|  | 
| 11 | 11 |       "cell_type": "markdown", | 
| 12 | 12 |       "metadata": {}, | 
| 13 | 13 |       "source": [ | 
| 14 |  | -        "Copied from [https://github.com/jakevdp/PythonDataScienceHandbook](https://github.com/jakevdp/PythonDataScienceHandbook)" | 
|  | 14 | +        "Copied from [https://github.com/jakevdp/PythonDataScienceHandbook](https://github.com/jakevdp/PythonDataScienceHandbook) with modifications to demonstrate notebook diffing." | 
| 15 | 15 |       ] | 
| 16 | 16 |     }, | 
| 17 | 17 |     { | 
| 18 | 18 |       "cell_type": "markdown", | 
| 19 | 19 |       "metadata": {}, | 
| 20 | 20 |       "source": [ | 
| 21 | 21 |         "One of the essential pieces of NumPy is the ability to perform quick element-wise operations, both with basic arithmetic (addition, subtraction, multiplication, etc.) and with more sophisticated operations (trigonometric functions, exponential and logarithmic functions, etc.).\n", | 
| 22 |  | -        "Pandas inherits much of this functionality from NumPy, and the ufuncs that we introduced in [Computation on NumPy Arrays: Universal Functions](02.03-Computation-on-arrays-ufuncs.ipynb) are key to this.\n", | 
|  | 22 | +        "Pandas inherits much of this functionality from NumPy, and the ufuncs that we introduced in [Computation on NumPy Arrays: Universal Functions](https://gitnotebooks.com/blog) are key to this.\n", | 
| 23 | 23 |         "\n", | 
| 24 | 24 |         "Pandas includes a couple useful twists, however: for unary operations like negation and trigonometric functions, these ufuncs will *preserve index and column labels* in the output, and for binary operations such as addition and multiplication, Pandas will automatically *align indices* when passing the objects to the ufunc.\n", | 
| 25 | 25 |         "This means that keeping the context of data and combining data from different sources–both potentially error-prone tasks with raw NumPy arrays–become essentially foolproof ones with Pandas.\n", | 
|  | 
| 28 | 28 |     }, | 
| 29 | 29 |     { | 
| 30 | 30 |       "cell_type": "code", | 
| 31 |  | -      "execution_count": 121, | 
|  | 31 | +      "execution_count": 26, | 
| 32 | 32 |       "metadata": { | 
| 33 | 33 |         "collapsed": true | 
| 34 | 34 |       }, | 
|  | 
| 48 | 48 |     }, | 
| 49 | 49 |     { | 
| 50 | 50 |       "cell_type": "code", | 
| 51 |  | -      "execution_count": 122, | 
|  | 51 | +      "execution_count": 27, | 
| 52 | 52 |       "metadata": { | 
| 53 | 53 |         "collapsed": false | 
| 54 | 54 |       }, | 
|  | 
| 68 | 68 |     }, | 
| 69 | 69 |     { | 
| 70 | 70 |       "cell_type": "code", | 
| 71 |  | -      "execution_count": 123, | 
|  | 71 | +      "execution_count": 28, | 
| 72 | 72 |       "metadata": { | 
| 73 | 73 |         "collapsed": false | 
| 74 | 74 |       }, | 
|  | 
| 77 | 77 |           "data": { | 
| 78 | 78 |             "text/plain": [ | 
| 79 | 79 |               "0    2.0\n", | 
| 80 |  | -              "1    5.0\n", | 
| 81 |  | -              "2    9.0\n", | 
| 82 |  | -              "3    5.0\n", | 
|  | 80 | +              "1    3.0\n", | 
|  | 81 | +              "2    3.0\n", | 
|  | 82 | +              "3   -5.0\n", | 
| 83 | 83 |               "dtype: float64" | 
| 84 | 84 |             ] | 
| 85 | 85 |           }, | 
| 86 |  | -          "execution_count": 123, | 
|  | 86 | +          "execution_count": 28, | 
| 87 | 87 |           "metadata": {}, | 
| 88 | 88 |           "output_type": "execute_result" | 
| 89 | 89 |         } | 
| 90 | 90 |       ], | 
| 91 | 91 |       "source": [ | 
| 92 |  | -        "A.add(B, fill_value=0)" | 
|  | 92 | +        "A.subtract(B, fill_value=0)" | 
| 93 | 93 |       ] | 
| 94 | 94 |     }, | 
| 95 | 95 |     { | 
| 96 | 96 |       "cell_type": "markdown", | 
| 97 | 97 |       "metadata": {}, | 
| 98 | 98 |       "source": [ | 
| 99 |  | -        "Notice that indices are aligned correctly irrespective of their order in the two objects, and indices in the result are sorted.\n", | 
|  | 99 | +        "Observe that the indices align accurately regardless of their sequence in the two objects, and the result's indices are organized in ascending order.\n", | 
| 100 | 100 |         "As was the case with ``Series``, we can use the associated object's arithmetic method and pass any desired ``fill_value`` to be used in place of missing entries.\n", | 
| 101 | 101 |         "Here we'll fill with the mean of all values in ``A`` (computed by first stacking the rows of ``A``):" | 
| 102 | 102 |       ] | 
|  | 
| 144 | 144 |               "      <th></th>\n", | 
| 145 | 145 |               "      <th>A</th>\n", | 
| 146 | 146 |               "      <th>B</th>\n", | 
| 147 |  | -              "      <th>C</th>\n", | 
| 148 | 147 |               "    </tr>\n", | 
| 149 | 148 |               "  </thead>\n", | 
| 150 | 149 |               "  <tbody>\n", | 
| 151 | 150 |               "    <tr>\n", | 
| 152 | 151 |               "      <th>0</th>\n", | 
| 153 | 152 |               "      <td>19.00</td>\n", | 
| 154 |  | -              "      <td>20.00</td>\n", | 
| 155 |  | -              "      <td>16.75</td>\n", | 
|  | 153 | +              "      <td>26.0</td>\n", | 
| 156 | 154 |               "    </tr>\n", | 
| 157 | 155 |               "    <tr>\n", | 
| 158 | 156 |               "      <th>1</th>\n", | 
| 159 | 157 |               "      <td>8.00</td>\n", | 
| 160 |  | -              "      <td>3.00</td>\n", | 
| 161 |  | -              "      <td>12.75</td>\n", | 
|  | 158 | +              "      <td>19.0</td>\n", | 
| 162 | 159 |               "    </tr>\n", | 
| 163 | 160 |               "    <tr>\n", | 
| 164 | 161 |               "      <th>2</th>\n", | 
| 165 |  | -              "      <td>16.75</td>\n", | 
| 166 |  | -              "      <td>10.75</td>\n", | 
| 167 |  | -              "      <td>12.75</td>\n", | 
|  | 162 | +              "      <td>53.0</td>\n", | 
|  | 163 | +              "      <td>56.0</td>\n", | 
| 168 | 164 |               "    </tr>\n", | 
| 169 | 165 |               "  </tbody>\n", | 
| 170 | 166 |               "</table>\n", | 
| 171 | 167 |               "</div>" | 
| 172 | 168 |             ], | 
| 173 | 169 |             "text/plain": [ | 
| 174 |  | -              "       A      B      C\n", | 
| 175 |  | -              "0  19.00  20.00  16.75\n", | 
| 176 |  | -              "1   8.00   3.00  12.75\n", | 
| 177 |  | -              "2  16.75  10.75  12.75" | 
|  | 170 | +              "      A     B     C\n", | 
|  | 171 | +              "0  10.0  26.0  55.0\n", | 
|  | 172 | +              "1  16.0  19.0  55.0\n", | 
|  | 173 | +              "2  53.0  56.0  52.0" | 
| 178 | 174 |             ] | 
| 179 | 175 |           }, | 
| 180 |  | -          "execution_count": 127, | 
|  | 176 | +          "execution_count": 30, | 
| 181 | 177 |           "metadata": {}, | 
| 182 | 178 |           "output_type": "execute_result" | 
| 183 | 179 |         } | 
|  | 
| 200 | 196 |         "# Large cells? No problem. Cells are collapsed to showcase the diff\n", | 
| 201 | 197 |         "# Large cells? No problem. Cells are collapsed to showcase the diff\n", | 
| 202 | 198 |         "\n", | 
| 203 |  | -        "fill = A.stack().mean()\n", | 
|  | 199 | +        "fill = A.stack().sum()\n", | 
| 204 | 200 |         "A.add(B, fill_value=fill)\n", | 
| 205 | 201 |         "\n", | 
| 206 | 202 |         "# Large cells? No problem. Cells are collapsed to showcase the diff\n", | 
|  | 
| 225 | 221 |       "cell_type": "markdown", | 
| 226 | 222 |       "metadata": {}, | 
| 227 | 223 |       "source": [ | 
| 228 |  | -        "## Ufuncs: Operations Between DataFrame and Series\n", | 
|  | 224 | +        "## Ufuncs: Operations Between DataFrame and Series with a changed header\n", | 
| 229 | 225 |         "\n", | 
| 230 | 226 |         "When performing operations between a ``DataFrame`` and a ``Series``, the index and column alignment is similarly maintained.\n", | 
| 231 | 227 |         "Operations between a ``DataFrame`` and a ``Series`` are similar to operations between a two-dimensional and one-dimensional NumPy array.\n", | 
|  | 
| 234 | 230 |     }, | 
| 235 | 231 |     { | 
| 236 | 232 |       "cell_type": "code", | 
| 237 |  | -      "execution_count": 128, | 
|  | 233 | +      "execution_count": 31, | 
| 238 | 234 |       "metadata": { | 
| 239 | 235 |         "collapsed": false | 
| 240 | 236 |       }, | 
| 241 | 237 |       "outputs": [ | 
| 242 | 238 |         { | 
| 243 | 239 |           "data": { | 
| 244 | 240 |             "text/plain": [ | 
| 245 |  | -              "array([[1, 5, 5, 9],\n", | 
| 246 |  | -              "       [3, 5, 1, 9],\n", | 
| 247 |  | -              "       [1, 9, 3, 7]])" | 
|  | 241 | +              "array([[7, 7, 2, 5],\n", | 
|  | 242 | +              "       [4, 1, 7, 5],\n", | 
|  | 243 | +              "       [1, 4, 0, 9]])" | 
| 248 | 244 |             ] | 
| 249 | 245 |           }, | 
| 250 |  | -          "execution_count": 128, | 
|  | 246 | +          "execution_count": 31, | 
| 251 | 247 |           "metadata": {}, | 
| 252 | 248 |           "output_type": "execute_result" | 
| 253 | 249 |         } | 
|  | 
| 259 | 255 |     }, | 
| 260 | 256 |     { | 
| 261 | 257 |       "cell_type": "code", | 
| 262 |  | -      "execution_count": 129, | 
|  | 258 | +      "execution_count": 32, | 
| 263 | 259 |       "metadata": { | 
| 264 | 260 |         "collapsed": false | 
| 265 | 261 |       }, | 
|  | 
| 268 | 264 |           "data": { | 
| 269 | 265 |             "text/plain": [ | 
| 270 | 266 |               "array([[ 0,  0,  0,  0],\n", | 
| 271 |  | -              "       [ 2,  0, -4,  0],\n", | 
| 272 |  | -              "       [ 0,  4, -2, -2]])" | 
|  | 267 | +              "       [-3, -6,  5,  0],\n", | 
|  | 268 | +              "       [-6, -3, -2,  4]])" | 
| 273 | 269 |             ] | 
| 274 | 270 |           }, | 
| 275 |  | -          "execution_count": 129, | 
|  | 271 | +          "execution_count": 32, | 
| 276 | 272 |           "metadata": {}, | 
| 277 | 273 |           "output_type": "execute_result" | 
| 278 | 274 |         } | 
|  | 
0 commit comments