Skip to content

matrix-dense-vector multiplication faster for symmetric/hermitian matrices using adjoint #28

@jamblejoe

Description

@jamblejoe

As Julia is for now exclusively using CSC storage format, the matrix-dense-vector multiplication is faster for symmetric/hermitian matrix A if one computes A' * v instead of A * v. A simple example script hinting this is the following:

julia> let
       for D in [10^3, 10^4, 10^5, 10^6]
           A = sprand(D,D,1/D)
           A = A+A'
           v = rand(D)
           w = similar(v)
           @btime mul!($w, $A, $v)
           @btime mul!($w,$A',$v)
       end
       end
  3.500 μs (0 allocations: 0 bytes)
  1.540 μs (0 allocations: 0 bytes)
  23.100 μs (0 allocations: 0 bytes)
  14.100 μs (0 allocations: 0 bytes)
  305.400 μs (0 allocations: 0 bytes)
  206.300 μs (0 allocations: 0 bytes)
  13.283 ms (0 allocations: 0 bytes)
  4.167 ms (0 allocations: 0 bytes)

On

Julia Version 1.7.0
Commit 3bf9d17731 (2021-11-30 12:12 UTC)
Platform Info:
  OS: Windows (x86_64-w64-mingw32)
  CPU: Intel(R) Core(TM) i7-8665U CPU @ 1.90GHz
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-12.0.1 (ORCJIT, skylake)

and MKLSparse v1.1.0.

Should MKLSparse detect this with ishermitian ?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions