|
| 1 | +using VectorizedRNG |
| 2 | +using LinearAlgebra: Diagonal, I |
| 3 | +using LoopVectorization |
| 4 | +using RecursiveFactorization |
| 5 | +using SparseBandedMatrices |
| 6 | + |
| 7 | +@inline exphalf(x) = exp(x) * oftype(x, 0.5) |
| 8 | +function 🦋!(wv, ::Val{SEED} = Val(888)) where {SEED} |
| 9 | + T = eltype(wv) |
| 10 | + mrng = VectorizedRNG.MutableXoshift(SEED) |
| 11 | + GC.@preserve mrng begin rand!(exphalf, VectorizedRNG.Xoshift(mrng), wv, static(0), |
| 12 | + T(-0.05), T(0.1)) end |
| 13 | +end |
| 14 | + |
| 15 | +function 🦋generate_random!(A, ::Val{SEED} = Val(888)) where {SEED} |
| 16 | + Usz = 2 * size(A, 1) |
| 17 | + Vsz = 2 * size(A, 2) |
| 18 | + uv = similar(A, Usz + Vsz) |
| 19 | + 🦋!(uv, Val(SEED)) |
| 20 | + (uv,) |
| 21 | +end |
| 22 | + |
| 23 | +function 🦋workspace(A, b, B::Matrix{T}, U::Adjoint{T, Matrix{T}}, V::Matrix{T}, thread, ::Val{SEED} = Val(888)) where {T, SEED} |
| 24 | + M = size(A, 1) |
| 25 | + if (M % 4 != 0) |
| 26 | + A = pad!(A) |
| 27 | + end |
| 28 | + B = similar(A) |
| 29 | + ws = 🦋generate_random!(copyto!(B, A)) |
| 30 | + 🦋mul!(copyto!(B, A), ws) |
| 31 | + U, V = materializeUV(B, ws) |
| 32 | + F = RecursiveFactorization.lu!(B, thread) |
| 33 | + out = similar(b, M) |
| 34 | + |
| 35 | + U, V, F, out |
| 36 | +end |
| 37 | + |
| 38 | +const butterfly_workspace = 🦋workspace; |
| 39 | + |
| 40 | +function 🦋mul_level!(A, u, v) |
| 41 | + M, N = size(A) |
| 42 | + @assert M == length(u) && N == length(v) |
| 43 | + Mh = M >>> 1 |
| 44 | + Nh = N >>> 1 |
| 45 | + @turbo for n in 1 : Nh |
| 46 | + for m in 1 : Mh |
| 47 | + A11 = A[m, n] |
| 48 | + A21 = A[m + Mh, n] |
| 49 | + A12 = A[m, n + Nh] |
| 50 | + A22 = A[m + Mh, n + Nh] |
| 51 | + |
| 52 | + T1 = A11 + A12 |
| 53 | + T2 = A21 + A22 |
| 54 | + T3 = A11 - A12 |
| 55 | + T4 = A21 - A22 |
| 56 | + C11 = T1 + T2 |
| 57 | + C21 = T1 - T2 |
| 58 | + C12 = T3 + T4 |
| 59 | + C22 = T3 - T4 |
| 60 | + |
| 61 | + u1 = u[m] |
| 62 | + u2 = u[m + Mh] |
| 63 | + v1 = v[n] |
| 64 | + v2 = v[n + Nh] |
| 65 | + |
| 66 | + A[m, n] = u1 * C11 * v1 |
| 67 | + A[m + Mh, n] = u2 * C21 * v1 |
| 68 | + A[m, n + Nh] = u1 * C12 * v2 |
| 69 | + A[m + Mh, n + Nh] = u2 * C22 * v2 |
| 70 | + end |
| 71 | + end |
| 72 | +end |
| 73 | + |
| 74 | +function 🦋mul!(A, (uv,)) |
| 75 | + M, N = size(A) |
| 76 | + @assert M == N |
| 77 | + Mh = M >>> 1 |
| 78 | + |
| 79 | + U₁ = @view(uv[1:Mh]) |
| 80 | + V₁ = @view(uv[(Mh + 1):(M)]) |
| 81 | + U₂ = @view(uv[(1 + M):(M + Mh)]) |
| 82 | + V₂ = @view(uv[(1 + M + Mh):(2 * M)]) |
| 83 | + |
| 84 | + 🦋mul_level!(@view(A[1:Mh, 1:Mh]), U₁, V₁) |
| 85 | + 🦋mul_level!(@view(A[Mh + 1:M, 1:Mh]), U₂, V₁) |
| 86 | + 🦋mul_level!(@view(A[1:Mh, Mh + 1:M]), U₁, V₂) |
| 87 | + 🦋mul_level!(@view(A[Mh + 1:M, Mh + 1:M]), U₂, V₂) |
| 88 | + |
| 89 | + U = @view(uv[(1 + 2 * M):(3 * M)]) |
| 90 | + V = @view(uv[(1 + 3 * M):(4 * M)]) |
| 91 | + |
| 92 | + 🦋mul_level!(@view(A[1:M, 1:N]), U, V) |
| 93 | + A |
| 94 | +end |
| 95 | + |
| 96 | +function diagnegbottom(x) |
| 97 | + N = length(x) |
| 98 | + y = similar(x, N >>> 1) |
| 99 | + z = similar(x, N >>> 1) |
| 100 | + for n in 1:(N >>> 1) |
| 101 | + y[n] = x[n] |
| 102 | + end |
| 103 | + for n in 1:(N >>> 1) |
| 104 | + z[n] = x[n + (N >>> 1)] |
| 105 | + end |
| 106 | + Diagonal(y), Diagonal(z) |
| 107 | +end |
| 108 | + |
| 109 | +function 🦋2!(C, A::Diagonal, B::Diagonal) |
| 110 | + @assert size(A) == size(B) |
| 111 | + A1 = size(A, 1) |
| 112 | + |
| 113 | + for i in 1:A1 |
| 114 | + C[i, i] = A[i, i] |
| 115 | + C[i + A1, i] = A[i, i] |
| 116 | + C[i, i + A1] = B[i, i] |
| 117 | + C[i + A1, i + A1] = -B[i, i] |
| 118 | + end |
| 119 | + |
| 120 | + C |
| 121 | +end |
| 122 | + |
| 123 | +function 🦋!(A::Matrix, C::SparseBandedMatrix, X::Diagonal, Y::Diagonal) |
| 124 | + @assert size(X) == size(Y) |
| 125 | + if (size(X, 1) + size(Y, 1) != size(A, 1)) |
| 126 | + x = size(A, 1) - size(X, 1) - size(Y, 1) |
| 127 | + setdiagonal!(C, [X.diag; rand(x); -Y.diag], true) |
| 128 | + setdiagonal!(C, X.diag, true) |
| 129 | + setdiagonal!(C, Y.diag, false) |
| 130 | + else |
| 131 | + setdiagonal!(C, [X.diag; -Y.diag], true) |
| 132 | + setdiagonal!(C, X.diag, true) |
| 133 | + setdiagonal!(C, Y.diag, false) |
| 134 | + end |
| 135 | + |
| 136 | + C |
| 137 | +end |
| 138 | + |
| 139 | +function 🦋2!(C::SparseBandedMatrix, A::Diagonal, B::Diagonal) |
| 140 | + setdiagonal!(C, [A.diag; -B.diag], true) |
| 141 | + setdiagonal!(C, A.diag, true) |
| 142 | + setdiagonal!(C, B.diag, false) |
| 143 | + C |
| 144 | +end |
| 145 | + |
| 146 | +function materializeUV(A, (uv,)) |
| 147 | + M, N = size(A) |
| 148 | + Mh = M >>> 1 |
| 149 | + Nh = N >>> 1 |
| 150 | + |
| 151 | + U₁u, U₁l = diagnegbottom(@view(uv[1:Mh])) #Mh |
| 152 | + U₂u, U₂l = diagnegbottom(@view(uv[(1 + Mh + Nh):(M + Nh)])) #M2 |
| 153 | + V₁u, V₁l = diagnegbottom(@view(uv[(Mh + 1):(Mh + Nh)])) #Nh |
| 154 | + V₂u, V₂l = diagnegbottom(@view(uv[(1 + 2 * Mh + Nh):(2 * Mh + N)])) #N2 |
| 155 | + Uu, Ul = diagnegbottom(@view(uv[(1 + M + N):(2 * M + N)])) #M |
| 156 | + Vu, Vl = diagnegbottom(@view(uv[(1 + 2 * M + N):(2 * M + 2 * N)])) #N |
| 157 | + |
| 158 | + Bu2 = SparseBandedMatrix{typeof(uv[1])}(undef, M, N) |
| 159 | + |
| 160 | + 🦋2!(view(Bu2, 1 : Mh, 1 : Nh), U₁u, U₁l) |
| 161 | + 🦋2!(view(Bu2, Mh + 1: M, Nh + 1: N), U₂u, U₂l) |
| 162 | + |
| 163 | + Bu1 = SparseBandedMatrix{typeof(uv[1])}(undef, M, N) |
| 164 | + 🦋!(A, Bu1, Uu, Ul) |
| 165 | + |
| 166 | + Bv2 = SparseBandedMatrix{typeof(uv[1])}(undef, M, N) |
| 167 | + |
| 168 | + 🦋2!(view(Bv2, 1 : Mh, 1 : Nh), V₁u, V₁l) |
| 169 | + 🦋2!(view(Bv2, Mh + 1: M, Nh + 1: N), V₂u, V₂l) |
| 170 | + |
| 171 | + Bv1 = SparseBandedMatrix{typeof(uv[1])}(undef, M, N) |
| 172 | + 🦋!(A, Bv1, Vu, Vl) |
| 173 | + |
| 174 | + U = (Bu2 * Bu1)' |
| 175 | + V = Bv2 * Bv1 |
| 176 | + |
| 177 | + U, V |
| 178 | +end |
| 179 | + |
| 180 | +function pad!(A) |
| 181 | + M, N = size(A) |
| 182 | + xn = 4 - M % 4 |
| 183 | + A_new = similar(A, M + xn, N + xn) |
| 184 | + for j in 1 : N, i in 1 : M |
| 185 | + @inbounds A_new[i, j] = A[i, j] |
| 186 | + end |
| 187 | + |
| 188 | + for j in M + 1 : M + xn, i in 1:M |
| 189 | + @inbounds A_new[i, j] = 0 |
| 190 | + @inbounds A_new[j, i] = 0 |
| 191 | + end |
| 192 | + |
| 193 | + for j in N + 1 : N + xn, i in M + 1 : M + xn |
| 194 | + @inbounds A_new[i,j] = i == j |
| 195 | + end |
| 196 | + A_new |
| 197 | +end |
0 commit comments