-
Notifications
You must be signed in to change notification settings - Fork 15
Description
Hi, based on your guidance, I train my model based on Qwen 1.5-1.8B.
While conducting the evaluation, I noticed that there appear to be some issues with the SQA and MMBench evaluations. The results are quite low, and the evaluation time is extremely long (12 hours or more). This problem seems to occur only when "Setting pad_token_id to eos_token_id:151643 for open-end generation."
Here is my evaluation script:
`export IMP_SILIENT_OTHERS=true
gpu_list="${CUDA_VISIBLE_DEVICES:-0}"
IFS=',' read -ra GPULIST <<< "$gpu_list"
CHUNKS=${#GPULIST[@]}
SPLIT="llava_scienceqa"
MODEL_CKPT="imp-v1-2b-stage2-lora"
EVAL_CKPT="${MODEL_CKPT////_}_1"
MODEL_BASE=checkpoints/base/Qwen1.5-1.8B
for IDX in
CUDA_VISIBLE_DEVICES=${GPULIST[$IDX]} python -m imp_llava.eval.model_vqa_science
--model-path ./checkpoints/$MODEL_CKPT
--model-base $MODEL_BASE
--question-file ./eval_dataset/scienceqa/llava_test_CQM-A.json
--image-folder ./eval_dataset/scienceqa/images/test
--answers-file ./eval_dataset/scienceqa/answers/$SPLIT/$EVAL_CKPT/${CHUNKS}_${IDX}.jsonl
--num-chunks $CHUNKS
--chunk-idx $IDX
--temperature 0
--conv-mode qwen2 &
done
wait
output_file=./eval_dataset/scienceqa/answers/$SPLIT/$EVAL_CKPT/merge.jsonl
Clear out the output file if it exists.
"$output_file"
Loop through the indices and concatenate each file.
for IDX in
cat ./eval_dataset/scienceqa/answers/$SPLIT/$EVAL_CKPT/${CHUNKS}_${IDX}.jsonl >> "$output_file"
done
python imp_llava/eval/eval_science_qa.py
--base-dir ./eval_dataset/scienceqa
--result-file $output_file
--output-file ./eval_dataset/scienceqa/answers/output.jsonl
--output-result ./eval_dataset/scienceqa/answers/result.json
`
Other than that, the rest of the benchmark evaluations seem to be normal. I would like to know if you have encountered similar issues and what are the solutions?