Skip to content

Commit 2a3853e

Browse files
committed
Updated GH landing page
1 parent db61e8d commit 2a3853e

File tree

2 files changed

+14
-1
lines changed

2 files changed

+14
-1
lines changed

README.md

Lines changed: 11 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -9,6 +9,16 @@ ________________________________________________________________________________
99
**Authors:** [Bernard Brenyah](https://www.linkedin.com/in/bbrenyah/) & [Andrey Oskin](https://www.linkedin.com/in/andrej-oskin-b2b03959/)
1010
_________________________________________________________________________________________________________
1111

12+
<div align="center">
13+
<b>Classic & Contemporary Variants Of K-Means In Sonic Mode<b>
14+
</div>
15+
16+
<p align="center">
17+
<img src="https://user-images.githubusercontent.com/2630519/80216880-70b60b00-8647-11ea-913b-7977ef1c156c.gif">
18+
</p>
19+
20+
_________________________________________________________________________________________________________
21+
1222
## Table Of Content
1323

1424
1. [Documentation](#Documentation)
@@ -51,7 +61,7 @@ ________________________________________________________________________________
5161

5262
### Features
5363

54-
- Lightening fast implementation of Kmeans clustering algorithm even on a single thread in native Julia.
64+
- Lightening fast implementation of K-Means clustering algorithm even on a single thread in native Julia.
5565
- Support for multi-theading implementation of K-Means clustering algorithm.
5666
- Kmeans++ initialization for faster and better convergence.
5767
- Implementation of all the variants of the K-Means algorithm.

docs/src/index.md

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -170,6 +170,9 @@ c = [ParallelKMeans.kmeans(X, i; tol=1e-6, max_iters=300, verbose=false).totalco
170170
Currently, this package is benchmarked against similar implementations in both Python and Julia. All reproducible benchmarks can be found in [ParallelKMeans/extras](https://github.com/PyDataBlog/ParallelKMeans.jl/tree/master/extras) directory. More tests in various languages are planned beyond the initial release version (`0.1.0`).
171171

172172
*Note*: All benchmark tests are made on the same computer to help eliminate any bias.
173+
|PC Name |CPU |Ram |
174+
|:---------------------------:|:------------------------:|:----------------:|
175+
|iMac (Retina 5K 27-inch 2019)|3 GHz 6-Core Intel Core i5|8 GB 2667 MHz DDR4|
173176

174177
Currently, the benchmark speed tests are based on the search for optimal number of clusters using the [Elbow Method](https://en.wikipedia.org/wiki/Elbow_method_(clustering)) since this is a practical use case for most practioners employing the K-Means algorithm.
175178

0 commit comments

Comments
 (0)