ}$')
452+ label=rf '$\mu={μ}, \sigma={σ}$')
453453 ax.set_ylim(0, 1)
454454ax.set_xlabel('x')
455455ax.set_ylabel('CDF')
@@ -510,7 +510,7 @@ for σ in σ_vals:
510510 u = scipy.stats.norm(μ, σ)
511511 ax.plot(x_grid, u.cdf(x_grid),
512512 alpha=0.5, lw=2,
513- label=f '$\mu={μ}, \sigma={σ}$')
513+ label=rf '$\mu={μ}, \sigma={σ}$')
514514 ax.set_ylim(0, 1)
515515 ax.set_xlim(0, 3)
516516ax.set_xlabel('x')
@@ -554,7 +554,7 @@ for λ in λ_vals:
554554 u = scipy.stats.expon(scale=1/λ)
555555 ax.plot(x_grid, u.pdf(x_grid),
556556 alpha=0.5, lw=2,
557- label=f '$\lambda={λ}$')
557+ label=rf '$\lambda={λ}$')
558558ax.set_xlabel('x')
559559ax.set_ylabel('PDF')
560560plt.legend()
@@ -567,7 +567,7 @@ for λ in λ_vals:
567567 u = scipy.stats.expon(scale=1/λ)
568568 ax.plot(x_grid, u.cdf(x_grid),
569569 alpha=0.5, lw=2,
570- label=f '$\lambda={λ}$')
570+ label=rf '$\lambda={λ}$')
571571 ax.set_ylim(0, 1)
572572ax.set_xlabel('x')
573573ax.set_ylabel('CDF')
@@ -615,7 +615,7 @@ for α, β in zip(α_vals, β_vals):
615615 u = scipy.stats.beta(α, β)
616616 ax.plot(x_grid, u.pdf(x_grid),
617617 alpha=0.5, lw=2,
618- label=fr '$\alpha={α}, \beta={β}$')
618+ label=rf '$\alpha={α}, \beta={β}$')
619619ax.set_xlabel('x')
620620ax.set_ylabel('PDF')
621621plt.legend()
@@ -628,7 +628,7 @@ for α, β in zip(α_vals, β_vals):
628628 u = scipy.stats.beta(α, β)
629629 ax.plot(x_grid, u.cdf(x_grid),
630630 alpha=0.5, lw=2,
631- label=fr '$\alpha={α}, \beta={β}$')
631+ label=rf '$\alpha={α}, \beta={β}$')
632632 ax.set_ylim(0, 1)
633633ax.set_xlabel('x')
634634ax.set_ylabel('CDF')
@@ -675,7 +675,7 @@ for α, β in zip(α_vals, β_vals):
675675 u = scipy.stats.gamma(α, scale=1/β)
676676 ax.plot(x_grid, u.pdf(x_grid),
677677 alpha=0.5, lw=2,
678- label=fr '$\alpha={α}, \beta={β}$')
678+ label=rf '$\alpha={α}, \beta={β}$')
679679ax.set_xlabel('x')
680680ax.set_ylabel('PDF')
681681plt.legend()
@@ -688,7 +688,7 @@ for α, β in zip(α_vals, β_vals):
688688 u = scipy.stats.gamma(α, scale=1/β)
689689 ax.plot(x_grid, u.cdf(x_grid),
690690 alpha=0.5, lw=2,
691- label=fr '$\alpha={α}, \beta={β}$')
691+ label=rf '$\alpha={α}, \beta={β}$')
692692 ax.set_ylim(0, 1)
693693ax.set_xlabel('x')
694694ax.set_ylabel('CDF')
@@ -799,7 +799,7 @@ So we will have one observation for each month.
799799:tags: [hide-output]
800800
801801df = yf.download('AMZN', '2000-1-1', '2024-1-1', interval='1mo')
802- prices = df['Adj Close']
802+ prices = df['Close']
803803x_amazon = prices.pct_change()[1:] * 100
804804x_amazon.head()
805805```
@@ -876,7 +876,7 @@ For example, let's compare the monthly returns on Amazon shares with the monthly
876876:tags: [hide-output]
877877
878878df = yf.download('COST', '2000-1-1', '2024-1-1', interval='1mo')
879- prices = df['Adj Close']
879+ prices = df['Close']
880880x_costco = prices.pct_change()[1:] * 100
881881```
882882
0 commit comments