diff --git a/minecraft_copilot_ml/__main__.py b/minecraft_copilot_ml/__main__.py index c5b3239..31982e0 100644 --- a/minecraft_copilot_ml/__main__.py +++ b/minecraft_copilot_ml/__main__.py @@ -14,30 +14,40 @@ from sklearn.model_selection import train_test_split # type: ignore from torch.utils.data import DataLoader from tqdm import tqdm +from torchcfm.models.unet import UNetModel # type: ignore[import-untyped] +import json from minecraft_copilot_ml.data_loader import ( MinecraftSchematicsDataset, + MinecraftBlockMapDataset, MinecraftSchematicsDatasetItemType, get_working_files_and_unique_blocks_and_counts, - list_schematic_files_in_folder, + get_unique_blocks_from_block_maps, + list_files_in_folder, ) -from minecraft_copilot_ml.model import UNet3d +from minecraft_copilot_ml.model import LightningUNetModel -def export_to_onnx(model: UNet3d, path_to_output: str) -> None: +def export_to_onnx(model: LightningUNetModel, channel_n: int, path_to_output: str) -> None: + model.eval() + model.to("cuda" if torch.cuda.is_available() else "cpu") torch.onnx.export( model, - torch.randn(1, 1, 16, 16, 16).to("cuda" if torch.cuda.is_available() else "cpu"), + ( + torch.randn(1).to("cuda" if torch.cuda.is_available() else "cpu"), + torch.randn(1, channel_n, 16, 16, 16).to("cuda" if torch.cuda.is_available() else "cpu"), + ), path_to_output, - input_names=["input"], - output_names=["output"], + input_names=["timestep", "block_map"], # https://onnxruntime.ai/docs/reference/compatibility.html opset_version=17, + output_names=["output"], ) def main(argparser: argparse.ArgumentParser) -> None: - path_to_schematics: str = argparser.parse_args().path_to_schematics + path_to_block_maps: str = "/home/mehdi/minecraft-copilot-ml/cut_datasets/minecraft-schematics/block_maps" + path_to_block_map_masks: str = "/home/mehdi/minecraft-copilot-ml/cut_datasets/minecraft-schematics/block_map_masks" path_to_output: str = argparser.parse_args().path_to_output epochs: int = argparser.parse_args().epochs batch_size: int = argparser.parse_args().batch_size @@ -47,85 +57,90 @@ def main(argparser: argparse.ArgumentParser) -> None: if not os.path.exists(path_to_output): os.makedirs(path_to_output) - schematics_list_files = list_schematic_files_in_folder(path_to_schematics) - schematics_list_files = sorted(schematics_list_files) + block_map_list_files = list_files_in_folder(path_to_block_maps) + block_map_list_files = sorted(block_map_list_files) + block_map_mask_list_files = list_files_in_folder(path_to_block_map_masks) + block_map_mask_list_files = sorted(block_map_mask_list_files) + start = 0 - end = len(schematics_list_files) + end = len(block_map_list_files) if dataset_start is not None: start = dataset_start if dataset_limit is not None: end = dataset_limit - schematics_list_files = schematics_list_files[start:end] - # Set the dictionary size to the number of unique blocks in the dataset. - # And also select the right files to load. - unique_blocks_dict, unique_counts_coefficients, loaded_schematic_files = ( - get_working_files_and_unique_blocks_and_counts(schematics_list_files) - ) - - logger.info(f"Unique blocks: {unique_blocks_dict}") - logger.info(f"Number of unique blocks: {len(unique_blocks_dict)}") - logger.info(f"Number of loaded schematics files: {len(loaded_schematic_files)}") - logger.info(f"Unique counts coefficients: {unique_counts_coefficients}") + block_map_list_files = block_map_list_files[start:end] + block_map_mask_list_files = block_map_mask_list_files[start:end] - train_schematics_list_files, test_schematics_list_files = train_test_split( - loaded_schematic_files, test_size=0.2, random_state=42 + unique_blocks_dict = json.load( + open("/home/mehdi/minecraft-copilot-ml/cut_datasets/minecraft-schematics/unique_blocks.json", "r") ) - train_schematics_dataset = MinecraftSchematicsDataset(train_schematics_list_files) - val_schematics_dataset = MinecraftSchematicsDataset(test_schematics_list_files) + # ( + # train_block_map_list_files, + # # test_block_map_list_files, + # train_block_map_mask_list_files, + # # test_block_map_mask_list_files, + # ) = train_test_split(block_map_list_files, block_map_mask_list_files, test_size=0.2, random_state=42) + train_block_map_dataset = MinecraftBlockMapDataset(block_map_list_files, block_map_mask_list_files) + # val_block_map_dataset = MinecraftBlockMapDataset(test_block_map_list_files, test_block_map_mask_list_files) def collate_fn(batch: List[MinecraftSchematicsDatasetItemType]) -> MinecraftSchematicsDatasetItemType: block_map, noisy_block_map, mask, loss_mask = zip(*batch) return np.stack(block_map), np.stack(noisy_block_map), np.stack(mask), np.stack(loss_mask) train_schematics_dataloader = DataLoader( - train_schematics_dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn + train_block_map_dataset, + batch_size=batch_size, + shuffle=True, + collate_fn=collate_fn, + # num_workers=os.cpu_count() - 1, + pin_memory=True, + sampler=None ) - val_schematics_dataloader = DataLoader(val_schematics_dataset, batch_size=batch_size, collate_fn=collate_fn) - - model = UNet3d(unique_blocks_dict, unique_counts_coefficients=unique_counts_coefficients) + # val_schematics_dataloader = DataLoader(val_block_map_dataset, batch_size=1, collate_fn=collate_fn) + + unet_model = UNetModel( + dims=3, + dim=[len(unique_blocks_dict), 16, 16, 16], + num_res_blocks=2, + num_channels=32, + channel_mult=(1, 2, 2, 2), + dropout=0.1, + num_heads=4, + resblock_updown=True, + updown=False, + ) + model = LightningUNetModel(unet_model, unique_blocks_dict) csv_logger = CSVLogger(save_dir=path_to_output) - model_checkpoint = ModelCheckpoint(path_to_output, monitor="val_loss", save_top_k=1, save_last=True, mode="min") - trainer = pl.Trainer(logger=csv_logger, callbacks=model_checkpoint, max_epochs=epochs, log_every_n_steps=1) - trainer.fit(model, train_schematics_dataloader, val_schematics_dataloader) + model_checkpoint = ModelCheckpoint(path_to_output, monitor="train_loss", save_top_k=1, save_last=True, mode="min") + trainer = pl.Trainer( + logger=csv_logger, + callbacks=model_checkpoint, + max_epochs=epochs, + log_every_n_steps=1, + accelerator="gpu", + devices=1, + ) + trainer.fit( + model, + train_schematics_dataloader, + # val_schematics_dataloader, + ) # Save the best and last model locally logger.info(f"Best val_loss is: {model_checkpoint.best_model_score}") - best_model = UNet3d.load_from_checkpoint( - model_checkpoint.best_model_path, - unique_blocks_dict=unique_blocks_dict, - unique_counts_coefficients=unique_counts_coefficients, + best_model = LightningUNetModel.load_from_checkpoint( + model_checkpoint.best_model_path, model=unet_model, unique_blocks_dict=unique_blocks_dict ) torch.save(best_model, os.path.join(path_to_output, "best_model.pth")) - last_model = UNet3d.load_from_checkpoint( - model_checkpoint.last_model_path, - unique_blocks_dict=unique_blocks_dict, - unique_counts_coefficients=unique_counts_coefficients, + last_model = LightningUNetModel.load_from_checkpoint( + model_checkpoint.last_model_path, model=unet_model, unique_blocks_dict=unique_blocks_dict ) torch.save(last_model, os.path.join(path_to_output, "last_model.pth")) - export_to_onnx(best_model, os.path.join(path_to_output, "best_model.onnx")) - export_to_onnx(last_model, os.path.join(path_to_output, "last_model.onnx")) + export_to_onnx(best_model, len(unique_blocks_dict), os.path.join(path_to_output, "best_model.onnx")) + export_to_onnx(last_model, len(unique_blocks_dict), os.path.join(path_to_output, "last_model.onnx")) with open(os.path.join(path_to_output, "unique_blocks_dict.json"), "w") as f: json.dump(unique_blocks_dict, f) - # Save the best and last model to S3 - s3_client = boto3.client( - "s3", - region_name="eu-west-3", - aws_access_key_id=os.environ["AWS_ACCESS_KEY_ID"], - aws_secret_access_key=os.environ["AWS_SECRET_ACCESS_KEY"], - ) - s3_client.upload_file(os.path.join(path_to_output, "best_model.pth"), "minecraft-copilot-models", "best_model.pth") - s3_client.upload_file(os.path.join(path_to_output, "last_model.pth"), "minecraft-copilot-models", "last_model.pth") - s3_client.upload_file( - os.path.join(path_to_output, "best_model.onnx"), "minecraft-copilot-models", "best_model.onnx" - ) - s3_client.upload_file( - os.path.join(path_to_output, "last_model.onnx"), "minecraft-copilot-models", "last_model.onnx" - ) - s3_client.upload_file( - os.path.join(path_to_output, "unique_blocks_dict.json"), "minecraft-copilot-models", "unique_blocks_dict.json" - ) - if __name__ == "__main__": argparser = argparse.ArgumentParser() diff --git a/minecraft_copilot_ml/data_loader.py b/minecraft_copilot_ml/data_loader.py index 68d2996..c4bc4c3 100644 --- a/minecraft_copilot_ml/data_loader.py +++ b/minecraft_copilot_ml/data_loader.py @@ -43,6 +43,9 @@ "4766.schematic", "10380.schematic", "12695.schematic", + "2985.schematic", + "5096.schematic", + "5460.schematic", ] @@ -195,30 +198,36 @@ def __getitem__(self, idx: int) -> MinecraftSchematicsDatasetItemType: minimum_height, minimum_depth, ) = get_random_block_map_and_mask_coordinates(numpy_minecraft_map, 16, 16, 16) - focused_block_map = block_map[ - random_roll_x_value : random_roll_x_value + minimum_width, - random_y_height_value : random_y_height_value + minimum_height, - random_roll_z_value : random_roll_z_value + minimum_depth, - ] - focused_noisy_block_map, unraveled_indices_of_noise = create_noisy_block_map(focused_block_map) - noisy_block_map = block_map.copy() - noisy_block_map[ - random_roll_x_value : random_roll_x_value + minimum_width, - random_y_height_value : random_y_height_value + minimum_height, - random_roll_z_value : random_roll_z_value + minimum_depth, - ] = focused_noisy_block_map block_map_mask = np.zeros((16, 16, 16), dtype=bool) block_map_mask[ random_roll_x_value : random_roll_x_value + minimum_width, random_y_height_value : random_y_height_value + minimum_height, random_roll_z_value : random_roll_z_value + minimum_depth, ] = True - loss_mask = np.zeros((16, 16, 16), dtype=bool) - loss_mask[unraveled_indices_of_noise] = True - return block_map, noisy_block_map, block_map_mask, loss_mask + return block_map, None, block_map_mask, None + + +class MinecraftBlockMapDataset(Dataset): + def __init__( + self, + block_map_list_files: List[str], + block_map_mask_list_files: List[str], + ) -> None: + self.block_map_list_files = sorted(block_map_list_files) + self.block_map_mask_list_files = sorted(block_map_mask_list_files) + + def __len__(self) -> int: + return len(self.block_map_list_files) + + def __getitem__(self, idx: int) -> MinecraftSchematicsDatasetItemType: + block_map_file = self.block_map_list_files[idx] + block_map = np.load(block_map_file) + block_map_mask_file = self.block_map_mask_list_files[idx] + block_map_mask = np.load(block_map_mask_file) + return block_map, None, block_map_mask, None -def list_schematic_files_in_folder(path_to_schematics: str) -> list[str]: +def list_files_in_folder(path_to_schematics: str) -> list[str]: schematics_list_files = [] tqdm_os_walk = tqdm(os.walk(path_to_schematics), smoothing=0) for dirpath, _, filenames in tqdm_os_walk: @@ -233,18 +242,18 @@ def get_working_files_and_unique_blocks_and_counts( schematics_list_files: list[str], ) -> Tuple[Dict[str, int], np.ndarray, list[str]]: unique_blocks: Set[str] = set() - unique_counts: Dict[str, int] = {} + # unique_counts: Dict[str, int] = {} loaded_schematic_files: List[str] = [] tqdm_list_files = tqdm(schematics_list_files, smoothing=0) for nbt_file in tqdm_list_files: tqdm_list_files.set_description(f"Processing {nbt_file}") try: numpy_minecraft_map = nbt_to_numpy_minecraft_map(nbt_file) - unique_blocks_in_map, unique_counts_in_map = np.unique(numpy_minecraft_map, return_counts=True) - for block, count in zip(unique_blocks_in_map, unique_counts_in_map): - if block not in unique_counts: - unique_counts[block] = 0 - unique_counts[block] += count + unique_blocks_in_map = np.unique(numpy_minecraft_map) + # for block, count in zip(unique_blocks_in_map, unique_counts_in_map): + # if block not in unique_counts: + # unique_counts[block] = 0 + # unique_counts[block] += count for block in unique_blocks_in_map: if block not in unique_blocks: logger.info(f"Found new block: {block}") @@ -255,6 +264,26 @@ def get_working_files_and_unique_blocks_and_counts( logger.exception(e) continue unique_blocks_dict = {block: idx for idx, block in enumerate(unique_blocks)} - unique_counts_coefficients = np.array([unique_counts[block] for block in unique_blocks_dict]) - unique_counts_coefficients = unique_counts_coefficients.max() / unique_counts_coefficients - return unique_blocks_dict, unique_counts_coefficients, loaded_schematic_files + return unique_blocks_dict, np.array([1]), loaded_schematic_files + + +def get_unique_blocks_from_block_maps( + block_map_list_files: list[str], +) -> Dict[str, int]: + unique_blocks: Set[str] = set() + tqdm_list_files = tqdm(block_map_list_files, smoothing=0) + for block_map_file in tqdm_list_files: + tqdm_list_files.set_description(f"Processing {block_map_file}") + try: + block_map = np.load(block_map_file, allow_pickle=True) + unique_blocks_in_map = np.unique(block_map) + for block in unique_blocks_in_map: + if block not in unique_blocks: + logger.info(f"Found new block: {block}") + unique_blocks = unique_blocks.union(unique_blocks_in_map) + except Exception as e: + logger.error(f"Could not load {block_map_file}") + logger.exception(e) + continue + unique_blocks_dict = {block: idx for idx, block in enumerate(unique_blocks)} + return unique_blocks_dict diff --git a/minecraft_copilot_ml/generate_block_maps.py b/minecraft_copilot_ml/generate_block_maps.py new file mode 100644 index 0000000..821f681 --- /dev/null +++ b/minecraft_copilot_ml/generate_block_maps.py @@ -0,0 +1,52 @@ +import os +from typing import Optional +import numpy as np +from tqdm import tqdm +import json + +from minecraft_copilot_ml.data_loader import ( + get_working_files_and_unique_blocks_and_counts, + list_files_in_folder, + MinecraftSchematicsDataset, +) + +if __name__ == "__main__": + dataset_start: Optional[int] = 0 + dataset_limit: Optional[int] = 4096 + if not os.path.exists("/home/mehdi/minecraft-copilot-ml/cut_datasets/minecraft-schematics/block_maps"): + os.makedirs("/home/mehdi/minecraft-copilot-ml/cut_datasets/minecraft-schematics/block_maps") + if not os.path.exists("/home/mehdi/minecraft-copilot-ml/cut_datasets/minecraft-schematics/block_map_masks"): + os.makedirs("/home/mehdi/minecraft-copilot-ml/cut_datasets/minecraft-schematics/block_map_masks") + schematics_list_files = list_files_in_folder("/home/mehdi/minecraft-copilot-ml/datasets/minecraft-schematics") + schematics_list_files = sorted(schematics_list_files) + + if dataset_start is not None: + start = dataset_start + if dataset_limit is not None: + end = dataset_limit + schematics_list_files = schematics_list_files[start:end] + # Set the dictionary size to the number of unique blocks in the dataset. + # And also select the right files to load. + unique_blocks_dict, _, loaded_schematic_files = get_working_files_and_unique_blocks_and_counts( + schematics_list_files + ) + minecraft_schematic_dataset = MinecraftSchematicsDataset(loaded_schematic_files) + tqdm_minecraft_schematic_dataset = tqdm(minecraft_schematic_dataset, smoothing=0) + for idx, (block_map, _, block_map_mask, _) in enumerate(tqdm_minecraft_schematic_dataset): + tqdm_minecraft_schematic_dataset.set_description(f"Processing block map {tqdm_minecraft_schematic_dataset.n}") + block_map = np.vectorize(lambda x: unique_blocks_dict.get(x, unique_blocks_dict["minecraft:air"]))(block_map) + block_map = block_map.astype(np.int64) + np.save( + f"/home/mehdi/minecraft-copilot-ml/cut_datasets/minecraft-schematics/block_maps/{idx}.npy", + block_map, + allow_pickle=False, + ) + np.save( + f"/home/mehdi/minecraft-copilot-ml/cut_datasets/minecraft-schematics/block_map_masks/{idx}.npy", + block_map_mask, + allow_pickle=False, + ) + json.dump( + unique_blocks_dict, + open("/home/mehdi/minecraft-copilot-ml/cut_datasets/minecraft-schematics/unique_blocks.json", "w"), + ) diff --git a/minecraft_copilot_ml/metrics_graph.ipynb b/minecraft_copilot_ml/metrics_graph.ipynb index f0601c6..98188f1 100644 --- a/minecraft_copilot_ml/metrics_graph.ipynb +++ b/minecraft_copilot_ml/metrics_graph.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 20, "metadata": { "execution": { "iopub.execute_input": "2024-02-18T19:54:05.985575Z", @@ -13,7 +13,7 @@ }, "outputs": [], "source": [ - "PATH_TO_CSV = \"/home/mehdi/minecraft-copilot-ml/output/lightning_logs/version_0/metrics.csv\"\n", + "PATH_TO_CSV = \"/home/mehdi/minecraft-copilot-ml/output/lightning_logs/version_16/metrics.csv\"\n", "PATH_TO_BEST_MODEL = \"/home/mehdi/minecraft-copilot-ml/output/best_model.pth\"\n", "PATH_TO_BEST_MODEL_ONNX = \"/home/mehdi/minecraft-copilot-ml/output/best_model.onnx\"\n", "DATASET = \"/home/mehdi/minecraft-copilot-ml/datasets/875 dataset\"\n", @@ -23,7 +23,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 21, "metadata": { "execution": { "iopub.execute_input": "2024-02-18T19:54:06.004673Z", @@ -35,9 +35,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABlgAAANICAYAAACrHuJxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1zU9R/A8dcdeyMgCIiC4gAH7j1za27LHJmZtrRl0/zlaE+zUrOpWaZWWrn33nuiKE4EZMqeN35/fBiSoKDAob6fj8c97u573/G5i7zvfd+f9/utMRqNRoQQQgghhBBCCCGEEEIIIUSxaU09ACGEEEIIIYQQQgghhBBCiHuNBFiEEEIIIYQQQgghhBBCCCFKSAIsQgghhBBCCCGEEEIIIYQQJSQBFiGEEEIIIYQQQgghhBBCiBKSAIsQQgghhBBCCCGEEEIIIUQJSYBFCCGEEEIIIYQQQgghhBCihCTAIoQQQgghhBBCCCGEEEIIUUISYBFCCCGEEEIIIYQQQgghhCghCbAIIYQQQgghhBBCCCGEEEKUkARYhBBCCCGEEEIIIYQQQgghSkgCLEIIIYQQQgghhBBCCCGEECUkARYhhBBCCCGEEEKIe9jKlSupU6cOtWrV4scffzT1cIQQQogHhsZoNBpNPQghhBBCCCGEEEIIUXI6nY7AwEC2bNmCk5MTTZs2Zffu3bi6upp6aEIIIcR9TzJYhBBCCCGEEEIIIe5R+/fvp169enh7e2Nvb0+vXr1Yv369qYclhBBCPBAkwCKEEEIIIYQQQghhItu3b6dv3754eXmh0Wj4559/blpn9uzZ+Pr6Ym1tTcuWLdm/f3/eaxEREXh7e+c99/b2Jjw8vDyGLoQQQjzwzE09AFMzGAxERETg4OCARqMx9XCEEEKICsFoNJKcnIyXlxdarczHKEtyLiKEEELc7EE6F0lNTSUoKIgxY8YwaNCgm15fsmQJEydOZO7cubRs2ZKZM2fSo0cPQkJCcHd3L/HxMjMzyczMzHtuMBiIj4/H1dVVzkWEEEKIHMU9F3ngAywRERH4+PiYehhCCCFEhRQWFkbVqlVNPYz7mpyLCCGEEEV7EM5FevXqRa9evYp8fcaMGYwbN44nn3wSgLlz57Jq1Sp+/vln3nrrLby8vApkrISHh9OiRYsi9/fRRx8xffr00nsDQgghxH3sduciD3yAxcHBAVAflKOjo4lHI4QQQlQMSUlJ+Pj45H1PirIj5yJCCCHEzeRcRMnKyuLQoUNMmjQpb5lWq6Vr167s2bMHgBYtWnDy5EnCw8NxcnJizZo1vPPOO0Xuc9KkSUycODHveWJiItWqVZNzESGEEOIGxT0XeeADLLnpr46OjnIiIYQQQvyHlIkoe3IuIoQQQhTtQT8XiY2NRa/X4+HhUWC5h4cHZ86cAcDc3JwvvviCzp07YzAYeOONN3B1dS1yn1ZWVlhZWd20XM5FhBBCiJvd7lzkgQ+wCCGEEEIIIYQQQtzL+vXrR79+/Uw9DCGEEOKBc393ihNCCCGEKAcrV66kTp061KpVix9//NHUwxFCCCHEfcLNzQ0zMzOioqIKLI+KiqJKlSomGpUQQgghckmARQghhBDiLuh0OiZOnMjmzZs5cuQIn332GXFxcaYelhBCCCHuA5aWljRt2pRNmzblLTMYDGzatInWrVubcGRCCCGEACkRJoQQ5cpoNKLT6dDr9aYeinjAmZmZYW5u/sDXNS8N+/fvp169enh7ewPQq1cv1q9fz7Bhw0w8MiGEEELcC1JSUggNDc17fvHiRY4ePYqLiwvVqlVj4sSJPPHEEzRr1owWLVowc+ZMUlNTefLJJ004aiGEEEKABFiEEKLcZGVlERkZSVpamqmHIgQAtra2eHp6YmlpaeqhmNT27dv57LPPOHToEJGRkfz9998MGDCgwDqzZ8/ms88+49q1awQFBfHNN9/QokULACIiIvKCKwDe3t6Eh4eX51sQQgghxD3s4MGDdO7cOe/5xIkTAXjiiSeYP38+Q4cOJSYmhilTpnDt2jUaNWrE2rVrb2p8X1KzZ89m9uzZMvlLCCGEuAsSYBFCiHJgMBi4ePEiZmZmeHl5YWlpKZkDwmSMRiNZWVnExMRw8eJFatWqhVb74FYNTU1NJSgoiDFjxjBo0KCbXl+yZAkTJ05k7ty5tGzZkpkzZ9KjRw9CQkJwd3c3wYiFEEIIcT/p1KkTRqPxlutMmDCBCRMmlOpxx48fz/jx40lKSsLJyalU9y2EEEI8KCTAIoQQ5SArKwuDwYCPjw+2tramHo4Q2NjYYGFhweXLl8nKysLa2trUQzKZXr160atXryJfnzFjBuPGjcsrwzF37lxWrVrFzz//zFtvvYWXl1eBjJXw8PC87JbCZGZmkpmZmfc8KSmpFN6FEEIIIYQQQgghytuDO11VCCFM4EHOEhAVj/w93l5WVhaHDh2ia9euecu0Wi1du3Zlz549ALRo0YKTJ08SHh5OSkoKa9asoUePHkXu86OPPsLJySnv5uPjU+bvQwghhBBCCCGEEKVPrqwIIYQQQhQhNjYWvV5/U41zDw8Prl27BoC5uTlffPEFnTt3plGjRrz66qu4uroWuc9JkyaRmJiYdwsLCyvT9yCEEEIIIYQQQoiyISXChBBCCCHuUr9+/ejXr1+x1rWyssLKyqqMRySEEEIIIYQQQoiyJhksQgghyo2vry8zZ84slX1t3boVjUZDQkJCqezvXnbp0iU0Gg1Hjx419VDuO25ubpiZmREVFVVgeVRUFFWqVDHRqIQQQgghhBBCCFERPLABltmzZxMYGEjz5s3L98CZKXB6Jeh15XtcIYS4Q506deLll18ulX0dOHCAp59+ulT2JUR5sLS0pGnTpmzatClvmcFgYNOmTbRu3dqEIxNCCCEqiPTrcOpv2DvX1CMRQghhSvps9X2QnmDqkQhRrh7YEmHjx49n/PjxJCUl4eTkVH4HXjoWzq6Bvl9D0yfK77hCCFFGjEYjer0ec/Pbf6VUrly5HEYkRMmkpKQQGhqa9/zixYscPXoUFxcXqlWrxsSJE3niiSdo1qwZLVq0YObMmaSmpvLkk0+acNRCCCGEiRgMcO0YnNsIoRvh6gEw6sHCDpo9CeZSBvNeMXv2bGbPno1erzf1UIQQ94ON02DPLPBuBk+uAXNLU49IPEgSwiDqFNTpWe6HfmAzWEziyl4VXAG4ut+0YxFCmJzRaCQtS2eSm9FoLNYYR48ezbZt2/jqq6/QaDRoNBrmz5+PRqNhzZo1NG3aFCsrK3bu3Mn58+fp378/Hh4e2Nvb07x5czZu3Fhgf/8tEabRaPjxxx8ZOHAgtra21KpVi+XLl9/xZ7p06VLq1auHlZUVvr6+fPHFFwVenzNnDrVq1cLa2hoPDw+GDBmS99pff/1FgwYNsLGxwdXVla5du5Kamlqs4/74448EBARgbW1N3bp1mTNnTt5rueW7Fi9eTJs2bbC2tqZ+/fps27atwD62bdtGixYtsLKywtPTk7feegudLj/b0WAw8Omnn+Lv74+VlRXVqlXjgw8+KLCPCxcu0LlzZ2xtbQkKCmLPnj3F/uweZAcPHqRx48Y0btwYgIkTJ9K4cWOmTJkCwNChQ/n888+ZMmUKjRo14ujRo6xdu/amxvdCCCEeQNcvwe5v4KceMKc17JgBKTGmHlXpS78OJ/6CZc/AF7Xh+06w5X0I26uCK251oOloyE4z9UhFCYwfP57g4GAOHDhg6qEIIe51kcdgb87v4PCDsHGqaccjHgxGI4Tthz+egK+CYNk4yEwu92E8sBks5c5ohI3T859Hnbrz/WQkgo1zqQxLCGE66dl6AqesM8mxg9/tga3l7b8CvvrqK86ePUv9+vV59913ATh1Sv379dZbb/H5559To0YNKlWqRFhYGL179+aDDz7AysqKBQsW0LdvX0JCQqhWrVqRx5g+fTqffvopn332Gd988w0jRozg8uXLuLi4lOg9HTp0iEcffZRp06YxdOhQdu/ezfPPP4+rqyujR4/m4MGDvPjii/z666+0adOG+Ph4duzYAUBkZCTDhg3j008/ZeDAgSQnJ7Njx45iBaIWLlzIlClTmDVrFo0bN+bIkSOMGzcOOzs7nngiP1Px9ddfZ+bMmQQGBjJjxgz69u3LxYsXcXV1JTw8nN69ezN69GgWLFjAmTNnGDduHNbW1kybNg2ASZMm8cMPP/Dll1/Srl07IiMjOXPmTIGxTJ48mc8//5xatWoxefJkhg0bRmhoaLGyix5knTp1uu1/6wkTJjBhwoRyGpEQQtyH9NkQfwFca4H2Hp/nF30GTq+A08vh2vGCr22aDls/gsAB0Hws+LQAjabofcVfgPNb4MIWMLeBzpPApUaZDr/ELu+BRY9BRkL+Mkt7qNEJ/LtAzS5QqbqpRieEEMLUDHpY8TIYDeDRAKJOqGBLtVYQ2L/0jmM0QlYKWDmU3j7FvUmfDcH/qr+z8EP5y70aQ2psuf+NyBWX8hK6Ca7sBo1W/YMTfUb9A6Q1K9l+Nk6D3V+rVLtqrcpkqEIIkcvJyQlLS0tsbW3zGnrnXtR/99136datW966Li4uBAUF5T1/7733+Pvvv1m+fPktL0yPHj2aYcOGAfDhhx/y9ddfs3//fnr2LFla54wZM+jSpQvvvPMOALVr1yY4OJjPPvuM0aNHc+XKFezs7Hj44YdxcHCgevXqeRkLkZGR6HQ6Bg0aRPXq6gJBgwYNinXcqVOn8sUXXzBo0CAA/Pz8CA4O5rvvvisQYJkwYQKDBw8G4Ntvv2Xt2rX89NNPvPHGG8yZMwcfHx9mzZqFRqOhbt26RERE8OabbzJlyhRSU1P56quvmDVrVt4+a9asSbt27QqM5bXXXqNPnz6AClzVq1eP0NBQ6tatW6LPUpQPKcshhHhgxJyFpWPg2gmo5AuNR0KjEeDoZeqRFV9UMJz8SwVWYs/mL9dooXpbdQHJwgYO/qx+6J/4Q908GpBQfxQbzDpwNVWLj20WddOPUjV+L44RO9AmXCp4nDMroet0FZypCIGo0yvgr6dAn6kCPwF9wb8b+LQsUPolS2cgKikDHxdbEw5WCCGESRz8GSIOg5UjjPhTXfTe/TX8OwE86oNrzbvbv9EI5zfBtk8hbB/0+waajCqdsYt7S1o8HJoP+3+A5Ai1zMyKrMAhrLQbwNFML9518Sv3YUmApTwYDGomE0DLZ+HgPNClq3Tykv4jc3atCtBc3i0BFiHucTYWZgS/28Nkx75bzZo1K/A8JSWFadOmsWrVqryARXp6OleuXLnlfho2bJj32M7ODkdHR6Kjo0s8ntOnT9O/f8HZMW3btmXmzJno9Xq6detG9erVqVGjBj179qRnz555pcmCgoLo0qULDRo0oEePHnTv3p0hQ4ZQqVKlWx4zNTWV8+fP89RTTzFu3Li85Tqd7qb+Xjc2RDc3N6dZs2acPn06b+ytW7dGc8MM17Zt25KSksLVq1e5du0amZmZdOnS5ZbjufGz9PT0BCA6OloCLBWUyfrBCSEeTFmpqmSCvcetMypKk9EIh+bB2rfV7x9Qv4E2vw9bPlQX6ps8DrV7gplF+YypJDIS4eRSOPyrunCUS2sBNTtDQD+o0xvsXPNfazwSXdgh4rd+S6ULy7GIOoFz1Ov0MNpwwehJA81FzDT5WZPZRjOCzQM4Z9eUxoYT1Ew5DGteRx/8L2b9Z4EJLhLkOfAjrH5d/f6s0xuG/EymxpKLsamcPRVLaFQy56JTOBuVzKW4NCrZWnDwf91uv18hhBD3j+Qo2KSqXfDQO+DoCV2mqP5cV/bAn0/AUxvUJISSMhrh3HrY9knBLIWdM6Hx46V/PnN5tyqH2fYlycysaAwG2Pwu7PsuvxypnTvX6oxkbmpHFh9NJyM7G43mMuPa1yj3CR8SYCkPp/9VqeOWDtD+NfUPTMQRiDpZsgBLVlr+bKnEsLIZqxCi3Gg0mmKV6aqo7OzsCjx/7bXX2LBhA59//jn+/v7Y2NgwZMgQsrKybrkfC4uCF1Q0Gg0Gg6HUx+vg4MDhw4fZunUr69evZ8qUKUybNo0DBw7g7OzMhg0b2L17N+vXr+ebb75h8uTJ7Nu3Dz+/oi9spKSkAPDDDz/QsmXLAq+Zmd19ECuXjU3xTkZv/CxzgzVl8VkKIYSogLLSVMbE9cuQGqPKI6RG5z/O+zFaGXzbgW97dXOrVTYBl7R4WP6CysgAVU6qzww18/TwAvWb6Nw6dbOrDEGPQeNRULl26Y+lJIxGdYHlyK9w6p/8wJDWXAWC6g2EWt3AumBgPCY5k81nothyJoZdobEkZw7EiW4MMdvOSLON+Gmv0UhzAYAwrTc7DA3ZmFWPfYYAUjNtIBU0dGOE2SYmmf+O3eWdpH/dilUez3A9cBT1vJ2p7maHtbkWKwszrMy1mKNHc2Wv+ozPrAYrexi5TF3cutvPYPP7sONzAM5WHcwsw3Oc/Hofl+PS0BsKL6uZmW0gOSMbB+sKGCwTQghRNtZNgswkVZqp+VNqmZkFDPkZ5rZX2atr34K+XxV/n0YjhKxWgZXIY2qZuQ00e1KdQ8SfV9/Vvm1L732c+kf179BnwcXtMHYD2Nx6wqUoJ0YjrP8f7J0NgMG9Pgc8h/HJ1Xoc3p0GqN65das4MLJVdVzsLG+xs7Jx717Zu1fodbA5pwlxmwlqdpN7vZwAS3DJahFGB6vZQwAJEmARQpQPS0vLYpUw2rVrF6NHj2bgwIGACj5cunSpjEeXLyAggF27dt00ptq1a+cFO8zNzenatStdu3Zl6tSpODs7s3nzZgYNGoRGo6Ft27a0bduWKVOmUL16df7++28mTpxY5DE9PDzw8vLiwoULjBgx4pbj27t3Lx06dABUhsuhQ4fySqcFBASwdOlSjEZjXmBk165dODg4ULVqVdzd3bGxsWHTpk2MHTv2jj8jIYQQ9ym9DhYPV308bic1Bk79rW6gMlp826lbtTZg767qVt9NRsmFbfD3M5AcqbI9uk6FVuNVySvXmtBoOMSeU0GMo4tUIGj3N+rm1RgaPAL1Bt19oKAkcktOHPlNXbjJ5VZHZdk0fAzsKxfYJDVTx/rga/xzJIKdobEFAg+udpZ0rF2HoLrtca75BUTvheRrUL0NPs7VGA4MyNIRmZhBZEIGEYnpXIhJ5VSEO8PCmzEpezatzYIZEvUVuyM28Ibuaa4a3bEii7bak/TQHqSb2UFcNCkFxhQ1ty8hvZbQpHZ17K1K9nNfbzByOjweizUTqRPxDwAzsofwdehAID+72MHanFru9tT2cMA/576Whz1VHK0LZOMKIYS4z4VuUpmeGi08PLNgGwRHLxj8A/w6SH2/VmsDQUNvvT+DHs6sUqXAok6oZRa2qmxmmxfV93BWigqyHF5QegGWAz/BqlcBozpviTsHSx5XkxbMy/9i/R0zGCAr+aZJIPe8XTPzgivLq0/if5cbkXRFD6Rhaaald4MqjGxVnabVK5nsPEQCLGXt2CL1P6aNC7R6Xi3zCFT30SVsdJ8btQVIuHXJHSGEKC2+vr7s27ePS5cuYW9vX2RGRK1atVi2bBl9+/ZFo9HwzjvvlGv2xKuvvkrz5s157733GDp0KHv27GHWrFnMmTMHgJUrV3LhwgU6dOhApUqVWL16NQaDgTp16rBv3z42bdpE9+7dcXd3Z9++fcTExBAQEHDb406fPp0XX3wRJycnevbsSWZmJgcPHuT69esFgjOzZ8+mVq1aBAQE8OWXX3L9+nXGjBkDwPPPP8/MmTN54YUXmDBhAiEhIUydOpWJEyei1WqxtrbmzTff5I033sDS0pK2bdsSExPDqVOneOqpp8rmAxVCCHHvWPumCq5Y2KqSGfaVVVZI3s1N3WstVImNSzvh0g4I2w8pUeriyMmlBfdpbq0CLXk3R/WDvZIvuPrn3xyq5GfA6LJgywew6yvAqBraD/4RvBrdPGa3WtDtXVVO5Ow6FWw5t0FNRIs4Ausmq6BPg0cgsF/ZziK9fgl+6Zv/G8vSHuoPUhk1VZsVyPDR6Q3sCI3l3yPhrDsVRXp2/iSUhlWdeKiuO53ruNPA2wmt9oYf+fadbjqsraU5NSvbU7OyfYHlRmMLohIHEbJ9DjWOfkYbgllv9ha7DfVopTmFvSYjf+hGezbqm7DLUJ/JFgvxSDtH6B+P00L/JnWrutGmphttarrSpHolrC3MyNTpiUzIIDwhnfDr6VzNuQ9PSONCeDQfGb6ki9kR9EYNb+vGslzblXZ+lWjh50Ljas7U9nDA3cFKAilCCPGgy07PCUoALZ4p/Lu+5kPQ8U3Y9jGsfBk8g8C9kPLVqXHqPODgz5BwWS2ztIcWT0Pr8eo8JleTJ1RwJfhf6PUJ2Djf+XswGmH7Z+rcBaDpk9BsDMzrrc6TVr4M/WeXX2nVu6HLJHJWL1wTjnO+4zcEdB5W+sfISFIBrvLsoXfkN9WPHPhYP5K5IQ0APT4uNoxoWZ1HmlbF1d6q/MZTBAmwlKXsDNj6sXrc/lWwdlSPPeqp+6gSBliunch/nBim/iG4F/4nF0Lc01577TWeeOIJAgMDSU9PZ968eYWuN2PGDMaMGUObNm1wc3PjzTffJCkpqdzG2aRJE/744w+mTJnCe++9h6enJ++++y6jR48GwNnZmWXLljFt2jQyMjKoVasWixYtol69epw+fZrt27czc+ZMkpKSqF69Ol988QW9evW67XHHjh2Lra0tn332Ga+//jp2dnY0aNCAl19+ucB6H3/8MR9//DFHjx7F39+f5cuX4+amThS9vb1ZvXo1r7/+OkFBQbi4uPDUU0/xv//9L2/7d955B3Nzc6ZMmUJERASenp48++yzpfb5CSGEuEft+171ykADg36AgIdvvb5v25wZn2+q3yvhB3MCLjtV8CW3lJguQ91SY269Pws7lZXi6g9xoao0MkDT0dDjQ7C0u+XmmFmoMQc8DCkxEPwPnPhTlRK7tEPdVr2qynLVHwy1e6iAT2mJO4/xl4fRJEUQqa3CPw7DOencGfM0B+wPmmN/4gx2VubYW5lzJT6NlccjiE3JL3/q62rLgMbe9G/kjZ/bbd5rMWk0Gqo421Kl32vQbhD8OwHby7voqlX1540OXmTV6kNajZ6kVGlBY4OWgGw9J88+RJsdj9OWU3zMt7x0ZTyHryQwa0soluZanGwsiEnOLPSYLiTxs+VnNDI7T6bGik31P2Zoi4G85+WEpbm2VN6XEEKI+8iOL+D6RXDwgocmF71exzcgbC9c2Ap/jIJxm1VJS6NR9Wk58KPKqtXnfLdaO6nASqvnwdbl5v15NwX3QFXl5+RfKrvlThgMaoLK/u9zxvkmdJqkrrM+Mh9+fxSOLgSXGtDhtTs7Rjm6tPAFfBPUeYLv1hf57IKekUMG4+l0B71v/istHvbMzul/kqqCUJ0nF/jvYzQa+fPgVa5eT2Nkq+q4O1rf/XFD1mBc/iIaYK6uL3N1vWldw5VnOtagQ63KBSeymJjGaDQWXkD1AZHbWDYxMRFHR8fS3fneb1WdQQcvePFwfkOnlBj43B/QwNvht//RkeuHhwo2dXr9QsGGikKICisjI4OLFy/i5+eHtXUpfNGIe8alS5fw8/PjyJEjNGrUyNTDKeBWf5dl+v0oCpDPWghxx0I3wsJHVBnhrtOh3ct3v099NmQmF7xlpaj66mnxEH9BBVLiQlW/F+N/yojaVIJ+30BA37sbx/XL+Zk1USfzl5tZqQbzdR++ucF8ScWEoJ/fF7PUKM4ZvBme9TYx3D5TxtXOkr5BXgxo7E1QVaeyz+YwGPL769TqCl5Nip5od36z+psw6Aip8QRzrcaw+3wsUUn5gRVrCy3ezjZ4OdtQtZINrQ1H6XLhE+zSrmK0qYRm+B/g06Js31MxyPdj2Zs9ezazZ89Gr9dz9uxZ+ayFKA1h+1V2p3M1U4+k7MSchW/bgCEbHv1VZZreSkoMfNdelQ6tPwT82qvAyo0TyT0bQYtxqkSo5W0alO+Zo3q/eAbBM9tLPn5dFvzzbE72rgZ6fQotny64zoEf8zN0hvysJnlUUNe2/USVLRMxGDVctKhJTV0ocUYHRhjfp/9D7Xmqnd+dTZZIi4c9s9Rknqzkgq9ZO6sgS7MxJGcbeXPpcVafuAaApbmW4S2q8UzHGnce4Lm8B8OC/mj1mfyp68Bbhmd5rXtdnulQo1wDK8U9F5EAS1mdtGUmw1eNIC1WNXJqOrrg65/5q9lg4zar6Ovt6HXwkbeaRaY1B4MOnt6qahQLISo8CbA8uCTAIm5HPmshxB2JPgM/dVOBj0Yjof+s8s9u12WRHnOe2EvBpEScISs9BYtmo6hdqw7mZqWY9RCVM0v11N8qwJNLo1U13QP6Qt0+4OxTon1m/vwwVplxnDb48Kx2CuN6tsTJxoLUTB0pubcMHalZOpIzdNhYmNG7gSftarlhUZrvr7Qd/0M16gXo/gHG1uO5FJdGckY23s42uNhZqqBQUqS6QJXbj8epGoxcCpVrm27sN5Dvx/Ijn7UoV5nJKnvB+j78W7t6CH7sorI6Jxy4P6vOGI0w/2G4vBNq9YDhS4r3Pi/vgfl9Ck7MMLdWgYvmTxXv2miu1DiYUVdlvTyzXQVaiiszBf54XE1I0FrAwLnQYEjh6659W/X+MLOC0SsrxOSD/0q9dBCL+T2xJJs/HUYx8PkPyP6pNzaxJ7hk8GBQ1nSc3TyZ1q8eHWpXvv0OQX2+e2ap7J6snF5vHg1UNpK1E6ydlNf2IrNSbd5OH8nSBH8szDTU9nDgVISqZGJppuXR5lV5rpM/3s4lCLREnSLrx55YZiexUd+Yd6wmMXN4M1rWKP8kg+J+P0qJsLKy91sVXHGpAY0KaXzsHggXt6kyYcX5RyTunAquWNpD5ToqkyUhTAIsQoj71rPPPstvv/1W6GsjR45k7ty55TIOe3v7Il9bs2YN7du3L5dxCCGEKGNp8arvR7WWqr53eV8UMRohK1Vlt9/u2KmxqnRFZpIKMDz8ZZmPNz41i/0X47kYm8ql2FQuxambyoywBhqpFU9ewM7yMk19XWjpp24NqjphZW520z4T07K5HJ/Klfg0Lselkakz8EjTqvi4/GfmqkcgeExR/VqiT8OZlXB6hSpHdnmnuq19k3jn+tBkFC4tR6jyI0XIDDuCbn5/7PSJnDJU5xP3j/lteKebj3uvaviomiW8YQqsn4zGoQp+N148Muhh/4+w6T01I1WjhZbPqtIo9+MFTyFExZFwBX7spi7aDv4J6vQ09YhK15FfAaO6hhd1Eqo0MPWISt+xRep719wGen9W/POP6q2h+/sqsO9SQ5WZajSi8DJgt2PnqjJZTy2Dw79Cn2IGWNLiYeEQdU3Vwg6G/gr+XYpev/t7qgxayGpYNAzGbgQXv5KPt4wYU+NI/20EdmSzU9uMh57+FHMbG8xHL8P4Y1d8Ey6zwPoLhsS+zaif99OzXhXe6RtYdLAjNQ72fKMyVrJT1bIqDaDjWyprWJszueSZ7XD4FzLXv4vV9bN8wRT62rbEbdBn1KvXkN3n4/hq4zn2X4rnt71XWHIgjCFNfXi+U83bnmtlxlwk84e+OOqSOGCozUKfaSwf1prKDqbvs3IrksFSFjM10uLhqyD1g2fwT4VHQnOjoC2fg14f336fx5bA30+DTyvVTOjUMuj+AbSZUDpjFkKUKclgKbno6Ogie7g4Ojri7u5eLuMIDQ0t8jVvb29sbEqhpqmJSAaLaUlZDiEqmBUvw6GcPmNNRkHvL8DcsmyOZTSqi0yRxwreUqPBvR40fUJdJC+ssbsuExb0hyt7VMP5sZvLpGyw0WjkfEwKG09HszE4isNXrmMo4pejk40Fvm52OFqbcywsgaQMXYHXrcy1NKlWiQBPR6KSM7gSl8aV+DQS07Nv2peluZYn2/ryfCd/nGwsbj3I65dIOPIPcQeX4pd6Aq1GDTAVW855Pox9u2eoGdi0QAmvsBM7cF42FAdjKkcNNdjS/Dsm9G5WsTNS7oTRqGaY7vtWzdAd+RfU6AThh2HlKxB5VK3n3VQF6Eoy+7ecyLlI+ZHPWpSLzBT4uSdE5ZSF0mih5yc3l2a6V2VnwBe1ISNRPe88Wc34r0iSr8Hfz4KjNzR8BHzbg/bmCRCFMujVuccfoyAtDrpOg3avlHwMKTFg65p/sf5Ond8Mvw4EKyd4LSS/LUNRjEb4bZDazsYFRvwJVZvd/jiZKTCvl5rU4VYHnloPNs53N/bSYNBz5Zs+VLu+h8tGD5Ie30AD/+r5r8eeU5nO6dcJcWpH35hnyTJosTLXMqxFNZ7uUAOv3EBLeoLKWNn7bX7GSpWG0CknsPKfIFpGtp5py0+x5sBpXjZfyijzDZhhUJk+bSZAu4lgZc+e83F8vekcey7EAWCu1dChdmVc7SxxsLbAwdocB2tzHHMe2+kSqLFiMFUN4Zwx+LCp9Xye7dEUMxP2WpESYcVUJicS69+B3V+r9Klnthf+j8aR3+Df8eDXAZ5Ycft9rpus/thbPA0WtrBrpppl1OuT0hmzEKJMSYBFVEQSYKkY5LMWohQlR6mgRAkDIzGXTuH6S3u0Rj1GNGgwqsyQob+CndsdDcVgMJKWrSctS0daph5ddAgOZ/7ELekUZteOQUbCrXdgbg2B/VU2TfU26set0Qj/PA/HflcXFMZuUNntpUSnN3Dg0nU2no5i0+koLsWlFXi9bhUH6lZxoLqrHX5udlR3tcXPzQ5n2/zPW28wEnItmX0X49h/MZ79F+OJS83676HyVHaworqLLdVcbQm/ns6+i/EAVLK14OWutRneslqhwY/rqVnM2RrKL3suk6Uz4EYiTzsfpHvaSny1UXnrHdHW43z1x6jW5hGSLh6g5a6ncdCkc4zapAxZQtv6Ne72Y6u4DAZYOkaVALN0UDXyj/4OGNXfT9epqpR1cS+ulTP5fiw/8lmLMmcwwJ9PwOnlYFcZanRWvaVANTPv/n6F/beo2E79DX+Ozn/u2Qie2Waq0RRu07uqOX0uB09VoqvBIyrQ/t9sFF0mXNgGZ1bAmdWqUg9grByA5tkdYHabiRBlyWBQk9sTr8CgH9TElFs58BOsmqjOr8ZtBo96xT9WUgT80AWSI8Cvoyqnacr3Dlz5622qnZxNutGSLe1+p3e3boWstA8W9ANdBtcDH+fZ+OHsu3QdAAszDY81dGGi4yYqHf0OMnMCg55BKqO1ds9Cs5Mux6Xy/MLDnIpIQqOBV7rWZkK9bLTrJ8GFrWol+yrQbTo0eBS0WvZfjOfrTefYGRpb6HvRYKC79hBvmC+mpjaSCCpzZcDftGpk+gwwCbAUU6mfSCRFwteNVDmv4X9A7R6Frxd+GH7orKK2r5+/fUrd/Ifh0g7oNwv0marRUp0+MOz3ux+zEKLMSYBFVEQSYKkY5LMWohQYDLDtE9j2scr4Hr0KzAqvhpyUkc2Jq4kcDUvgWFgCx64m8E76pzxsto9N+sb8ZujGXOvZWOlTVU+KYYugSv1bHt5oNLLyeCSzt4QSk5xJapaOjGwDGgx01B5jjNlaOpidKLCNQWMBHoFovYLUj1nPRuBUVZW+OjS/YGN3V390jR4nJSkB5wNfgsZMzby8VVmLYsrSGdgZGsOq49fYeDqqQFaJpZmWVjVd6RrgTpcAj5LVz86Rmwmz72I8F2JS8XSyppqLLdVd7fBxscHW0rzAultCovlw9RlCo9UMSj83O97qVZfugR5oNBoysvXM23WJOVtDSc7JlGlVw4W3egXQyMeZ+JQMTuz4F8cTv9AwdTdmOVktMUYnbMjEXpPBacsGuD3zD5Vd7yx4dk/RZcJvg9VvyVwNh6qLmfblkw18p+T7sfzIZy3K3JaP1He01iKnl0VL2DlDXfAHdX1r8A+qTGZZ0mfDvu9UE/qi+m7cqYWPwrl10PhxNakaI7wSDE7epXucO2U0wteNVckrv44qc/bGyR5utdUF8YC+EHNGnY+cXVeguXmamSOrsxrxh90IBj3UhkFNqt5Z8/TSsu1T2PKBysQZvbLo9eIvwLftVNmrnh9Dq+dKfqzI4yoDKzvV5BWFYg/9jduK0QAsqvo/HnvqtQLZugUEL1dZRxgxdpnKbs9RfL/xJLXDlvCc+XJcNOp8K9OlDlbdpqiedjfsy2g0EpmYwbnoFE5HJjF7izr/crGz5OvHGtOullvuiqqU2rrJ6m8MoGpzlaVWVbXGOBaWwPGrKtM5OUNHcnoWvrFb6R4zn+rZ5wFIMqtExsgVuPuZPrgCEmAptlI/kVj5Chz8WX1ZjFlXdOAkK001rTca4NWz4OBR9D6NRvjEV/3D98x2NTPv90dUHbxnd979mIUQZU4CLKIikgBLxSCftShXqbFw/ZK66KrPVPe6TNUkVJepJgm51gS/TndfuqG8pCfAsqfVRY1c3d6Dti8WWG13aCzvrzpNcGTB8pMNNedZbvUOBjS87TGXxZcdqKkJ5zebGXgaIlWN7sE/qB+chQiLT+N//5xk29mYvGV2pDPYbDtPmK2npjYSAAMatmuasTqrEacMfpw1VsXa2poe9arwcENP2vrnN043GgxEnt5N1v55eIWtwtKQXuCY/3q9gmvnCbSq4XJHzeRzgyorj0eyITgqL1ABKnPkoboedA1wp33tythblX/bTp3ewOIDYXy54Wxe9ksLXxe6BXrw086LXEvKAFRGzZu96tKpduVCLyykx14mfPN3uJ9dhKNOZcZcdW6O17P/oLUuukfLfScjERYNVyWsu78PNTqaekTFIt+P5Uc+a1GmTv2jsldATRpu8nj+ayeXwt/PqXMSr8YwbMmtr4/djYxElWFyfrN6PvB7CBpaOvtOiYYv6qoG7hMOqoo1YfugzxfQfGzpHONuRRyF7zuq3imvh4KZJYRugON/wNm16hywMA6epNboyceXarEoqiq6G9p5ezlZ80zHmgxt7oO1hQkykBKvwpf1ASO8cFidw/6XQa8mrV/ZDdXbqSpCd3qOe3AerHxZlVh76ZhJslgyo86im9sRO2MaK6z70u3VX27/2e/7DtbklKtrNgbOrIIUle173uDJTN1gVhpa0b2eJ30aenH1ehqhUSmExqRwPjqF1Cx9gd01rV6JWcMb4+lUyMQbXSbsnQPbP88vNxY0XGXNOlRRz3ODMVs/gms5E5As7VWlptbj76wvTxmRAEsxlfqJxM6ZsGOGmunm2/bW637TFOJC4fG/oeZDRa+XcAVmNgCtObwdoSKvc1qBtRO8deXuxyyEKHMSYBEVkQRYKgb5rEW5iA1VJWaPLQbDzX0vblLJD5o/defNR8tLVDAsHq5myplbQ+AAOL5YXTx4bhe41iQ5I5uP1pzh9335581VK9kQ5ONMI28nHj09AadruyFoGAycy6rjkUxadhxNRgJzrb6mtSYnk+Shd6D9q3kTqLL1Bn7ccZGvNp0lI9uApZmGt1tZ0i97Dc5nlqDNmfFptHJE0/hxaDEOYyVfjl1NZOWxCFYej8wLFIAKbHSu605sShbHwhLyMknsSKev2R4eM9tMI+0FftT14n2dujjlYmdJz/pV6NPAk5Z+hQdbjEYjSek6YlIyuRibypqTNwdV3B2s6FW/Cr0beNLM18Wkta5vlJyRzXfbLvDDjgtk6gx5y72dbXi1e236N/Iu3lj12eiDV5IVdxGbts/dvk67qBDk+7H8yGctykzkcfi5B2SnqVJgPT+6eZ0re1UD8fR4cPJR1WA8Akt3HAlh8PujEB2ser8YDSrAMGq5ar5+t/bMhnVvg3czGLcJdn4JG6eBf1dVTqoCSFk5GfuDszhs35F9zb5kZKtqOFjnBAgyklTGyok/4OJ21eMtoC/U7cuujOq8sPgY8alZONlY8MnghoQnpPPdtvNEJ2cC4GZvxdMd/BjRsjp25T0x47chKlDUbqK6iP9fu2fB+snqAv5zu9R7u1PZGer6bGp08cqSlbasVK590Y4qmRc4Qh0qT1hPVTfn4m2b23oil3M16PgWJ916MnvbJdaeukZREQJzrQZfNzv8K9vTzLcST7TxvX3vuqRIlaF2LKfykqW9Oo92q62yzq8dz1/e8hloPaFC/uaQAEsxlcmJRGYyWDncfr0lj6v6k7dLLTu9EpaMUD1dntupGix9lJNi+FYYWMsJkBAVnQRYREUkAZaKQT5rUaYijqgf+cHLgZzTfkdvdYHZ3FpdXDC3UjczKzWh59LO/DrM5tZQfwi0GKtmllYkJ5fCvxPURRunaqpfimeQagB/cRv4tmd765+Z9PdJwhNUBsjIVtV4qUttKjtYqX2EblINT80s4YVD6scmEJGQzsQ/jnLwQjTvmP/KE+Yb1Pr1h0DDoVy+eJZdh49hlRaJJ3HUsEzAnXi0+htmf7r6q5l4QcPA6uZsCYPByMHL11l5PILVJyKJTSnYp8TSXEs9L0eCqjrTyMeZIB9nqtpksS9Cz6oTEaw9eY3rafnBMlc7Sx6qq0o+xaZkEpuSRWxKJnEpWWTpDfyXu4MVvRt4qqBK9UpoK0hQpTARCel8sf4sBy7FM6p1dUa2qm6ambKiXMn3Y/mRz1qUiZRo+L4zJF2Fml1U4KSI8p3EnVcBkLhQsHKEfl9DrR5gaXv344g4Ar8PVTP27auoCdE7Z6iAgq0rjN0ELn53tOuMbD3XEjNwW9gV++vBbK35Jhvs++KvjeTJI49gNLNE88aF4l0jLGVGo5HQ6BTWB0ex7mQks2OexEcbw/NZL7La0AoHa3NGta7Ok239cLO3yt9QrwOtGUbg223n+XxdCAYj1PNyZO7Ipvi42Oa9978OXeXbrefzzrOcbS14qq0fT7bzK78M2ODl8MfjYO+hSrLd+DcWEwJz26sMqb5fqb5jt5CWpeN0ZDJBVZ2KzhDe/hlsfl9VFXpmx+1bPpSAMTWWpMPLyEy8hj45BkNqHJr0eMwz4rHKSsBGdx1LYxbRRmcuDFpNq6AS9JExGGD1q3BpF7R6FhqNLNCz8FxUMnO3XSA0OjkvmFLLwx5/d3uqu9rdPqBSlKuHVPZM+MGCyy3sVGClzQsVMrCSSwIsxWTSE4mtn8DWD1Wq1MBvi15vy4cqutdoBAyYo5Z94qei+8/tLlljJiGESUiARVREEmCpGOSzFqXOaFT9FnbMgAtb8pfX7qlm91Vreevts1LhxJ+w/0eIuqFviHczaDFOZV6bW6mghJll4U1p9dmqdFdGgrpPv57/WGsGNs5g7XzDfSWVnV2cBrd6HWycmj8Lr0ZnGPJz/o+z+IsYv22DJjuNt7LHslj/ED4uNnwyuCFtat7Qc8NggO87qNIErcZDzw8LHMZgMPLDjgt8vj6ER9jIuxbzMadgiYSbadTn0+o5dTGpmCUodHoD+y7GszM0Fi9nGxpVdaZOFYdb1jXX6Q3suRDH6hORNwVbCuNgZY67oxXta1W+J4IqQsj3Y/mRz1qUOl0m/NJXlcly9VdBDBvnW2+TFg+LR6hSTqAmfXg2Uhkm1dpAtVYlvxB7ZhUsHasmY7jXgxF/qH5nWakwrzdEHgW3OjB2gzoPuYXE9Gy2nY1hy5lozsekEJGQTmxKFnU1V1hr9RZZRjOaZ35LIvaAkc2Wr1JDe42P7N8is3Y/mvu60My3Eh6OBX93ZWTruZ6WRUJaNtfTskjO0NGkWqX8ySAldDI8kRXHI9hwKooLsalAfjnUDKz4ruUGVpxOyOt1Zm2h5bHm1RjXoUZer7WkjGxe//MY606pMlKPNK3KewPqFzq5IVtv4J8j4czZep6LOcfzdrbhs0f+c95VVnRZMCMA0mLhsUVQt7dartfBT11VgM2/K4z4q8hgSLbewB8Hw5i58RwxyZn4udnxwkP+9AvyujnQkhYPX9ZTf1Oj/oUane76LWTrDaw/cIIm6x7B0xh1y3WvG+3Z0ngmgwY8ctfHLTcGg8qO2jBVJSW0fBpavwB2rqYe2W1JgKWYTHoicXoFLBmpZto9s73o9X5/DM6uUY2BWj2rln3XQTWkGrYE6vQsn/EKIe7Ygxxg8fX15eWXX+bll1++7boajYa///6bAQMGlPm4KrqSfG53SgIsFYN81uKuZKZAaoy6pURDcqQqA5Y7S0xjBvUHQ7uXSz4px2hUF0YO/KjqpxdVWkyjVdkvZpaqFrUuI7/mcklZOar6zM7V/nOrnpNdooG/nsxv2N3uFVW664bAzJYz0Rz980Ne0c8jyWjDDw0W81y/dgWaqQNw4i9Y+pQ65otHi/yRdzI8kRcXH8E97gCTzH/HHD0RRlfsKlejUf362LpVV1lBjl7qZn5nF0TuRrbewN4Lcew5H4edlTlu9pa42VvhZm+Fa85jyfgQ9xr5fix7s2fPZvbs2ej1es6ePSuftSgdRiMsn6AavVs5qZJZbrWKt60uEzZOh1N/Q3LEza9XrqsCLT6twLupCt4UNZlh77ewdhJgVJMeHpkP1o4kZWSTka3HzRCP9scu6jg1H4Lhf96UYRMWn8am01FsOB3Fvgvx6Aw3X0KdYrmQMdpV7Ldpx181P6SKozVh19Npfm4Gw3X/skzfjonZz+etX7WSDfZW5nkBlRtLYObyd7dnzUvtS5w1sDE4inG/Hswr9WRppqWtvytvaBcScHE+1BsEj8zDYDCyPjiKb7eGcuyqylo212oY0Nib3g2q8N7K01yMTcXSTMv0/vV4rLlP0U3Uc+gNRladiOSzdWcIi1cZLaPb+PJmz7rYWBbvHCQtS5f3OZtrNZibaTDTarAw06p7rRYHa3N83ewKbrj+f7D7G6jTW2UoAWz7DLa8rwJnz+9V52j/YTQaWXPyGp+tC8kLDmk05H1+RQZaVr8B+78rUAIuW2/gaFgCl+PSaOTjRM3K9rf9zDKy9fxxMIz5287wWdr/aKo9R4TRlb3axmRaOJNlVQm9tQvYuqG1d8XCoTJVffzoEFj1tvuukPTZ6lYamWnlpLjnIuXfsVDkc8+pKRkToiKrRaVK5tal82yYv8zJRwVYEqQHixBCCCHEA8GgV2UJQjeqYEpqjJo9VxgzK9VEts0Ld15rWqNRFzGqtYIeH8LhX+DQAkj8z/mn0QC6dHX7LysnsHHKyVBxVrNXDfqC2S0ZCfkBmcwkdYs9e+uxWdrDgDkYA/oRm5JFaHQCoTEp7D0fx6oTkWjpQg/bXQQazvJq1lyw+E9Tb10WbH5PPW774i1n0NX3dmLVC+35YLUr/fcGUrOyHR8MbECrGhVn1p2FmZb2tSrTvlZlUw9FCHEPGT9+POPHj8+7gCTEbWWlwY7P4eoBda5xY5nR3Mdp8Wq2ukYLj/xc/OAKqO17fgg9PlDXu67sUbfLeyA2BGLOqNuh+Wp9KyfwbqyCLbk3u8oqsLL/O7VO0ycx9PyUnRcTWbT/EBuCo/Iu4Le3n8i3TMb6/GYOfvc0xxq+g4ejFSHXktkQHMWZa8kFhufvbk/XAA+aVHPGy9kGb0cLnOe+DKnQov94WtQNyl/58rMw718etj7ByWZV2Xc5idORSVy9fvP5krlWg7OtBU42FlxLzCA0OoVfdl9ibPsaxf7oMrL1TFtxCqMR2vm7MbS5D53qVMbByhxmjlEr1RsIgFaroWf9KvSo58Gu0DjmbA1l9/k4/jp0lb8OXQVUFsqcEU0I8nEu1vHNtBr6BXnxUF13Plx9mt/3XWH+7ktsPxvD548G0aRapSK3DYtPY8GeSyw5EEbSDT3iijKosTefDGmYH4BqPEoFWM6uU70/UmNg28fqtd6fFxpc2X0+lk/WhnAsLAFQfe1efMifAY29WbQ/jO+3q4yciX8cY9bmUF7o4k/fhjmBllbPYTzwA5rQjSxbu4FV15zZeyGuQDN4dwcr2vq75dxcCzSET8rI5tc9l5m36yKxKZl8bTGLpmbnyDB3wGH0SgZVLeUeRBWFmYW63YckwGJKlfzAwlb9MI6/AJVr37xOahwkhavHHvXzl+fUh77pB64QQgghhLj/GPTwz/Oqgft/mduAfWWwc1cXFTwbQvOxYO9eese3d4cOr6ub0Qj6rJxbtpptmvtYn6n6tpSk5BeobTMSVSmxpAh1USXvdhnj9cuQHIkGIwm2vvzk9S67t1Um9M8Nec3gc2k0MKZtTWo0ngc/dVKZ4KeWqUyeXIfmw/VLql53q+e5HRtLM94f0IAJnWvhZm9ZdF1uIYQQ4n51ebc6F7l+sXjrd39fzfC/ExoNVKqubkGPqWWpcRC2V40j/BBEHFU94y5sVbdc1k7qnAJI7jCVX4wPs3jGzgKBDa0GdAYjW5K8eFH7PHMtZtIseinL19jznr5HgfWa+7rQLdCDLgEe+P03c+LcBtXw3Nb15vfq0xJsXLBMj2dKwyTo357kjGyOX03EYDTibGOJs60FzrYW2FuZ52UkLN5/hbeWneCrjecY0Ni7YH+UW/h++wWuXk/H08ma70c1zc/cDTsAiWFqckqtbv/5mDW0q+VGu1puHA1LYM6WUNYHR9G+lhtfPdYYFzvLQo50a/ZW5nw4sAHdAz14a+kJLsSmMuTb3TzbsSYvda2Flbk6NzQajew5H8e83ZfYeDoqL2vE29kGd0crdHojOoMRnd6A3mAk22BArzcSlZzJsiPhxKZm8e2IJthZmavrqT6t1N/H4V9UXxaDDgL6QoOCpbSCI5L4ZO0Ztp2NAcDW0oyx7Wswrr0fDtbq4v9znWryeOvqLNhzie+3X+BCbCqvLDnGN5tCGdrch5BryfSmJV3Zg37n12zSqWpDLnaW+LnZcSI8kejkTP4+Es7fR9Q13RpudrT1d8PG0oxF+66QnKkCSVPs/qWffg9GrTnWwxdifb8GV+5zEmAxJa0W3APUF0P0qcIDLLnZKy41Cjazzw2wJISV/TiFEGXDaCx65nFZs7AtVjO277//nmnTpnH16lW0N6Re9+/fH1dXVyZPnszEiRPZu3cvqampBAQE8NFHH9G16x2eSP/HiRMneOmll9izZw+2trYMHjyYGTNmYG+vmgVv3bqVN954g1OnTmFhYUG9evX4/fffqV69OseOHePll1/m4MGDaDQaatWqxXfffUezZs1ue9ydO3cyadIkDh48iJubGwMHDuSjjz7Czk6dUPv6+vLUU08RHBzM8uXLcXZ25u2332b8+PF5+7hy5QovvPACmzZtQqvV0rNnT7755hs8PDzy1lmxYgXvvvsuJ06cwN7envbt2/P333/nvZ6WlsaYMWP4888/qVSpEv/73/94+umnS+WzFaZ3Y1kOIW5Jr4O/n4GTf6mSXz0+AK8mOUGVyuoHc3mWCdBo8mepFpMup2zCztBYUjJ02FiaYW2hbjYWZlhbaHPunYhLteFKvCdX4xtwJT6NK/FpRCdnYoGOyiRwLcMFQ7wWuJ43HJ9Ktvi7q0acfRp45s+27PAabP1IlXKo0VnVbs9Mhu2fqtc7vgmWdoWOuTBVnB6sMp9CCCEEWamw6T3YNxcwqrKYHV5TWSv6TDXRIveW+9yzETQYUrrjsHOFun3UDdT5UXSwuqYWfgjCD0PMachIRG9mxfeub/H5xrroDecAcLA2Z1Bjbx5rUY1a7vbEpGQSmZjBtcQmHDxmoEXoV0yz+BWryjUJr9yOrgEedK7jTqVbBRmO/q7uGzxSoGE4oCaZ1O4Jx36HkDXg1x4Hawva+t+6L8kjzXz4bd9lToYn8fm6ED4e3PCW6wOEJ6QzZ2soAG/3DihYFvVUzu/LOr3AwqaQrZVGPs58P6oZyRnZBQI+d6pTHXfWvdyB6StOsSynR8vmM9F8MLABIdeSmb/7Imej8kvKtq/lxug2vnSq447ZLXrEbQmJ5vnfDrP9bAzDf9jLz6Ob42pvBU1GqQDL1o8BI9i6QZ8v886RE9Oy+XjtaRYfCMNoVFlDw1tW44WHahXa78beypznO/kzqrUvv+y+xA87VKDlozVnALig6UVXqz0MNN9NRoe3aVwvkEBPR7RaDRnZeg5fvs7O0Fh2nY/jxNUELsSm5vXEAajlbs+HNYNpfuQPADQPfwk1Ot40DnFvkACLqbkHqi+CqOC8VL0CcgMsVRoUXO7ko+4TJcAixD0rOw0+vDlVtVy8HVGsC0qPPPIIL7zwAlu2bKFLly4AxMfHs3btWlavXk1KSgq9e/fmgw8+wMrKigULFtC3b19CQkKoVq3aXQ0xNTWVHj160Lp1aw4cOEB0dDRjx45lwoQJzJ8/H51Ox4ABAxg3bhyLFi0iKyuL/fv3550IjhgxgsaNG/Ptt99iZmbG0aNHsbC4fTrq+fPn6dmzJ++//z4///wzMTExTJgwgQkTJjBv3ry89T777DPefvttpk+fzrp163jppZeoXbs23bp1w2Aw0L9/f+zt7dm2bRs6nY7x48czdOhQtm7dCsCqVasYOHAgkydPZsGCBWRlZbF69eoCY/niiy947733ePvtt/nrr7947rnn6NixI3Xq1Lmrz1ZUDFKWQxSLPls1Zw3+RzV7HfIzBPY39aiKJTwhne1nY9h+NoadobEkF6Pkw61YW1nj5FKDxm521MwJpvhXtqdGZbui+4u0mwjB/6oLMGsnwaDvYM9sVTrCpab6MS6EEEKIwl3aBf+Oz89aaTJKZabcpiF8uTAzV1m7ng2h2ZOkZelYtieEXbu2cjDJiZjUSoCR5r6VeKx5NXo38CzQC8TTySa/bFP96fBvHNqjvzE57TPo2g08qt76+OkJcGaVepybZfNfdXvnBFhWqQkyxQhamGk1TOtbjyFz97DkYBgjWlanQdVbf94frj5NRraBFn4uPNzQM/8FgyE/wFLYNcdC5GZxlAYnWwtmDG1E93oeTP77JGeuJTP42915r9tamjG4SVWeaFMdf3eHYu2zcx13fh/XkjHzD3DsaiJD5u5hwZgW+NQbAGvehKycsm4Pfwn2lTEajaw8Hsn0FcHEpmQC0DfIi1e71b65l0sh7K3MGd/ZnyfaqEDL3gtx1PNyon2tlhi2rcE8bA+Pa9aCd+u8bawtzGjj70abnGBaYno2+y7Esft8HFFJGQxs7E1X2/Nof5uiNmj7spyT3uMkwGJquc1Go4MLfz0yN8Dyn4i1c06ARXqwCCHKUKVKlejVqxe///57XoDlr7/+ws3Njc6dO6PVagkKyq8z+9577/H333+zfPlyJkyYcFfH/v3338nIyGDBggV5mSOzZs2ib9++fPLJJ1hYWJCYmMjDDz9MzZo1AQgICMjb/sqVK7z++uvUrVsXgFq1ilf796OPPmLEiBF5zeVr1arF119/TceOHfn222/zmsG3bduWt956C4DatWuza9cuvvzyS7p168amTZs4ceIEFy9exMdH/Xu9YMEC6tWrx4EDB2jevDkffPABjz32GNOnT8879o2fJUDv3r15/nlVuubNN9/kyy+/ZMuWLRJgEeJBoctSDd3PrAStBTz6S/6szQrGaDQSnZzJyfBEdp+PY9vZGEKjCza6d7a1oJ2/G97ONmRk60nP1pORbci51+ctc7KxoJqLLT4utlS74eZkY1Hy2ZTmltBvFvzUVZVXq9FJ1egG6PLOfVsHWgghhLgrWamq2XxuHxPHqtDvK/DvSkxyJufCY3GwssDB2hxHG3Vf0obsuXR6Awnp2SSkZZOYnkVCWjaONhY0rOqUV07qVuJTs/hl9yUW7LnE9bRswBdnWwuealKVx5r7UMujGBfuNRp1Qf76Jbi8E34bDKP+gcq3+N0V/I/K2KkcoDJ2ClOjs8r0uX5J9Y5xDyh8vf9o5utC/0Ze/Hs0gukrTvHns62LPAfacz6OVccj0WpgWt96Bde7uh+SI8DKEWp2Kdaxy0LP+p4083Xhf3+fZO2pa1RzseWJNr4MaVoVJ5uSn4s1rlaJv55rw6if9nMxNpVB3+7mlydbEBj0GBz4ARoOhcB+hMWn8c6/J9kaosqB1axsx4cDG9DyDvro5QZaxnf2z1+oexEW74GD81RWl1Xhf2tONhZ0r1eF7vWqqAVx5+HHkarEbkBf6DK1xOMRFYsEWEwtN8ASdbLw1/Ma3Be86JaXwZIaA9npt0zzE0JUUBa2KpPEVMcuphEjRjBu3DjmzJmDlZUVCxcu5LHHHkOr1ZKSksK0adNYtWoVkZGR6HQ60tPTuXLl7oO/p0+fJigoKC+4AiqoYTAYCAkJoUOHDowePZoePXrQrVs3unbtyqOPPoqnp5qxM3HiRMaOHcuvv/5K165deeSRR/ICMbdy7Ngxjh8/zsKFC/OWGY1GDAYDFy9ezAvitG7dusB2rVu3ZubMmXlj9/HxyQuuAAQGBuLs7Mzp06dp3rw5R48eZdy4cbccS8OG+cF1jUZDlSpViI6Ovu17EELcB3SZ8McTqn+ImRUM/Q1qdzf1qADQG4xcjE3hVEQSwRFJBEeq+7jUrALraTWq3ETH2u50qO1Gw6rOtyz5UGaqNlV9VvbMgn9UjWy8GkPggPIfixBCCFHRXdoF/z6vggIATZ6A7u+BtROJadk8/M0OopIyb9rM2kKLg7UKtthYmKHRgFajQQOg0aDVgAb1uyZTp1cBlbTsvF4Uhe2vWXUXWtd0pXVNVxp6OxXogXb1eho/7rjIkgNhpGerkrvVXGwZ16EGjzStWnR2a1HMLWHor/BzT4gNUfcjl4J3k8LXP5bTFy/osaIzU6zs1eSOc+tUtksxAywAb/Wqy/pTURy8fJ3lxyLo38j7pnV0egPTV5wCYETL6gR6ORZcIa88WG+wMG2ZUzd7K74d2YSIxAyqOFrf9Tlhzcr2LHu+DU/8vJ8z15IZ+t0efhz2Ei39OqDz78687ReYseEs6dl6LM20PN+5Js91qlmsoF2x1e4Jrv4QFwqHf4XWt+/rR/p1+P1RSI9X56MDv1ctJMQ9TQIspuaeE2C5fgkyU9Q/vrmyUiFW1Yq8KYPFphJYOqjUt8Sr4Fa8mdlCiApEoylR3XdT6du3L0ajkVWrVtG8eXN27NjBl19+CcBrr73Ghg0b+Pzzz/H398fGxoYhQ4aQlZV1m72Wjnnz5vHiiy+ydu1alixZwv/+9z82bNhAq1atmDZtGsOHD2fVqlWsWbOGqVOnsnjxYgYOvHVqdEpKCs888wwvvvjiTa/dbdmzG9nY3D4w/t+SZhqNBoPBUGpjEEJUUNkZ8MfjcG69ahj/2O/gX/6zDo1GIzEpmZy9lsKZa0mEXEvmbFQyIVHJZGTf/G+RVqN+7DapVokOtSvTzt8NJ9sKkiHS+W2VCZR7sajr9PLtWyOEEEJUdHodbPsYtn+O6rVSFfp9XeAc5OO1Z4hKysTByhw7K3OSM7JJzVLBjYxsAxnZmcQk3xx8KQ5Ha3Mq2VniZGNBREI6sSlZ7AyNZWdoLKAyCFr4udCqhgunI5NZfiwCvUF1Rq/v7cizHWvSq77n3V24t3WBJ9fAwsEQcQR+6QvDFoFfh4LrxV+AK3tAo1XZErdSp5cKsISsUVkOxeTpZMP4zjX5fP1ZPlp9hm6BHgV7qwAL913hzLVknG0tmNjtP32dDXo49Y96XMzyYGVNo9Hg7Vx6E8Q9HK1Z8kxrxi04yP6L8Tz+60le71GffzYe4FREEgAt/Fz4cGAD/N3tb7O3O6DVQusJsPJl2DsHWjytStcVRZcFSx5XARlHbxi2GCyLP/lVVFwSYCkDeoOx+P+g27mCvQekRKl0wao3NF+OOgUY1esOHgW302hUmbDoYFUmTAIsQogyYm1tzaBBg1i4cCGhoaHUqVOHJk3ULJ5du3YxevTovKBFSkoKly5dKpXjBgQEMH/+fFJTU/OyWHbt2oVWqy1QIqtx48Y0btyYSZMm0bp1a37//XdatWoFqNJdtWvX5pVXXmHYsGHMmzfvtgGWJk2aEBwcjL+//y3X27t3703Pc7NbAgICCAsLIywsLC+LJTg4mISEBAIDAwGVnbJp0yaefPLJEnwqQoj7XlYaLB4OF7aAuQ0MzylrVQ4ydXrWn4ri0OXrnLmWxNmoFOJTCw+Y21qaEeDpSKCnI4Fe6r5OFYeSzxYtL5Z20O8bVfKjVndpIiqEEELcKOGK6vkWtk89bzQSen4E1vkZEfsvxrNov6pU8MMTzWiVU2ZJbzCSkqEjKSObpIxskjN0ZGTrMQIYwWA0YjSCkfzHluYanG0tqWRribONBY42FgWuoxmNRs5Fp7A7NJY9F+LYeyGexPRsNp+JZvOZ/Iz+tv6uPNfRn7b+rnfdlD2PnSs8sUKdj13crs4dhsyDgIfz1zm2RN3X6ASOnoXuJk+dXuoCfPhBSL4GDlWKPZSx7Wuw5GAYYfHpzNlyntd65P8Ojk/N4ov1IQC82r0OlewsC258ZS+kXAMrJ6j5ULGPea9xsrFgwZgWvLz4KGtPXeOD1afzlr/duy6PNPVBW5YZ1EGPweb3VY/s4H+gwZDC1ws/BOunqBJ0lvYwfEmJ/hZExSYBllK24lgEn647ww+jmlG3iuPtNwBVJiwlSpUJuzHAcq2I/iu5nHICLNLoXghRxkaMGMHDDz/MqVOnGDlyZN7yWrVqsWzZMvr27YtGo+Gdd94ptQyLESNGMHXqVJ544gmmTZtGTEwML7zwAo8//jgeHh5cvHiR77//nn79+uHl5UVISAjnzp1j1KhRpKen8/rrrzNkyBD8/Py4evUqBw4cYPDgwbc97ptvvkmrVq2YMGECY8eOxc7OjuDgYDZs2MCsWbPy1tu1axeffvopAwYMYMOGDfz555+sWqWaHHbt2pUGDRowYsQIZs6ciU6n4/nnn6djx440a6b+nZ86dSpdunShZs2aPPbYY+h0OlavXs2bb75ZKp+fEOIekpWmZkFe2KpmN8adAws7GPEH+LYr88NHJqbz+74rLNp/hdiUm8t8+braUaeKA7U9HKhbxYE6VRzwdbUr2x+rZcGvA7waUmR9bCGEEOKBdOpvWP4SZCaqXh0Pf3nTReJMnZ5Jy9Q1qsea++QFV0A1ZXeytSjVrFWNRkNtD3XuMbqtH3qDkdORSew5H8e+i3E4WlvwZFu/2zZ/v2NWDjD8T1j6lMqA/eNxNVGj8UjVOP7YIrVe0PDb78uhCng3VRfYz66FpqOLPQxrCzMm9w7k2d8O8f2OCzzazIdqrirj4fP1ISRl6AjwdGR4i0IqLeSWBwt4WJU/u49ZW5gxe0QTpq84xa97L9O3oRfvPBxIZQersj+4hY3KXNn6Iez+GuoPLpglHXMWNr8Hp5er52aWKmBXpUHZj02UGwmwlLI1JyMJi0/n3RXBLBzbsngRdPdAOL8Zov7T6D6vwX0R/9NJo3shRDl56KGHcHFxISQkhOHD808iZ8yYwZgxY2jTpg1ubm68+eabJCUllcoxbW1tWbduHS+99BLNmzfH1taWwYMHM2PGjLzXz5w5wy+//EJcXByenp6MHz+eZ555Bp1OR1xcHKNGjSIqKgo3NzcGDRpUoKF8URo2bMi2bduYPHky7du3x2g0UrNmTYYOLZj6/eqrr3Lw4EGmT5+Oo6MjM2bMoEePHoD6QfDvv//ywgsv0KFDB7RaLT179uSbb77J275Tp078+eefvPfee3z88cc4OjrSocN/Us+FEPcngx4ijqoslQtb1WxR/Q2BDStHGP4HVG9d1B6KFJeSyfW0bKpWsrllNonRaGTfxXgW7LnEulNReSU2qjha06ehJwGejtSt4oC/u33FzUq5E7Yuph6BEEIIUTFkpcHat+DwL+p51eYw+Eeo5HvTqt9uPc/5mFTc7K2Y1Kv4fURKi5lWQ31vJ+p7OzGuQ43yOaiFNTzyC6x8CY78Bv+Oh/QE1ZMl4bIq21+3T/H2Vae3CrCcWV2iAAtAj3oetPV3ZVdoHB+sDua7x5txMjwxL5toer96N1fRMegh+F/1uIKUBytrZloN7/avz9u9A8r/3LX5WNg5AyKPwaUdalJP4lXY+jEcXQhGA6BR2S6dJkGl6uU7PlHmJMBSyib1CmDj6Wh2n49jfXAUPeoVI90rt9F99H8CLHkN7m+RwQKQIBksQoiypdVqiYiIuGm5r68vmzdvLrBs/PjxBZ6XpGSY0Wgs8LxBgwY37T+Xh4cHf//9d6GvWVpasmjRomIf97+aN2/O+vXrb7mOo6Mjf/zxR5GvV6tWjX///feW+xg0aBCDBg0q9LXCPrejR4/ecn9CiHvA9s9g9zeQkVhwuaM31OisSlfV7KLKU5TAuahk5m67wL9Hw9EZjGg04OVkQ3VXW6q72uHnpu6rudhy+Mp1Fuy+TEhUct72Lf1ceKKNL90CPbAwk0abQgghxH3t2kn4a4xq5o4G2k9UF37Nbs5CCY1OYc6W8wBM7RtYcfqrlQczc+g3S/VB3v0NrJ+cfy2uXv/i98+o01tlMVzYqvot36oXa9x5yE4DO3ewdUVjZs7UvvXo9dUO1p2KYue5WGZuPIvRCP2CvGjhV8jkkcu7IDUarJ3LrdRsRWGSiUF2rtBoBBz8SZ3rn10H+38AfU4/ojq94aF3wCOw/McmysUDG2CZPXs2s2fPRq/Xl+p+fVxsebp9DWZtCeWDVafpWLvy7f/nzg2wRJ0Eo1Glkumz8zNaiioR5pyTAiglwoQQQgghKr7Le1SNZlD1sP3aqx+9NTqDa807arp+6PJ1vt16no2no/KW2VqakZalJzwhnfCEdHafjyt0WxsLMwY28WZU6+rFL20rhBBCiHvb4V9h1avq4q99FRj0XZEX4Q0GI28vO0GW3kDnOpV5uOFt+o3cjzQa6PYe2LjApun51+CChhV/H+4BKjPo+iVVwSag783rJF+DdZPh5F83HhxsXaht584GV1tOJFhxYeFCLLIaYWPRkEm96xZ+vLzyYH0LDZqJMtB6PBz8WfXtubhdLaveFrpOA58WJh2aKHsPbIBl/PjxjB8/nqSkJJycSrdm43OdavLnoTCuxKfx866LPN/p1o2ScasDGjNIv67+QXX0hNiz6svO0gEq+RW+XW6ARTJYhBD3gIULF/LMM88U+lr16tU5depUuYyjV69e7Nixo9DX3n77bd5+++1yGYcQ4gFjNMKGd9TjRiOh71dqVuQd7crI1pAYvt16nv2X4gH12797oAfPdqxJIx9n4lOzuBSXyqXYNC7HpXIpLv/e1d6S4S2q8UgzH5xs5Ee3EEI8qMpq4qmowM6sguUvAEao1QMGzAE7tyJX/+NgGPsvxWNjYcZ7A+qXXiP5e40mJ8vHphKsfAXcakO1NiXbvk4f2Dtb9du7McCi18H+72HLh5CVDBot2LpCaixghLQ4SIujBlAjZ/72KMtVXK7UGs90b3D6T1sBvQ6Cc/p9PCDlwSoE15qqd9GJP1Wrhy7TwL/LHU2gEveeBzbAUpbsrMx5q1ddXllyjFmbQxncpCoejtZFb2Bhrf5HjD0L0adUgOXG/ivaIso05KYlJkeojBeJSgshKrB+/frRsmXLQl+zsCi/f79+/PFH0tPTC33NxaV4tflLUvZMCCEACP4Hrh5Qzeu7TLnj4Mrak9eYufEsZ66p8l4WZhoGNa7K0x1rULOyfd56rvZWuNpb0bS69BwRQghRuLKceCoqoMhjsHQsYISmT6pm9re4+BudnMGHq08D8Gr32lStVMxyWPezZk+q/hrWzkVfqytKnV4qwHJ2reqRojWDK3tVNlHUSbWOd1PoMwO8Gql10uIgJVqV+0qJ4VBwCKGnDjHYfAfVr++Bue2h4aPQeXJ+X49LOyAtVmXc+HUszXcvbqf/bGjzInjUL/nfh7inSYCljPQP8mbBnsscuZLAp2tD+OLRoFtv4B6oAixRp8C/K1w7oZYX1X8FwK4ymFmpTJek8EIbkQkhREXh4OCAg4ODqYeBt7e3qYcgikGv1zN//nw2bdpEdHQ0BoOhwOtF9ea5l8is0QeILgs2TleP27wADh4l34XewEdrzvDTzosA2FmaMaJVdca09aOK0y0m8gghhBBCJEXC74+p3h41OkPvz247s/7dFcEkZeho4O3E6Da+5TPOe4FrzTvbrlprFZhJi4OQ1RCyFo7+pl6zqaRKSTUelX9hXmsG9u7qlqNJQyMxp6KIto3H69BncGoZHF+iSoK1eBrav5pfHiyw3x1P6BF3yNzq1tdxxX1L/k8rI1qthql96zFg9i6WHr7KqNbVCfJxLnoDj/pqZmNu35XcBvdF9V9RBwFnH4gLVWXCJMAiRIX33ybuQphSRf57fOmll5g/fz59+vShfv37sxyBzBp9gBz8Ga5fBHsPFWApofjULCb8fjivl8ozHWrwfCf/B6vJrBBCCCHuTFYaLHpMVT9xqwOPzL9tBZTNZ6JYeTwSM62GjwY1wNxMZuPfNTNzqN1DBUSWjMxf3vhx6DpdNUq/DY1GQ8/6VYAqUGOeOq/cOFX1/NgzS/XXMeZM3pLyYEKUGwmwlKFGPs4MauLNssPhTFtximXPtSn6ApFHoLqPPqVqdF+7oUTYrTjlBFik0b0QFVpuCay0tDRsbGxMPBohlLS0NKB8S7QV1+LFi/njjz/o3bu3qYcixN1JT4Btn6jHnSaBlf0tV/+v4Igknv71IFevp2NracaMR4PoWf8BbDArhBBCiJIzGODvpyHyqCoZNXwJ2DjfcpPUTB3v/KP6Yz7Vzo/63jIRqNTU6a0CLAAeDaDPF1Ct8DLaxeLdBEYth9BNKtCSW2rMrjJUb3f34xVCFIsEWMrYmz3rsvbkNY5cSeDfoxEMaFxEaRr3nABLTAjEX4CMRNBaQOW6tz6Ac04floQrpTdoIUSpMzMzw9nZmejoaABsbW3vyxn54t5gNBpJS0sjOjoaZ2dnzMzMTD2km1haWuLv72/qYQhx93bNhPR4NWO08eMl2nT5sQje+OsYGdkGqrva8v3jzahTxfSlFoUQQghxj9j8HpxeAWaW8Njv4OJ3y9WNRiMfrzlDeEI6VSvZ8HLXWuU00AdEQF814cbeXZUDK40SXhoN1OoKNR+CE3/AoV+g8UgpDyZEOZL/28qYh6M14zv789m6ED5ac5pugR7YWRXysTtXB0t7yEpRNRQB3APA3PLWB3Cqpu4TJINFiIquSpUqAHlBFiFMzdnZOe/vsqJ59dVX+eqrr5g1a5YEI8W9K/Eq7P1WPe42vdg/dPUGI5+uO8N32y4A0KF2Zb55rLGUBBNCCCFE8R39HXbOUI/7fg3VW99y9Sydgbf/PsFfh64C8P6A+thaymXDUqU1g05vldG+tRD0mLoJIcqV/EtZDp5q58fiA1cIi09n7rbzvNq9zs0rabUqoHL1ABxbrJYVpzFSbgZLomSwCFHRaTQaPD09cXd3Jzs729TDEQ84CwuLCpe5MmjQoALPN2/ezJo1a6hXr95NZcyWLVtWnkMT4s5sfh90GapEQ+2exdokMS2bFxYfYfvZGACe7ViT13vUwUwrgUYhhChvCQkJ7N+/n+joaAwGQ4HXRo0aZaJRCVEMl3fD8hfV4/avQaNht1z9emoWz/x2iP0X49FqYHq/enSq437LbYQQQigSYCkH1hZmTO4dwLO/Heb77Rd4tJkPPi62N6/oHqgCLHGh6nmVoNvv3FkyWIS415iZmVW4C9tCVAT/bfQ+cKA0ZhT3sMjj+ZNmur+nyjfcQka2niUHwpizNZSopEysLbR8NiSIvkFe5TBYIYQQ/7VixQpGjBhBSkoKjo6OBTJqNRqNBFhExRV3HhaPAEM2BPaHzpNvufr5mBSemn+AS3FpOFiZ883wxhJcEUKIEpAASznpUa8KrWu4sudCHB+vOcPsEU1uXsmjfsHnxclgccrNYLmqmpdptXc/WCGEEMIE5s2bZ+ohCFF6NkwBjFB/iGpAWoT/BlYAqrnYMndkUwK9HMtpsEIIIf7r1VdfZcyYMXz44YfY2hYyQVI8uIxGSLgM2RkqiKHPAr0u53HOTaMFR09w9AZrp9tOtCg1WWkquJIeD15NYMDcW14n2n0+lmd/PURSho6qlWz4eXRzantIvzchhCgJCbCUE41Gw5S+gfT5egerTkTyxMV4Wvi5FFzJI/DGLcCj3u137OAJGjP1RZ5yDRxllqMQQoh738WLF9HpdNSqVbCx5rlz57CwsMDX19c0AxOiOEI3woUtqqFsl3cKXSUjW88fB8OYs+U815IyAPB0Ur37HmlWFStzyXQUQghTCg8P58UXX5TgirjZihfh8ILir29hB07eKtiSe1+5LtQbWPqBl/WTIeY02HvAsEVgWfTf7+L9V/jfPyfRGYw0qebM96Oa4WZvVbrjEUKIB4AEWMpRgKcjQ5tXY9H+K8zaEsoCvxYFV3C/IcDiUgOsijFrwMxcfTknXlFlwiTAIoQQ4j4wevRoxowZc1OAZd++ffz4449s3brVNAMT4nYMelg/RT1u8TRU8i3wcqZOzx8Hwpj9n8DK8539eVQCK0IIUWH06NGDgwcPUqNGDVMPRVQkF7fnB1dsKoHWQk2oMDMv+Nigh6QIlUmSnQqxZ9XtRkYDNBhSemMLXg4Hf1aPB84FhyqFrqY3GPlk7Rm+334BgH5BXnw6pCHWFnIOIoQQd0ICLOXs+U41WXLgCtvPxnA6MokAzxtKP9i6gIMXJEcUrzxYLudqKsCSGAa0LPUxCyGEEOXtyJEjtG3b9qblrVq1YsKECSYYkRDFdGwRRJ9S5UDavwqoxrFbz0az8XQ020NiSM7UAVDF0ZrxnWvyaHMfCawIIUQFsHz58rzHffr04fXXXyc4OJgGDRpgYWFRYN1+/fqV9/CEqemyYJX6bqfZU/DwjNtvk5WmAi1J4eqWGA6XdsDFbXDgp9ILsCReheUvqMdtX4KaDxW6Wlh8GpP/Ocn2szEAvNSlFi93rVWgx5AQQoiSkQBLOfNxsaVXA09WHY/kh+0XmDG0UcEVqtTPCbAUo8F9LmcfuIyqASqEEELcBzQaDcnJyTctT0xMRK/Xm2BEQhRD4lXYOA2AmMYv8tf+62w6fYbDV65jMOavVsXRmuc71+TRZj4yW1QIISqQAQMG3LTs3XffvWmZRqOR85EH0e6vVRaKXWXoMqV421jagpu/uuVqPAK+rA9XdkP0aXAPuLtxGfSwdBxkJKi+K53/d9Mq2XoD83Zd5MsN50jP1mNpruWzIQ3p38j77o4thBBCAiym8EyHGqw6HsnyYxG81qMOXs42+S92nqxKfjUbU/wd5ja6Twgr3YEKIYQQJtKhQwc++ugjFi1ahJmZugCt1+v56KOPaNeunYlHJ0QhstIw/D4MbWoM5zS+9NniTxZn8l6uW8WBLgHudAnwIKiqM2ZamSkqhBAVjcFgMPUQytXs2bOZPXu2BIuKI/4ibP9MPe7+Adg43/m+HL2gTi84sxIOzoPen97d2LZ/roI1lvYw5Ccwtyzw8pEr13n775OcjkwCoIWvCx8Oqo+/uzSzF0KI0iABFhNoWNWZVjVc2Hshnnm7LjK5zw29V7wagdfMku3QOSfAkigBFiGEEPeHTz75hA4dOlCnTh3at28PwI4dO0hKSmLz5s0mHp0Q/2E0EvXrGDyijhNrdGR0xitgbkWnmq50qetO57ruVK0kTZKFEEJULOPHj2f8+PEkJSXh5ORk6uFUXEYjrHkDdBng2x4aPnr3+2z+lAqwHFsEXaeCpd2d7efKXtj2sXrcZ4bq55sjKSObz9eF8OveyxiN4Gxrwdu9AhjStCpameghhBClRmvqATyonulQE4BF+8NIysi+u505V1P3ksEihBDiPhEYGMjx48d59NFHiY6OJjk5mVGjRnHmzBnq169v6uGVitmzZxMYGEjz5s1NPRRxF8Li0/jn61fwCFtDltGMyRZv8trQrhx5pxvzn2zB4619JbgihBD3oBdffJGvv/76puWzZs3i5ZdfLv8BCdM5vQLOrVdN7PvMgNLoV+LXCSr5QWYSnFx6Z/tIvw5Lx4LRAA0fg6ChABiNRlafiKTrF9tYsEcFVwY18WbTxI482txHgitCCFHKJIPFRDrVqUxtD3vORqXw+74rPNux5p3vzOmGDBajsXS+7IUQQggT8/Ly4sMPPzT1MMqMzBq9t2Xq9Py44yKnNy9kltk8ADb6vcGMYc9iZyWn2EIIca9bunRpgab3udq0acPHH3/MzJkzy39QovxlJsPat9Tjti9B5dqls1+tFpo9CRumwMGfocmokm1vNMKKl9R1oEp+0OfznMVG3vjrOH8eugqAn5sdHwyoTxt/t9IZtxBCiJvIrz8T0Wg0jGtfg9f/Os68XRd5sq0vVuZ32OTUqaq6z06DtDiwky9OIYQQ976EhAR++uknTp8+DUC9evUYM2aMBCPEndFlqkaykcfUZJRGI9XFjTuw81wsU/49iUXcaZZZzgbgeoMn6T34rdIcsRBCCBOKi4sr9JzD0dGR2NhYE4xImMTWjyEpHCr5QofXSnffjUbC5vch4giEHwbvJsXf9vACCP4XtOaq74qV6qeyYM9l/jx0FXOthuc7+/N8p5pYW9zhtSYhhBDFIiXCTKh/I288HK2ISsrk36MRd74jcyuwr6IeJ1wpncEJIYQQJnTw4EFq1qzJl19+SXx8PPHx8cyYMYOaNWty+PBhUw9PVHRZqXBlH+z/Af4dD3PbwYfe8H1HWPEiLH8BDv1c4t0ajUYm/32CkT/t43psJD9bzcBOk4nRryOVBnxeBm9ECCGEqfj7+7N27dqblq9Zs4YaNWoUsoW471w7CXu/VY97fw4WNqW7fztXCBygHh8swXlJTAiseVM9fugd8G4KwLGwBN5fFQzApN4BTOxWW4IrQghRDiSDxYQszbU82daPj9ec4YftFxjS5C4ajTn7QMo1lR5aklkPQgghRAX0yiuv0K9fP3744QfMzdXpik6nY+zYsbz88sts377dxCMUFUpqLFzeDZd3waVdEH1K1SP/L5tKKvP32gnY/AHUH6yWFdNn60JYuO8Klhodf7t+h3dKNFTyQ/PIfDCT02ohhLifTJw4kQkTJhATE8NDDz0EwKZNm/jiiy+kPNiDwGCAla+AUQ8B/aBWt2JvuuNcDP8ejWB0G1/qe98m87rZGDjxh+rD0v19sHG+9fpZafDnk6BLhxqdoM2LACSmZTP+98Nk6430qOfBmLa+xR6vEEKIuyO/BE1seMtqzNocyrnoFLaejeahuh53tiPnanD1gDS6F0IIcV84ePBggeAKgLm5OW+88QbNmjUz4chEhZB8DS7tzA+qxJy5eR37KuAZdMOtoepbZ9CrjJaY07DtU+j5UbEOuXDfZeZsPQ/A6tqr8L18BCwdYNgisHUpzXcnhBCiAhgzZgyZmZl88MEHvPfeewD4+vry7bffMmpUCftliHvPkQVwdT9Y2kPPj4u9WUxyJs8vPExyho5lh68yuo0fE7vXxr6o/mzVWoF7IEQHw/E/oOXTRe/caIRVr6qJJHaVYeB3oNViNBp57a9jXL2ejo+LDZ8OCUIjvXmFEKLcSIDFxBytLRjeshrfb7/Ad9su3HmAJbfRvZQIE0IIcR9wdHTkypUr1K1bt8DysLAwHBwcTDQqUSFs/Ri2FhIUcQ+E6m2geluo1hocPQvf3sxcBVV+HQD7v4emo6FynVsectPpKN755yQAP9U7jv/5JYAGBv8A7gF39XaEEEJUXM899xzPPfccMTEx2NjYYG9vb+ohifKQGgsbpqrHnd8GJ+9ib/rR6tMkZ+hwtDYnKUPHz7susvpEJFP7BtKzfpWbAx8ajcpiWf0aHPwJWoxTywpzeAEc+x00WhjyMzioUvE/7bzIhuAoLM20zBneFCcbizt510IIIe6Q9GCpAJ5s64u5VsO+i/EcC0u4s5045wRYEiWDRQghxL1v6NChPPXUUyxZsoSwsDDCwsJYvHgxY8eOZdiwYaYenjCV65dV1glAlYbQ6nkY+hu8fgGe3wN9voD6g4oOruSq2Rnq9AGDDtZOUjNCi3AsLIEJvx/BYIQ3A2J56GJOr5UuU6BOr1J6Y0IIISqqmJgYQkJCOHr0qDS3f1DsmAEZCeDRAFo8U+zN9l6IY9mRcDQaWPBUS34Z04LqrrZcS8rguYWHGTP/AGHxaTdv2PBRsLBVGblX9hS+88hjsPp19fih/4FfBwAOX7nOx2tUJu//Hg6gQdXblCQTQghR6iTAUgF4OtnQr5EXAN9vv3BnO3Gqpu4rcokwXSYEL4cjC1U9UyGEEKIIn3/+OYMGDWLUqFH4+vri6+vL6NGjGTJkCJ988omphydMZeeXqhZ6jc7w7A6ViRLQVzWJLaaEtCyOhSVg7P4emFnC+U1wbn2h616JS+OpXw6Qnq1nQA0jz0a9i8agg3qDoN0rpfWuhBBCVECpqamMGTMGT09POnToQIcOHfD09OSpp54iLa2Qi+Ti/hF5VN23eaHYPdaydIa8bNfhLarRyMeZjrUrs+7lDrz4kD8WZhq2hMTQdcY2Zm8JJUt3wzURaydoMEQ9LqzZfXoC/DEK9JlQuye0Vecg11OzmLDwMDqDkT4NPXm8VfU7fMNCCCHuhgRYKoinO9QAYM3JSK7E3cHJmnNOgCWxgpUIMxoh4iisfgO+qAN/PA7/Pg9Ln1IBFyGEEKIQlpaWfPXVV1y/fp2jR49y9OhR4uPj+fLLL7GysjL18IQpJIbD0YXqccc37mgXR65cp9uX2+k/exfdf7lKcPWR6oW1k0CXVWDd66lZjJ63n9iULBpVseILw6do0mLVbNb+s4ou3yGEEOK+MHHiRLZt28aKFStISEggISGBf//9l23btvHqq6+aeniiLOWWXnepUexNft51kXPRKbjaWfJGj/wSt9YWZkzsXoc1L3WgdQ1XMnUGPlsXQq+vtrP2ZCQGQ04WbbMx6j74X1WiLJfRCP88D9cvqes+A+eCVovBYOTVP48RkZiBn5sdHw9qIH1XhBDCRCTAUkHUreJIx9qVMRjhx513kMWSWyIsI1HdTC0lBvbMhm/bwvcdYf93kH5dNZzVWsCpZbBwCGQkmXqkQgghKjBbW1ucnZ1xdnbG1tbW1MMRprTrK9BnqR4r1duUePN/j4Yz9Pu9xCSrCR7nolN4JLgtMThD/HmSts/OWzcjW8+4BQe5EJuKt5M1izwXYXbtGNi6wmMLwdKutN6VEEKICmrp0qX89NNP9OrVC0dHRxwdHenduzc//PADf/31l6mHJ8qKPhuSwtXj3Imst3H1ehpfbTwHwNu9A3CyvbkHir+7Pb+Pa8nMoY1ws7fkfEwqz/52mD7f7GTdqWsYPRuBVxN1rnPkt/wNd38NIatU1u2jC8CmEgDf77jA5jPRWJprmTW8MQ7W0ndFCCFMRQIsFcgzOVksfxwMIz416zZr/4elHdi4qMemLBMWFQyLhsOMurDubYg+BWZWqpTGiKUwMRhG/AmW9nBxO8zrDcnXTDdeIYQQFZJOp+Odd97Byckpr0SYk5MT//vf/8jOzjb18ER5S46Cw7+oxx1eL9GmBoORL9aH8NLio2TpDHQNcGfPpIf4X58AKlVy4dPsRwHQbPuEyb9u4vCV60z84ygHL1/Hwdqcv5sexeb0X6Axg0fmQyUpvyGEEA+CtLQ0PDw8blru7u4uJcLuZ0nhYDSAuTXYuxdrk3dXBJOeraeFnwuDmngXuZ5Go2FAY282TezECw/5Y29lzunIJJ759RAPf7OTU145ZcIOzVNl1S/tgo3T1bJen4BXYxLSsvj3aDifrQsBYHq/etTzkr4rQghhSsUrJinKReuartT3duRkeBJ/HgzjmY41S7YDZx9Ij1eN7qvUv/l1gwHWT4aQNfDwDKj5UOkMPJfRCIuG5qfTejeFRsOh/uC8WRaAaiw7ehUsfASiTsCP3eDxZeBWq3THI4QQ4p71wgsvsGzZMj799FNat24NwJ49e5g2bRpxcXF8++23Jh6hKFd7vgFdBlRtDjU6FXuztCwdr/5xjDUn1WSOZzrW4I0edTHTahjbvgZPtvVjw6m6nF++hZrZ56gf8g2DTo0DwNJMy5KuGbhvel/trMeHeQ1lhRBC3P9at27N1KlTWbBgAdbW1gCkp6czffr0vHMTcR/KvZ7hVLVY5UA3nY5ifXAU5loN7w+oX6wyXU62FrzavQ5j2vrxw44L/LL7Eqcikhgc4clBGzvsr1/CeHwxxg1T0Rr1hHj04eszQRzfvJmw+PS8/Qxo5MVjzX3u+K0KIYQoHRJgqUA0Gg2PNa/G/8JPsvJ45B0EWKpB5LHCM1iMRlg1Uc2EAFj4qKrdmdtIrTSEH1YnI5b2MHYjuAcUva5XI3hqPfw2COIvwE/dVWZL1WalNx4hhBD3rN9//53FixfTq1evvGUNGzbEx8eHYcOGSYDlQZIaBwdyGr52eKPYvU8iEtIZt+AgpyKSsDTT8sHA+jzSrOBFCDOthp4NvMBpNvzcnaHmW1ls7M5xQ3Vm965E4M7H1CzWRiOg5TOl/c6EEEJUYF999RU9evSgatWqBAUFAXDs2DGsra1Zt26diUcnykxugKUY5cHSs/RMXX4KgKfa+1Hbw6FEh6pkZ8kbPesytn0Nvt9+gQV7LvFndjueNF+H8Z/n0WIkxFCVAZcHk05+5Y/qrra083fj7d4B0ndFCCEqAAmwVDC96ldh6vJTnAhP5FJsKr5uJajx7ZRzApBwueByoxFWv66CKxotVG0BYXtVo/mUaGj9fOkM/vRydV+r+62DK7lc/GDMevj9UYg4DPMfhkd/gdo9Smc8Qggh7llWVlb4+vretNzPzw9LS8vyH5Awnb2zITsVPIOgVrdibXLkynWe/vUQMcmZuNpZ8t3jTWnm61L0BtVaQoNH0J74k7/8/uVqrwX4/TtQ9Y/zbgp9ZkhTeyGEeMDUr1+fc+fOsXDhQs6cOQPAsGHDGDFiBDY2NiYenSgzuRNWixFgmb0llKvX0/FysubFh+68IoeLnSVv9arLuPZ+LF1ngBPr0GIkxWjNu7aTeKiOHw2qOtHA24n6Xk6F9ngRQghhOhJgqWBc7a1oU9OVHediWXk8ggkl+ZLObXSfeEMGi9GoeqEc+AHQQP850HAorH1LNZ5fNwlSrkHX6Xd34cBozA+wBPQt/nb2leGJFfDnExC6ERYNg35fQ+ORdz4WIYQQ97wJEybw3nvvMW/ePKysrADIzMzkgw8+YMKECSYenSg36ddh3/fqcYfXi3Wu8u/RcF7/6zhZOgN1qzjww6hm+LjY3v5YXafDmVVYXN2L3z/9IOYM2HvA0N/Awvou34gQQoh7ka2tLePGjTP1MER5KmYGy/mYFL7bfh6AKX3rYWd195fXXO2teHpwb7JSumBxcTOa/rNY2OSRu96vEEKIsiUBlgqob0OvnABLZMkCLE45AZbcGRdGI2yYAnvnqOf9voZGw9TjXp+Agwdsehd2faUyWfp9A2Z3OBMiOliV+jKzKvbs0jxW9jBsMSx/AY4tUve+7aWJrBBCPMCOHDnCpk2bbirLkZWVRZcuXRg0aFDeusuWLTPVMEVZ2/c9ZCWDeyDU6XPLVQ0GIzM2nGXWllAAugZ4MPOxRtgX94KHkze0ewW2fKCCK1oLePRXcPS623chhBDiHhUSEsI333zD6dOnAQgICGDChAnUrVvXxCMTZSYvwFL09Qij0cg7/5wkW2/kobru9KjnUapDsBz2G6TGYCfXRIQQ4p4gAZYKqEe9Kkz+5wRnriVzLiqZWsWt43ljBovRCJvfh91fq2V9ZkCTUfnrajTQ/lU1M3P5iyqwkRqrSnRZlqAsWa7TK9S9fxewKlndUUAFdgZ8C1Gn4NpxCD8kARYhhHiAOTs7M3jw4ALLfHzuryaes2fPZvbs2ej1elMPpWLKSMqfJNLhNdBqi1w1NVPHK0uOsj44CijYzL5E2rwAR35VF1f6fK5KhwkhhHggLV26lMcee4xmzZrlNbXfu3cvDRo0YPHixTedp4j7RDEyWJYfi2D3+TiszLVM61uv9PugWNqCpVwPEUKIe4UEWCogJ1sLOtSqzKYz0aw4HsnEbsUNsOScAKTGwKbpsPNL9bzXZ9D8qcK3aTwSbN3gz9EQugF+6QvD/wQ715INOjfAUpLyYP+l0YBXIxVgiQ4GBt1uCyGEEPepefPmmXoIZW78+PGMHz+epKQknJycTD2ciufAj5CRAK61IHBAkatdvZ7G2F8OcuZaMpZmWj4e3IBBTare2TEtbODJNSobuHrrO9uHEEKI+8Ibb7zBpEmTePfddwssnzp1Km+88cZ9EWCRyR7/oddBUrh67FT4xJ7opAym5TS2n9DZn2quxShDKoQQ4r5W9FRAYVIPB3kCsPJYBEajsXgbWTuDZU4wJje40uNDaPn0rber0xOeWA42lVTmyM89IC2++IONOw9RJ0FrDrV7Fn+7wnjUV/dRp+5uP0IIIe55Op2OjRs38t1335GcnAxAREQEKSkpJh6ZKHNZqbBnlnrc/lXQmhW62qHL8QyYvYsz15Jxs7dk0dOt7jy4ksupqgRXhBBCEBkZyahRo25aPnLkSCIjI00wotI3fvx4goODOXDggKmHUjEkhYNRD2aWqtrHfxiNRt5YepzradnU83LkmY41TTBIIYQQFY0EWCqorgEeWJpruRCbSnBkUvE20mjyy4SBatbaenzxtvVpAWPWgWNViDsHe2YXf7C52Su+7cHWpfjbFcY9UN1LgEUIIR5oly9fpkGDBvTv35/x48cTExMDwCeffMJrr71m4tGJMndoPqTFQSVfaFB4c9c/D4Yx7Pt9xKZkEejpyL8T2tG0eqVyHaYQQoj7V6dOndixY8dNy3fu3En79u1NMCJR5nLLgzn5FFqa9Pf9V9gaEoOluZYvhzbC0lwuqQkhhJASYRWWg7UFD9VxZ+2pa6w8Hkk9r2KWDqnaTJXX6vw/aPdyyQ5auQ70+hiWjIQDP6jti9NPpTTKg+XyqKfuEy6r2uvWjne/TyGEEPecl156iWbNmnHs2DFcXfPLVg4cOJBx48aZcGSizGVnwK6cHnLtJoJZwdNVvcHIJ2vP8P32CwD0qOfBl0MbYWspp7VCCCFKT79+/XjzzTc5dOgQrVq1AlQPlj///JPp06ezfPnyAuuK+0BimLovpP/KpdhU3l95GoA3etShdnF75QohhLjvyS/RCuzhIE/WnrrGimMRvNGjTvEap/X+Atq9Ai417uygdfqoWudx59Ts0TYv3Hr9xHAIPwhooG6fOzvmjWxdwMETkiMh+rQ0lxVCiAfUjh072L17N5aWlgWW+/r6Eh4ebqJRiXJx5FdIuaayaoOGFXjJaDTy+l/HWHZY/Q28+JA/L3etjbakzeyFEEKI23j++ecBmDNnDnPmzCn0NQCNRiM9TO4XRTS41+kNvPLHUdKz9bSu4cqYtn4mGJwQQoiKSvIZK7CH6rpja2nG1evpHLuaWLyNzC3vPLgCKg227Uvq8Z7ZoMu89fpnVqp7n5bgUOXOj3uj3CyWaCkTJoQQDyqDwVDoxYqrV6/i4CAzBu9rxxar+zYvqPOaG/y27wrLDodjptXw1WONmNi9jgRXhBBClAmDwVCsmwRX7iNFBFjmbjvPkSsJOFiZ8/mjQXLuIYQQogAJsFRgtpbmdAlQjdVWHosovwM3fDQ/i+T4H7deN7c8WGAppkTnBlikD4sQQjywunfvzsyZM/OeazQaUlJSmDp1Kr179zbdwETZys6AyGPqcZ2eBV46fjWB91YEA/BWz7r0b+Rd3qMTQgjxgMrIyDD1EER5KCTAcuJqIjM3ngNgev96eDvbmGJkQgghKjAJsFRwDzf0BGDl8UgMBmP5HNTcClqPV493fQUGQ+HrpcbC5V3qcd2HS+/47rkBluDS26cQQoh7yhdffMGuXbsIDAwkIyOD4cOH55UH++STT0w9PFFWIo+CIRvs3MG5et7ixLRsnl94mCy9gW6BHoxtL6U5hBBClC29Xs97772Ht7c39vb2XLigen+98847/PTTTyYenSgTCZfVfU6AJSNbzyt/HEVnMNKrfhUGNpbJHUIIIW4mAZYKrmPtyjhYmXMtKYNDV66X34GbjgZrJ9WLJWRV4eucWQVGA3gGQaXqha9zJ27MYDGWU1BJCCFEhVK1alWOHTvG5MmTeeWVV2jcuDEff/wxR44cwd3d3dTDE2UlbJ+692kBOb3njEYjr/55jKvX0/FxseHzR4KK15dOCCGEuAsffPAB8+fP59NPPy3QE65+/fr8+OOPJhyZKBN6neoxC3kBlk/XhhAanYKbvRUfDGwg5x9CCCEKJQGWCs7awoxu9UxQJszKAZqPU493fll4oCO3PFhAKZYHA3CrDVpzyEyExKulu28hhBD3DHNzc0aMGMGnn37KnDlzGDt2LDY2Bcsy9OnTh8jISBONUJS6sP3q3qdF3qLvt19g4+koLM20zBneFCcbCxMNTgghxINkwYIFfP/994wYMQIzM7O85UFBQZw5c8aEIxNlIjkSjHrQWoB9FXaFxvLzrosAfDakIS52lrfZgRBCiAeVBFjuAX2DvABYdeIa+vIqEwbQ8lkwt4bwQ3BpR8HXMhLhwlb1uLQDLOaWKsgCEC1lwoQQQhRt+/btpKenm3oYojQYjTcEWFoCsP9iPJ+uCwFgSt9AGlR1MtXohBBCPGDCw8Px9/e/abnBYCA7O9sEIxJlKq//ig+JmXpe+1P1hBveshqd60r2tBBCiKJJgOUe0M7fDWdbC2JTMtl3Ia78DmxfGRqPVI93ziz42tl1qka6Wx2oXLv0j+0eqO6jTpb+vm/l+mWIv1C+xxRCCCGEqnueGq1mjno2IjYlkxcWHUZvMNK/kRcjWla7/T6EEEKIUhIYGMiOHTtuWv7XX3/RuHFjE4xIlKkbGtx/tfEckYkZVHe1ZXLvANOOSwghRIVnbuoBiNuzMNPSs14VFh8IY8XxSNr4u5Xfwdu8AAfnwflNEHlM9VsBOL1c3Qf0LZvjetSDk3+Vb6N7fTb80BkMOnj1LFhYl9+xhRBCiAddbvaKZxB6MyteWryPqKRM/N3t+VDqngshhChnU6ZM4YknniA8PByDwcCyZcsICQlhwYIFrFy50tTDE6XthgDL5jNRAEzqFYCdlVw2E0IIcWv3RQbLwIEDqVSpEkOGDDH1UMpMbpmwNScjydYbyu/AlXyh3kD1eNdX6j4rDc5tVI8DS7k8WC6P+uo+6lTZ7L8wSRGQFqfKnyWGld9xhRBCCFGg/8pXm86xKzQOGwszvh3RRC5uCCGEKHf9+/dnxYoVbNy4ETs7O6ZMmcLp06dZsWIF3bp1M/XwRGnLCbAkW3tyKS4NrQba+LuaeFBCCCHuBfdFgOWll15iwYIFph5GmWrp54KbvSUJadnsCo0t34O3e1ndn/pblc8K3Qi6dHCuBlUals0xPXJKhMWeBV1m8bcz3kWPmsSrhT8WQgghRNkL2wfAafO6fLP5HAAfDqpPLQ8HU45KCCHEA6x9+/Zs2LCB6Oho0tLS2LlzJ927dy+wzqJFi0hNTTXRCEWpSbgMwNnMSgDU83LC0drClCMSQghxj7gvAiydOnXCweH+/vFtbqaldwNPAFYejyzfg1dpAP5dwWiA3bPg9Aq1PKAflFW5DkdvsHYCo14FWYrDaIT5D8PXTSA7o+THvDGokhRe8u2FEEIIcWcyU/KyVmecdsZohGEtfBjYuKqJByaEEELc2jPPPENUVJSphyHuVk4ViwMJ6tpSSz8XU45GCCHEPcTkAZbt27fTt29fvLy80Gg0/PPPPzetM3v2bHx9fbG2tqZly5bs37+//AdaATzcUJUJW3fyGieuJnLgUjzbzsaw9mQkSw9d5de9l/l++3l+23sZXWmXEWv3iro/8huErFGPA8qoPBiowI17PfW4uGXCok/D5Z0Qfx5iQ0p+zBvLgkkGixBC3BPefvttXFzkB/A9L+IwGPUYHLzZFKHKgb3wUC0TD0oIIYS4PePdVFEQFYNBn3cNYPM11Yu1ZQ0pDyaEEKJ4TF7QOjU1laCgIMaMGcOgQYNuen3JkiVMnDiRuXPn0rJlS2bOnEmPHj0ICQnB3d29xMfLzMwkMzO/5FRSUtJdjb88NateiSqO1lxLyqDvrJ23XX9kq+qld/DqbcG7GYQfBH0m2HtA1ealt//CeNSDK7uLH2A5tz7/ccIV8Awq2fGkRJgQQlQoISEhfPPNN5w+fRqAgIAAXnjhBerUqZO3zqRJk0w1PFGacvqvRDk1xBADNSvb4eVsY+JBCSGEEOKBkBwJBh1GrQUH46zQaKCFr0zgEUIIUTwmz2Dp1asX77//PgMHDiz09RkzZjBu3DiefPJJAgMDmTt3Lra2tvz88893dLyPPvoIJyenvJuPj8/dDL9cabUaJjzkj4udJR6OVvi52RHo6Uiz6pVoX8uNnvWq0CInjXXxgSule3CNJj+LBaDuw6At4z8fjxJmsBQIsNxBk3opESaEEBXG0qVLqV+/PocOHSIoKIigoCAOHz5M/fr1Wbp0qamHJ0pbToDlkEFlrbSvVdmUoxFCCCHEgySnwX2ajScGtARUccTJVvqvCCGEKB6TZ7DcSlZWFocOHSowO1Wr1dK1a1f27NlzR/ucNGkSEydOzHuelJR0TwVZRraqfsvMlOupWbT8cBMnw5M4GZ5IfW+n0jt4nd6qbFf0KWgwpPT2W5TcAEt08O3XTU+AK3vznyfeZYBFMliEEMKk3njjDSZNmsS7775bYPnUqVN54403GDx4sIlGJkqd0QhXVYBlRZzqudK+lpspRySEEEKIB0lOgOWaRk3waFlDsleEEEIUn8kzWG4lNjYWvV6Ph4dHgeUeHh5cu3Yt73nXrl155JFHWL16NVWrVr1l8MXKygpHR8cCt/tJJTtLetSvAsCSA3cQZLgVrRZG/QNPbYDqbUp334VxD1D3yZGQGnfrdS9sAaM+/3lCCTN4jMb/9GAJV8uEEEKYRGRkJKNGjbpp+ciRI4mMjDTBiESZiQuF9OsYzKzZnFgFCzMNraTuuRBCCCHKS871g7OZlQBo6SfnIUIIIYqvQgdYimvjxo3ExMSQlpbG1atXad26tamHZFKPNVcZOf8cDSc9S3+btUvI3h18WpTuPoti5QDOOdk60bcpE3Zug7p3q63uSxpgyUiErJT859mpkJFQsn0IIYQoNZ06dWLHjh03Ld+5cyft27c3wYhEmckpDxbrGEA25jSuVgk7qwqdZC2EEP9n777DoyqwPo5/Zya9E0ISAiH0DqFjQ1CxKyoW1t5WV4lrwbK6+6qru7rFsi4aey/r2l0roqCiKL33FkgC6b2RMjPvH3dmkpA2SYZMyu/zPPPcm1tmTogmM/fcc46IS0JCAr6+aifVpTmuH2wrjwBwtV4XERFxR6f+9BoVFYXFYiErK6ve9qysLGJjY70UVed37ODexEcGkpZfwddbMpg7qb+3Q2q7mLFQeACytsGgExs/xmarTbBMuR4W/aH1CRZnS7Agx50q5XlGFUtgr7bFLSIi7TJnzhz+8Ic/sHbtWo455hgAVqxYwQcffMBDDz3EZ599Vu/Yrig5OZnk5GSsVg/fDNHVpK0EYL3duEniRLUHExGRTmTNmjVs374dgFGjRjFlypR6+7ds2eKNsMSTHNcP0u19GBkbSmSwn5cDEhGRrqRTJ1j8/PyYPHkyS5Ys4fzzzwfAZrOxZMkSbrnlFu8G14mZzSbmTYnn8cW7+O/qtC6eYBkNO7+ErGbetGZuhLJs8AuB8ZcYCZbDhVBZYlTBuMOZYAnvb7QGK88ztsWObfe3ICIirTd//nwAnn32WZ599tlG9wGYTKYum6BISkoiKSmJ4uJiwsM9ODOtq0lfDcBXhUYF7gkacC8iIp1Aeno6l156KcuXLyciIgKAwsJCjjvuOP773//Sv38X/pwt9dVJsExX9YqIiLSS11uElZaWsmHDBjZs2ABASkoKGzZsIDXV+AO3YMECXnrpJd544w22b9/OzTffTFlZGddee60Xo+78Lpocj9kEq1Ly2ZdT2vIJnZU7g+53LTaWg2dBUCQERBhfF7ZiBo1z/kp4vJFkASjWoHsREW+x2WxuPbpqckUcDhdBtnFX8PLDQwgP9GVcvx6cbBIRkU7jt7/9LdXV1Wzfvp38/Hzy8/PZvn07NpuN3/72t94OTzzFZnXdcJlu78N0zYETEZFW8noFy5o1azjppJNcXy9YsACAq6++mtdff5158+aRk5PDAw88QGZmJhMmTGDRokUNBt9LfbHhAZw0IpolO7J5b00a9505ytshtU2Mo4Ike7vxxsdsaXjMbkeCZfjpxjJiAGQWGnehxIx273WcFSxh/QDHcPuig22NWkRERNyRvgawUxjQj9zD4Zw1tDcWs8nbUYmIiPDjjz/yyy+/MGLECNe2ESNG8PTTT2seXHdSkgm2aqrtFrLopfkrIiLSal5PsMyaNQu73d7sMbfccovHW4L1hL7n86bGs2RHNh+tTefOU0fg5+P1gqXWixwMPgFQXQ4F+6H3kPr7y3Lh4FpjfeipxjJiAGRuqq1KcUexI5kS3h/sNmO9SBUsIiLeVFZWxo8//khqaipVVVX19t16661eiko8yjHgfiPGxasZag8mIiKdRHx8PNXV1Q22W61W4uLivBCRHBWO9mAZ9kiGRIcRFeLv5YBERKSr8XqCxVt6Qt/zk0ZG0yfUn5ySSpbuyOKMsX29HVLrmS3QZyRkbICsrQ0TLHuWAHaIHQdhju8vYoCxLDzg/uvUm8HiSLAUq4JFRMRb1q9fz1lnnUV5eTllZWVERkaSm5tLUFAQ0dHRSrB0F+lGgmVJaQIAJwzVgHsREekcHnvsMX7/+9+TnJzsGmy/Zs0abrvtNh5//HEvR+cZPeHG0xY5bsw02oOpekVERFqvC5Y0iLt8LWYummzME/nv6lZUc3Q2zjksWVsb7nO2Bxt2Wu22cGNIbutmsDgTLHVmsKiCRUTEa+644w7OPfdcCgoKCAwMZMWKFRw4cIDJkyd3m4saPZ7N5mgRBmuswxgUFUx8ZJCXgxIRETFcc801bNiwgenTp+Pv74+/vz/Tp09n3bp1XHfddURGRroeXVVSUhLbtm1j9erV3g7Fexw3ZhoD7jV/RUREWq/HVrD0FJdMiee5H/by464cDhVWEBcR6O2QWs816P6IBIvNCnu+M9brJlhcFSyp7j2/tQaKDxnr4f3BVmOsFx8yLv6YlYcUEeloGzZs4IUXXsBsNmOxWKisrGTw4MH885//5Oqrr2bu3LneDlHaK2cHVBZTaQ5kpz2ey1S9IiIinchTTz3l7RCkA1Tl7scPI8FyhSpYRESkDZRg6eYGRQVzzOBIVuzL54M16dw2e5i3Q2q9pipY0lfD4UIIiIB+U2q3RzgqWNydwVKaCXYrmH0hJMZoEWYyg60ayrIhNLa934GIiLSSr68vZkeCOzo6mtTUVEaNGkV4eDhpaV24KlNqOdqDbTUNw4qFGcOUYBERkc7j6quv9nYI0gFKsvbRG6gM7Ud0aIC3wxERkS5It+b3AJdOMyo63l+ThtVm93I0bRDtSLDkp0BVWe12Z3uwobPBUidX6GwRVpYD1RUtP7+zFVhYnFGtYvGBEEdSpUhzWEREvGHixImudhUzZ87kgQce4J133uH2229n7NixXo5OPMIx4H555WAsZhPHDFFbDhER6ZwOHz5McXFxvYd0DyZH54vIuC54M6qIiHQKSrD0AKePiSU80JeDhRUs35Pr7XBaL6QPBEcDdsjeUbu9sfkrAIG9wC/UWHdnDkvd+StOzjksxZrDIiLiDY8++ih9+/YF4JFHHqFXr17cfPPN5OTk8OKLL3o5OvEIR4JlrW0YE+MjCAvw9XJAIiIitcrKyrjllluIjo4mODiYXr161XtIN2CzEVqZCcCgoSO8HIyIiHRVSrD0AAG+Fi6Y2A+A97rqsPuY0cYya4uxLD4EmZsBEww9pf6xJlOdNmFuzGFxthJzJlUAwvs59qmCRUTEG6ZMmcJJJ50EGC3CFi1aRHFxMWvXriUxMdHL0Um7ledD3m4A1tuGMWNYHy8HJCIiUt8999zD0qVLee655/D39+fll1/moYceIi4ujjfffNPb4YkHlOSl40sNNXYz40eN9nY4IiLSRSnB0kPMm2okHBZvyySvtNLL0bRBjKMdTPY2Y+kcbt9vMgQ30rO9NYPuXRUsdRIsYf3q7xMRERHPSTfav+2jH0WEcILmr4iISCfz+eef8+yzz3LhhRfi4+PDjBkz+L//+z8effRR3nnnHW+HJx6wc6cx5zXHHEVsrxAvRyMiIl2VEiw9xKi+YST2D6faaueT9V2wKuPIQfe7vjGWR7YHc3K2+2pVi7C6FSyO89UiTETEK/Ly8khKSmL06NFERUURGRlZ7yFdXNpKANbUDCU0wIfE/uFeDkhERKS+/Px8Bg8eDEBYWBj5+fkAnHDCCSxbtsyboYmHHNy3E4DyoH5ejkRERLoyn5YP6Z6Sk5NJTk7GarV6O5QOM2/qADamb+a/q9O4/oRBmEwmb4fkvug6LcJqqmDfD8bXw05t/HhnBUtRW2ewqEWYiIg3XXnllezZs4frr7+emJiYrvU3S1rmnL9iH85xQ3rjY9E9PyIi0rkMHjyYlJQUBgwYwMiRI3n//feZNm0an3/+OREREd4OTzygOHMfAD6RCV6OREREurIem2BJSkoiKSmJ4uJiwsN7xl2T5yb25S9fbGNPdikrU/I5ZnBvb4fkvj4jwWSGigLY+glUlRqD7/tOaPx45wwWt1qENTKDRS3CRES86qeffuLnn3/WvJXuyFoDB9cCsM42jKs1f0VERDqha6+9lo0bNzJz5kzuvfdezj33XJ555hmqq6t58sknvR2etFNpZQ2+JWlggV79hno7HBER6cJ6bIKlJwoN8OWCSf34z8pUFi7Z3bUSLL4B0Hso5O6C5U8Z24adCuYm7ngNd85gaaGC5XAxHC5ynFOnLNiZbCnNMipmfPzaHLqIiLTeyJEjqaio8HYYcjRkb4XqcortQeyxxzFD81dERKQTuuOOO1zrs2fPZseOHaxdu5ahQ4cyfvx4L0YmnrBmfz5x5AAQFjPYy9GIiEhX1uYEi81mY8+ePWRnZ2Oz2ertO/HEE9sdmBwd82cN4YM1afyyN49f9+Zx7JAulGSJGWMkWJyD7ptqDwa1LcJKMppPkBQ7WoAFRIB/aO32oCiw+IO10niOXioZFhHpSM8++yz33nsvDzzwAGPHjsXX17fe/rCwMC9FJu3maA+23jaU+MgQEnoHezkgERGRliUkJJCQoM+F3cXKlHwuNhkJFtf1AxERkTZoU4JlxYoVXHbZZRw4cAC73V5vn8lk6lFzTbqa/r2C+M3UAby14gBPfruT9wcf23X62kePMdqDAZgsMPikpo8NjgKfQKipMAbVRzZxR0pj81fAqIwJi4OCFCMJowSLiEiHioiIoLi4mJNPPrnedrvdrvcaXV3qrwCstQ3nBFWviIhIJ7Z69Wq+//77Rm8sVZuwrm3V3hxuN+UZXyjBIiIi7dCmBMtNN93ElClT+PLLL+nbt2/XuUAvACSdNJT31qSxen8BP+3O5cThXaT3ecyY2vUBx0BgRNPHmkzGHJbcXUabsCYTLI3MX3EK728kWDSHRUSkw11++eX4+vryn//8R0Puu5PKUti5CICfbWO5UQkWERHppB599FH+7//+jxEjRjR4L6L3JV1beVUNhw6m4u9Xjd1kwRTWr+WTREREmtCmBMvu3bv58MMPGTpUg8C6otjwAK6YnsCry1N44ttdzBgW1TXeINZNsAw7reXjw50JlmYG3Rc5WoSFN/KGSoPuRUS8ZsuWLaxfv54RI0Z4OxTxpO2fQXUZ+2yxbGAYxw5RgkVERDqnf//737z66qtcc8013g5FPGztgQL62rMBjOSKReOJRUSk7ZqYEN686dOns2fPHk/HIh3o5llDCPS1sDGtkKU7sr0djnsiBkBwNGCC4We4cbyj7VdRM4PuXS3Cmqhggdo5LSIi0mGmTJlCWlozv7+la9rwHwA+ts4gMb4X4YG+LZwgIiLiHWazmeOPP97bYchRsHJfPv1NucYXag8mIiLt5HaaftOmTa713//+99x5551kZmYybty4BoNnx48f77kI5ajoE+rPVccl8MKP+3jy212cPDK681exmExw+ftQngfRI1s+3vlGqdkKliZmsEBtVYsqWEREOtzvf/97brvtNu6++2691+guClNh/08AfGI9gQuHdZEWpSIi0iPdcccdJCcn89RTT3k7FPEgu93O11syON014L6RawEiIiKt4HaCZcKECZhMpnpD7a+77jrXunOfBs92Hb87cQhv/3qArYeK+WZrJmeM7evtkFoWN9H9Y8OdCZbmKliamcES5thWpAoWEZGONm/ePEDvNbqVTe8BsJIxHKQPM7vKDDgREemR7rrrLs4++2yGDBnC6NGjG9zs8fHHH3spMmmPTelF7M0pI8FPFSwiIuIZbidYUlJSjmYcHS45OZnk5OQefYEmMtiPa48fxDPf7+Ff3+7mtNGxmM2dvIqlNVqqYLFZofiQsd5sizBVsIiIdLTu9r6jx7PbYcO7ALxfNYOoED8mxEd4NyYREZFm3HrrrXz//fecdNJJ9O7du/N3fBC3fLzO+Hw/PrQYylCCRURE2s3tBEtCQsLRjKPDJSUlkZSURHFxMeHh4d4Ox2tumDGYN37dz86sEr7YnMGcxDhvh+Q5zlLf4oNgrWk4uK40G2zVYLJASGzD850twioKoKoM/IKPbrwiIuLi7vuOs88+m5dffpm+fbtAFWZPlr4a8vdSZQ5gkW0qZ42IxtKdbuoQEZFu54033uCjjz7i7LPP9nYo4iFVNTY+22jcZJlgyTM2KsEiIiLt1KYh93/729949dVXG2x/9dVX+cc//tHuoKTjhAf58tsTBgPw1He7sNrsLZzRhYTEgtkX7FYoyWi43zlbJSyuYfIFICAc/EIdx6pNmIhIZ7Rs2TIqKiq8HYa0ZKNRvbLUdAxlBDJ7dIyXAxIREWleZGQkQ4YM8XYY4kE/7MymoLya6BA/Assd3SyUYBERkXZqU4LlhRdeYOTIhkPGx4wZw/PPP9/uoKRjXXfCQCKCfNmXU8b/NnSjRILZXNvmq7E2Yc3NX3FyVrGoTZiIiEjbVB+GLR8B8GbFcfj5mJkxLMrLQYmIiDTvz3/+Mw8++CDl5eXeDkU85ON1xvWOy8cGYqo5DCYzhPXzclQiItLVud0irK7MzMxGW3H06dOHjIxGKgWkUwsN8OXGEwfzz0U7+feS3ZybGIevpX7uLbe0kh935vD9zmyqamw8fkkiYQG+TTxjJxIRDwUptcmUupwVLM0mWPpDzg5VsIiIiLTVrq/hcBEl/jGsODyamcN6E+TXpregIiIiHWbhwoXs3buXmJgYBg4c2GDI/bp167wUmbRFYXkVS3ZkAXDeoBrYAITGgaULXNcQEZFOrU2fbuPj41m+fDmDBg2qt3358uXExXWjGR49yNXHDuSVn1I4kFfOx+vSuXhyPJsPFvH9zmy+35nDpvRC7HW6h72/Oo3fzhjsvYDd1dyge3cSLM67WYpUwSIiItImG/8LwGLLTGyYOWWU2oOJiEjnd/7553s7BPGgzzdlUG21M7pvGAPNRqJF7cFERMQT2pRgueGGG7j99tuprq7m5JNPBmDJkiXcc8893HnnnR4NUDpGsL8PN88awl+/3M7fvt7BY9/sJLe0qt4xY+LCiA715/udOXy87mDXSLCEtzPB4tznboswmw1MJuMhIiLS05Vmw+5vAXi2cBoAp4yK9mZEIiIibnnwwQfdOu7dd99lzpw5BAcHH+WIpD0+Xmd8pp87qR8UrTE2KsEiIiIe0KYEy913301eXh7z58+nqsq4CB8QEMAf/vAH7rvvPo8GKB3nimMSeGHZPnJKKgEI8ffhhKFRnDSyD7NGRBMTFkBheRVTH/mObRnFbM8oZlTfMC9H3QLnG6ZGW4Q5Z7DEN32+M8HiTouw6gp4/gQICIffLlGSRUREmpWcnExycjJWq9XboRw9mz8Au5W8iPHszYxjbL8w+oYHejsqERERj/nd737H9OnTGTy4C9yA2EPtyyllfWohFrOJ80YGw+ffGDuUYBEREQ9oU4LFZDLxj3/8g/vvv5/t27cTGBjIsGHD8Pf393R80oECfC28fNUUvt+ZzbSBkUwZGImfT/1ZLBFBfpwyMoZFWzP5aG06/3fOaC9F66YIR/KkvS3Cit1IsOz/GfL2GOv5+6D3EPfjFBGReoqLiwkLazyJv2fPHoYOHQrAH//4RyIjIzsyNI9JSkoiKSmJ4uJiwsPDvR3O0bHhXQC+8ZkFwGy1BxMRkW7GXreXtnRKn6w3Ps9fPSCPPu+cCoUHwOwLI8/ycmQiItIdmFs+pGkhISH07duXiIgIJVe6icT4CG6fPZzjhkY1SK44XTjZSEh8uuEQNVZbR4bXeq4KlnSjfZdTVRlU5Bvr7rQIK0qHlt447/mudj1tVetjFRERl7PPPpvKysoG23fu3MmsWbNcX993331ERER0XGDivszNkLUZu8WPhVmJgBIsIiIi0rFsNjsfr03nOsvX/F/WHUZyJSIBrv8G4iZ6OzwREekG2pRgsdlsPPzww4SHh5OQkEBCQgIRERH85S9/wWbr5Bfcpd1mjehD72A/cksr+Wl3rrfDaV5oHJgsYK2C0qza7c6WX/5hRkuvpoTFGcvqcqgoaP616iZY0pVgERFpj5CQEC644AJqampc27Zv386sWbO48MILvRiZuM0x3D4n7iQyqwOJDQtgTFwnby0qIiIi3cranfv4c/kjPOD7FmZ7NYyaA79bBv0mezs0ERHpJtqUYPnTn/7EM888w9///nfWr1/P+vXrefTRR3n66ae5//77PR2jdDK+FjNzJhiJhw/XuTn83VssPrVJkrpzWIrdaA8G4BsIQVGOc5ppE1awv7Y9GED66laHKiIitT7++GOKioq4/PLLsdvtbNmyhVmzZnHppZfy73//29vhSUusNbDpfQC+sZwEGMPtTZpPJiIiIh0lbRVDPz6TUy1rqTH5wlmPwyVvQmCEtyMTEZFupE0JljfeeIOXX36Zm2++mfHjxzN+/Hjmz5/PSy+9xOuvv+7hEI+O5ORkRo8ezdSpU70dSpd04SQjMfHttiyKyqu9HE0LnG3C6s5hcWf+ilO4Yw5Lc4Pu9ywxlpGOuStZW6GytHVxioiIS2BgIF9++SU7d+7kkksu4ZRTTuGqq67iySef9HZo4o69S6AsG3tQFM8fNIb+qj2YiIiIdAibDZb/G/trZ9KrOov9thi2n/URTLsBdLOHiIh4WJsSLPn5+YwcObLB9pEjR5Kfn9/uoDpCUlIS27ZtY/VqVRq0xZi4MEbEhFJVY+PLzRneDqd54Y0MuncmWJxD7JsT5pzDktb0Mc4Ey4TLjOPtNji0rvWxioj0YMXFxfUeZrOZ9957j5UrV3LhhRdy//33u/ZJJ7fRGG6fN3gOB0tqCPS1cOyQ3l4OSkRExPMSEhLw9fX1dhhS1+qX4NsHMNlq+Nx6DDcGPcmYySd6OyoREemm2pRgSUxM5Jlnnmmw/ZlnniExMbHdQUnnZzKZuHCykZz4qLO3CXMNuq+TIGlVBYvjmKZahNVUQcqPxvrQ2dB/irGuNmEiIq0SERFBr1696j1Gjx5Neno6zz//PL169XIdI51YRQHs+AqAb3xOBmDGsCgCfC3ejEpERKRV0tLSSE+v/ay7atUqbr/9dl588cV6x23ZsoX4+PiODk+ac2A5AN+EzuX31b/njEnDMJtVuSIiIkeHT1tO+uc//8nZZ5/Nd999x7HHHgvAr7/+SlpaGl999ZVHA5TO6/wJ/fj71ztYe6CAlNwyBkUFezukxkU0VsHiSLaEu/FGuKUWYemroKrUmNUSOx7ip8G2TyFNCRYRkdb4/vvvvR2CeMLWT8BaCdGj+W9qBFDM7NFqDyYiIl3LZZddxo033siVV15JZmYmp556KmPGjOGdd94hMzOTBx54wNshSlPKcgH4Ir8fYOKCSW7cWCkiItJGbUqwzJw5k127dpGcnMyOHTsAmDt3LvPnzycuLs6jAUrnFR0WwIxhffhxVw4fr0vnztNGeDukxrlahLWxgsXZRqyoiUqdPd8Zy6GngNkM/R1zfdJXg92uHq8iIm6aOXOmt0MQT9j3AwAlw85j85JiTCY4eWS0d2MSERFppS1btjBt2jQA3n//fcaOHcvy5ctZvHgxN910kxIsnVlZDgC59jAmDYjovDeDiohIt9CmBAtAXFwcjzzyiCdjkS7owsn9HQmWg9wxe3jnLLutO+TebjcezmqUVrUIaynBMttY9k0Eix+U50JBCkQObnvsIiI91GuvvUZISAgXX3xxve0ffPAB5eXlXH311V6KTFpUUQDAptIwACbGRxAV4u/NiERERFqturoaf3/j79d3333HnDlzAGP2bEZGJ59D2tM5Eiw59nCuUfWKiIgcZW2awQJQUFDA448/zvXXX8/111/PE0880WUG3IvnnDY6hlB/Hw4WVrAypZP+/J0JkpoKKM8zEh/WSsAEYW5UXLkSLBlgs9XfV5IFmZuN9cEnGUsffyPJAmoTJiLSRn/729+IiopqsD06OppHH33UCxGJ2w4XAbAqwwrAKaPUHkxERLqeMWPG8Pzzz/PTTz/x7bffcsYZZwBw6NAhevfu7eXopEnWatfNHiXmCM4Z39fLAYmISHfXpgTLsmXLGDhwIAsXLqSgoICCggIWLlzIoEGDWLZsmadjlE4swNfC2Y43LJ122L2PP4Q63lQVptbOXwntCxbfls8PiQWTGWzVUJZdf9/epcay7wQI6VO7vW6bMBERabXU1FQGDRrUYHtCQgKpqamNnCGdhiPBsuKQkWA5VfNXRESkC/rHP/7BCy+8wKxZs7j00ktJTDRuovvss89crcOkEyrPA8BqNzF55GAigvy8HJCIiHR3bWoRlpSUxLx583juueewWCwAWK1W5s+fT1JSEps3b/ZokNK5XTi5P/9dncbXmzN4+LwxBPm1ufPc0RMeDyUZRoLFORPFnfZgABYfIxlTfNCYwxIaW7vvyPZgTq4Ey6r2xS0i0kNFR0ezadMmBg4cWG/7xo0bdddoZ+dIsORZA4mPDGRYdIiXAxIREWm9WbNmkZubS3FxMb169XJtv/HGGwkKCvJiZNIce2k2JiCfMOZMjPd2OCIi0gO0qYJlz5493Hnnna7kCoDFYmHBggXs2bPHY8FJ1zAloRcJvYMoq7LyzdZMb4fTOOcclqK01g24d3IeW3fQvc1aW8Ey9JT6xzsTLJlboKq89fGKiPRwl156Kbfeeivff/89VqsVq9XK0qVLue222/jNb37j7fCkKXY7HC4GoNgezOxRMZhMnXA+m4iISAsqKiqorKx0JVcOHDjAU089xc6dO4mOjvZydNKUPfv3A5BPOLNG9Gn+YBEREQ9oU4Jl0qRJbN++vcH27du3u8pmpecwmUzMnWgkID5ae9DL0TQhwnHnSmFq2xIsYf2MZXGd7y9jA1Tkg39YbULFKby/UfVit8Kh9W0OW0Skp/rLX/7C9OnTOeWUUwgMDCQwMJDTTjuNk08+WTNYOrOqMuNvH1BMELM1f0VERLqo8847jzfffBOAwsJCpk+fzhNPPMH555/Pc8895+XoGrrgggvo1asXF110kbdD8aqtu/YaK8FRBPhamj9YRETEA9qUYLn11lu57bbbePzxx/n555/5+eefefzxx7njjju444472LRpk+shPcPcSUYCYvneXA4VVng5mkaEOxMsabUzWMJbUS4c7kiw1K1g2bPEWA6e2XCWi8mkNmEiIu3g5+fHe++9x44dO3jnnXf4+OOP2bt3L6+++ip+fuql3Wk52oNV2S34BgQxbVCklwMSERFpm3Xr1jFjxgwAPvzwQ2JiYjhw4ABvvvkmCxcu9HJ0Dd12222uhFBPZbfbOZB6AIDQ3nFejkZERHqKNg3LuPTSSwG45557Gt1nMpmw2+2YTCasVmv7IpQuIT7SuIiyKiWfT9YfJOmkod4Oqb6IBGNZlFabDGlVBUsjLcKc81eGnNLweDASLNs/g/Q1rYtVRERchg8fzrBhwwDUaqorcCRYiglm5vBofC1tupdHRETE68rLywkNDQVg8eLFzJ07F7PZzDHHHMOBAwe8HF1Ds2bN4ocffvB2GF61Pq0Q38o88IHo2H7eDkdERHqINn3qTUlJafaxb98+11J6josmGUmIj9elY7fbvRzNEdrbIsx5rLNFWEUBpK821o+cv+IUP81Ypq0yetKLiEirvPnmm4wbN87VImz8+PG89dZb3g5LmpGXlwNAiT2Qs8b19XI0IiIibTd06FA+/fRT0tLS+OabbzjttNMAyM7OJiwsrFXPtWzZMs4991zi4uIwmUx8+umnDY5JTk5m4MCBBAQEMH36dFatUieE1vpqUwa9MWbB+YRqTo6IiHSMNlWwJCQkeDqODpecnExycrIqbDzozHGxPPDZFvbmlPHT7lxOHN6JBso524FVFkOlc1trEizOFmGOBMu+H8Fug6gREDGg8XP6JoLZB8qyjcROr67//42ISEd58sknuf/++7nllls4/vjjAfj555+56aabyM3N5Y477vByhNKYj37Zwo2A1S+MM8bEejscERGRNnvggQe47LLLuOOOOzj55JM59thjAaOaZeLEia16rrKyMhITE7nuuuuYO3dug/3vvfceCxYs4Pnnn2f69Ok89dRTnH766ezcuZPoaCNRMGHCBGpqahqcu3jxYuLiWtcOq7KyksrKStfXxcXFrTq/M7Lb7Xy9JZNjTEY1LcGd6HqEiIh0a21KsAC89dZbPP/886SkpPDrr7+SkJDAU089xaBBgzjvvPM8GeNRkZSURFJSEsXFxYSHh3s7nG4hNMCX30wdwOu/7OfPn2/l69tm4O/TSYbK+QVBUBSU5xpf+wZDYC/3z3e2CCvNgpqq2vZgQ2c3fY5vIMSOh0PrjGoXJVhERNz29NNP89xzz3HVVVe5ts2ZM4cxY8bw5z//WQmWTmjlvjy27UsHP4iNicFsVks3ERHpui666CJOOOEEMjIySExMdG0/5ZRTuOCCC1r1XGeeeSZnnnlmk/uffPJJbrjhBq699loAnn/+eb788kteffVV7r33XgA2bNjQ+m+iCX/729946KGHPPZ8ncGGtEIOFlYQ7V9ibFCCRUREOkibWoQ999xzLFiwgLPOOovCwkJXFUhERARPPfWUJ+OTLuaOU4cTFeLPvpwyXv4pxdvh1BdRZ6h9eH9jEL27gqPA4g/YoeRQ7YD7oSc3f17dNmEiIuK2jIwMjjvuuAbbjzvuODIyMrwQkTSnxmrjwc+2EmYqAyAkvLeXIxIREWm/2NhYJk6cyKFDh0hPN1pNT5s2jZEjR3rsNaqqqli7di2zZ9fevGc2m5k9eza//vqrx16nrvvuu4+ioiLXIy0t7ai8Tkf6cpPx/rCfX6mxQQkWERHpIG1KsDz99NO89NJL/OlPf8Jiqa1QmDJlCps3b/ZYcNL1hAf68n9njwLg6aW7Scsv93JEddRt5dWa9mBgJGOcbcL2fGckWXwCIOH45s/rP9VYOue1iIiIW4YOHcr777/fYPt7773nGnovncfbKw6wI7OEaD9Hu5EAVQeLiEjXZrPZePjhhwkPDychIYGEhAQiIiL4y1/+gs1m89jr5ObmYrVaiYmJqbc9JiaGzMxMt59n9uzZXHzxxXz11Vf079+/2eSMv78/YWFh9R5dmbM9GEC4zdkiLMqLEYmISE/SphZhKSkpjfYc9ff3p6ysrN1BSdd23oQ4/rs6lRX78nno8228fPUUt8/9eXcuBwvLuWRKPKbWVJi4I7xuBUu/1p8f1g/y98HaN4yvB55gtAFrjjPBkrkJqitaPl5ERAB46KGHmDdvHsuWLXPNYFm+fDlLlixpNPEi3pNbWskT3+4C4OSBfpCCEiwiItLl/elPf+KVV17h73//e715cH/+8585fPgwjzzyiJcjrO+7777zdghe42wPFuVXjY+1wtioChYREekgbapgGTRoUKP9PxctWsSoUaPaG5N0cSaTib+ePxYfs4nvtmfx7bYst877anMGV726kj98tJllu3M9H1hEnRkodZMt7nJWvWRuMpZDTnHjNQdAcDTYauDQhta/pohID3XhhReycuVKoqKi+PTTT/n000+Jiopi1apVre57LkfXPxftoORwDWP7hTEywrFRCRYREeni3njjDV5++WVuvvlmxo8fz/jx45k/fz4vvfQSr7/+usdeJyoqCovFQlZW/c/NWVlZxMbGeux1ujNne7BzhvgZG3wCwS/YixGJiEhP0qYEy4IFC0hKSuK9997DbrezatUqHnnkEe677z7uueceT8coXdDQ6FBuOHEwAH/+bCsVVdZmj1+6I4tb312PzW58/dryozC/5cgZLK115DnNDbh3Mplq57CoTZiISKtMnjyZt99+m7Vr17J27VrefvvtRitoxXvWpxbw/hqjJ/1Dc8ZirnS05QiI8F5QIiIiHpCfn9/orJWRI0eSn5/vsdfx8/Nj8uTJLFmyxLXNZrOxZMkSjj32WI+9TndVtz3Y6QMdLeyD+7Ru5qqIiEg7tKlF2G9/+1sCAwP5v//7P8rLy7nsssuIi4vj3//+N7/5zW88HaN0Ub8/eSifbTjEwcIKnvl+N3ef3vggwF/25HLT2+uosdmZNaIPP+7K4YedOezJLmVodIjnAmrPDBYwWoS5zh8AUW7OAOg/FXZ8AekadC8i0pzi4mK3j+3qvcK7A6vNzgP/2wrARZP7MzmhF/zoTLCogkVERLq2xMREnnnmGRYuXFhv+zPPPENiYmKrnqu0tJQ9e/a4vk5JSWHDhg1ERkYyYMAAFixYwNVXX82UKVOYNm0aTz31FGVlZVx77bUe+V66M2d7sGA/C5OjaoyNmr8iIiIdqE0JFoDLL7+cyy+/nPLyckpLS4mOjm5wzPLly5kyZQr+/v7tClK6piA/Hx48dzQ3vrWWF5ft44KJ/RskTNYeyOe3b66hqsbGqaNjePbyScx/Zx3fbsvi9V9S+Ov54zwXULgHK1iGnuz+HTHOOSxpq8Fu1500IiJNiIiIaHH+lt1ux2QyYbU2XxkpR9/7a9LYfLCIUH8f/nCG4yaKw0qwiIhI9/DPf/6Ts88+m++++85VSfLrr7+SlpbGV1991arnWrNmDSeddJLr6wULFgBw9dVX8/rrrzNv3jxycnJ44IEHyMzMZMKECSxatKjB4HtPS05OJjk5uUu/r/pqs9Ee7ORRMfhVbjY2av6KiIh0oDYnWJyCgoIICgpqdN+ZZ57Jhg0bGDx4cHtfRrqoU0fHcMrIaJbsyOaB/23hnd9Od10823KwiGteXU15lZUZw6J45rKJ+FrMXHf8IL7dlsVHaw9y12kjiAjy80wwAWGQeCmU50PEwNafXy/B4kZ7MKe4iWCyQGkmFKXXb1UmIiIu33//vbdDEDcVllfxz0U7ALjj1OH0CXXcTONMsPirwkhERLq2mTNnsmvXLpKTk9mxw/ibN3fuXObPn09cXFyrnmvWrFnY7fZmj7nlllu45ZZb2hxvWyQlJZGUlERxcTHh4V3v5gi73c5Xm432YGeP6wsFS40dSrCIiEgHaneCpTktvYGQ7s9kMvHnOWP4eU8uv+zN4/NNGcxJjGNXVglXvrKSksoapg2M5MUrp+DvY/RLPWZwJKP6hrE9o5h3V6Vx86whngvogufbfm7EAPBzVOAMOtH98/yCIHYsZGw02oQpwSIi0qiZM2d6OwRx0xOLd1FQXs2ImFCuOjahdocqWEREpBuJi4vjkUce8XYY0oS67cFmjegDS3KNHWoRJiIiHeioJlhEAOIjg7jlpKE88e0u/vLFNgZHBXPt66spKK8msX84r1wzhUA/i+t4k8nEdccP5O4PN/Hmr/v57YxB+FrMXvwOHPyC4ZovjGqU1l446j/NkWBZA2MvPDrxiYh0MwUFBbzyyits374dgNGjR3PttdcSGRnp5ch6ti0Hi3hn5QEA/jxnDD7Ov9F2uxIsIiLSpW3atMntY8ePH38UIxF31G0PFuBrgbIcY4cqWEREpAMpwSId4saZg/l4/UFScss4L3k5VpudkbGhvHHdNEIDfBscf25iHP9YtIOMosMs2pLJuYmtK8E+auImtu28+Gmw+iVI06B7ERF3LFu2jHPPPZfw8HCmTJkCwMKFC3n44Yf5/PPPOfHEVlQSike9uGwfNjucM74vxw7pXbujuhxsjuGySrCIiEgXNGHCBEwmU4vdODQPzvvqtweLNTYqwSIiIl6gBIt0CH8fCw+fN4YrX1mF1WZncJ9g3rp+epPzVQJ8LVw+PYF/L9nNq8tTOk+Cpa36GxcHydwENZXg4+/deEREOrmkpCTmzZvHc889h8ViVDlarVbmz59PUlISmzdv9nKEPZPdbmfFvjwArjgmof5OZ/WKyWJUfYqIiHQxKSkp3g5B3ORsDxbkZ2HWiGhjY5lahImISMc7qgkW5zBzEYAZw/pwx+zhrEst4O8XjqsdiNuEK45J4Lkf9rI+tZB1qQVMGtCrgyI9CnoNgqAoKM81WoXFT/N2RCIindqePXv48MMPXckVAIvFwoIFC3jzzTe9GFnPtj+vnOySSvwsZibER9TfebjYWAaEg94DiohIF5SQkNDyQUc4++yzefnll+nbt+9RiEia4mwPdoqzPRiogkVERLziqA620JB7OdJts4fxxnXT6Bse2OKxfUL9mTPBqFx5bfn+oxzZUWYyQf+pxrrahImItGjSpEmu2St1bd++ncTERC9EJACrUozqlcT48NqLGU6avyIiIj3QsmXLqKio8HYYPUqj7cFstjoVLEqwiIhIx2lTBUtFRQV2u52goCAADhw4wCeffMLo0aM57bTTXMeVlJR4Jkrpsa49fiAfrk3nq80Z/PGskW4lZjqt+Kmw62tIX+3tSEREOqW6g2VvvfVWbrvtNvbs2cMxxxwDwIoVK0hOTubvf/+7t0Ls8Vam5AMwfVDvhjuVYBEREelSkpOTSU5O7nLzZBptD3a4EOyO7yOokfcpIiIiR0mbEiznnXcec+fO5aabbqKwsJDp06fj6+tLbm4uTz75JDfffLOn4/S4rvpGoqcZExfOMYMjWbEvnzd/PcAfzhjp7ZDarr+jLVjaSrDb1T5FROQIjQ2Wveeeexocd9lllzFv3ryODE0cVu4zEizTBkU23KkEi4iISJeSlJREUlISxcXFhId3nb/f/9twCGiiPVhABPg0PutVRETkaGhTi7B169YxY8YMAD788ENiYmI4cOAAb775JgsXLvRogEdLUlIS27ZtY/VqVRN0dtcdPwiA/6xMpaKqCyfE+k0GvxAoyYDUX70djYhIp5OSksK+fftISUlp9rFv3z5vh9ojpReUc7CwAovZxOSERuaiHS40lkqwiIiIyFFSVFHNB2vSALhocv/aHZq/IiIiXtKmCpby8nJCQ0MBWLx4MXPnzsVsNnPMMcdw4MABjwYocsqoGAZEBpGaX87H69O5fHrrBw92Cn5BMOYCWP8WrH8bEo7zdkQiIp2KBst2bqsc7cHG9gsn2L+Rt5CuCpawDoxKREREepJ3V6VSVmVlREwoJw6Lqt2hBIuIiHhJmypYhg4dyqeffkpaWhrffPONa+5KdnY2YWH6UC2eZTGbuOa4gQC8+nMKNpu9+RM6s4lXGMutn0KlZhSJiLSXBst2nFWu+SuNtAeDOgmWiI4JSERERHqUqhobry/fD8D1MwZhqtt22zXgPqrhiSIiIkdRmxIsDzzwAHfddRcDBw5k+vTpHHvssYBRzTJx4kSPBigCcPGU/oT4+7A3p4yf9uR6O5y2i58OvYdCdZmRZBEREeki3E+wqEWYiIj0HH/84x+JjGzib6N41BebDpFZfJg+of6cNyGu/k5VsIiIiJe0qUXYRRddxAknnEBGRgaJiYmu7aeccgoXXHCBx4ITcQoN8OWSKfG8ujyFV39OYebwLvqmyWSCCZfDkodgwzsw6UpvRyQiItKi7OLD7Mstw2SCKQOVYBERkZ5h9+7dfP/992RnZ2Oz2erte+CBBwC47777vBFaj2O323nppxQArjluIP4+lvoHKMEiIiJe0qYEC0BsbCyxsbEAFBcXs3TpUkaMGMHIkSM9FpxIXdccN5DXfknhx105fL7xEOcmxrV8UmeUeCks/Ysx6D53D0QN9XZEIiIizVq136heGRUbRnigb+MHKcEiIiLdyEsvvcTNN99MVFQUsbGx9dpRmUwmV4JFOsbyPXlszygm0NfC5dMHNDzAlWBRizAREelYbWoRdskll/DMM88AUFFRwZQpU7jkkksYP348H330kUcDFHEa0DuI644fBMCC9zewvKu2CgvrC0NnG+sb3vFuLCIiIm5wtgeb1lR7MIDKYmOpBIuIiHQDf/3rX3nkkUfIzMxkw4YNrF+/3vVYt26dt8PrcV76aR8Al0zpT0SQX8MDXDNYVMEiIiIdq00JlmXLljFjxgwAPvnkE+x2O4WFhSxcuJC//vWvHg1QpK4/njWKs8bFUm2187u31rLlYJG3Q2ob57D7je+CzerdWERERFqwcl8L81dAFSwiItKtFBQUcPHFF3s7jKMqOTmZ0aNHM3XqVG+H0qydmSX8uCsHswmuO2FQ4wepRZiIiHhJmxIsRUVFriFuixYt4sILLyQoKIizzz6b3bt3ezRAkbosZhNPXjKBYwZHUlpZwzWvrSY1r9zbYbXe8DMhMBJKMmDvUm9HIyLSZWmw7NFXUFbFzqwSoIUKFiVYRESkG7n44otZvHixt8M4qpKSkti2bRurV6/2dijNetlRvXL6mFgSegc3fpASLCIi4iVtmsESHx/Pr7/+SmRkJIsWLeK///0vYNzhERAQ4NEARY4U4GvhxaumMO+FFWzPKOaqV1fy4c3HERXi7+3Q3OfjB+PnwcrnYP1bMOxUb0ckItLpaLBs5+CcvzI0OoTeTf2ttduVYBERkW5l6NCh3H///axYsYJx48bh61t/Btmtt97qpch6luziw3y64SAAN5w4uPGDaqpq34doBouIiHSwNiVYbr/9di6//HJCQkJISEhg1qxZgNE6bNy4cZ6MT6RRYQG+vHHtVOY+9wv788q59rXVvHvjMYT4t+k/ae+YeLmRYNnxFZTlQXBvb0ckItJpaLBs5+Gcv9Jse7Caw2CtMtaVYBERkW7gxRdfJCQkhB9//JEff/yx3j6TyaQESwd549f9VFvtTE7oxaQBvRo/qNwxf8XsAwERHRabiIgItDHBMn/+fKZNm0ZaWhqnnnoqZrPRaWzw4MGawSIdJjosgDevm8ZFz//K5oNF3Pz2Wl65eip+Pm3qfNfxYsdB30TI2AibP4BjbvJ2RCIinYZzsOwf/vAHb4filgsuuIAffviBU045hQ8//NDb4XiUWwPunXeNmszgF9IBUYmIiBxdKSkp3g6hxyuvquHtFakA3DCjieoVqG0PFhQF5i5yPUBERLqNNv/lmTJlChdccAHBwcHY7XYAzj77bI4//niPBSfSksF9Qnj1mqkE+lr4aXcud3+4EZvN7u2w3DfBMex+w9vejUNEpJPpaoNlb7vtNt58801vh+FxxYer2XrISJ5MH9RMpaUzweIfBnWqjURERLoDu93uuu4hHeeDNekUVVST0DuIU0fHNH2g5q+IiIgXtTnB8uabbzJu3DgCAwMJDAxk/PjxvPXWW56MTcQtE+IjeO6KSfiYTfxvwyHu+mAjX2w6xKb0QgrLqzr3G+FxF4HFDzI3G5Us3ZnNBru+gdIcb0ciIl1AVxssO2vWLEJDQ70dhsetPVCAzQ4JvYOIDW9mzp7mr4iISDek6x7eY7XZeeVno4ro+hMGYTE3cwNHmaNFmOaviIiIF7SpRdiTTz7J/fffzy233OKqWPn555+56aabyM3N5Y477vBokCItmTUimn9eNJ4F72/k4/UH+Xj9Qde+0AAfBkQGuR6j48I4ZVRM55jXEhQJI8+GrZ/A+neMlmHd1e7F8O48GDUH5ulDiYg0z5ODZZctW8Zjjz3G2rVrycjI4JNPPuH888+vd0xycjKPPfYYmZmZJCYm8vTTTzNt2jRPfCtdmqs92MBm2oOBEiwiItLt6LqHdy3emklqfjkRQb5cNLl/8wergkVERLyoTVeYn376aZ577jmuuuoq17Y5c+YwZswY/vznP+uNhnjF3En9Cfb3YdEW441Yan45OSWVlByuYeuhYrYeKnYd6+9j5pRR0cxJjGPWiGgCfC3eC3ziFUaCZfP7cNpfwMffe7EcTTk7jOWh9d6NQ0S6BE8Oli0rKyMxMZHrrruOuXPnNtj/3nvvsWDBAp5//nmmT5/OU089xemnn87OnTuJjo4GYMKECdTU1DQ4d/HixcTFxbXqe6usrKSystL1dXFxcTNHe9fKfXkATB/cTHswUIJFRES6HV338K6XftoHwBXTEwjya+HSlRIsIiLiRW1KsGRkZHDcccc12H7ccceRkZHR7qBE2ur0MbGcPibW9XV5VQ3pBRWk5hkJlwN5ZSzbnUtKbhlfbc7kq82ZhPj7cNroGM6dEMcJQ6PwtXTwULzBJ0FYPyg+CDu/gjEXdOzrd5QSx++GojSoLAV/DUEWkaZ5crDsmWeeyZlnntnk/ieffJIbbriBa6+9FoDnn3+eL7/8kldffZV7770XgA0bNngsnr/97W889NBDHnu+o6WiysqmdOf8FVWwiIhIz6LrHt6z9kA+61IL8bOYueq4hJZPUIswERHxojZdSR46dCjvv/9+g+3vvfcew4YNa3dQIp4S5OfD8JhQZo+O4boTBvHQeWNZeudMvvj9CfzuxMHEhQdQWlnDx+sPcu1rq5n6yHckf7+nY4M0WyDxNwDY13XjYffFtW3byN3lvThEpMs5moNlq6qqWLt2LbNnz3ZtM5vNzJ49m19//fWovOZ9991HUVGR65GWlnZUXqe91qUWUGOz0zc8gP69Aps/2JVgiTjqcYmIiHSEnnDdIzk5mdGjRzN16lRvh1LPx+uMz47nTYgjOrSZGXBOqmAREREvalMFy0MPPcS8efNYtmyZqxfp8uXLWbJkSaNvQEQ6E5PJxNh+4YztF84fzhjJ+rQCPt+YwRebMsgtreSxb3ZyzOBIJie0cLfuEWqsNu76YCN+Pmb+cv5Y/H1a0XZswuXw0xPY9i7ljhe+4N83no3J1MwQv66o+FDteu4u6DfJe7GISJfw5ptv8thjj7F7924Ahg8fzt13382VV17psdfIzc3FarUSExNTb3tMTAw7duxw+3lmz57Nxo0bKSsro3///nzwwQcce+yxjR7r7++Pv3/nbwe50jF/ZfqgyJb/JqmCRUREupmecN0jKSmJpKQkiouLCQ/vPH/DnTPgZo+OaeFIh9JsYxkSfZQiEhERaVqbEiwXXnghK1eu5F//+heffvopAKNGjWLVqlVMnDjRk/GJHFVms4nJCUYy5f/OHsU9H27i4/UHefmnlFYnWL7aksmnG4wkQl5pFc9dMRk/H/eKxPbZYihkFJPYTv/U/7H10AzG9us8b3A9om6CJcf9i5Yi0jN1tcGy3333nbdD8LhVKcb8lWmDWpi/AkqwiIhIt6PrHt6RX1bF7uxSAKYOdPMzuVqEiYiIF7UpwQIwefJk3n67G7czkh7Hx2LmpllD+Hj9Qb7ZmklqXjkDege5da7dbue5H/a6vl6yI5uk/6wj+bJJLSZZ0vLLufzllRxffSKTfLdzmc9S/rN6J2P7TWvX99OpWGugNKv265w2tAgrz4dv/gRTr4f+UzwXm4h0Sh01WDYqKgqLxUJWVla97VlZWcTGxjZxVvdXWWNlfWohANMHu3FxQwkWERHphty57vH3v/+dm266iYiIiI4Jqptbvd+oXhkWHUJksF/LJ9jtahEmIiJe5fYMluLiYrcfXUFn7TUq3jU8JpSZw/tgs8Ory90fsPzDrhy2ZxQT5Gfh6Usn4udj5tttWfz+3XVUW21NnpdRVMFlL68go+gwOyJPoSywL/1NuUzb+Edqamo88S11DqVZYK/z79CWCpa1r8PG/8CnN4Ot6X9TEekeOmqwrJ+fH5MnT2bJkiWubTabjSVLljTZ4qsn2JReRGWNjagQPwZHBbd8givBEnZ0AxMREelkHn30UfLz870dRudjs0F1RatPW+1oDzZ1kJvVK5UlYK001oNUwSIiIh3P7QRLREQEvXr1avbhPKYrSEpKYtu2baxevdrboUgnc8OMwQC8vyaNovJqt85xVq9cNm0A5ybG8eKVk/GzmPlmaxa3/Xd9o0mW7JLDXP7SStLyK0joHcQrN8zE/7K3qcKHWfbVpH72iOe+KW9ztgfzdVQEFaRATWXrniNzk7HM3QV7l3ouNhHplDw5WLa0tJQNGzawYcMGAFJSUtiwYQOpqakALFiwgJdeeok33niD7du3c/PNN1NWVsa1117b7u+jq1q5z9kezI35K6AKFhER6bHsdru3Q+h8fvg7/DUafvhbq091VrBMc7s9mKN6xS8E/NzrQCEiIuJJbrcI+/77749mHCKdxvFDezMyNpQdmSX8Z1UqN88a0uzxaw/ksyolH1+LietnDAJg1ohoXrhyMr97ay1fbc7EbNrAU/Mm4GMxcpr5ZVVc+fIq9uWW0S8ikHd+O52YsAAIm8L/BtzFeal/Z+Cmf8H4E2DoKUf9ez7qig8ay9hxkL0dKoshbw/EjHH/OTI3166veBaGzfZsjCLSqXhysOyaNWs46aSTXF8vWLAAgKuvvprXX3+defPmkZOTwwMPPEBmZiYTJkxg0aJFDQbf9yS1A+7dmL8CSrCIiIhILb8QsFVDUXqrTiurrGHLIaMryjR3K1g0f0VERLzM7QTLzJkzW/3k8+fP5+GHHyYqSn/opOswmUz8dsZg7vpgI6//ksL1Jwxqdo7Kcz/sA2DuxP70DQ90bT9pZDTPXTGJm95eyxebMrCYTTx5yQRKK2u48pWV7MwqITrUn//cMJ3+vWrvtEk49Wb+88JKLvP5HvuH12P63Y/QK+HofcMdwVnBEhYHNiscXAM5O91PsFSVQZ5zxo0J9i6B7B0QPfKohCsi3ufJwbKzZs1q8e7SW265hVtuuaWt4bZJcnIyycnJWK3WDn3dltRYbaw9UAC04uKGEiwiIiLiFN7fWLYywbIutQCrzU6/iEDiIgJbPgE0f0VERLzO7RZhbfH22293mZksInXNSYwjOtSfrOJKvtx8qMnjdmaW8N32LEwmuHHm4Ab7TxkVQ/Jlk/Axm/jfhkMseH8D17y2iq2Hiukd7Md/bphOQu/6ve0T+4fzengSG2yDMR0ugPeuaFPv2k6lxJlg6Qd9HEmR3FYMus/aBtghJBZGnWNsW/mcR0MUkc7HOVh27dq1rF27lrfffrtBcuXvf/87hYWF3gmwnTpru9Ith4opr7ISHujLiJhQ906qdLzfU4JFREREIuKNZSsTLM75K27f4AFKsIiIiNcd1QSLepFKV+XnY+bq4wYC8PJPKU3+t/zCj0ZVxRljYhnSJ6TRY04bE8szdZIs61MLCQ/05e3fTmdodMMLVyaTiXMmDeTmqjsoMocbs0e+WABd+f+nuhUsfYYb660ZdO+cvxI7Do6Zb6xv/C+U5XkuRhHpkjRY1vNWpRi/W6cOjMRsdmP+SvVhqDlsrCvBIiIiIuGOBEtJBljdm2sKtS1KW5dgUYswERHxrqOaYBHpyi6fPoBAXwtbDxXz676GF/LTC8r530YjcdDSnJYzxsby9KUTsZhNhPr78Nb10xjVN6zJ4y+Y2I8MenPz4Vuwm8yw8T+w5pX2fUPeVC/B4qhgyWlFBYtz/krsOBhwLPSdYFzMW/uaR8MUka5HN3N43ur9zvZgvdw7wVm9ggn83Kx4ERER6SZmzJhBYKCb7ax6iqAosPiD3Vb7WbAFlTVWNqQVAsZNHm5TBYuIiHiZEiwiTYgI8uOiyUbv2Jd/Smmw/6Vl+7Da7JwwNIrx/SNafL4zx/Xl+ztnsfSuWS0eHx8ZxNSBvfjFNoYVg281Nn59L6Stau230Tk4h9yHxkGUo4IlbzdYa9w7v26CxWSqrWJZ/TLUVHk2VhGRHsxut7POMX9lckJr56+EgVlvLUVEpHuYOXMmb775JhUVzbdr/uqrr+jbt28HRdVFmM0Q3s9Yd7NN2JaDRVTW2Ogd7MeQPsEtn+CkBIuIiHiZPgWLNOO6EwZhMsHSHdnsyS51bc8treS/q9OAlqtX6hrQO4g+of5uHXvBRCO58+eck7GPPh9s1fD+VVCa7f434El2O+z7AYozWneezVZ7TlgcRAwAn0CwVkHhATfOt0LWVmM9dryxHHOBMY+lJAO2fdq6eEREpEmp+eXklVXhZzEztl/TlZb1aMC9iIh0QxMnTuSuu+4iNjaWG264gRUrVng7JI9LTk5m9OjRTJ061fNP3spB9872YFMHRmIyudGi1EkJFhER8TIlWESaMSgqmNmjYgB45efaKpY3ftlPZY2N8f3DOW5I76Py2meP64ufxczO7FJ2THsUokYYCYWFk+CFE+H9q+G7P8Pa12Hfj1BwwEhGHC3r34Y3z4P/JbXuvPI8IzmECUJjwWyBqKHGPnfmsOTthZoK8A2GyEHGNh8/mPZbY33Fs117Po2ISCey1lG9MrZfGP4+FvdOOlxoLJVgERGRbuSpp57i0KFDvPbaa2RnZ3PiiScyevRoHn/8cbKysrwdnkckJSWxbds2Vq9e7fknDx9gLIvS3DrcOeB+amvmr4BmsIiIiNcd1QTLFVdcQViYm3c/inRSN8wYDMDH69LJK62k5HA1b/yyH4D5s4a07u6aVggP8uWUUdEAfLSlCH7zDoT2haoSyNhoVG78/C/4/DZ4cw78ezz8NQZemAmL74fd30FlafMv4q7yfPj2AWM9Y2PrznW2BwuJAYuvsR41wljm7Gz5fOeA+5jRRnLGafJ14BMAh9ZDave7m0xExBvWutqDuTl/BWorWPyVYBERke7Fx8eHuXPn8r///Y/09HQuu+wy7r//fuLj4zn//PNZunSpt0PsvFpRwWK12VnjeA8yvdUJFlWwiIiId/m09cTCwkJWrVpFdnY2Nput3r6rrroKgOeee6590Yl0AlMH9mJ8/3A2pRfx9opUAv3MFB+uYXCfYE4bHXtUX/uCif34eksm/9t4iHvPPBmf2zZC/j7IT4GCFCjY71jfb7TbslZBxgbj8ctCMPtAvykw6EQYNAP6TwPfgNYHsvSvUGHcUUR5rnExzd07lesOuHdyDrrPdWPQfd35K3UF94bx82DdG0YVS8Kx7sUjIt2KBst61rrUQqCNCRZVsIiISDe1atUqXnvtNf773/8SHR3NNddcw8GDBznnnHOYP38+jz/+uLdD7HxcCZaWK1h2ZBZTcriGEH8fRvVtxU26NqvRMQGUYBEREa9pU4Ll888/5/LLL6e0tJSwsLB6d/CbTCZXgkWkOzCZTPx2xmBufXc9b63Yj9nx3/tNJw7BbD461StOs0ZE0yvIl5ySSpbvzWPm8D4QPcp4HMlmNe4OSlsFKT9CyjIj6ZK2wngs+ydY/OHY+XDKg8aweHcc2gBrXjXWLX5GEic/BeImuHe+s4KlXoLFMejenRZhTSVYAI652Uiw7PjCaJHWK8G9mESk05s5cybXX389F198cbMJlK+++qoDo+reSg5XszOzGIBJA5RgERGRni07O5u33nqL1157jd27d3Puuefy7rvvcvrpp7uugVxzzTWcccYZSrA0phUVLM72YJMSemFpzWfs8nzADpggsJWVLyIiIh7SphZhd955J9dddx2lpaUUFhZSUFDgeuTn53s6RhGvO3NsLHHhAeSWVpFdUklsWADnT+x31F/Xz8fMOeONxMSn6w82f7DZYiQYxl8M5z0Dt2+C2zbCnGdg3CXGUHhrpdFWbNVL7gVgs8FXdwF2GHsR9J1gbC9Iae6s+pqrYMnZ1fL8FFeCZXzDfdGjYPBJYLfBqhfdj0lEOj0Nlu14G9OKsNmhf69AosNaUe2oBIuIiHRD/fv35+WXX+bqq68mPT2dDz/8kDPOOKPeDabjx4/vNH/HO53weGNZlN7iZ77V+9vZHiwoEixtbtAiIiLSLm1KsBw8eJBbb72VoKAgT8cj0in5Wsxce/wg19e/nTEIP5+jOsLIxZnIWbQlk7LKmtad3GsgTLoSLnwJ7twBpz5sbF90r1Hh0pIN70D6avALgdP+CpHGPBry97kfQ0mGsaybYIkcbLQvqy5r/o6mkiwoywaTGaJHN37MsUnGct2bUFniflwi0qlpsGzHW5dqXNxoVfUKwGGj6kUJFhER6U6WLFnC9u3bufvuu+nTp/H2U2FhYXz//fcdHFkXEe64IbGqFA4XNnmY3W5npXPA/UDNXxERka6nTVeITz/9dNasWePpWEQ6tXnT4okJ86dfRCCXThvQYa87aUAEA3sHUVFt5ZutmW1/IpMJjrsVxv8G7FZ4/2pjdktTKgrguweN9Zl/gLC+EOlIMuW3poLF2SKsTsWPxRcihxjruc0Mus9yVK/0Hgp+QezJLqGyxlr/mCGnQO9hUFkMG/7jflwi0ulpsGzHatOAe1AFi4iIdEv9+/dn9+7dDbbv3r2b/fv3d3xAXY1vYG3io5mb6vbnlZNbWomfxcz4/q18L6EEi4iIdAJtSrCcffbZ3H333fz5z3/mo48+4rPPPqv3EOmOwgJ8+XbBTBbdPoNg/44rPzaZTK4qlk9aahPW8pPBuU9B3CRjaP27l0FlaePHLn3EGBjYZ6Qx6wTqVLC0s0UY1JnD0syg+zrzV77blsXsJ5fx2KIjEjJmc218K54zZtGISLeyatUqHnzwQZ544gmio6O57777iIqK4pxzzuGuu+7ydnjdgs1md1WwKMEiIiJizFf55ZdfGmxfuXIl11xzTccH1BU557AUNj3o3jl/ZUJ8BAG+ltY9f1musQyOakt0IiIiHtGmBMsNN9xAWloaDz/8MBdffDHnn3++63HBBRd4OkaRTiMswJfQAN8Of90LHAmW5XtyySo+3L4n8w2E37wDITGQvRU+vdmYtVJXxkZY84qxftZjRsUJQC9HBYu7M1js9toES2jf+vuiRhjL5gbd10mwfL8zG4AlO7IbHpf4GwiIMOLa9Y17sYlIp5adnc0TTzzB2LFjmTFjBjk5Obz77rvs37+fhx56iJdffpnFixfz/PPPezvUbmFvTiklh2sI9LUwMja0dScrwSIiIt3Q+vXrOf744xtsP+aYY9iwYUPHB9QVuTHo3tUebFArb/AAVbCIiEin0KYEi81ma/JhterucRFPS+gdzOSEXtjs8L8N7axiAaOaZN7bYPGD7Z/BsscoqqjmspdW8PKyPfDlXcbg+DFzYdCJtec5K1iKD0J1Rcuvc7gIqstrX7Mu56D7XPcqWDalGxfwUnLLKCirqn+cXzBMvtpY3/TfluMSkU5Pg2U7lrM9WGJ8OD6WVr49VIJFRES6IZPJRElJwxmPRUVFuu7hLteg+2YqWPa3cf4KKMEiIiKdQsdM6RaRdnNWsXy87iB2u739Txg/Dc75l7H+w6NsXvIOv+zNY/+SVyB9FfgGw+mP1D8nKBL8w4z1ggMtv4azeiUw0qicqcvVImyHUelypKoyyDV6HldGjWFHZrFr1/q0gobHDzvNWKZ1jmHRItI+Gizbsdo8fwWUYBERkW7pxBNP5G9/+1u9ZIrVauVvf/sbJ5xwghcj60JaqGDJLDpMan45ZlMb34OoRZiIiHQCbg+SWLhwITfeeCMBAQEsXLiw2WNvvfXWdgcmIvWdOz6Ov3yxjR2ZJaxPK2TSgDa8AT3SxCuMKpGVzzN13b1MNt3D7bxt7Jv1h4ZVJyaTMeg+YyPk74Pokc0/v2v+Sr+G+3oPA0xQUWC8MQ454gJq9nbADsHR7CgJpNpam4RZn1rIySNj6h8fNxFMFig5ZLyBd76ZF5EuyTlYdtiwYfW27969G19fXwYOHOidwLop5/yVNv1tcSVYwjwYkYiIiHf94x//4MQTT2TEiBHMmDEDgJ9++oni4mKWLl3q5ei6CFcFS+MJllWO6pXRcWFta8WtChYREekE3E6w/Otf/+Lyyy8nICCAf/3rX00eZzKZlGAROQrCg3w5e1xfPl5/kP+sTPVMggXgtL9C9jb8U5bxvt/DWEx28gIG0nv6zY0fHznYSLC4M4el2NHO7MhEDYBfEEQMgMIDRhXLkQmWzE3GMnYcmw4aF+9MJqPYZX1qYSPPFwyxY43Y0lYpwSLSxV1zzTVcd911DRIsK1eu5OWXX+aHH37wTmDdUEFZFXtzygCY2Nq/LTWVUONoGakKFhER6UZGjx7Npk2beOaZZ9i4cSOBgYFcddVV3HLLLURGtqGdVU/kqmBpvEWYc8B9m9qDgRIsIiLSKbidYElJSWl0XUQ6zuXHDODj9Qf5YtMh7j97NOFBbbjL50gWX4rOeYmif5/AALPxBvVxn9/yNx+/xo93DrrP39fyc7sqWPo2vr/PCCPBkrsTBs2ov6/O/JXN6YUAnDIyhu+2Z7EhrRCrzY7FbKp/Tv9pRoIlfTWMndtyfCLSaTU3WPaWW27xQkTdl7Pt4uA+wUQGN/G7vymHa9s3ulpIioiIdBNxcXE8+uij3g6j63JWsJRkQk0VHPEZ0zl/ZfqgtiZYnC3ClGARERHv0QwWkS5k0oBejIgJ5XC1jY/XN15m3RbrcszcUH0nB4nmLeupvJs7mOziw40f7Bx0706CpaSZFmFgJFgAchoZdN/IgPuLJvcnyM9CaWUNe7JLG54TP81Ypq1qOTYR6dR6wmDZ5ORkRo8ezdSpU70ax7oDhUA724P5h4HZ4rmgREREOony8nJ27NjBpk2b6j26g6P+XiQ4Ciz+gL32s6FDYXkVOzKN93pT2lLBUl0BVSW1ryMiIuIlblewHCk9PZ3PPvuM1NRUqqqq6u178skn2x2YiDRkMpm4bPoAHvxsK/9Zmco1xw3EZDK1fGIL1h4oYKd9AE+O/pA92SWQXsSPu3K4eEp8w4MjnRUs7rQIcyZYGmkRBhDlTLDsqL/dZoWsrQAc7j2GXVlGMmfigAgS+0fw67481qUWMCI2tP55/acYy8xNRtsaH/+WYxSRTsk5WPbdd9/FYjEu3He3wbJJSUkkJSVRXFxMeLj32mu1a8B9pQbci4hI95STk8O1117L119/3ej+7nDDx1F/L2IyGW3C8vcac1h6DXTtWrO/toI2KqQNn9uc1SsWP1XRioiIV7UpwbJkyRLmzJnD4MGD2bFjB2PHjmX//v3Y7XYmTZrk6RhFpI4LJvXj71/vYHd2KWsOFLS9X20dzotrUwb2ol9EABubTbA4KlgKU8FaDZZm2pS1lGDpM9JY5h5RwZKfAtXl4BPIlsNR2Oz7iAnzJyYsgIkDjATL+tQCLp02oP55vQZBUBSU5xqtwpwVLSLS5WiwbMeosdrYkFYItDHBclgJFhER6Z5uv/12CgsLWblyJbNmzeKTTz4hKyuLv/71rzzxxBPeDq/riIivTbDU0f72YHXmr3jgpkMREZG2alOLsPvuu4+77rqLzZs3ExAQwEcffURaWhozZ87k4osv9nSMIlJHWIAv5yYaM03+szK13c935MW1mSOM/rU/7c6lxmpreEJILPgEgN1ab1hhRZWVR77cxirHoEKgzpD7plqEDTeWJRm1F+mgdsB9zBg2HTJagY3rFwHUtrBpdNC9yaQ2YSLdhHOw7CWXXEJ2djYlJSVcddVVrhs7xDN2ZJZQUW0lNMCHoX1CWv8ESrCIiEg3tXTpUp588kmmTJmC2WwmISGBK664gn/+85/87W9/83Z4XYdz0H1h/UH3K9s94N45f0XtwURExLvalGDZvn07V111FQA+Pj5UVFQQEhLCww8/zD/+8Q+PBigiDV02PQGALzdnUFBW1cLRzdueUf/iWmL/CMIDfSmqqGZjelHDE8zmRgfdv/ZLCi/9lMKDnxmtvagqq73wFtrEkPuA8Np9deew1Ju/UgjA+P7GxbsJAyIA2J1dSlFFdcPn7O/oH5yuBItIV+ccLPvll1/y4Ycf8sADDxAZ2f6qPam1LtWoYJw4oBdmcxvu/lSCRUREuqmysjKio6MB6NWrFzk5RsXEuHHjWLdunTdD61qcg+7r3JxXXlXDloPGe4hpnqhgERER8aI2JViCg4Ndc1f69u3L3r17Xftyc3M9E5mINCmxfzhj4sKoqrHx0br2Dbtfe8C4c2iS4+Kaj8XMCcOMu4B+3Jnd+ElHzGGx2ez8d5XxhnlnZjElh6uhOMM4xi8UAprpiRvlqGKpO4elboLF8cbbmWCJCvEnoXcQABsdlTf1uCpYVjf9miLSZXTnwbKdwTpHi8hJjuR1qynBIiIi3dSIESPYuXMnAImJibzwwgscPHiQ559/nr59m7iBTBpyVrDUaRG2IbWQGpuduPAA+vcKatvzKsEiIiKdRJsSLMcccww///wzAGeddRZ33nknjzzyCNdddx3HHHOMRwMUkYacw+4B/rMqFbvd3ubnWutotTWlTu/9WcONN6k/7spp/CTnHBZHgmX53lxS88sBsNlhY1pRnfZgTcxfcerjGHSfu7N2myPBUhY5mn05ZQCM7x/h2j0x3lh33nldT9xEMFmg5BAUHWz+tUWk08rJyeGcc84hNDSUMWPGMHHixHoP8Yy1qe0YcA9KsIiISLd12223kZFh3DT24IMP8vXXXzNgwAAWLlzIo48+6uXoupBGEizOGaBT21q9AnUSLGoRJiIi3tWmBMuTTz7J9OnTAXjooYc45ZRTeO+99xg4cCCvvPKKRwMUkcadN6EfwX4W9uWUsWJffssnNMF593Ldi2szHQmWTQeLyCutbHhSr4HGssBIsLy7qv4smLUHCloecO/kTLA4W4SVZkNpJmBic7Uxu6V/r0Aig/1cp0xsbg6LXzDEjDHW1SZMpMuqO1g2MDCQRYsW8cYbbzBs2DA+++wzb4fXLWSXHCYtvwKTCSY4Etet5kyw+DdTqSgiItIFXXHFFVxzzTUATJ48mQMHDrB69WrS0tKYN2+ed4PrSlwtwtLBcWNgSq5xE93I2Ha8f3DNYFEFi4iIeFerEyxWq5X09HQGDDDung8ODub5559n06ZNfPTRRyQkJHg8SBFpKMTfh/MmGgmId1YeaNNzZBRVcLCwArMJEutcXIsOC2B03zDsdli2u5EqFlcFyz5ySipZvDULwFVVsza1wP0KlihngsXRIszZHqz3EDZmGTNWnO3BnJyD7jekFWKzNVK90xPbhK14Hh4fATk7Wz5WpAvQYNmjb92BQgBGxIQSGuDbtidRBYuIiHRD1dXVDBkyhO3bt7u2BQUFMWnSJKKiVDHRKmHGZ1aqy6DCuLnP2f1gQGQb24OBWoSJiEin0eoEi8Vi4bTTTqOgoJHWPF1IcnIyo0ePZurUqd4ORaTNLptmJDS+2ZpJbmOVJi1wlmaP6htGsL9PvX0zRzjahO1sJsFSsJ8P1hygxmZn4oAIVzzrDxRgd7uCZaSxLEyFqvIjBtwbF+7G9Yuod8rIvqEE+Jopqqhmn+Pup3r6OxIsPaWCpaIAlv7FqPzZ/a23oxHxCA2WPfqcbRYntbU9GCjBIiIi3ZKvry+HDx/2dhjdg28ABBvv6ZyD7g8owSIiIt1Im1qEjR07ln379nk6lg6VlJTEtm3bWL26B93hLt3O2H7hJMZHUG218+Ha1g+7dyZYpjRycc05h2XZ7tyGVSLh8WD2gZrDLFm5ETCSPSNjQwnys1BSWUNprvHmucUES3AUBPYC7JC3+4gB94UAJB5RweJrMTPekXRZ39gclnhH4jRjI9S0PvHU5ax+GapKjfWSDO/GIuIhGix79Dn/Bkwe0J4ES7GxVIJFRES6maSkJP7xj39QU1Pj7VC6vjpzWCqqrOSUGJ/R2pdgcbYIU0WRiIh4V5sSLH/961+56667+OKLL8jIyKC4uLjeQ0Q6zuWOqpH/rExtvF1WM5zzVxq7e3lSQi9C/X3IL6ti88Gi+jstPhBhvK5v8X5CA3w4Z3wcPhazq49/db4zwdKv+SBMptoqlpxdrgRLScQo0vIrABjTr+GFu4kDjNdZ19gcll6DIKg3WKuMJEt3Vl1htAdzKs3yXiwiHqTBskdXZY3V9btdFSwiIiINrV69mo8//pgBAwZw+umnM3fu3HoPaYU6CZa0AqN6JTzQl/CgNrYotdtVwSIiIp2GT8uHNHTWWWcBMGfOHEwmk2u73W7HZDJhtVo9E52ItOicxL785YttpOaXs3xvLjOGufcGs6LKytZDRkJ0ciMX13wtZo4fGsWirZn8sDOn3owWwEhi5O9jgCmL4RP7EehncT3XL3vz8C3LNI5rqYIFIGo4pP4KGRuMKhZgiy0B2M/gqGDCAxu+8XYmWBqtYDGZjDZhu76G9NW1M1m6o/VvQ3lu7dclmd6LRcSDrrjiCte6c7Dsjh07GDBgQLfpfZ6cnExycrJX3jdtPVRMVY2NyGA/BvZux92jSrCIiEg3FRERwYUXXujtMLoH16D7NFLzPNAe7HAR2Ix5nQR1j/eFIiLSdbUpwfLaa68RHx+PxWKpt91ms5GamuqRwETEPUF+Psyd1I83fj3Af1amup1g2ZheSI3NTkyYP/0iAhs9ZuaIPizamsmPu7K5bfawevsqQhMIBAaasjjZMdwejDuh/agm1OpIfIS6kWDp4xh0v+1/YLdBcB/W5hpJlXH9G79oN9HR0mZXVgmllTWEHDFDhvipRoIlbRUcm9RyDF2RtQZ+edpYH32e8e+nFmHSDVRXVzNy5Ei++OILRo0aBdQOlu1OkpKSSEpKori4mPDwjk1QuCoYB/Sqd7NMqynBIiIi3dRrr73m7RC6jwhHgqUwjQNBnpi/4rjBzD/MmPEiIiLiRW1KsFx33XVkZGS4hs865eXlMXv2bK6++mqPBCci7rlsegJv/HqAb7dlkV18mOiwlt9k1s5fiWzy4tpMxxyWDWmFFJZXERHkV3t+SQQnAInB+YyMDXNtnxTfi2hTIQB2iz+moMiWvwFngsUx9JDYcWw8aFTXjGukPRhATFgA/SICOVhYwaa0Qo4besSdS65B9914ztK2T6HwgNEObcZdjgSLWoRJ16fBskdf7YD7iLY/ibUaqsuMdSVYREREpCl1W4QFGAmWeI8MuFf1ioiIeF+bZrA4W4EdqbS0lIAA3T0g0tFGxIYyOaEXNTY7769Jc+uc5uavOMVFBDI8JgSbHX7aXduGymaz80Wa8f/6aP+8eueEB/kypZcxO6UiMMZo19WSqBH1v44dx+Z0467oBq3J6nC1CUsrbLiz3yQwWaD4IBQdbDmGrsZuh5+fMtan3wSRg4z1qhKoLPVaWCKeosGy7bD+bXj3Utj4XqO77Xa7Zwfcg3EHqYiISDcyaNAgBg8e3ORDWqFOgiU13xMVLJq/IiIinUerKlgWLFgAgMlk4v777ycoqPYPotVqZeXKlUyYMMGjAYqIey6fPoC1Bwp4e0Uqv50xmABfS5PH2u121jruXm5s/kpds0ZEsyurlB925nBuotHua/neXNaURIA/RFSmGxf76yRSpvWugHLINUUxoInnrSe8P/iFQJWRGCgKH0lm8WHMJhgT1/RFu4kDevHFpgxXsqgev2CIGQOZmyB9FYRf4E4kbVZYXsXXWzKZkxhH8JHtyo6GvUsgazP4BsPU34J/aO2/YWkW+Icc/Rhaw24HaxX4+Hs7EukiVq9ezZIlS1i8eDHjxo0jODi43v6PP/7YS5F1ATk7YOdXxqysxHkNdh8srCCruBIfs4nx/SPa/jqHC42lXyhYOuD3noiISAe6/fbb631dXV3N+vXrWbRoEXfffbd3guqqnDNYSjPJMBk30iW0ZwacEiwiItKJtOrT8Pr16wHj4uzmzZvx86ttF+Tn50diYiJ33XWXZyMUEbecNa4vTyzexcHCCl75OYWkk4Y2eey+3DIKy6vx9zEzum/zdx3PHN6HF5ft48ddOdhsdsxmE++uSiXNHo0NE+bKEijPq1eePSbESJQcqA53L8FiMkHUMDhk/I7ZaksAChkWHUqQX9O/pupWsDRaWdd/qiPBsgbGHN0Ey3M/7OWFZfv4dW8eCy+deFRfC6itXpl8NTjbsIXGQt4eYw5L7yFHP4bW+PhG2LUI5q+A8H7ejka6AA2WbYfQvsayiZlM61ILARgdF0agX9PJ+Ba55q+oekVERLqf2267rdHtycnJrFmzpoOj6eKCeoNPINRUUFWQDvTxzAwWtQgTEZFOoFUJlu+//x6Aa6+9ln//+9+EhekDtUhnEeBr4a7Th3PHext57oe9/GZqPL1DGq8WWLvfqPhIjI/Az6f5ToFTBvYiyM9Cbmkl2zKKiQkLYPHWLGrwwxoci7ksA/JT6r25TfAtBGBHeQjTa2wtvgZgtAk7tB58AlhZFAEUNjng3mlMXBh+FjP5ZVWk5peT0Lv+He7ET4M1rxiD7o+ybRlGq5zPNh7imuMHMqk9bXdakr4W9v8EZh84Nql2e4gzwZJ59F67LWw24276qlI48AuMv9jbEUkXoMGy7RAaayxLG5/JtNHRVrHdv6c04F5ERHqgM888k/vuu0/vVVrDZDK6FuTtJtqWzX5zNH3D29Fe3lnBEqQEi4iIeF+bZrC89tprSq6IdELnJfZjbL8wSitreHrpniaPc/Xeb6E9GIC/j4XjhvQG4MddOXywNo0am52JAyLw7eOoksnfV++c8BrjjqJ0ayRbDxW5F7xz0H30aDYeMoYmJ7aQYPH3sTCmn/G7yDmwuZ7+U41lxgaoqXQvjjbal1PmWv/LF9uw2+1H78WW/8tYjruktp8x1F5UPQoJloOFFXy7rfGLtS0qSnO1fyN3p+eCEpHGtVDBklFkzMlqV2sOUIJFRER6pA8//JDIyEhvh9H1OD63xJFHv4hAfCxtuhxlKHdWsKhFmIiIeJ8aZot0I2aziT+eOYrLXl7J2ysOcPVxAxkUFdzgONf8FTfvXp45Iprvtmfzw85ssoqNRMVl0wbAwYFGJcURCRZT8SEAMu2RrD1QwER3XmfcRbD1E+zTb2LzZ8ZFu3FuzAaYNKAX61MLWZ9ayAUT+9ffGTnYKEcvz4OMTRA/teU42qCiysrBQuOCpb+PmfWphXy+KYM5jpk1HpW7G7Z/Yawff0TbAleCpfGLqu1xx383sGp/Pm9cN42Zw1v5QSZ7W+16jhIs4p5BgwY1bPtXx759+5rc1+PVTbYeMSMLINvxezw6tB13jgJUOobcK8EiIiLd0MSJE+u9F7Hb7WRmZpKTk8Ozzz7rxcg8Jzk5meTkZKxW69F/MWeCxZTbvvZgYHy+A+OznoiIiJcpwSLSzRw3NIpZI/rww84c/rloB89dMbne/sLyKvZkG9UEk9yoYAGY5bigvtrRWiw0wIdzxsdBxWDjgIKU+ic4EiwZ9sjGK0saEzEAbvqJgwXl5JV9j4/ZxMjY0BZPc81hccwUqMdkgv7TYNfXxqD7o5RgSck1qlcigny57vhBPPntLv7x9Q5OGx1DgG875hs0Zvm/ATsMPxOiR9bf10JboLYqq6xxJeV+2ZvbvgRL7i4PRibdmQbLtkOI43dBdbmRBDkiAZJTaiRY+oQ23kbSbapgERGRbuz888+v97XZbKZPnz7MmjWLkSNHNn5SF5OUlERSUhLFxcWEhx/lv+eOQfdxpjzy2ltFW55vLIOVYBEREe9TgkWkG7rvzFEs25XD11syWXsgn8kJtSXszoTH4D7BRAb7ufV88ZFBDO4T7GqDNXdiP2MwcqQjwVK3gsVa42pRlWGPJOtAQeMD6JuwOd24YDeyb6hbyQlndcz2jGIqqqwNBzb3n+JIsKx26/XbYm+OkbAaHBXMDTMG8+6qVA4WVvDKzykknTTUcy9UnAGb3jPWT7ij4X5XWyDPtghbl1qA1Wa0PFt3wM2EWV1ZdRIseXuN/0Ys+vMjzdNg2XbwCwL/cKgsMn4f1EmA2O32OhUsSrCIiIg05cEHH/R2CN2Lo4KlnymXovZWsDiH3KuCRUREOoF2NL0Ukc5qRGwoF0827hB65Mvt9eaBuOavtHK4cd2qhUunDzBWIgcZy/w6FSxl2WC3YjdZKDRHkFVc6Wqf5Y6NjgTLuH4Rbh0fFx5ATJg/NTY7mw82Mu8lfpqxTDt6CRZn4mlwnxAC/Sz84QzjjrZnv99Ddslhz73QimfBWgUDjoUB0xvuD4kxlh5uEbY6Jd+1vjG9iKoaW+ueIHt77bqtGgr2eyawriRvLxSmejuKbuHMM8/ko48+8nYYnV8TLQPLqqxUVBttQFTBIiIi0rSvvvqKb775psH2b775hq+//toLEXVxEcbn037tbRFmt6tFmIiIdCpKsIh0UwtOG06gr4V1qYV8s7W2oqE1A+7rOnucUR1x7ODejIw1BsvTy5FgKc+Fw45e/MXGxTxTaF9GxUXUe013bD5YCLQ84N7JZDIxMd74XhptRxY3CUxmKE53tS7ztH25jgqWPsa8mzmJcSTGR1BWZeXJxR5qiVVRCGteM9aPv73xY1wVLJ5tEbZqf22CparGxraMYvdPtlbXtgULijKWPW3QfWUpvHAiLJwEyxeCrZUJKqlHg2XdVHcOSx3ZxUbSN9jPQrB/OyvJlGAREZFu7N577210Nondbufee+/1QkRdnGsGSx4DegW2/Xkqi42btkAJFhER6RSUYBHppmLCArhhhpEA+ceinVRbbVRbbWxMMy6ItTbBMmVgJF/dOoPnr6wz0yUgrPaiuXMOS/FBYxkWxyRHlYy7baVsNjubnBUsbiZYACYlRACwvrEEi38IxIwx1tNWNfkc6QXl3PPhRle7r9ZwVbBEhQBgNpt44JxRALy3Jo1th1qRkGhMeT58dRdUlUD0aBh2WuPHhToqWKpKjIv6HlBVY3PNtxkUZSSQWpMwI2+P8QHILxQGzzS29bRB97m7oKrU+Hf49n546zwoOujtqDq9iRMnMmnSJNdj4sSJ9O3blz/+8Y/88Y9/9HZ4nV8TLQOzSzw0fwWUYBERkW5t9+7djB49usH2kSNHsmfPHi9E1LWVBxifVQJNVSQEtaPK31m94hsMvu1I1IiIiHiIEiwi3diNM4cQFeJHSm4Z/1mZyo6MEiqqrYQH+jKkT0irn290XBjhgb71Nx45h8VZJRIW50rirHVz0P2B/HJKDtfg72NmeEzLA+6dnHNY1qUW1muH5tLf0SasmTksf/1iO++vSee5H/Y2fkBNJWz7H1SV1dtst9vZ50jKDHFUsABMTojknPF9sdvhr19uazyultRUwa/JsHACbP7A2DbrXjA38avbPxT8HD9XDw2633ywiMoaG72CfLlwUj+glXNYsrYay+hR0McxDLSnDbrPc/w3FRILvkGQsgyeOw62fuLduDq5888/n/POO8/1mDt3Lg8++CBbtmzhxhtv9HZ4HpGcnMzo0aOZOnWq55+8iQqWnBLn/JWA9r+GEiwiItKNhYeHs2/fvgbb9+zZQ3BwcCNnSHNSi61k2yMACD3cjpmRzgH3ql4REZFOQlOGRbqxEH8fbps9nPs/3cK/l+zm2uMGAjBpQARms3tD51sUOQjSV9XOYXFVsPRzJVi2Z5RQVlnTYjuaTemFgJHI8bW4n/8d1y8cH7OJnBJj3kv/Xkf09I2fBmteabKC5WBhBYu3GW/ym6w2+foeWPs6zPojzPqDa3N2SSVlVVbMJhjQu/7r/uGMkSzelsUve/P4bns2p46Oce8bstth++fw7QO1lUExY+G0v8KQk5o/NzTWqBopyYDeQ9x7vWasdrQHmzowkskJRlumRluxNcU5fyVmNEQNN9Z7WgVLnuMOx+GnwXG3wce/hUPr4YNrYNdiOPMfRjWY1NMTBssmJSWRlJREcXEx4eEeTlK4Kljqz2BxVbCEebCCxV///YqISPdz3nnncfvtt/PJJ58wZIjxvnrPnj3ceeedzJkzx8vRdT2peeUctvcm2lQIRWkQN6FtT+QccB+sBIuIiHQOqmAR6eZ+MzWewX2CyS+r4umlxoXe1rYHa1aTFSx9iYsIpG94AFabnY2O5ElznO3Bxvdr3YXGAF8Lo+OMC3zOdlb19HfcHZ6x0ahEOcJ/Vh7A5igw2ZNdSrX1iBkZBfth/dvG+qF19XY5W4rFRwbh72Opty8+MojrTzDatD361Xb3hsMfXAevnQXvX2kkV0JiYM7T8LtlLSdXwKiSgAZ3rbeVc8D9tEGRJMaHYzGbyCg6zKHCCveeIHubsYweDX1GGOu5u40kUk/hTLD0HgpRQ+H6b2HGXcZsoI3/gedPgNSV3o2xE9Jg2XZqoYKlT4hahImIiDTnn//8J8HBwYwcOZJBgwYxaNAgRo0aRe/evXn88ce9HV6Xk5pfTrrd0V66KL3tT6QB9yIi0skowSLSzflazNx7htGaqcqROJjkyQSLc9B9wX5j6bxbOiyu3mu501ZqszPB0j+i1WFMjDfOWbEvr+HOyMHGG3BrJWRurrfrcLWVd1elub6ustoazmFZ9hjYaoz1nB31dtXOX2m8TcD8WbVt2t5ecaDx4O12I66PfwcvnQSpv4BPAJx4N/x+LUy6CsyWxs89UhMXVdvCZrOzxvFzmzowkiA/H0b1NVq3uT2HpW6CJXIImCzGjBhnIq4nqJtgAbD4win3wzVfQvgAKDwAr50BK1/wXoydkAbLtpPrd8GRFSxGz/Noj1SwOCr+lGAREZFuKDw8nF9++YUvv/yS+fPnc+edd7JkyRKWLl1KRESEt8PrctLyyzmkBIuIiHRDSrCI9ACnjo5h2kCjvZPFbGKCIxnhEQ0qWGpbhAFMdsxHaemCvNVmZ8shZ4Kl9RfrTh5ltN/6aF06WcVHDE00mWqrWI5oE/blpgzyy6qICw9w/btsz6jTJiw/BTa8W/t1wQGorq3ecCVYmphpExrgy52nGZUb/16ym8LyKmOH3W7MJ1n6V3hmilHFsOm/xr7x84zEysn/Z8xVaY0mLqq2xa7sEooqqgnyszDGUSE02TXvxo0ES2VpbeItejT4+Bkt5QBye0ibMLu9dgaLM8HilHAc3Pyz8fO222Dx/WBrmFDoqTRYtp3qJlvrVIx5rILFWmMkSwECItr3XCIiIp2UyWTitNNO4+677+aWW27hxBNP9HZIXdaB/HIO2R1JkaK05g9uTrmjRVhQVPuDEhER8QAlWER6AJPJxJ/OHoW/j5kThkYR5OfB8UvOC+bFB6GqvN6Qe6htR7YutRCbrem2UHtzSimvshLkZ2kyWdGcE4dFMWlABIerbTyztJGLrwnHGctVLxpxOrz5634ALj8mgXGO1mQ7Mkpqz1v2ONitMOQUCOwF2I0WVw77co1ql8F9mh50ecmUeEbGhlJUUcUHXy2GpY9A8jRj0Pmyx4wKB4s/jDwHblgKc1+E8P6t/jcAai+qemDIvbM92KQBvfBxzMRpTUWSa9ZKSExtj+QoR5uwnB4y6L4027gIbTJDr4EN9weEw/nPGZU91krjeAE0WLbdnO0CrZVQUfv/q2vIfVg7h9xX1klEa4aQiIh0Q7feeisLFy5ssP2ZZ57h9ttv7/iAurjUegkWT1SwRLY/KBEREQ9QgkWkh0iMj+DnP5zMC1dO9uwTB/WuHXB8aB1YqwCT6+Le6LgwAnzNFFVUu5IRRyqrrOEfXxutt8b2M+Z8tJbJZOIeRyu0d1elkppXXv+AydcYVTUFKUbVCLA+tYCN6UX4Wcz8Zmo8o/oa38c2ZwVL3l7Y6KheOemPtcmB3NrkQG2LsKaTQhaziUemHmax3z3csOVyWPZP4zksfjDibJj7Mty9B37zDvRr58/HNdi6tkXYjsxikt5Zx6lP/si+I9ufNWPV/tr2YE6THBUsWw8Vc7i6hWqL7K3GMnpU7bY+jkH3PaWCxdkeLDwefJqoGDBban9uPal1Wgucg2X37t3r2qbBsq3gG+BIClMv4eocch8d2s4KFuf8Fd9go+2diIhIN/PRRx9x/PHHN9h+3HHH8eGHH3ohoq7LZrOTnl/BQWeLsML2VLAYN4GpRZiIiHQWSrCI9CB9Qv0J8HVzloe7TKbaKpb9y41lcB+jHRTGDBjnTJXG2oRlFR9m3ou/smRHNv4+Zn5/8tAGx7jrmMG9mTEsihqbnaeWHFEhERAO5zruQFvxLKSu5M1fjZko5yT2pXeIv2u+yHZnBYuzemXoqdB/Sm1ywFGZUVljJb3ASOQMaaaCBWBSxn8Zbj5Ipd2H3REnwAUvGkmVS/8D4y/23B3gIUarNEoy2ZFZzPx31nLGUz/x5eYMdmeX8tJPKW49jd1ud1WwTB1UO7Onf69AokP9qbHZ2eSYmdOk7O3GMnpM7baeVsGS30R7sCM5Kr5cLfZEg2U9wZVwNVoGVltt5JcZbQr7eCrBovkrIiLSTeXl5REe3vDvXFhYGLm5uV6IqOvKKjlMldVGtsmRYCnLhurDzZ/UlDLHv32wWoSJiEjnoASLiLSfc9D9gZ+NpfNisYOzTdiRCZbtGcWcn7ycLQeL6R3sx7s3HsOMYX3aFcrdpxsX8D9Zf5BdWSX1dw6bDRMuB+zUfDKf7zYZCZZrjhsIwIjYUEwmyC2tJC91O2x6zzhv1n3Gso9RIeMcdH8grxybHUL8fVq8WGnK3ALATdV3MCfv9+QNOf/oXJh0XFCtKDjIGU/9xFebMzGZ4JjBRhXKFxsPUVHV8pyP9IIKMosP42sxMTG+NsFiMpma/Hk2kKUKlgYD7pviSrCogsVJg2U9oO4cFozfbWBU1UUG+bXvuZVgERGRbm7o0KEsWrSowfavv/6awYMHeyGirsvZXSAoIhp8g4yNbb2xSEPuRUSkk/HgIAYR6bGcg+6dA+QdA+6dGht0/8PObJLeWUdZlZUhfYJ5/dppxEcGtTuU8f0jOGNMLIu2ZvLE4p28cOWU+gec/gjsWYJPwR7mmz7gm/ibXRU2QX4+DOodzL7cMmq+/4dRvTLsNOjvaNt1RIswZ7utwX2CMZmaaWtWXQF5xtwWW+x4Kg5ZeemnFO49c2S7v9+6dmaW8MK3mTwJBNrKCeIwJ40bxK2nDGNYdAgzH/+etPwKFm3N4IKJzc94WemoXhnbL5xAv/pVT5MG9OLrLZktJ1icFSwxdQaVRzkSLGU5Rnl/d++d3NSA+yOpgqVRzsGyp512mrdD6ZqOqGBxzl+JCvHD3IZWjPUowSIiIt3cggULuOWWW8jJyeHkk08GYMmSJTzxxBM89dRT3g2uizmQbyRYBvQOhor+xueponToPaT1T6YEi4iIdDKqYBGR9nO2CKtxlHkfUcHiHIy+N6eMgrIq3lpxgOvfWENZlZXjhvTm45uP90hyxenO04ZjMsE3W7PYmFZYf2dgL2rOegKAGy1fcNuo4nq7R/UNY5Apgz4p/zM2zLq3dmcfR4Ilbw9Yq9nrmr/SwsDt7O1gt0FQb648ZRoAb/6639Wqp70Kyqq4+4ONnPHvZXy8tYhSuzG8+vNrhpJ8+SRGxIZiNpu4aFI8AO+vbnmopLM92LSBDRMgzp/n+tQC7HZ7409QlmuU/mOqrfwB8A+tTcDl9oA2Ya4KlhY+PKqCpQENlvWAOi0DAbKLnfNX2jngHpRgERGRbu+6667jiSee4JVXXuGkk07ipJNO4u233+a5557jhhtu8HZ4XUqaM8ESGQThjhu92jLo3loNhwuN9SC1CBMRkc5BCRYRab/II0rkj0iwRAb7Mdgxo2T+O+u4/9MtWG12Lprcn9evnUZ4kGcHJA+LCeWCicZF/McXN2xFtdg6mU+tx2Ex2Zm5/c9QU+naN6pvKL/3+QQzNhh+Rv2h8+H9jYHOthrIT6kdcN+n6QH3AGQZ7cGIGcspo2MY2y+M8iorL/20r13fp91u56O16Zzy5I98sDYdux3OGheLb4Tx7z8koH6LtAsn98Nkgl/35bk+5DRl9X7H/JVGEixj+4XhZzGTV1bFgbwmnid7m7HsNRD8jkhARdWfZdMlLHsclj7SunNsVsh3/IzVIqzVNFjWA46oYPHYgHuok2Dx0PwoERGRTujmm28mPT2drKwsiouL2bdvH1dddZW3w+pyUhtNsLRh0H2Fs4LeBIERHolNRESkvZRgEZH2c85gcToiwQK1bcJ+3WeUdN99+ggeu2g8fj5H59fQHbOH42sx8dPuXH7ZW38I5Ru/7Oeh6qso843EnLMDlj1WG2dwLueZlxtf1K1eATCZIGqYsZ67k325tS3CmuWYv0LsOEwmE7edYiQY3vyl7VUsKbllXPHKSu78YCP5ZVWMiAnlo5uP5dnLJ+PvSLA471p36t8riBOGGnd6fbC26TvGckoq2ZdrJI+mDOzVYL+/j4Wx/YyLqutSm2gTluVIsEQb7cGeXrKbeS/8SmllTW0lUFepYDlcBEv/Asv+CQUH3D+vKA2sVWDxr/0g2RRnVY9ahLlosKwHuGawZAG1LcLaPeAeVMEiIiI9Sp8+fQgJaeGmKmlS/QSLUVXfpgSLsz1YYC8wW5o/VkREpIMowSIi7RfaF3zqtJxpJMEydZBRCeHnY2bhpRNJOmlo83NL2ik+MohLpw0A4PFvdrpaWW3PKGZlSj7F5nCqTvuHcfBPT0LGRgASU17CYrKzxDaJyujxDZ/Y0e7Knr2jtoIlqqUKFsew95ixAMweFc2YuDDKqqy83MoqlqoaG08v2c3pTy1j+Z48/H3M3HPGCL649QQmJziqTY4YbF3XRZONC/0frU3HZmu8vdcaR/XKyNhQIpoYhN3ioPts5/c8mv25Zfzru12sTMnn5905tRUsXSXBUrC/dj1jg/vnOduDRQ5u+QOg8/+Zkgyw2VoTXbelwbIe4KpgcbQIKzHaOHqkgqXS0V5RCRYREenGPvzwQy655BKOOeYYJk2aVO8h7nMOuY+vl2BpQ4uwMsdNNsFqDyYiIp2HEiwi0n5ms9EKyumIIfcA502I4+7TR/DRTccxJ7FhAuZouOWkoQT4mlmXWsjSHdkAvPmrUYFwxphYek29BEbNMYbZ/y8JsrYSuPMTAJ6svpA92aUNn7SPkRyoytxOUUU1AIOam8Fit0PWZmM91kiwGFUsRiXMG7/sp8DNKpbV+/M5a+FPPPHtLqpqbMwYFsXiO05k/qyh+Frq/Dp3JlhKGyZYTh8TS1iADwcLK/hlb16jr7OqmfZgTi0nWBwD7qNH8cKyfThzOTszS2srWLpKi7D8lNr1QxvcP8814N6N4Z0hsYDJqHgpb/zn0tMsWLCAe+65hwcffJAff/yRH3/8kQceeIB7772XO+64w9vhdQ2uZGsG2O2qYBEREWmFhQsXcu211xITE8P69euZNm0avXv3Zt++fZx55pneDq/LKK2sIc/xeWdA73bOYNGAexER6YSUYBERz6g7h8V513Qd/j4Wkk4ayrj+HXcxLjosgGuOM9qXPfbNTgrLq/h0vdGC6apjE4yDzn4CAiMhczO8MQeT3cZq/2PZah/E9oyShk/qqGCpydoBQL+IQAL9mqlOKEo3LkSafWorN4BTR8cwuq9RxfLKzylNnw9UVFl54H9buPj5X9mTXUpUiB///s0E3rxuGgm9G0nuNFPBEuBr4bwJRgLs/TWNl+W75q8MajrBMsnR8m1XVgklh6vr77TZXAmW3OChcOgJEQABAABJREFUfFSnHdmurJLaf4fCVKiuaPI1Oo2COj8fR6WTW1wD7luYvwLg4wch0ca62oQBGizrEc4h97ZqKM93zWDpoyH3IiIiLXr22Wd58cUXefrpp/Hz8+Oee+7h22+/5dZbb6WoqMjb4XUZztmPvYJ8CQvwrZ9gsTdeUd8kJVhERKQTUoJFRDzDOYclIAL8grwaSl03zRxMqL8POzJLuPGttVRUWxkZG8o0Z/IgJBrO/KexXm6UnK8ddCNgtBNrIMqovvAv3IsJW8vzV5wD7qNGgE/tXeMmk4lbHVUsr/+yn8LyxqtYNqUXcvbTP7kqb34zNZ7vFszkvAn9mm6xdkRboCNdPMX4ULNoayZF5fWTIyWHq9l2yPi+pzVTwRIdFkD/XoHY7LAx7YgPmEVpUFUKZl9e2mKiymoj1N8HgJ1ZJRDcx/jvBDvk7m7yNTqNI1uEuftBsDUVLKBB943QYNl28vGDIEcLjZIMVwVLdJgqWERERFqSmprKcccdB0BgYCAlJcbNV1deeSXvvvuuN0PrUurNXwHHe14T1ByubfnlLiVYRESkE1KCRUQ8I9KRYGmkPZg3RQT5ceOJRnXNqhSjMuPq4wbWT06MuwiGO8r8R55D5JCpQBMJll4DweKHj+0w/Uy5DG6uPRjUJlgc7cHqOm10DKP6hlFaWdOgiqXGauOZpbuZ++wv7MspIybMn7eun8bfLxzf5FwUF+dd600kWMb1C2dkbChVNTY+21T/Yv661EJsdoiPDCQ2vPm73JtsE5ZtDLi39h7OW6uN5//j2aMASMkto9Jq61qD7uu2CCvPc7+dQWsqWKD2/50SJViO1F0HyyYnJzN69GimTp169F7EUdFmr5Ng6ROiBIuIiEhLYmNjyc83Pj8MGDCAFStWAJCSkuKa7ygtqzd/BYybzpyfV1o76F4JFhER6YSUYBERzxg0E3yDYdhsb0fSwLUnDKJ3sJGUCAvw4bwJR8yAMZlg7gtGJcucpxnVNwwwEiwNPjxZfFwXzIeaDjK4TwsXfTMdCZaYhgkWs9nEbacYz/X68toqltS8cua9uILHF++ixmbn7HF9+eb2E5kxrI9733ALFSwmk8k17P6DI9qErU5pef6Kk7NN2LrUxhMsu4mnvMrKqL5hzJsST2iAD1abnZTcsto2YV1hDouzRZjZqMJxq01YTaXRAg1akWBRBcuRuvtg2aSkJLZt28bq1auP3os4EiwVeelUWW2AZrCIiIi44+STT+azzz4D4Nprr+WOO+7g1FNPZd68eVxwwQVejq7rcFawJPSu0+Ugoo2D7jXkXkREOiElWETEM/oMh3sPwKkPezuSBkL8fbjrdKNi4roTBhHk59PwoIBwmP47CIpkWEwIFrOJgvJqsoorGx7rSA4MNR1yv0VYzJhGd582OpaRsaGUVNbw6s8pvL86jTP/vYy1BwoI9ffhyUsSeeayiS1XrdQV6rgjrKoEKksbPeSCif3wMZvYlF7EjszaSh3ngPvm2oM5OStY1qUWYLPVSURlGQmWxbnGc9w8awhms4kRMaEA7MwsqVPB0skTLNbq2g9+g08ylhkbWj4vPwWwg3+Y0RLNHUqw1KPBsh7iSLCU5xv/XYUF+BDg28zcKHe5EiwR7X8uERGRTujFF1/kT3/6E2DcFPHqq68yatQoHn74YZ577jkvR9d1NGgRBm0fdK8KFhER6YSUYBERz7H4ejuCJl06bQC/3ncyt548rMVjA3wtrtZfjbUJszrmsAxrqYKlqqx2DkfsuEYPMapYjJie/n4P93y0ibIqK9MGRfL17TOYO6l/07NWmuIfCn6OuEqzGj2kd4g/s0cZiZgP1hgfbCprrGxIKwSaH3DvNDI2lEBfCyWHa9iTUyeR4xhwv6EyjoTeQZw11rjAOzzWSLAYg+4dCZacTt4irDAV7DbwCYDhpxvbDm1o+TxXe7AhRoWUO5wtwjTkHtBgWY9xVLRVFxoJlugwDwy4t1mh0vG70T+s/c8nIiLSCZnNZnx8am/M+s1vfsPChQv5/e9/j59f7c1P8+fPJze3lbNEehDnkPv4RhMsahEmIiJdnxIsItJj9A0PxGx272K3s03YtkYSLLkBCQAMtxykb3MXK7O3A3YIjoaQ6CYPO31MLCNiQrHbwddi4t4zR/LuDcfQv1dQk+e0yHHXOiUZTR7iHHb/yfqDVNXY2JxeRFWNjagQv5ZnywA+FjOJ8UZ7oHXOOSzWauyOuSo7bfH87sQh+FiMPzW1FSylRsUTGIkIa02rv70O42wP1msg9J1grLsz6L6181dAFSxH0GBZD3HOYCk2fhdEe6I9WGWd34sBSrCIiEjP9vbbb1Nc3Mjsxi7gaM+Ds9rspBdUAEdUsIQ5EiytvbFICRYREemElGAREWlE3TksR0rB+EAwzHyIZvM1zQy4r8tsNrHw0olcccwAPk06nptmDsHiZiKoSSHOBEvjc1gAZg7vQ59Qf/LLqli6I8vVHmxKQqTbVTMNBt3n7cFkq6bEHkh1SD8unNzPdeywGKOqZnd2CYQPAJ9AsFVDwf5WfnNtkLoCdnzZ+vOcsfUaZPwcTRYoy2k2cQW0P8GiwakaLOspjgoWn3Kjms2j81d8Ao1BtSIiIj1YV35fcrTnwWUWH6bKasPXYqJveGDtjrbcWGS3K8EiIiKdkhIsIiKNGNnXqLbYkVnSYN/Wyj5Y7SZC7GVNtuACmh1wf6QRsaH89fxxjInz0MDo0JYTLD4WM3MnGQmQD9aks8o54N6N9mBOrgSLY9C9LXMrALvs/bnhxCH4+9TOenBWsKTml1NeY4MoR/LhaM9hsdvh3d/Afy+Hwla2Ich3VLBEDgLfwNrZMS21CXO2hmtNgiXU8UGzuhwOF7Ymym5Jg2U9xPG7IKAiG/BQBcthR+JZA+5FRESkGal5Rnuw/r2C6t9A5mqN24oES3U51Bw21pVgERGRTkQJFhGRRox2VLDsyynlcLW13r7d+TWk2h0tv3KaSQ5kuZ9g8ThngqW06QQLwMWT4wH4fme2K8HizoB7p4nxRoJlX04ZBWVV7N1q3P2WYh7ApdMH1Du2d4g/USF+2O2wJ7u0zhyWo5xgKcmEigLAXvszcZergmWgsXS1CdvY/Hl1Z7C4yzeg9sOi2oRpsKynOKrZgqvzMGHzbAWLEiwiIiLSjEbnr0BtBUtJpvvtgsscc258AsCv5XbGIiIiHUUJFhGRRkSH+hMZ7IfN7hjKXse+nDL22B19g5tKDtjtkGVUc7TUIuyocKOCBWBodAiTE3phs0N5lZUQfx9GOap33NEr2I/BfYwPOOtSC8jbtx6AyEETCfH3aXD8cNcclpLaapDcozzoPn9f7Xr29tadW7dFGEDcBGOZsaHpcw4XQ5lRLUBkKxIsUFvFogSLBst6Skg0YMKClUhKiA71wJB7JVhERETEDamOBMuAyMD6O0KiwewDdmvzHQHqqtsezM12xiIiIh1BCRYRkUaYTCZXouHIOSz7ckvZY3dcCG+qvVVhqjEI2uIHUcOPZqiNc2MGi9PFk/u71icl9HINpXfX5AFGFcvTS/fQt9JoqTV12vGNHutMsOzKKqn9dznaFSx1Eyw5O9w/z26v3yIMoG+isWyuRVi+oz1YcHTrB4C7+lG3cuBnD9aVB8t2CIsvBPcBIMZU4KEWYUqwiIiISMsOuBIsR1SwmC2uOXFu31hUblTbE+R+tb2IiEhHUIJFRKQJo2Kdg+5rK1iKKqrJLa1ij83RN7ip5ICzFVWfEcYFzo7mZgULwNnj+xLoa8xKmTawV6tfapJjDsuutEwSzEblRuiA8Y0eW5tgKa1TwbL76A51b2sFS1kuVJcBJohwtDuLHQcms9F6ral/27bMX3Fqy8DPHq4rD5btMI7fB9GmArUIExER8bArrriCsLBW3lTTQ6Q2lWCB1t9YVO6oWA6K8kBkIiIintOwf4uIiAAwyjGHZVudCpZ9OaUA5AYOAitNJ1haMeD+qHDeEeZGgiU0wJffzRzMu6tSOTcxrtUv5Rx0P8yUDoA1qA+W4MY/+IyIDQEcFSyRE8BkgaoSI6EQ3q/Vr+2WugmW3F1gsxp3zbWkwFG9EtYPfBwXpf2CjcqbnB3GHBZnIquutsxfcXIN/FQFi3iONSQWC5uIMRWqRZiIiEgrFBYWsmrVKrKzs7HZbPX2XXXVVQCaDdeMNFeCpZGZKa1931u3RZiIiEgnogSLiEgTnAmW7RnF2O12TCYT+3LKADD3GQ6ZGLM2yvMblqpnbTaWXkuwxBjLqhKoLAX/kGYPv332cG6f3bZWZkP7hBAa4MOI6jQALDGjmzx2mKOCJaPoMEXVJsIjBxkJidydHZNgqTkMhQcgcrAb5x3RHsypb6KRYDm0AYaf3vA8V4JFFSzSOVT49yEEiDMXEhbogbd+SrCIiEgP8Pnnn3P55ZdTWlpKWFgYpjpzP0wmkyvBIo0rOVxNflkVAPFHzmCB1r/vVYJFREQ6KbUIExFpwtDoEHwtJkoO13CwsAIw5q8AxMX0gTDH7JLGhrQ7K1i8MeAewD8U/BxJFXcHR7aR2Wzi8ukJTAl0VMvEjGny2LAAX+LCjTvod2eVQFSdNmFHQ905Kn5GcodsN+ewuAbcJ9Tf3neCsczY2Ph5SrBIJ1Psa1SUJfgV1bs41GaHC41la2cMiYiIdCF33nkn1113HaWlpRQWFlJQUOB65Ofnezu8Ts/ZHiwy2I/QgEZaJre2gqXM0SKsiUp5ERERb+kWCZYvvviCESNGMGzYMF5++WVvhyMi3YSfj5khfYwkhXMOi7OCZXCfEOjTxJD2ytLa9lIx4zok1kaFOKpY3GgT1l73njmSS+IdrdSiRzV77LB6c1iO8qD7slyjigcTDJnleC0357A4f4a9jqhgiZtgLDM2NDzHbm/nDBbnB00lWMRzCsxGhV2cpcgzT1hktAMktPUtBUVERLqKgwcPcuuttxIU1Mj8EGmRsz1YfGPzV6AdFSwaci8iIp1Ll0+w1NTUsGDBApYuXcr69et57LHHyMvL83ZYItJNONuE7XDMYalNsATXVl8cmRzI3mYsQ/tCsBdL2F1zWDI65vWcA+Sjm65gARgR60ywlBjzTKDxKiBPcLYHC483WnuB+xUsTbUIix0HmIy77Upz6u8ry4HKYmP/kee5I8zxM6sshsPFzR8rgAbLuiPbHgFAtKnQM09YeMBYRgzwzPOJiIh0Qqeffjpr1qzxdhhdVrMD7gHCHd0AitydweKoGlKLMBER6WS6/AyWVatWMWbMGPr1M+76PfPMM1m8eDGXXnqplyMTke5gVN9QPlkP2zOLsdrspOQZCZYhUSFQ4mxvdUSCJdM5f6X5RMNR5xzA3gEVLJTlGvNoAPqMaPbQ4Y4Klp2ZJTCpiSSVpzgTLJGDoI+jsiantS3CBtbf7h9qVKfk7TbahA2bXbvP2R4sYgD4+Lc+Xv9Q8A+HyiIjMdbDWzBpsKxnpFsjAIi0eeAGFGtN7YWQI9vniYiIdCNnn302d999N9u2bWPcuHH4+tZvczVnzhwvRdY1OBMsCS1VsJRkgM0KZkvzT1juaBEWpBZhIiLSuXg9wbJs2TIee+wx1q5dS0ZGBp988gnnn39+vWOSk5N57LHHyMzMJDExkaeffppp06YBcOjQIVdyBaBfv34cPOjmHRAiIi2oHXRfwqHCCqpqbPj5mOnXKxBKm0gOZDnmr3hrwL2TM8FS2gEJFmfVTq+B4B/S7KEjYupWsEw3NpZlQ0UBBPbybFyuBMvg2tZlubta/hBXVV7773ZkizAw2oTl7YaM9UckWNrRHswpLA5yiowKmRaSVd2ZBst6TmqV8XsspDrfvQsYzSlOB7sVLP4QEuuhCEVERDqfG264AYCHH364wT6TyYTVau3okLqU1HxjhmWTFSwhMWCyGO8rSrNrK7mboiH3IiLSSXm9RVhZWRmJiYkkJyc3uv+9995jwYIFPPjgg6xbt47ExEROP/10srOz2/R6lZWVFP8/e/cd1tT59gH8G/beU0VBAQVU3Iq2al2oLVVbR9W6q7VibWttra2z1lGtu2h/XVp9rVpXa+teWEVFRLEqiAvEgeJgb5Lz/nFIILICBBLg+7kuriTnnJw8OUa4c+7z3HdKitIPEVFJ5AmW2OfpuPZQ7F/gamsCXR0JYN9M3Cj5vth3Re7JdfHWSYP9V4DqncHyJD/B4uBd5qbuDmaQSIDn6Tl4lmdY0MfhaRWUCSucYLF2BfSMgLysgtkpJZGvN7Isvs6zvNzYowjl5ZVpcC/HRvcA2FhWne5mmkAqSKADmVjGrjKS4sRbKxdAR+NhJBERUZWRyWQl/jC5Ura4/Jn/JfZg0dEt+L5SVtwrk7JEGBERaS2NfzPu168fvvnmGwwaNKjY9StXrsTEiRMxbtw4eHt744cffoCJiQl+/fVXAEC9evWUZqw8fPgQ9eqV3HR1yZIlsLS0VPy4uLio9w0RUa1iZ2YIe3NDCAJw8JqYqGhslz9Dw8SmYIr681virUxWkGDR9AwWs2pMsCSonmAxNtBVXMl280lqQaP7l0utqUPhBIuOLmDnIT4uq0xYSeXB5Jxbibfx/ykvV2uCpZp652gpNpZVn4S0PDyFlfigsj2ZEuX9V1gejIiIiIonlQl4kJg/g8W2lFjOIr8aScqD0neYmQRAEO+zyT0REWkZjZcIK01OTg7Cw8Mxa9YsxTIdHR306tUL586dAwB06NAB165dw8OHD2FpaYmDBw9izpw5Je5z1qxZmD59uuJxSkoKkyxEVCovZws8TX2KY1FPAOQ3uJezbwrceyaWCavXGkiKBXLSxPI5lTnJrg7VOoMlP6kkL8NVBk9Hc9x7noGbj1PR2a4pcDe4avqwFE6wAGIflsdXgYQooNnris12hz9AcmYuxnVxFUtRJeY3uC+uPBgAOLcUb5PjxKvp5F/0FCXCGld8zIovmnW73KW8sWzjxpU4lgQASEjNwhPBGk6SxMr/PpA3uGf/FSIiqoXWrl2LSZMmwcjICGvXri1122nTplXTqGqe+ORM5MkEGOjqwMnCqOQNVZ25LS8PZmQJ6OqXvi0REVE10+oEy7NnzyCVSuHo6Ki03NHRETduiFcf6+npYcWKFXjttdcgk8nw+eefw9a25CmjhoaGMDSsQONhIqqzvJzN8e/Np8jIEUsBNLYv1GPEvilwL6QgOfA4v/+KQzNAV8O/Ys3z6xhXdYIlLxt4nD+To15rlZ7S1NEcRyOfIPpJGuAin8Gi5hJhGS+ArCTxvnwmirynSaEZLMmZufhs1xXIBKB1Qyu0bmgNvMhPsNiUkGAxshSTNi/uAo8uA+49xdIF8oQOS4RVGhvLqodUJuBZWg4SdK3EBZX9fcAZLEREVIutWrUKI0eOhJGREVatWlXidhKJhAmWUsgb3DewNhZLK5dE1QuL2OCeiIi0mFYnWFT15ptv8kQLEVUZ7/w+LHJKM1jsXmp0r2hwr+H+KwBgnp+czkkVe8SU0Xy+wuKvANIc8QuPjWqzDTydCjW6b/3SMVQXeZLEvB5gkF+aQD7DplCC5WLsC8jyKw7sDH8gJljKKhEGiGXCXtwV3797TyD5ASDNBnQNAMtKzIxUfNGs2wmWutBYNigoCEFBQVX6XhIzciCVCUjQtRYXcAYLERFRiWJiYoq9T+UT91xMsJTYf0WuvDNY2H+FiIi0kMZ7sJTGzs4Ourq6ePLkidLyJ0+ewMnJSUOjIqK6xuulBEsTu5dmsAAF/UMUDe413H8FAAzNAYP8saY9KX3byrgfKt66dAAkpVyhVkhTx/wEy+NUCHb5M1iS4oDcTPWN6+XyYABg30y8fXZLnHEC4EJMQcP0v688QlautOwSYQBQr5V4Gx8h3sr7r8j7vVSU4otm3S4RVhcaywYGBiIyMhJhYWFV9hoJKdkAgFS9/Cs+2YOFiIiIqph8BkvDshIslvkXFiWXNYOFCRYiItJeWj2DxcDAAG3btsXx48cxcOBAAOIJl+PHj2Pq1KmaHRwR1RmN7UxhoKuDHKkMtqYGsDQpVKpInmB5cTe/VNZV8bGmG9zLmTkCL9LEq9Ztm1TNaxROsKjIzc4UejoSpGbn4bHUHM5GVmI5r4RIoH5b9YxLkWAplCSxdgX0jIC8LHGWim0ThBZKsKRm5eHwtYcYID+JXFKJMABw9hVvH0WIt4r+K5XsvWORX9ot84WYcNI3rtz+qE57miYmWLKM7IFMVG4GS24mkJb/fCZYiIioDnjw4AH27duHuLg45OTkKK1buXKlhkal/d5qUx+N7c3gWlqDe0D1mdvp+SXCTJlgISIi7aPxBEtaWhpu376teBwTE4OIiAjY2NigYcOGmD59OsaMGYN27dqhQ4cOWL16NdLT0zFu3DgNjpqI6hI9XR14OJrh+qMU5fJggNjnxMBcLMP1KKKgfI6jT7WPs1jmzsCLO5W/ar0kggDcvyDed+mo8tMM9HTgZmeKWwlpiH6SBmfXV4Ab/wA3DlRBgqXQDBYdXcDOU+wZkxCFdLNGuPowGQAwpG0D7Ax/gBOhVzBAlgvo6Bd86SuOPMGSdA/ITCyYwVLZRJaRFaBvAuRmiF82qyoxpoXYWFb9ElKyAAB5pk75CZZK/C5Iui/eGpgBJjaVHxwREZEWO378ON588000btwYN27cQPPmzREbGwtBENCmTRtND0+ruTuYw93BvOwN5TO3Ux8BMhmgU0KRlYz8C6I4g4WIiLSQxhMsFy9exGuvvaZ4PH36dADAmDFjsGnTJgwbNgxPnz7F3Llz8fjxY7Rq1QqHDh0q0vieiKgqeTlbiAkWu5f6mEgk4iyWhxeB63vEZRb1tefko3l+OcWqKhGWFCfuW0dP5Qb3cp5O5riVkIabT1LR3WeQmGCJ/BPoMbtIqbGT0QmIeZqOcV1cIVGxDFmxCRZA7MPy+D/gaRQu6XWEVCagvpUxpvX0wM7wB0iIiwIMAFg1LL3Ul7G1eBV/0j2xD4siwVLJGSwSifhl8/ntOpdgYWNZ9ZPPYJFYOAPPULkZLEmFyoOp+v+QiIiohpo1axZmzJiBBQsWwNzcHLt374aDgwNGjhyJvn37anp4tYOZEyDRAWR5QPrTgh6SL2OJMCIi0mIaT7B0794dgiCUus3UqVNZEoyINOqd9i649SQVg9s1KLpSkWDZKz7WlvJgQEGCpapmsMhnrzi1LHcpq6aO5tiPeEQ/TgM6+gO6hmJS4ck1wKmFYrv45Ey8vyUcOXkyuNiYoLe3ign2khIs8rJuCTcQmileDdexsQ1cbEzg19gWDe8l5D+vlPJgcvVaiSedH0WIM4WAyidYAOUESx3CxrLqJ+/Bom+Vf4Vo+lNAmgfoViAEZIN7IiKqQ6KiorBt2zYAgJ6eHjIzM2FmZoavv/4aAwYMwAcffKDhEdYCunpikiX1EZDyoJQES36JMBO76hsbERGRirS6yX1VCgoKgre3N9q3b6/poRBRDdDO1QZ/TX0F7V2LmZkiP2EvnyWiDQ3u5RQJlkpctV4aRf8V1cuDyXk6irOBbiWkAobmgEdvcYU8UZVv3YnbyMmTAQB+Oxur2s6zkgu+iL2cKLH3Em+fRisa3Hd0E/9dh7RrgIYS8d9RsHIt+3WcW4m3D8LE2TyAmhIs8nrUdbvRPVXe01QxwWJm7SjONIMApCdUbGdscE9ERHWIqampou+Ks7Mz7ty5o1j37NkzTQ2r9pGXCSvtwiLOYCEiIi2m8RksmhIYGIjAwECkpKTA0tJS08MhoprMrqnyY23pvwKIV4QB1ZBgUb3BvZyno1iX+eaTVMhkAnTkZcKu/wn0mANIJIh7noE/wsS+DxIJcOb2M9x6kgoPxzJqOr/In/1g6iAmbwpzaAYAEJ7dxH9ZYoKlg5v4Za1fc2ec+uspAOAeHOBa1puQ92G5fQwQZIChBWBqX9azyqbKF806gI1lK0+eYHGwNAbMHMWkXWp8wWesPDiDhYiI6pBOnTrhzJkz8PLyQv/+/fHpp5/i6tWr2LNnDzp16qTp4dUeFvWAh2CChYiIaqw6m2AhIlIbe0/lx44tit9OE6pyBkt2GvDkuni/AjNYGtmawkBPB1m5MtxPzEAjT39Az0gstfX4KuDcEquP3USeTEBXT3sY6+vg8PUn+O1cLL4ZWMYxLqk8GABYuQJ6xpDkZcJZFo90c1e42poAAIwNdNHc5AWQCZx8bIpxZb0Jed+ZvKyC11NHbwomWNhYVk0SUsXPpr2Zofj7IOVhxX8fcAYLERHVIStXrkRaWhoAYMGCBUhLS8OOHTvg4eHBCz3UyTK/BHNpM7fT8xMspkywEBGR9qmzJcKIiNTGqpGYGAAAPWPtakpu7izeVkWT+0eXAEEqlrOyrF/up+vqSODhIJYJi378UpmwyD9x80kq9kaIX7Rm9PHEmM6uAIDd4Q+RnJlb+s5LS7Do6CiSYp6SB+jgZgNJoaSIk1Q8+bz3ngHSsvNKfx0TG8CyYcFjdZQHA1giDAWNZa9evQojIyPs3r0b9+/fR7du3TBkyBBND6/GUMxgsTAq+H1Q0Z5MnMFCRER1hFQqxYMHD9CwoRjnmZqa4ocffsB///2H3bt3o1Ej/i1UG/mFRcklxL25mUBuunifM1iIiEgLMcFCRFRZOrqArYd438FLfKwt5I0is1PEGSfqVInyYHJNC5UJAwB4DxRvr+/FysPREASgr48TWjawgl9jWzR1NEdmrhQ7L94vfcfyEmHFJVgARR8WD8kDRf8VAEBmIvRykgEAt3JtceA/FU5EO7csuK+2BAtnsERFRWH06NEAijaW/fbbbzU8upohPTsP6TlSAIC9uWHlZrRlpQCZieJ9q4alb0tERFTD6erqok+fPkhMTNT0UGq/suLeDLGkL3T0xXK8REREWoYJFiIidZA3utemBveAOCvEQJwlovZZLPcviLcVKA8m56FIsOQnfzz75pcJu4u4qFBIJMD0PuJsE4lEopjFsvncPUhlQsk7VsxgcSt2tTS/b46HzkN0bFzoSrjEWABAhr4tMmGEneFlJHIAoF6rgvslJFjuPE1D3POMsvclJ5/Bkp4A5OWUvm0txcaylZeQP3vFxEAXZoZ6hRIsFZjBIp+9YmxTtK8RERFRLdS8eXPcvXtX08Oo/cqauZ2RH/eZ2KqnFC8REZGaMcFCRKQObccA9s2ANmM1PZKizPJnsaizD4tMBjwIE+9XZgaLk5j8UcxgMTRTlAl7Xfc8BraqD89CDe0Htq4HS2N9xL3IQHB0Qsk7Lq1EGIBYHRcAgJfuQ7jbmxV6njjzRc++MXQkQFhsImKepZf+JpxbF9wvpjzcs7RsBKw7g35r/i17X3ImtoCugXi/ouWcajh5Y1kAisayixYtwvjx49lYVkWK8mDmhuICRYmwCvwuSGR5MCIiqlu++eYbzJgxA//88w/i4+ORkpKi9ENqokiwPBK/Y7yMDe6JiEjLMcFCRKQObl2BwFCgQVtNj6SoyvZdKM7z22K5ID1jwKll2duXQJ48ufM0DblS8QvVbfs+AIA3dEPxcU/lGSEmBnoY1l5Mjmw6G1v8TnPSgbT8E8glzGA5l+oAAHDDI+gI0oIViWKCxcCuCbp62gMAdpU1i8XZF5DoADp6xSZY/r7yCBk5UqTnSPHR9suK91kqiaTOlwlbuXIlOnYUZ0ctWLAAPXv2xI4dO+Dq6opffvlFw6OrGRQN7hUJFvkMlgrMZktig3siIqpb+vfvjytXruDNN99EgwYNYG1tDWtra1hZWcHa2lrTw6s9zJ0ASABZbsFslcLkDe5NbIquIyIi0gJ6mh4AERFVMflJVXWWCJP3X6nXGtDVr/Bu6lsZw9RAF+k5UsQ+S4e7gxkW3GiAnwR9NJI8AXLvAPBVes6oTo3w8+m7OH3rGW4npMLd4aVyRfL+K8Y2gHHxX35PxBviLcEQJpJsMalil99DJ79EGKxdMcTdBcHRT7E7/CGm924KXZ0SShKY2QODfxWTLEaWRVb/GVGQIPnvQTJWHb2Jz/s2K+vQiFfzJcbWyUb38sayLVuKyTt5Y1kqn4IZLEbiArPKlAiLE285g4WIiOqIjRs3wsXFBbq6yv0VZTIZ4uLiNDSqWkhXX5xxn/ZYjHvNHJTXy2ewmNpV/9iIiIhUUGcTLEFBQQgKCoJUKi17YyKimqwyfRdKooYG94DYV8XTyRyX45IQ/SQVj5KzcDouE8EGrdFXcgG4vlecIVKIi40Jeno54mjkE/x29h4WDnyp700Z5cGkMgFh95JxW6iHlpIYICGqIMEiT87YuKGXtwOsTPTxOCULZ24/Q7f8GS3F8hlU7OK7T9Nw5X4SdHUkmP+mD+b8eQ0bTt3Bqx728GtSRpmDOjyDRd5YNioqClZWVpoeTo0l78Fi/3KJsIxnYm8fPQPVd5bIGSzaSiqVIjc3V9PDICIqN319/SLJC20yfvx4xMfHw8FB+YT/8+fP0atXL4wZM0ZDI6uFLOrlJ1geiRdwFcYSYbUGYxYi0jbqikXqbIIlMDAQgYGBSElJgaVl0SuOiYhqjcqUBSqJGhrcy3k6iAmWm49TEXzzKQAg3T0AuHsBuP4n0HNekYaW4zq74mjkE+y+9ACf9W0KC6NCs2jKSLBExacgNTsPMYYuaIkY4OkNAG+KKxUzWNxgqKeLAb718Nu5e9h58X7pCZYSyGevvOphh1GdGuHqgyT8cfEBpv8RgYMfvQork1JOcMsTLHW0B4u8saybW/Fl3qhsCSkvJVhMbAAdfbEER9oTwMpF9Z0lsQeLthEEAY8fP0ZSUpKmh0JEVGFWVlZwcnKCRAublwuCUOy40tLSYGRkpIER1WKW9YFHl4DkYmZuF25yTzUSYxYi0mbqiEXqbIKFiKjOqExZoOJkJgLPosX7lZzBAgCeTmKJr98vxOFZWg5MDXTR/Y13gfWLxfJd8VeAeq2UnuPXxBaejma4+SQNOy8+wIRXCp2ELyPBEhrzAgCQbe0JJP2bn2CBeEV/8gPxvrUrAGBIOxf8du4ejkQ+QXJGLixNVC+HJggC/rwsfkkc1Fps3jkvwAdhsYmIeZaOL/deRdCINiX/ETeXz2CpeyXCgILGsgsXLkTbtm1hamqqtN7CwkJDI6s5nqa91OReIhFnsSTHiY3uVU2wCEKhGSyu6h8oVYj8RIWDgwNMTEy08uQkEVFJBEFARkYGEhISAADOzs4aHlGB6dOnAxBnWs+ZMwcmJiaKdVKpFKGhoWjVqpWGRldLKRrdF5dgkc9gYYmwmooxCxFpI3XGIkywEBHVdooZLI/Vs78HF8Vbm8ZqqYXcNL/R/bO0HADA+FfcYGtjA3j2ASL/AiL/LJJgkUgkGNPZFV/tvYYt52IxrrMrdOQ9UspIsFyIEb+kmTVoDiQBSMhPsCTFARAAfVNF7WefehZo5mSOG49Tse/KQ4zyc1X5fV2+n4S4FxkwMdBFb29HAICpoR5WD2uFtzecxYGrj7Ez/AGGtivhJHcdLhEGiI1lAeDNN99U+hImv5qUJT7LlpDyUpN7QPx9kBxXvoRrxnMgN128X55ZL1RlpFKp4kSFrS2v6CWimsnY2BgAkJCQAAcHB60pF3b58mUAYsxx9epVGBgUzDg2MDCAr68vZsyYoanh1U6lxb0Z4sVRbHJfMzFmISJtpq5YhAkWIqLaTt53QV1N7hX9VypfHgwAPJ3MFPctjPTw3qv5iRHvgWKC5freYsuEDWpdH98evIHY5xk4dfMpXmuWXx9b0UelaIJFJhNwIX8GS0OvtsA1AM9vAdI8cbYMIM5eyX8tiUSCIe1csPCfSOwMf1CuBIt89oq/jxNMDAr+3Pq6WGF6H08sOxSN+fuuo72rDdzsTIvuQHElX91MsLCxbOU9S3upyT1QkHAtz+8D+ewVc2dAz7D0balayOuXF76qmoioJpL/HsvNzdWaBMvJkycBAOPGjcOaNWs4a7Y6lBb3prNEWE3GmIWItJ06YhEddQ6IiIi0kLk4ewLZKUBOeuX3p6YG93L2Zoawzi+99X63JrA0zi/D5ekP6BmLfVHirxR5nomBHoa1F6+m33g2VlyYmwmk5Jf5KibBcvtpGhIzcmGsrwtPT29A3wSQ5oizXhT9V1yVnjOwVT3o60rw34NkhNx+ptJ7ypXK8PcV8QviwPzyYIW937UJOrrZICNHio+3X0auVFZ0J4oeLI/FBFAdM378eDRv3hzdunVT+mnZsiXGjx+v6eFpvTypDM/TxVlhyjNY8hOu5ZnBkhQr3rLBvdZhiQ0iqum0+ffYxo0bmVypLooEy4Oi6+QlwtQwc540R5v/rxNR3aaO309MsBAR1XaG5oBB/iyRypYJk+YBDy+J99U0g0UikeDL/l4Y3sEF47sU6qViYComWQBxFksxRnVyhUQC/HvzKe48TSu40t7QstgyAqF3xS9obRpZwUBfD7BvKq54GlVo5otyU3VbM0OM7CieWF58IAoymVDme/r35lMkZuTCzswQXZoUvdpOV0eCVcNawdJYH1ceJGP1sZtFd2LmAEh0AUEKpCeU+Zq1DRvLVs6ztBwIgvhZszEtKG2iSLiW53dBIhvcExERURUqXCJMKBRrC0KhHiycwUJERNqJJcKIiOoCM0fgRZp4UtW2ScX3kxAJ5KQBhhaAfTO1DW9IOxcMKa4Xic9AsQfL9b1Ar/lFyoQ1tDVBz2YOOBaVgM1nY7GgaX7pKBu3ItsCBQ3uO7rlf0Gz9wIeXQaeRiuXCHvJhz3csTv8Aa4/SsG+K4+KnZVS2N788mABvs7Q0y3+WoZ6VsZY8lYLTNl6CeuD7+BVD3t0alzoi6OOrjjbIOWB+GVT/sWzlmNjWfV4miqWB7M1NYCuTqH/CxWawSJvcM8ECxERkTa6f/8+Ro0ahYSEBOjp6WHOnDkYMmSIpoelOnl8Is0REyry2SpZSeLFRgATLEREpLU4g4WIqC6Qf2nZ+z7w7/KKz2SRlwer31ZMAFQ1jz5iGa+ke0B8RLGbjO0szjjZFf4AiQ/yG9YXUx5MEAr6r3Rwy5/d4pCfJEqIKlQizK3Ic23NDDG5u5iYWn44Glm5JTdYT83KxdFIsb/FoDISMf1bOGNouwYQBODTP64U3a/iar6Hpe6nNrl8+TIuX76saCwrf3z58mXcuHEDvr6+2LRpk6aHqfUSUsUG9w4WL/VMkfdgKc/vgKT8xCVnsJCWcXV1xerVqzU9DKqE2NhYSCQSRERElLhNcHAwJBIJkpKS1PKa6t4fFRg7diwGDhyo6WHUSXp6eli9ejUiIyNx5MgRfPzxx0hPV0Np4OqiZwCY5vdTLBz3yhvcG5izDxzVaIxZaj5VYhbSPIlEgj///LPaX5czWIiI6oKOk4CE60DyfeDEN0DwUqBpf6DdeMCtG6CjYr79/gXxVk3lwcpkYComWeSzWOq1LrJJF3dbtKhviasPk3Hy7Hm8BRSbYIl9noGE1GwY6OqglYuVuNDeS7xNiCq4St+maIIFAMZ3ccOWc/fwMCkTm8/FYlLX4mcCHb7+BNl5MjS2N0WL+pZlvsV5AT44fesZHiZl4v/O38N7rxYae+FyCXUEG8uqh3wGi1KDe6BiM1gSOYOF1Kd79+5o1aqVWk4yhIWFwdTUtPKDIiKq4ZydneHsLP6Nd3Jygp2dHV68eFGzfkda1hfL4iY/BJx9xWWK8mBFS/8SVTXGLESkqjo7gyUoKAje3t5o3769podCRFT1vAcA028Ag34EXDoBsjwgah+wZSCwrg0QsgZIV6GBu5ob3KvEZ5B4e/1P5ZrM+SQSCX4Z0w6N7U1hlysmIp4bNiiy3YUY8QtaKxcrGOnnz74p3IMlNwOQ6ACWxZQqA2BsoItP+3gCAL4/cRtJGTnFbvdnfnmwga3qq9QszdRQDx/19AAArA++g7TsQg3tFQ0/684MFjk2lq2chPwEi71ZCTNYMhOB3KyydySTiYlZgDNYqFoIgoC8vLyyNwRgb2+vVEawtsnJKf7vDBHVPP/++y8CAgJQr169Eq+uDQoKgqurK4yMjNCxY0dcuHChQq8VHh4OqVQKF5fiY1qtVVzcK/9+wgb3pIUYsxRgzEJ1XZ1NsAQGBiIyMhJhYWGaHgoRUfXQNwJ8hwETDgMfnAXaTxR7qSTGAEfnAqt8gKu7Sn5+6pP8WR4SoEG7ahu2UpmwOyeK3cTBwgjbJ3aCu57YDH72v+m4/yJDaZvQl8uDAWIyRb/QlUQWDcQSBSV4q00DNHMyR0pWHoJO3i6y/klKFkLuiF8EB7YqvTxYYYPbNkBjO1O8SM/Bz6fvFhpP3ZvBQuqhmMHycokwIytAL39WS9qTsneUGi/WQ9fRA8zrRh+gmkgQBGTk5GnkRygm8V2SsWPH4tSpU1izZg0kEgkkEgk2bdoEiUSCgwcPom3btjA0NMSZM2dw584dDBgwAI6OjjAzM0P79u1x7Ngxpf29XG5DIpHg559/xqBBg2BiYgIPDw/s27dPpbFJpVJMmDABbm5uMDY2RtOmTbFmzZoi2/3666/w8fGBoaEhnJ2dMXXqVMW6pKQkvP/++3B0dISRkRGaN2+Of/75BwAwf/78Iv2jVq9eDVdXV6XjM3DgQCxatAj16tVD06biRQBbtmxBu3btYG5uDicnJ4wYMQIJCQlK+7p+/TreeOMNWFhYwNzcHK+++iru3LmDf//9F/r6+nj8WLks4Mcff4xXX31VpWOze/duxXt2dXXFihUrlNa7urpi8eLFGD9+PMzNzdGwYUP8+OOPKu1b7saNG+jcubPiuJ06dapSY8rOzsbMmTPh4uICQ0NDuLu745dffil2XxkZGejXrx+6dOlSZtkweXmQP/74A6+++iqMjY3Rvn173Lx5E2FhYWjXrh3MzMzQr18/PH36VPG8sLAw9O7dG3Z2drC0tES3bt1w6dIlpX1LJBJs2LAB/fr1g7GxMRo3boxdu0qJy15y//59DB06FFZWVrCxscGAAQMQGxurWC//fC1YsAD29vawsLDA5MmTlU6KZWdnY9q0aXBwcICRkRFeeeWVIt+XS/qsFfbdd9/B2dkZtra2CAwMRG5ursrvo7ZKT0+Hr68vgoKCil2/Y8cOTJ8+HfPmzcOlS5fg6+sLf39/pf/rrVq1QvPmzYv8PHpUECe+ePECo0ePLvf/Qa1QXNzLBve1Uk2IWxiztFLaF2OW4p06dQodOnRQHOMvvvhCKem2a9cutGjRAsbGxrC1tUWvXr0U5RuDg4PRoUMHmJqawsrKCl26dMG9e/fKfE35v8+vv/6Khg0bwszMDFOmTIFUKsWyZcvg5OQEBwcHLFq0SOl5K1euRIsWLWBqagoXFxdMmTIFaWlpivWbNm2ClZUV/vzzT3h4eMDIyAj+/v64f/++ysfjr7/+Qps2bWBkZITGjRtjwYIFSsdDlVjn6tWr6NGjh+KYTZo0SWmcQOmfbQB49uxZhf5vVQZLhBER1UWOPsDr3wG9FwDXdgNhPwPxV4DdE8STrn6BRZ/zIP8qOgcvwKjs0ldqY2ACtB0LnF8PHJsHNH6t2JJmDiY6ECCezLiYYo13fjyPHe93QgNr8Uqh0LvFJFh0dMRZLI/yT3LYuJY6FF0dCb7o1wxjN4bht7P3MNrPFS42BVci/X3lEQQBaNvIGg1tVb9CSU9XB9P7eGLq75fx8+kYjPZzhY2pARMsVGHyHiz25i8lWCQScRZLYqzYh6WsWSny0nkW9QFdho3aKjNXCu+5hzXy2pFf+8PEQLXPxpo1a3Dz5k00b94cX3/9NQDxSzYAfPHFF/juu+/QuHFjWFtb4/79++jfvz8WLVoEQ0NDbN68GQEBAYiOjkbDhg1LfI0FCxZg2bJlWL58OdatW4eRI0fi3r17sLEpvbyMTCZDgwYNsHPnTtja2uLs2bOYNGkSnJ2dMXToUADAhg0bMH36dCxduhT9+vVDcnIyQkJCFM/v168fUlNT8X//939o0qQJIiMjoatbvn5lx48fh4WFBY4ePapYlpubi4ULF6Jp06ZISEjA9OnTMXbsWBw4cAAA8PDhQ3Tt2hXdu3fHiRMnYGFhgZCQEOTl5aFr165o3LgxtmzZgs8++0yxv61bt2LZsmVljic8PBxDhw7F/PnzMWzYMJw9exZTpkyBra0txo4dq9huxYoVWLhwIb788kvs2rULH3zwAbp166Y44VKWzz77DKtXr4a3tzdWrlyJgIAAxMTEwNa26ElVVcY0evRonDt3DmvXroWvry9iYmLw7FnRmbpJSUl4/fXXYWZmhqNHj6p8dfG8efOwevVqNGzYEOPHj8eIESNgbm6ONWvWwMTEBEOHDsXcuXOxYcMGAEBqairGjBmDdevWQRAErFixAv3798etW7dgbm6u2O+cOXOwdOlSrFmzBlu2bME777yDq1evwsvLq9Tx5Obmwt/fH35+fjh9+jT09PTwzTffoG/fvvjvv/9gYCBePHL8+HEYGRkhODgYsbGxGDduHGxtbRUnYT7//HPs3r0bv/32Gxo1aoRly5bB398ft2/fho2NTamfNbmTJ0/C2dkZJ0+exO3btzFs2DC0atUKEydOVOnY1lb9+vVDv379Sly/cuVKTJw4EePGjQMA/PDDD9i/fz9+/fVXfPHFFwBQZt3/7OxsDBw4EF988QU6d+5c5rbZ2dmKxykpKSq+kyqkmMHCBEttVxPiFsYsZaurMYvcw4cP0b9/f4wdOxabN2/GjRs3MHHiRBgZGWH+/PmIj4/H8OHDsWzZMgwaNAipqak4ffq0YubTwIEDMXHiRGzbtg05OTm4cOGCShUwAODOnTs4ePAgDh06hDt37mDw4MG4e/cuPD09cerUKZw9exbjx49Hr1690LGjWN5dR0cHa9euhZubG+7evYspU6bg888/x/r16xX7zcjIwKJFi7B582YYGBhgypQpeOeddxSfndKcPn0ao0ePxtq1axVJs0mTJgEQ4ya50mKd9PR0RTwTFhaGhIQEvPfee5g6daqiD2tpn225iv7fqhShjktOThYACMnJyZoeChGR5kjzBGH/DEGYZyH+HPpSEKRS5W0OfyWu2zet+seX9kwQFjcQXz9ie/HbPL0lCPMsBOk3TkL3ZSeERjP/EbosPS7cf5Eu3H+RLjSa+Y/QeNZ+IS0rV/l5ez8oeN9/fVjmUGQymTDyp/NCo5n/CNO2XVJa13/Nv0Kjmf8Im8/FlvstSqUyxfO/+ee6uPDeeXFcq5qXe3+Vxb+P1acqjvXAoDNCo5n/CAevPiq68uc+4ufq2t6yd3T5d3HbTW+obWxUeZmZmUJkZKSQmZkpCIIgpGfnCo1m/qORn/Ts3DJGq6xbt27CRx99pHh88uRJAYDw559/lvlcHx8fYd26dYrHjRo1ElatWqV4DECYPXu24nFaWpoAQDh48GC5xigXGBgovP3224rH9erVE7766qtitz18+LCgo6MjREdHF7t+3rx5gq+vr9KyVatWCY0aNVI8HjNmjODo6ChkZ2eXOq6wsDABgJCamioIgiDMmjVLcHNzE3Jycord/ttvvxW8vLwUj3fv3i2YmZkJaWlppb6OIAjCiBEjhN69eyst++yzzwRvb2/F40aNGgnvvvuu4rFMJhMcHByEDRs2lLn/mJgYAYCwdOlSxbLc3FyhQYMGwrfffisIQsFnJDExUaUxRUdHCwCEo0ePFvua8v1FRUUJLVu2FN5+++0yj/nL4/35558Vy7Zt2yYAEI4fP65YtmTJEqFp06Yl7kcqlQrm5ubC33//rVgGQJg8ebLSdh07dhQ++OCDMse1ZcsWoWnTpoJMJlMsy87OFoyNjYXDhw8LgiB+vmxsbIT09HTFNhs2bBDMzMwEqVQqpKWlCfr6+sLWrVsV63NycoR69eoJy5YtEwSh7M/amDFjhEaNGgl5eXmKZUOGDBGGDRtW4thf/n1WWG2NRQAIe/fuVTzOzs4WdHV1lZYJgiCMHj1aePPNN1Xap0wmE9555x1h3rx5Km0/b948AUCRH40e6yt/iDHHxtcLlsm/fxz6UnPjokop7v94TYlbGLMUYMxSEANcvnxZEARB+PLLL4v87Q0KClL8XQ0PDxcACLGxRc8NPH/+XAAgBAcHl/m6L5s3b55gYmIipKSkKJb5+/sLrq6ugrTQOZymTZsKS5YsKXE/O3fuFGxtbRWPN27cKAAQzp8/r1gWFRUlABBCQ0PLHFfPnj2FxYsXKy3bsmWL4OzsrHhcVqzz448/CtbW1kr/3vv37xd0dHSEx48fC4JQ+mdb/hrl/b+ljliElyISERGgowv0WybOmDg2Hzj3vXh1+8D1gF7+FfDV3eC+MFNb4JVPgOMLgBPfiD1l9F9q3v1CLK2lY9ME20b4YfhP5xHzLB3DfzqPYe3EGtTN61vC1PClP332zQruW7uWORSJRJzFEvD9GfwV8QjvvdIYLRpY4uaTVFx/lAI9HQleb+Fc7reooyPBDP+mGLcxDL+du4fxr7jBWTGDJV7shVHMzB2i4shLhNm/3OQeKOjDkvq46LqXJbHBfU1grK+LyK/9Nfba6tCunXLpybS0NMyfPx/79+9HfHw88vLykJmZibi4uFL307JlS8V9U1NTWFhYFClNUZKgoCD8+uuviIuLQ2ZmJnJychQlMhISEvDo0SP07Nmz2OdGRESgQYMG8PT0VOm1StKiRQvFbAO58PBwzJ8/H1euXEFiYiJkMhkAIC4uDt7e3oiIiMCrr74KfX39Yvc5duxYzJ49G+fPn0enTp2wadMmDB06VKVmu1FRURgwYIDSsi5dumD16tWQSqWKq10LH3eJRAInJyeVjzsA+Pn5Ke7r6emhXbt2iIqKqtCYIiIioKuri27dupX6mr1790aHDh2wY8eOcl+1W/j9Ojo6AhD/7QovK/z+nzx5gtmzZyM4OBgJCQmQSqXIyMgo8nkufBzkj8uatQAAV65cwe3bt5VmwwBAVlaWUvkuX19fpVk6fn5+SEtLw/3795GcnIzc3Fx06dJFsV5fXx8dOnRQ/FuU9VkDAB8fH6Xj6ezsjKtXr5b5HuqyZ8+eQSqVKj5Lco6Ojrhx44ZK+wgJCcGOHTvQsmVLRX+XLVu2KH0uC5s1axamT5+ueJySkqL5ni2KuLdQD5YMcQY6Z7DULjU9bmHMIqqrMUvh1/Pz81OaddKlSxekpaXhwYMH8PX1Rc+ePdGiRQv4+/ujT58+GDx4MKytrWFjY4OxY8fC398fvXv3Rq9evTB06FA4O6t2HsHV1VXpb76joyN0dXWhU+h8wcuxyLFjx7BkyRLcuHEDKSkpyMvLQ1ZWFjIyMhSxgZ6enlKv8mbNmsHKygpRUVHo0KH0PrxXrlxBSEiIUmkyqVRa5DVKi3WioqLg6+ur9O/dpUsXyGQyREdHQyKRlPrZlqvM/62KYoKFiIhEEomYxDB3Bv4KBK7tAtITgGFbxSTLowhxO00kWACg0wfAhZ+A5Dgg7Ceg84fK6/MTLLBxg5OlEbZN7IR3fjyH2OcZ+O7ITQBAR7dipoQ6FCq7YeOm0lCa17fEoFb1sefyQyw+EIXfJ3ZUNLfv3tReLO9VAd097dHB1QYXYl9g7fFbWDLAC4AEkOUCGc8AM4cK7ZfqFkEQFE3uHV4uEQYUlAV7dKnoupcl3lN+DmkliUSicpkubfXyF+cZM2bg6NGj+O677+Du7g5jY2MMHjy4zCaqL39hl0gkii/3pdm+fTtmzJiBFStWwM/PD+bm5li+fDlCQ0MBAMbGxqU+v6z1Ojo6Req+F9eX4uXjIC+V4O/vj61bt8Le3h5xcXHw9/dXHIuyXtvBwQEBAQHYuHEj3NzccPDgQQQHB5f6nPKq6HGvCmUdD7nXX38du3fvRmRkZIknoUtS+P3KT6y8vKzw+x8zZgyeP3+ONWvWoFGjRjA0NISfn5/amgKnpaWhbdu22Lp1a5F19vb2ankNQLVjq02fhbrklVdeKddxNjQ0hKFhMTGCJhUujSsI4ncTlgirlWp63MKYRcSYpXS6uro4evQozp49iyNHjmDdunX46quvEBoaCjc3N2zcuBHTpk3DoUOHsGPHDsyePRtHjx5Fp06dKvQeSntfsbGxeOONN/DBBx9g0aJFsLGxwZkzZzBhwgTk5OSoXCK1NGlpaViwYAHeeuutIuuMjIq56K8CVI3xNBGL8FJYIiJS5vsOMOIPwMAMiPkX2NgfuHkYkGaLX25sGmtmXPrGQI+vxPv/fgdkJiqvVyRYxPE5WRph26ROaFSoF0qxCRb7QrVWrVVLsADA9D6eMNDTwbm7z3HiRgL+ihDrRQ9srXpz+5dJJBJ83lcczx8XH+Dui2zALP9qxsJX81GtEBQUBG9vb6WrhNQhJSsPOXliAFmkBwsANO0v3t44AORmlb6zpPwr76xc1TdAqtMMDAwglUrL3C4kJARjx47FoEGD0KJFCzg5OSk17Fa3kJAQdO7cGVOmTEHr1q3h7u6udOW/ubk5XF1dcfz48WKf37JlSzx48AA3b94sdr29vT0eP36sdMJClZkJN27cwPPnz7F06VK8+uqraNasWZEr8Fq2bInTp0+X2kj8vffew44dO/Djjz+iSZMmSrMUSuPl5VWkrnVISAg8PT3LPeujNOfPn1fcz8vLQ3h4eIl9R8oaU4sWLSCTyXDq1KlSX3Pp0qUYM2YMevbsicjIyMq/iVKEhIRg2rRp6N+/v6Ipa3E9YQofB/njsvqvAECbNm1w69YtODg4wN3dXenH0rKgb96VK1eQmZmptH8zMzO4uLigSZMmMDAwUDq2ubm5CAsLg7e3NwDVPmtUfnZ2dtDV1cWTJ0+Ulj958gROTk4aGpUGyBMseVkFcX56/v8TUzvNjInqNMYsjFnKer1z584pHaeQkBCYm5ujQYMGAMTv9126dMGCBQtw+fJlGBgYYO/evYrtW7dujVmzZuHs2bNo3rw5fv/9d7WPExBnFslkMqxYsQKdOnWCp6cnHj0q2uc1Ly8PFy9eVDyOjo5GUlKSyrFIdHR0kTjE3d1daWZNabGOl5cXrly5gvT0dMX6kJAQ6OjooGnTpmV+tjWJCRYiIirKvScwdj9g6gA8uQrsHCMub9BBvJpMU3yHAw7eQFYScHql8rqXEiwA4GxpjO2TOqGJvSnszQ2VG9zLWbqIpcGMrAA7D5WH0sDaBOM6uwIAZuy8godJmTAz1EMvL8fSn1iGdq426NHMAVKZgFXHbrHRfS0WGBiIyMhIhIWFqXW/T/Mb3Jsb6cGouDIIDTqIjWRzUoHbx0rfWRJnsJB6ubq6IjQ0FLGxsXj27FmJV5N5eHhgz549iIiIwJUrVzBixIgqvfLMw8MDFy9exOHDh3Hz5k3MmTOnyP/N+fPnY8WKFVi7di1u3bqFS5cuYd26dQCAbt26oWvXrnj77bdx9OhRxMTEKJqPAkD37t3x9OlTLFu2DHfu3EFQUBAOHjxY5rgaNmwIAwMDrFu3Dnfv3sW+ffuwcOFCpW2mTp2KlJQUvPPOO7h48SJu3bqFLVu2IDo6WrGNv78/LCws8M033yiaaKvi008/xfHjx7Fw4ULcvHkTv/32G77//nvMmDFD5X2oIigoCHv37sWNGzcQGBiIxMREjB8/vkJjcnV1xZgxYzB+/Hj8+eefiImJQXBwMP74448i+/ruu+8wcuRI9OjRQ+VSTBXh4eGBLVu2ICoqCqGhoRg5cmSxV2Hu3LkTv/76K27evIl58+bhwoULmDp1apn7HzlyJOzs7DBgwACcPn1a8Z6nTZuGBw8eKLbLycnBhAkTEBkZiQMHDmDevHmYOnUqdHR0YGpqig8++ACfffYZDh06hMjISEycOBEZGRmYMGECANU+a1R+BgYGaNu2rdIJI5lMhuPHjxcppVKr6RkCpvkzrpLzP7ecwUIaxJiFMUtppkyZgvv37+PDDz/EjRs38Ndff2HevHmYPn06dHR0EBoaisWLF+PixYuIi4vDnj178PTpU3h5eSEmJgazZs3CuXPncO/ePRw5cgS3bt1SKZFREe7u7sjNzVX822zZsgU//PBDke309fXx4YcfIjQ0FOHh4Rg7diw6depUZnkwAJg7dy42b96MBQsW4Pr164iKisL27dsxe/Zspe1Ki3VGjhwJIyMjjBkzBteuXcPJkyfx4YcfYtSoUYoymqV9tjWJCRYiIipevVbAhCOATRNAyA8QXcr+w1qldHSBXgvE+6H/A5LuF6wrJsECiEmWQx93xZmZr8HcqJharxIJ8P6/wIfhgEHZtV0Lm/KaO6xM9JGYIV6B07e5U/EntMtpRh9xFsvfVx4hxSD/iyYTLKSihJRSyoMBYi8fn0Hi/et7St6RNLdg5hR7sJCazJgxA7q6uvD29laUjijOypUrYW1tjc6dOyMgIAD+/v5o06ZNlY3r/fffx1tvvYVhw4ahY8eOeP78OaZMmaK0zZgxY7B69WqsX78ePj4+eOONN3Dr1i3F+t27d6N9+/YYPnw4vL298fnnnyuufPXy8sL69esRFBQEX19fXLhwQaUv/Pb29ti0aRN27twJb29vLF26FN99953SNra2tjhx4gTS0tLQrVs3tG3bFj/99JNSeQQdHR2MHTsWUqkUo0ePVvm4tGnTBn/88Qe2b9+O5s2bY+7cufj6668xduxYlfehiqVLl2Lp0qXw9fXFmTNnsG/fPtjZFX/Fuipj2rBhAwYPHowpU6agWbNmmDhxotLVkIWtWrUKQ4cORY8ePUq8mreyfvnlFyQmJqJNmzYYNWoUpk2bBgeHomU/FyxYgO3bt6Nly5bYvHkztm3bppg9UhoTExP8+++/aNiwId566y14eXlhwoQJyMrKgoWFhWK7nj17wsPDA127dsWwYcPw5ptvYv78+Yr1S5cuxdtvv41Ro0ahTZs2uH37Ng4fPgxra2sAqn3WqHhpaWmIiIhQXAUeExODiIgIxe/A6dOn46effsJvv/2GqKgofPDBB0hPTy/XycVa4eULi5hgIQ1izMKYpTT169fHgQMHcOHCBfj6+mLy5MmYMGGCIqFgYWGBf//9F/3794enpydmz56NFStWoF+/fjAxMcGNGzfw9ttvw9PTE5MmTUJgYCDef//9Khmrr68vVq5ciW+//RbNmzfH1q1bsWTJkiLbmZiYYObMmRgxYgS6dOkCMzMz7NixQ6XX8Pf3xz///IMjR46gffv26NSpE1atWoVGjZS/R5YW65iYmODw4cN48eIF2rdvj8GDB6Nnz574/vvvFc8v67OtKRLh5cJ6dUxKSgosLS2RnJysFHwSEVG+9GfAtuFiv4bJZ5R7lmiCIAC/BQCxp8UZLYN+AKR5wCJHQJYHfBIJWFa8TFd5/Xz6Lr7ZLzZ/3fpeR3RxV08Jgw+3XcbfVx7hZ/sd6JX6l9gfp9d8texbFfz7WH3Ufaz/iniIj7ZHwK+xLbZNKqGG74OLwM89AX1T4LPbgEExdXdf3AXWtgb0jIGv4jU7e42UZGVlISYmBm5ubmqraUy134QJE/D06VPs27dP00OhYkgkEuzduxcDBw6skv2PHTsWSUlJigbo2qK032e1KRYJDg7Ga6+9VmT5mDFjsGnTJgDA999/j+XLl+Px48do1aoV1q5di44dq6f3odYc623DgegDwOsrgdajgG/yLzT6PAYwKWYmOmk9xixUEYxZqt+mTZvw8ccfIykpqcpeo6pjnYpSRyxSc7tKERFR9TC1E2eyZKcCRlrw5VYiAXovAH7qAVzZDnSaAhiai8kVPSPA3LlahzPKrxGORT2Bvq4OOjVW39V103t74sDVeFx8YYxe+gBS4tW2b6rd5DNYiu2/Ile/LWDVUOyxcusI4DOw6DbyBvdWDZlcIarBkpOTcfXqVfz+++88UUGkId27dy/SNPplU6dOVakknDoFBQUhKChIpT4T1cIi/yKplIdA5gvxvkRHLOVLRLUeYxaqqVgijIiIyiaRaEdyRa5+W8DnLQACcGxeQXkwazex/FE1MtTTxfZJftgyoSN0ddR3EtrNzhRD27kgXhCv1hPY5J5U9DStjBJhgPh/uqwyYUmFEixENdzkyZNhZmZW7M/kyZM1PbwqNWDAAPTp0weTJ09G7969ldb169evxOOyePHiSr/24sWLS9x/v379Kr1/ddPW8WrruKjmq6p+cBVWuESYvMG9sU21x/dEmsSYpW7HLD4+PiWOY+vWrdU2jpoyLm1RZ0uEFb5S4+bNm5qfCktEROXz4i7wfQdAlgs0ewO48Q/Q9HVg+O+aHpnaPE7OwqfLg7BV72tkmrnA+NOr1TaTQGtKRdQBVVEi7MSNBPT2dsQbLeuVvOGjCODHbmIJsM9uA4ZmyuuPLQDOrATavwe8vqLS4yL1YbmN8ktISEBKSkqx6ywsLIrth1EXPHz4EJmZmcWus7GxgY1N5UryvHjxAi9evCh2nbGxMerXr76SnqrQ1vFq67jUoa6UCNN2WnOsr+wA9k4C3LoCr84ANr8J2DcDAkM1NyaqFMYs5ceYpXh1JWa5d+8ecnNzi13n6OgIc3PzahnHy7R1XOrAEmGVEBgYiMDAQMWBIiKiGsamsXjiN3SDmFwBABs3zY5JzZwsjdChbTtIIyQwTrsPYe/7kASsBfT55YRKNqBVfQxopcIXAGdfcdZXYgxw8xDQYrDyesUMFja4p5rPwcGhzp6QKE1VnyxQxwmP6qSt49XWcRGpXeEZLGxwT3UUY5bi1ZWY5eWm8NpCW8elLTjPkoiIaq6unwGGha4isGmsubFUkVF9/LAI7yFP0IHkvx3Ab28AqU80PSyqDSQSoPlb4v3re4uul/dgsWYwTURERNXAMv8EavLDQgkWzZ/wJCIiKg0TLEREVHOZ2gKvfFzwuBYmWGxMDWDT7X2MyZ2JVJgCD8KAn3oA8Vc0PTSqDXzyEyy3jgJZL5UiSIoTbzmDhYiIiKqDef4MlrxM4Plt8b6JnebGQ0REpAImWIiIqGbr+AFg7QromwJOLTQ9miox/hU33DRthzezv0aySSMg5QHwa18gcp+mh0Y1naMPYOcJSLOB6AMFy3MygPQE8T5nsBAREVF10DcqKAn2+Kp4yxJhRESk5ZhgISKims3ABJh4Eph6ATCtnVe4mRjo4eNeHogRnPFm1gLkub0G5GYAf4wCTi0HBEHTQ6SaSiIBfAaJ96/tKVgun71iaAkYW1f/uIiIiKhukvdhYYKFiIhqCCZYiIio5jOxASwbaHoUVWpoOxc0tjPFvQwDrHNeDHScLK44+Q2wewKQm6nZAVLNJS8TducEkJko3pc3uLduqJkxERERUZULCgqCt7c32rdvr+mhFLDIj+mz80uX1tILqIiIqPZggoWIiKgG0NfVwWf+TQEAP52Jw9NXvgbeWA3o6AHXdgMb+wFpTzU7SKqZHJoBDt6ALBe4sV9cJm9wz/4rpGVcXV2xevVqTQ+DSqHKv5FEIsGff/6pttdU9/5ItGnTJlhZWWl6GFSFAgMDERkZibCwME0PpYB8Boscm9xTDcWYRfvx30j7de/eHR9//LGmh1EmJliIiIhqiL7NneDrYoWMHCnWnbgFtBsHjPozv4STBDA00/QQqaaSz2KRlwlLYoKFiIiINKBIgoUzWIiISLsxwUJERFRDSCQSfNG3GQDg99A4xD5LB9xeBSaeAN75HdA31vAIqcaS92G5GwykPwcSY8XHbHBPpDZSqRQymUzTwyAi0m4W9ZUfswcLUbVjzEJUPkywEBER1SB+TWzRvak98mQCvjsSLS60aQxYOGt2YFSz2bkDTi0AQQrc+JszWGoaQQBy0jXzIwgqD/PHH39EvXr1inxhHzBgAMaPH487d+5gwIABcHR0hJmZGdq3b49jx45V+LCsXLkSLVq0gKmpKVxcXDBlyhSkpaUpbRMSEoLu3bvDxMQE1tbW8Pf3R2Ki2ItIJpNh2bJlcHd3h6GhIRo2bIhFixYBAIKDgyGRSJCUlKTYV0REBCQSCWJjYwEUlFfat28fvL29YWhoiLi4OISFhaF3796ws7ODpaUlunXrhkuXLimNKykpCe+//z4cHR1hZGSE5s2b459//kF6ejosLCywa9cupe3//PNPmJqaIjU1tczjcvXqVfTo0QPGxsawtbXFpEmTlI7L2LFjMXDgQHz33XdwdnaGra0tAgMDkZubq/KxT01NxfDhw2Fqaor69esjKCioUmMCgF9//RU+Pj4wNDSEs7Mzpk6dWuL+5s2bB2dnZ/z3339ljtXV1RXffPMNRo8eDTMzMzRq1Aj79u3D06dPMWDAAJiZmaFly5a4ePGi4jnPnz/H8OHDUb9+fZiYmKBFixbYtm2b0n67d++OqVOnYurUqbC0tISdnR3mzJkDQcX/M9nZ2ZgxYwbq168PU1NTdOzYEcHBwYr18s/Xn3/+CQ8PDxgZGcHf3x/3799X2s+GDRvQpEkTGBgYoGnTptiyZYvS+pI+a4UdPnwYXl5eMDMzQ9++fREfH6/SeyCqEEsmWGq9GhC3MGapOzFLYXFxcYq//RYWFhg6dCiePHmiWH/lyhW89tprMDc3h4WFBdq2bauID+7du4eAgABYW1vD1NQUPj4+OHDgQJmvKf/3OXz4MFq3bg1jY2P06NEDCQkJOHjwILy8vGBhYYERI0YgIyND8bxDhw7hlVdegZWVFWxtbfHGG2/gzp07ivWxsbGQSCTYvn07OnfurPi3OXXqlMrH49q1a+jXrx/MzMzg6OiIUaNG4dmzZ4r1qsQ6iYmJGD16NKytrWFiYoJ+/frh1q1bSq9T2mcbED/fn3/+OWxsbODk5IT58+er/B6qi56mB0BERETl87l/M5y6+RT//BePSV2T0LKBlaaHRLWBz1vA46timbDEOHEZZ7DUDLkZwOJ6ZW9XFb58BBiYqrTpkCFD8OGHH+LkyZPo2bMnAODFixc4dOgQDhw4gLS0NPTv3x+LFi2CoaEhNm/ejICAAERHR6Nhw4blHpqOjg7Wrl0LNzc33L17F1OmTMHnn3+O9evXAxBPLvTs2RPjx4/HmjVroKenh5MnT0IqlQIAZs2ahZ9++gmrVq3CK6+8gvj4eNy4caNcY8jIyMC3336Ln3/+Gba2tnBwcMDdu3cxZswYrFu3DoIgYMWKFejfvz9u3boFc3NzyGQy9OvXD6mpqfi///s/NGnSBJGRkdDV1YWpqSneeecdbNy4EYMHD1a8jvyxubl5qeNJT0+Hv78//Pz8EBYWhoSEBLz33nuYOnUqNm3apNju5MmTcHZ2xsmTJ3H79m0MGzYMrVq1wsSJE1V638uXL8eXX36JBQsW4PDhw/joo4/g6emJ3r17V2hMGzZswPTp07F06VL069cPycnJCAkJKbIvQRAwbdo0/PPPPzh9+jTc3d1VGu+qVauwePFizJkzB6tWrcKoUaPQuXNnjB8/HsuXL8fMmTMxevRoXL9+HRKJBFlZWWjbti1mzpwJCwsL7N+/H6NGjUKTJk3QoUMHxX5/++03TJgwARcuXMDFixcxadIkNGzYUKXjOHXqVERGRmL79u2oV68e9u7di759++Lq1avw8PAAIH6+Fi1ahM2bN8PAwABTpkzBO++8ozg2e/fuxUcffYTVq1ejV69e+OeffzBu3Dg0aNAAr732WqmfNbmMjAx899132LJlC3R0dPDuu+9ixowZ2Lp1q0rHlqjcCs9g0TcBDEw0NxaqGjUgbmHMUndiFjmZTKZIrpw6dQp5eXkIDAzEsGHDFBc4jBw5Eq1bt8aGDRugq6uLiIgI6OvrAxB7WuXk5ODff/+FqakpIiMjYWamegnv+fPn4/vvv4eJiQmGDh2KoUOHwtDQEL///jvS0tIwaNAgrFu3DjNnzlQcn+nTp6Nly5ZIS0vD3LlzMWjQIEREREBHp2A+xWeffYbVq1fD29sbK1euREBAAGJiYmBrW3ryOikpCT169MB7772HVatWITMzEzNnzsTQoUNx4sQJxXZlxTpjx47FrVu3sG/fPlhYWGDmzJno378/IiMjoa+vX+ZnW/4a06dPR2hoKM6dO4exY8eiS5cuxcaVGiPUccnJyQIAITk5WdNDISIiUtkn2y8LjWb+I4z46VyV7J9/H6uP1hzr53cFYZ6FIMyzzL+1EITsNM2OiYqVmZkpREZGCpmZmeKC7LSCf7Pq/innZ2TAgAHC+PHjFY//97//CfXq1ROkUmmx2/v4+Ajr1q1TPG7UqJGwatWqch8zQRCEnTt3Cra2torHw4cPF7p06VLstikpKYKhoaHw008/Fbv+5MmTAgAhMTFRsezy5csCACEmJkYQBEHYuHGjAECIiIgodVxSqVQwNzcX/v77b0EQBOHw4cOCjo6OEB0dXez2oaGhgq6urvDo0SNBEAThyZMngp6enhAcHFzq6wiCIPz444+CtbW1kJZW8O+2f/9+QUdHR3j8+LEgCIIwZswYoVGjRkJeXp5imyFDhgjDhg0rc/+CIP4b9e3bV2nZsGHDhH79+ikeAxD27t2r8pjq1asnfPXVVyW+JgBh586dwogRIwQvLy/hwYMHKo1VPt53331X8Tg+Pl4AIMyZM0ex7Ny5cwIAIT4+vsT9vP7668Knn36qeNytWzfBy8tLkMlkimUzZ84UvLy8yhzTvXv3BF1dXeHhw4dKy3v27CnMmjVLEISCz9f58+cV66OiogQAQmhoqCAIgtC5c2dh4sSJSvsYMmSI0L9/f0EQyv6syV/j9u3bimVBQUGCo6Njme9BVUV+nxWiNX8f6wCtOtbZ6QV/Y1b6aHo0VEnF/h+vIXELY5aiamPMIv83OnLkiKCrqyvExcUp1l+/fl0AIFy4cEEQBEEwNzcXNm3aVOy+WrRoIcyfP1+l1y1M/u9z7NgxxbIlS5YIAIQ7d+4olr3//vuCv79/ift5+vSpAEC4evWqIAiCEBMTIwAQli5dqtgmNzdXaNCggfDtt9+WOa6FCxcKffr0UVp2//59AYDi37usWOfmzZsCACEkJESx/tmzZ4KxsbHwxx9/CIJQ+mdb/hqvvPKK0rL27dsLM2fOLPM9qEodsQhnsBAREdVAn/T2xD//xSPk9nOcvvUUr3rYa3pIVNPZuAH12gCP8qf9m9qrPDOBNEzfRLwiU1OvXQ4jR47ExIkTsX79ehgaGmLr1q145513oKOjg7S0NMyfPx/79+9HfHw88vLykJmZibi4uAoN7dixY1iyZAlu3LiBlJQU5OXlISsrCxkZGTAxMUFERASGDBlS7HOjoqKQnZ2tuGq1ogwMDNCyZUulZU+ePMHs2bMRHByMhIQESKVSZGRkKN5nREQEGjRoAE9Pz2L32aFDB/j4+OC3337DF198gf/7v/9Do0aN0LVr1zLHExUVBV9fX5iaFvzf7tKlC2QyGaKjo+Ho6AgA8PHxUZrF4OzsjKtXr6r8vv38/Io8Xr16dYXGJJFI8OjRozL/LT755BMYGhri/PnzsLMrX1Pswv9G8mPQokWLIssSEhLg5OQEqVSKxYsX448//sDDhw+Rk5OD7OxsmJgo/3/o1KkTJBKJ4rGfnx9WrFgBqVSqdHxfdvXqVUil0iKfgezsbKUrTvX09NC+fXvF42bNmsHKygpRUVHo0KEDoqKiMGnSJKV9dOnSBWvWrAFQ9mcNAExMTNCkSRPFY2dnZyQkJJS4PVGlGZgAxjZA5gvAxEbTo6GqUEPiFsYsdSNmKfx6Li4ucHFxUSzz9vZW/F1t3749pk+fjvfeew9btmxBr169MGTIEMXfyGnTpuGDDz7AkSNH0KtXL7z99ttFjmdpXo5FTExM0LhxY6VlFy5cUDy+desW5s6di9DQUDx79kxRzi4uLg7NmzdXbFc4JtPT00O7du0QFRVV5niuXLmCkydPFjsL586dO4p/89JinaioKOjp6aFjx46K9ba2tmjatKliDKV9tuVePo7aGIvU2R4sQUFB8Pb2VgpIiYiIagoXGxO820ks37T04A3IZKr3QSAqkbzZPcD+KzWJRCImwzTxU+gLlSoCAgIgCAL279+P+/fv4/Tp0xg5ciQAYMaMGdi7dy8WL16M06dPIyIiAi1atEBOTk65D0lsbCzeeOMNtGzZErt370Z4eLiiD4h8f8bGxiU+v7R1ABSlF4RCNaaLq/dtbGys9KUTAMaMGYOIiAisWbMGZ8+eRUREBGxtbVUal9x7772nKI+xceNGjBs3rsjrVIa83IWcRCLRWLNbVY4HAPTu3RsPHz7E4cOHy/0ahd+v/DgWt0x+DJYvX441a9Zg5syZOHnyJCIiIuDv71+hz2px0tLSoKuri/DwcERERCh+oqKiFMkRdVDl2Bb3WRDK0XuJqELkZcJMypcspRqihsQtjFkYs7xs/vz5uH79Ol5//XWcOHEC3t7e2Lt3LwDxfd69exejRo3C1atX0a5dO6xbt07lfb8cd5T1vgICAvDixQv89NNPCA0NRWhoKACoNRYJCAhQikMiIiJw69YtlRJkqqpoLKKpuLQkdTbBEhgYiMjISISFhWl6KERERBUytYc7zAz1cP1RCv7+T0NXgVHtUjjBwv4rVAWMjIzw1ltvYevWrdi2bRuaNm2KNm3aABAbXI4dOxaDBg1CixYt4OTkpGi+Wl7h4eGQyWRYsWIFOnXqBE9PTzx6pPx7smXLljh+/Hixz/fw8ICxsXGJ6+3txVmDhZt9R0REqDS2kJAQTJs2Df3791c0bS/cMLRly5Z48OABbt68WeI+3n33Xdy7dw9r165FZGQkxowZo9Jre3l54cqVK0hPT1caj46ODpo2barSPlRx/vz5Io+9vLwqNCZzc3O4urqW+G8h9+abb+L333/He++9h+3bt1f+TZQiJCQEAwYMwLvvvgtfX180bty42H8v+ckOufPnz8PDw6PU2SsA0Lp1a0ilUiQkJMDd3V3px8nJSbFdXl6eorkuAERHRyMpKUlxrL28vIr0qgkJCYG3tzcA1T5rVLtp7YWnFvn9OdjgnjSIMUvdiFkKv979+/dx//59xbLIyEgkJSUp/m4CgKenJz755BMcOXIEb731FjZu3KhY5+LigsmTJ2PPnj349NNP8dNPP6l9nADw/PlzREdHY/bs2ejZsye8vLyUmsIXVjgmy8vLQ3h4eIkxWWFt2rTB9evX4erqWiQWKTyrqLRYx8vLC3l5eUrbyMdeOBYpK8arCepsgoWIiKimszE1wORu4rTh745EIydPu67ioBrIygVokN+g2ar8DTqJVDFy5Ejs378fv/76q+JKUEA8QbBnzx5ERETgypUrGDFiRIWvTnN3d0dubi7WrVuHu3fvYsuWLfjhhx+Utpk1axbCwsIwZcoU/Pfff7hx4wY2bNiAZ8+ewcjICDNnzsTnn3+OzZs3486dOzh//jx++eUXxf5dXFwwf/583Lp1C/v378eKFStUGpuHhwe2bNmCqKgohIaGYuTIkUpX73Xr1g1du3bF22+/jaNHjyImJgYHDx7EoUOHFNtYW1vjrbfewmeffYY+ffqgQYMGKr32yJEjYWRkhDFjxuDatWs4efIkPvzwQ4waNUpRakMdQkJCsGzZMty8eRNBQUHYuXMnPvroowqPaf78+VixYgXWrl2LW7du4dKlS8VeFTpo0CBs2bIF48aNw65du9T2fl7m4eGBo0eP4uzZs4iKisL777+PJ0+eFNkuLi4O06dPR3R0NLZt24Z169aVeBwK8/T0xMiRIzF69Gjs2bMHMTExuHDhApYsWYL9+/crttPX18eHH36I0NBQhIeHY+zYsejUqRM6dBB/j3/22WfYtGkTNmzYgFu3bmHlypXYs2cPZsyYAUC1zxrVblp74SkTLKQlGLPU/phFrlevXmjRogVGjhyJS5cu4cKFCxg9ejS6deuGdu3aITMzE1OnTkVwcDDu3buHkJAQhIWFKZIVH3/8MQ4fPoyYmBhcunQJJ0+eVCmRURHW1tawtbXFjz/+iNu3b+PEiROYPn16sdsGBQVh7969uHHjBgIDA5GYmIjx48eX+RqBgYF48eIFhg8fjrCwMNy5cweHDx/GuHHjlBrQlxbreHh4YMCAAZg4cSLOnDmDK1eu4N1330X9+vUxYMAAAKV/tmsSJliIiIhqsPGvuMHB3BAtG1ghLTtP08Oh2qDXfKDRK0DrUZoeCdVSPXr0gI2NDaKjozFixAjF8pUrV8La2hqdO3dGQEAA/P39FVeKlpevry9WrlyJb7/9Fs2bN8fWrVuxZMkSpW08PT1x5MgRXLlyBR06dICfnx/++usv6OmJbSrnzJmDTz/9FHPnzoWXlxeGDRumqPesr6+Pbdu24caNG2jZsiW+/fZbfPPNNyqN7ZdffkFiYiLatGmDUaNGYdq0aXBwcFDaZvfu3Wjfvj2GDx8Ob29vfP7550pfZgFgwoQJyMnJUelLspyJiQkOHz6MFy9eoH379hg8eDB69uyJ77//XuV9qOLTTz/FxYsX0bp1a3zzzTdYuXIl/P39KzymMWPGYPXq1Vi/fj18fHzwxhtv4NatW8Xub/Dgwfjtt98watQo7NmzR63vS2727Nlo06YN/P390b17dzg5OWHgwIFFths9ejQyMzPRoUMHBAYG4qOPPirSE6UkGzduxOjRo/Hpp5+iadOmGDhwIMLCwtCwYUHy28TEBDNnzsSIESPQpUsXmJmZYceOHYr1AwcOxJo1a/Ddd9/Bx8cH//vf/7Bx40Z0795dsY0qnzWiatdqJNDQD2hZel1+oqrGmKX2xyxyEokEf/31F6ytrdG1a1f06tULjRs3Vvxd1dXVxfPnzzF69Gh4enpi6NCh6NevHxYsWAAAkEqlCAwMhJeXF/r27QtPT0+sX7++Ssaqo6OD7du3Izw8HM2bN8cnn3yC5cuXF7vt0qVLsXTpUvj6+uLMmTPYt2+fSr3q6tWrh5CQEEilUvTp0wctWrTAxx9/DCsrK0XZOaDsWGfjxo1o27Yt3njjDfj5+UEQBBw4cEBR9qusz3ZNIRHqeAHVlJQUWFpaIjk5GRYWFpoeDhERUbklZ+bC0li/7A3LgX8fqw+PNZVXVlYWYmJi4ObmBiMjI00PhzRky5Yt+OSTT/Do0SMYGBhoejj0ku7du6NVq1ZYvXp1lex/06ZN+Pjjj5GUlFQl+68upf0+49/H6sNjTVWFMQsBjFk0ITY2Fm5ubrh8+TJatWpVJa9R1bFOdVFHLFKz0kFERERUhLqTK0REpL0yMjIQHx+PpUuX4v333+eJCiIiItJKjFmormCJMCIiIiIiqlG2bt0KMzOzYn98fHw0PbwqtWzZMjRr1gxOTk6YNWuW0rrFixeXeFz69etX6dc+ffp0ifs3MzOr9P7VTVvHq63jIiIi9WPMUrdjlsmTJ5c4hsmTJ1fbOGrKuGoqlgjjVFgiIqIi+Pex+vBYU3mx3AaQmppabFNxQKw13qhRo2oekXZ48eIFXrx4Uew6Y2Nj1K9fv1L7z8zMxMOHD0tc7+7uXqn9q5u2jldbx6UJLBGmHXisqaowZmHMUpK6ErMkJCQgJSWl2HUWFhZFetpUF20dlyawRBgREREREdU55ubmMDc31/QwtI6NjQ1sbGyqbP/GxsY16uS/to5XW8dFRETqx5ileHUlZnFwcNDKZIW2jqumYokwIiIiIqIaqI5PRCeiWoC/x4jqBv5fJyJtpY7fT0ywEBERERHVIPr6+gDExqFERDWZ/PeY/PcaEdUujFmISNupIxZhiTAiIiIiohpEV1cXVlZWSEhIAACYmJhAIpFoeFRERKoTBAEZGRlISEiAlZUVdHV1NT2kOikoKAhBQUGQSqWaHgrVUoxZiEhbqTMWYYKFiIiIiKiGcXJyAgDFCQsioprIyspK8fuMql9gYCACAwMVTXyJqgJjFiLSZuqIRZhgISIiIiKqYSQSCZydneHg4IDc3FxND4eIqNz09fU5c4WoDmDMQkTaSl2xCBMsREREREQ1lK6uLk9QEhERkdZjzEJEtRWb3BMREREREREREREREZUTEyxERERERERERERERETlVGcTLEFBQfD29kb79u01PRQiIiIiIiIiIiIiIqph6mwPlsDAQAQGBiI5ORlWVlZISUnR9JCIiIi0hvzvoiAIGh5J7Sc/xoxFiIiICjAWqT6MRYiIiIpSNRapswkWudTUVACAi4uLhkdCRESkfVJTU2FpaanpYdRqjEWIiIhKxlik6jEWISIiKllZsYhEqOOXg8hkMjx69Ajm5uaQSCSV3l9KSgpcXFxw//59WFhYqGGEdQuPX+Xw+FUOj1/F8dhVjjYeP0EQkJqainr16kFHp85WFK0WjEW0C49f5fD4VQ6PX8Xx2FWONh4/xiLVR92xCKCdn6magseucnj8KofHr+J47CpHG4+fqrFInZ/BoqOjgwYNGqh9vxYWFlrzYaiJePwqh8evcnj8Ko7HrnK07fjxatHqwVhEO/H4VQ6PX+Xw+FUcj13laNvxYyxSPaoqFgG07zNVk/DYVQ6PX+Xw+FUcj13laNvxUyUW4WUgRERERERERERERERE5cQECxERERERERERERERUTkxwaJmhoaGmDdvHgwNDTU9lBqJx69yePwqh8ev4njsKofHj9SJn6fK4fGrHB6/yuHxqzgeu8rh8SN142eq4njsKofHr3J4/CqOx65yavLxq/NN7omIiIiIiIiIiIiIiMqLM1iIiIiIiIiIiIiIiIjKiQkWIiIiIiIiIiIiIiKicmKChYiIiIiIiIiIiIiIqJyYYCEiIiIiIiIiIiIiIionJljULCgoCK6urjAyMkLHjh1x4cIFTQ9JK/37778ICAhAvXr1IJFI8OeffyqtFwQBc+fOhbOzM4yNjdGrVy/cunVLM4PVMkuWLEH79u1hbm4OBwcHDBw4ENHR0UrbZGVlITAwELa2tjAzM8Pbb7+NJ0+eaGjE2mXDhg1o2bIlLCwsYGFhAT8/Pxw8eFCxnsdOdUuXLoVEIsHHH3+sWMbjV7L58+dDIpEo/TRr1kyxnseO1IWxiGoYi1QcY5HKYSyiPoxFyoexCFUXxiKqYSxScYxFKoexiPowFimf2hqLMMGiRjt27MD06dMxb948XLp0Cb6+vvD390dCQoKmh6Z10tPT4evri6CgoGLXL1u2DGvXrsUPP/yA0NBQmJqawt/fH1lZWdU8Uu1z6tQpBAYG4vz58zh69Chyc3PRp08fpKenK7b55JNP8Pfff2Pnzp04deoUHj16hLfeekuDo9YeDRo0wNKlSxEeHo6LFy+iR48eGDBgAK5fvw6Ax05VYWFh+N///oeWLVsqLefxK52Pjw/i4+MVP2fOnFGs47EjdWAsojrGIhXHWKRyGIuoB2ORimEsQlWNsYjqGItUHGORymEsoh6MRSqmVsYiAqlNhw4dhMDAQMVjqVQq1KtXT1iyZIkGR6X9AAh79+5VPJbJZIKTk5OwfPlyxbKkpCTB0NBQ2LZtmwZGqN0SEhIEAMKpU6cEQRCPlb6+vrBz507FNlFRUQIA4dy5c5oaplaztrYWfv75Zx47FaWmpgoeHh7C0aNHhW7dugkfffSRIAj87JVl3rx5gq+vb7HreOxIXRiLVAxjkcphLFJ5jEXKh7FIxTAWoerAWKRiGItUDmORymMsUj6MRSqmtsYinMGiJjk5OQgPD0evXr0Uy3R0dNCrVy+cO3dOgyOreWJiYvD48WOlY2lpaYmOHTvyWBYjOTkZAGBjYwMACA8PR25urtLxa9asGRo2bMjj9xKpVIrt27cjPT0dfn5+PHYqCgwMxOuvv650nAB+9lRx69Yt1KtXD40bN8bIkSMRFxcHgMeO1IOxiPowFikfxiIVx1ikYhiLVBxjEapKjEXUh7FI+TAWqTjGIhXDWKTiamMsoqfpAdQWz549g1QqhaOjo9JyR0dH3LhxQ0OjqpkeP34MAMUeS/k6EslkMnz88cfo0qULmjdvDkA8fgYGBrCyslLalsevwNWrV+Hn54esrCyYmZlh79698Pb2RkREBI9dGbZv345Lly4hLCysyDp+9krXsWNHbNq0CU2bNkV8fDwWLFiAV199FdeuXeOxI7VgLKI+jEVUx1ikYhiLVBxjkYpjLEJVjbGI+jAWUR1jkYphLFJxjEUqrrbGIkywENVggYGBuHbtmlK9Qipb06ZNERERgeTkZOzatQtjxozBqVOnND0srXf//n189NFHOHr0KIyMjDQ9nBqnX79+ivstW7ZEx44d0ahRI/zxxx8wNjbW4MiIiCqOsUjFMBapGMYilcNYhIhqI8YiFcNYpGIYi1RObY1FWCJMTezs7KCrq4snT54oLX/y5AmcnJw0NKqaSX68eCxLN3XqVPzzzz84efIkGjRooFju5OSEnJwcJCUlKW3P41fAwMAA7u7uaNu2LZYsWQJfX1+sWbOGx64M4eHhSEhIQJs2baCnpwc9PT2cOnUKa9euhZ6eHhwdHXn8ysHKygqenp64ffs2P3ukFoxF1IexiGoYi1QcY5GKYSyiXoxFSN0Yi6gPYxHVMBapOMYiFcNYRL1qSyzCBIuaGBgYoG3btjh+/LhimUwmw/Hjx+Hn56fBkdU8bm5ucHJyUjqWKSkpCA0N5bEEIAgCpk6dir179+LEiRNwc3NTWt+2bVvo6+srHb/o6GjExcXx+JVAJpMhOzubx64MPXv2xNWrVxEREaH4adeuHUaOHKm4z+OnurS0NNy5cwfOzs787JFaMBZRH8YipWMson6MRVTDWES9GIuQujEWUR/GIqVjLKJ+jEVUw1hEvWpNLFJM43uqoO3btwuGhobCpk2bhMjISGHSpEmClZWV8PjxY00PTeukpqYKly9fFi5fviwAEFauXClcvnxZuHfvniAIgrB06VLByspK+Ouvv4T//vtPGDBggODm5iZkZmZqeOSa98EHHwiWlpZCcHCwEB8fr/jJyMhQbDN58mShYcOGwokTJ4SLFy8Kfn5+gp+fnwZHrT2++OIL4dSpU0JMTIzw33//CV988YUgkUiEI0eOCILAY1de3bp1Ez766CPFYx6/kn366adCcHCwEBMTI4SEhAi9evUS7OzshISEBEEQeOxIPRiLqI6xSMUxFqkcxiLqxVhEdYxFqDowFlEdY5GKYyxSOYxF1IuxiOpqayzCBIuarVu3TmjYsKFgYGAgdOjQQTh//rymh6SVTp48KQAo8jNmzBhBEARBJpMJc+bMERwdHQVDQ0OhZ8+eQnR0tGYHrSWKO24AhI0bNyq2yczMFKZMmSJYW1sLJiYmwqBBg4T4+HjNDVqLjB8/XmjUqJFgYGAg2NvbCz179lQEEYLAY1deLwcSPH4lGzZsmODs7CwYGBgI9evXF4YNGybcvn1bsZ7HjtSFsYhqGItUHGORymEsol6MRVTHWISqC2MR1TAWqTjGIpXDWES9GIuorrbGIhJBEISqnSNDRERERERERERERERUu7AHCxERERERERERERERUTkxwUJERERERERERERERFROTLAQERERERERERERERGVExMsRERERERERERERERE5cQECxERERERERERERERUTkxwUJERERERERERERERFROTLAQERERERERERERERGVExMsRERERERERERERERE5cQECxHVaMHBwZBIJEhKStL0UIiIiKgOYixCREREmsRYhEizmGAhIiIiIiIiIiIiIiIqJyZYiIiIiIiIiIiIiIiIyokJFiKqFJlMhiVLlsDNzQ3Gxsbw9fXFrl27ABRMU92/fz9atmwJIyMjdOrUCdeuXVPax+7du+Hj4wNDQ0O4urpixYoVSuuzs7Mxc+ZMuLi4wNDQEO7u7vjll1+UtgkPD0e7du1gYmKCzp07Izo6umrfOBEREWkFxiJERESkSYxFiOo2JliIqFKWLFmCzZs344cffsD169fxySef4N1338WpU6cU23z22WdYsWIFwsLCYG9vj4CAAOTm5gIQA4ChQ4finXfewdWrVzF//nzMmTMHmzZtUjx/9OjR2LZtG9auXYuoqCj873//g5mZmdI4vvrqK6xYsQIXL16Enp4exo8fXy3vn4iIiDSLsQgRERFpEmMRojpOICKqoKysLMHExEQ4e/as0vIJEyYIw4cPF06ePCkAELZv365Y9/z5c8HY2FjYsWOHIAiCMGLECKF3795Kz//ss88Eb29vQRAEITo6WgAgHD16tNgxyF/j2LFjimX79+8XAAiZmZlqeZ9ERESknRiLEBERkSYxFiEizmAhogq7ffs2MjIy0Lt3b5iZmSl+Nm/ejDt37ii28/PzU9y3sbFB06ZNERUVBQCIiopCly5dlPbbpUsX3Lp1C1KpFBEREdDV1UW3bt1KHUvLli0V952dnQEACQkJlX6PREREpL0YixAREZEmMRYhIj1ND4CIaq60tDQAwP79+1G/fn2ldYaGhkrBREUZGxurtJ2+vr7ivkQiASDWQSUiIqLai7EIERERaRJjESLiDBYiqjBvb28YGhoiLi4O7u7uSj8uLi6K7c6fP6+4n5iYiJs3b8LLywsA4OXlhZCQEKX9hoSEwNPTE7q6umjRogVkMplS7VIiIiIigLEIERERaRZjESLiDBYiqjBzc3PMmDEDn3zyCWQyGV555RUkJycjJCQEFhYWaNSoEQDg66+/hq2tLRwdHfHVV1/Bzs4OAwcOBAB8+umnaN++PRYuXIhhw4bh3Llz+P7777F+/XoAgKurK8aMGYPx48dj7dq18PX1xb1795CQkIChQ4dq6q0TERGRFmAsQkRERJrEWISI2OSeiCpFJpMJq1evFpo2bSro6+sL9vb2gr+/v3Dq1ClFo7W///5b8PHxEQwMDIQOHToIV65cUdrHrl27BG9vb0FfX19o2LChsHz5cqX1mZmZwieffCI4OzsLBgYGgru7u/Drr78KglDQzC0xMVGx/eXLlwUAQkxMTFW/fSIiItIwxiJERESkSYxFiOo2iSAIgsayO0RUqwUHB+O1115DYmIirKysND0cIiIiqmMYixAREZEmMRYhqv3Yg4WIiIiIiIiIiIiIiKicmGAhIiIiIiIiIiIiIiIqJ5YIIyIiIiIiIiIiIiIiKifOYCEiIiIiIiIiIiIiIionJliIiIiIiIiIiIiIiIjKiQkWIiIiIiIiIiIiIiKicmKChYiIiIiIiIiIiIiIqJyYYCEiIiIiIiIiIiIiIionJliIiIiIiIiIiIiIiIjKiQkWIiIiIiIiIiIiIiKicmKChYiIiIiIiIiIiIiIqJyYYCEiIiIiIiIiIiIiIionJliIiIiIiIiIiIiIiIjKiQkWIiIiIiIiIiIiIiKicmKChYiIiIiIiIiIiIiIqJyYYCEiIiIiIiIiIiIiIionJliIiIiIiIiIiIiIiIjKiQkWIiIiIiIiIiIiIiKicmKChYiIiIiIiIiIiIiIqJyYYCEiIiIiIiIiIiIiIionJliIiIiIiIiIiIiIiIjKiQkWIiIiIiIiIiIiIiKicmKChYiIiIiIiIiIiIiIqJyYYCEiIiIiIiIiIiIiIionJliIiIiIiIiIiIiIiIjKiQkWIiIiIiIiIiIiIiKicmKChYiIiIiIiIiIiIiIqJz0ND0ATZPJZHj06BHMzc0hkUg0PRwiIiKtIAgCUlNTUa9ePejo8HqMqsRYhIiIqCjGItWHsQgREVFRqsYidT7B8ujRI7i4uGh6GERERFrp/v37aNCggaaHUasxFiEiIioZY5Gqx1iEiIioZGXFInU+wWJubg5APFAWFhYaHg0REZF2SElJgYuLi+LvJFUdxiJERERFMRapPoxFiIiIilI1FqnzCRb59FcLCwsGEkRERC9hmYiqx1iEiIioZIxFqh5jESIiopKVFYuwkCkREREREREREREREVE5McFCRERERERERERERERUTkywEBERERERERERERERlZNW92DZsGEDNmzYgNjYWACAj48P5s6di379+gEAsrKy8Omnn2L79u3Izs6Gv78/1q9fD0dHRw2OmoioZIIgIC8vD1KpVNNDoTpOV1cXenp6rGtORERERERERFRBWp1gadCgAZYuXQoPDw8IgoDffvsNAwYMwOXLl+Hj44NPPvkE+/fvx86dO2FpaYmpU6firbfeQkhIiKaHTkRURE5ODuLj45GRkaHpoRABAExMTODs7AwDAwNND4WIiIiIiIiIqMbR6gRLQECA0uNFixZhw4YNOH/+PBo0aIBffvkFv//+O3r06AEA2LhxI7y8vHD+/Hl06tRJE0MmIiqWTCZDTEwMdHV1Ua9ePRgYGHDmAGmMIAjIycnB06dPERMTAw8PD+josGooEREREREREVF5aHWCpTCpVIqdO3ciPT0dfn5+CA8PR25uLnr16qXYplmzZmjYsCHOnTtXYoIlOzsb2dnZiscpKSlVPnYiopycHMhkMri4uMDExETTwyGCsbEx9PX1ce/ePeTk5MDIyEjTQyIiIiIiAEFBQVi+fDkeP34MX19frFu3Dh06dChx+9WrV2PDhg2Ii4uDnZ0dBg8ejCVLljC+IyIiqgZaf7nq1atXYWZmBkNDQ0yePBl79+6Ft7c3Hj9+DAMDA1hZWSlt7+joiMePH5e4vyVLlsDS0lLx4+LiUsXvgIioAGcJkDbh55GIiIhIu+zYsQPTp0/HvHnzcOnSJfj6+sLf3x8JCQnFbv/777/jiy++wLx58xAVFYVffvkFO3bswJdfflnNIyciIqqbtP7MStOmTREREYHQ0FB88MEHGDNmDCIjIyu8v1mzZiE5OVnxc//+fTWOloiIiIiIiIioYlauXImJEydi3Lhx8Pb2xg8//AATExP8+uuvxW5/9uxZdOnSBSNGjICrqyv69OmD4cOH48KFC9U8ciIiorpJ6xMsBgYGcHd3R9u2bbFkyRL4+vpizZo1cHJyQk5ODpKSkpS2f/LkCZycnErcn6GhISwsLJR+iIiIiIiIiIg0KScnB+Hh4Uql0HV0dNCrVy+cO3eu2Od07twZ4eHhioTK3bt3ceDAAfTv37/E18nOzkZKSorSDxEREVWM1idYXiaTyZCdnY22bdtCX18fx48fV6yLjo5GXFwc/Pz8NDhCIiIqiaurK1avXq2WfQUHB0MikRRJtNdFsbGxkEgkiIiI0PRQiIiIiKiCnj17BqlUCkdHR6XlpZVCHzFiBL7++mu88sor0NfXR5MmTdC9e/dSS4SxdDoREZH6aHWCZdasWfj3338RGxuLq1evYtasWQgODsbIkSNhaWmJCRMmYPr06Th58iTCw8Mxbtw4+Pn5ldjgXitkJgJR/wB5OZoeCRGRSrp3746PP/5YLfsKCwvDpEmT1LIvIiIiItIS54KA28fL3o7ULjg4GIsXL8b69etx6dIl7NmzB/v378fChQtLfA5LpxNRlcjLAaL+Fs99EtUhepoeQGkSEhIwevRoxMfHw9LSEi1btsThw4fRu3dvAMCqVaugo6ODt99+G9nZ2fD398f69es1POoynPgGCPsZGBAEtH5X06MhIqo0QRAglUqhp1f2nxR7e/tqGBERERERVZtre4DDXwISXeCDs4BDM02PqMays7ODrq4unjx5orS8tFLoc+bMwahRo/Dee+8BAFq0aIH09HRMmjQJX331FXR0il5Xa2hoCENDQ/W/ASKq2678Dvz9EdBuAvDGSk2PhqjaaPUMll9++QWxsbHIzs5GQkICjh07pkiuAICRkRGCgoLw4sULpKenY8+ePaX2X9EKj6+Kt8kPNDsOItI4QRCQkZOnkR9BEFQa49ixY3Hq1CmsWbMGEokEEokEmzZtgkQiwcGDB9G2bVsYGhrizJkzuHPnDgYMGABHR0eYmZmhffv2OHbsmNL+Xi4RJpFI8PPPP2PQoEEwMTGBh4cH9u3bV+Fjunv3bvj4+MDQ0BCurq5YsWKF0vr169fDw8MDRkZGcHR0xODBgxXrdu3ahRYtWsDY2Bi2trbo1asX0tPTVXrdn3/+GV5eXjAyMkKzZs2Ukv3y8l3bt29H586dYWRkhObNm+PUqVNK+zh16hQ6dOgAQ0NDODs744svvkBeXp5ivUwmw7Jly+Du7g5DQ0M0bNgQixYtUtrH3bt38dprr8HExAS+vr4l1uomIiIiUov7YcDeyeL9DpOYXKkkAwMDtG3bVqkUukwmw/Hjx0sshZ6RkVEkiaKrqwsAKsf8RERqEf+fePswXLPjIKpmWj2DpVZ6ESPeZqdqdhxEpHGZuVJ4zz2skdeO/NofJgZl/wlYs2YNbt68iebNm+Prr78GAFy/fh0A8MUXX+C7775D48aNYW1tjfv376N///5YtGgRDA0NsXnzZgQEBCA6OhoNGzYs8TUWLFiAZcuWYfny5Vi3bh1GjhyJe/fuwcbGplzvKTw8HEOHDsX8+fMxbNgwnD17FlOmTIGtrS3Gjh2LixcvYtq0adiyZQs6d+6MFy9e4PTp0wCA+Ph4DB8+HMuWLcOgQYOQmpqK06dPq/SldOvWrZg7dy6+//57tG7dGpcvX8bEiRNhamqKMWPGKLb77LPPsHr1anh7e2PlypUICAhATEwMbG1t8fDhQ/Tv3x9jx47F5s2bcePGDUycOBFGRkaYP38+ALGUw08//YRVq1bhlVdeQXx8PG7cuKE0lq+++grfffcdPDw88NVXX2H48OG4ffu2SrOLiIiIiMolMRbY9g4gzQY8+wH+i8p8CpVt+vTpGDNmDNq1a4cOHTpg9erVSE9Px7hx4wAAo0ePRv369bFkyRIAQEBAAFauXInWrVujY8eOuH37NubMmYOAgABFooWIqFq8uCvePo0GZFJAh7+DqG7gGZfqlJ0KpCfk30/R7FiIiFRgaWkJAwMDmJiYKGYIyk/qf/3110qzCm1sbODr66t4vHDhQuzduxf79u3D1KlTS3yNsWPHYvjw4QCAxYsXY+3atbhw4QL69u1brrGuXLkSPXv2xJw5cwAAnp6eiIyMxPLlyzF27FjExcXB1NQUb7zxBszNzdGoUSO0bt0agJhgycvLw1tvvYVGjRoBEMsrqGLevHlYsWIF3nrrLQCAm5sbIiMj8b///U8pwTJ16lS8/fbbAIANGzbg0KFD+OWXX/D5559j/fr1cHFxwffffw+JRIJmzZrh0aNHmDlzJubOnYv09HSsWbMG33//vWKfTZo0wSuvvKI0lhkzZuD1118HICaufHx8cPv2bTRrxqtJiYiISI0yk4CtQ4GMZ4BTS+Dtn3kiTU2GDRuGp0+fYu7cuXj8+DFatWqFQ4cOKRrfx8XFKc1YmT17NiQSCWbPno2HDx/C3t4eAQEBRWY6ExFVOXmCJS9TTMLbNtHocIiqCxMs1SkxtuB+FhMsRHWdsb4uIr/219hrV1a7du2UHqelpWH+/PnYv3+/ImGRmZmJuLi4UvfTsmVLxX1TU1NYWFggISGh3OOJiorCgAEDlJZ16dIFq1evhlQqRe/evdGoUSM0btwYffv2Rd++fRWlyXx9fdGzZ0+0aNEC/v7+6NOnDwYPHgxra+tSXzM9PR137tzBhAkTMHHiRMXyvLw8WFpaKm1buKyDnp4e2rVrh6ioKMXY/fz8IJFIlMaelpaGBw8e4PHjx8jOzkbPnj1LHU/hY+ns7AxA7GfGBAsRERGpjTQX+GM08CwaMK8HjNgBGJppelS1ytSpU0u8QCk4OFjpsZ6eHubNm4d58+ZVw8iIiEqQlwMk3y94nBDFBAtVL2keoKuZVAcTLNVJXh4MYIkwIoJEIlGpTJe2MjU1VXo8Y8YMHD16FN999x3c3d1hbGyMwYMHIycnp9T96OvrKz2WSCSQyWRqH6+5uTkuXbqE4OBgHDlyBHPnzsX8+fMRFhYGKysrHD16FGfPnsWRI0ewbt06fPXVVwgNDYWbm1uJ+0xLSwMA/PTTT+jYsaPSOnWWZDA2NlZpu8LHUp6sqYpjSURERC/JTAQyXtT+k0mCAOyfDsScAvRNgRHbAYt6mh4VERFpWtI9QCj03fNpFOD1hubGQ3WLIAC/vQHYNAF6zAYsnKv15bW6yX2tI58qBzDBQkQ1hoGBAaRSaZnbhYSEYOzYsRg0aBBatGgBJycnxMbGVv0A83l5eSEkJKTImDw9PRXJDj09PfTq1QvLli3Df//9h9jYWJw4cQKAmJDo0qULFixYgMuXL8PAwAB79+4t9TUdHR1Rr1493L17F+7u7ko/Lydmzp8/r7ifl5eH8PBweHl5KcZ+7tw5pZ4vISEhMDc3R4MGDeDh4QFjY2OlhqdERESkJTITgR+7A9+3B+LOl7l5jXZ2LXBpMyDRAQb/Ajj7lv0cIiKq/Qqf8wTEGSxE1eXOcSDuHHBtt0ZKltbcS6drosTCM1hYIoyIagZXV1eEhoYiNjYWZmZmJc6I8PDwwJ49exAQEACJRII5c+ZU6+yJTz/9FO3bt8fChQsxbNgwnDt3Dt9//z3Wr18PAPjnn39w9+5ddO3aFdbW1jhw4ABkMhmaNm2K0NBQHD9+HH369IGDgwNCQ0Px9OlTRQKkNAsWLMC0adNgaWmJvn37Ijs7GxcvXkRiYiKmT5+u2C4oKAgeHh7w8vLCqlWrkJiYiPHjxwMApkyZgtWrV+PDDz/E1KlTER0djXnz5mH69OnQ0dGBkZERZs6cic8//xwGBgbo0qULnj59iuvXr2PChAlVc0CJiIiobDIZsHdyQTno/TOAScEaK1FRpSL3AUfzy1D5Lwaa9tPseIiISHs8vyPeGlqI5zyZYKHqIghA8Lfi/XbjATOHah8CZ7BUJ85gIaIaaMaMGdDV1YW3tzfs7e1L7KmycuVKWFtbo3PnzggICIC/vz/atGlTbeNs06YN/vjjD2zfvh3NmzfH3Llz8fXXX2Ps2LEAACsrK+zZswc9evSAl5cXfvjhB2zbtg0+Pj6wsLDAv//+i/79+8PT0xOzZ8/GihUr0K9f2ScO3nvvPfz888/YuHEjWrRogW7dumHTpk1FZrAsXboUS5cuha+vL86cOYN9+/bBzs4OAFC/fn0cOHAAFy5cgK+vLyZPnowJEyZg9uzZiufPmTMHn376KebOnQsvLy8MGzasQr1qiIiISI1CVgE3DwG6hoChJfDkKnDxF02PSv0ehgN7JgEQgPYTgY6TNT0iIiLSJvJznh59xNtnt8SeXURV7W4w8OACoGcEdJmmkSFIhML1SOqglJQUWFpaIjk5GRYWFlX7YqtaAMn5JyYNLYBZ90vfnohqjaysLMTExMDNzQ1GRkaaHg5Vo9jYWLi5ueHy5cto1aqVpoejpLTPZbX+fazjeKyJiGqomH+BzQPEmvNvrhNPJO2fLiZaPryokSsoq0RuFrC2FZAaD7j3BoZvr5YZOvz7WH14rImo0ra8JZZpenMdcGgWkJMGTAkFHJppemRUmwkCsLGfWB6s42Sg37dq3b2qfx85g6W65GUDyYUSKtmp4nRyIiIiIiIiqllS4oFd48XkSqt3gTajgbZjAedWQHZyQSktVYX/Bpxcop3fEWPPiMkVM0dgyMbaWf6MiIgqRz6DxaYJYJ+fVEmI1Nx4qG6I+VdMrugaAl0+1tgwmGCpLklxAATxHxwQ7+ekaXJERERabfLkyTAzMyv2Z/Lk6itLUdIYzMzMcPr06WobBxEREWkJaS6waxyQ/hRwbA70Xy4u19EFXl8h3r/yu+oN78//APw9DTi1FLh7omrGXBm3j4q3nv6Aoblmx0JERNpHmpt/3hOATWPAIb+XKfuwUFU7lT9jpe0YwMJZY8PgpSfV5UV+g3s7D+BpNCDLFWexGFVg+q1MKgbvRES12Ndff40ZM2YUu646SxdERESUuK5+/fplPt/V1RV1vBonERERkJMhnmip3waQSDQ9mso5Nl+8WtLQAhi6GTAwKVjXoJ04m+XSZtUa3v/3B3BoZsHjy/8HuPeqqpFXzK0j4q28rj4REVFhSXGAIAX0TQBzJ8DBW1zOGSxUlWLPAPdCAF0Djc5eAZhgqT6KqXJuQMojIPNFxRrdh6wF/l0OjN0POLdU7xiJiLSIg4MDHBw0X7vc3d1d00MgIiKq+Q5+DlzeAvScB7w6XdOjqbjIfcC578X7A9cDtk2KbtNzvridvOF9x/eL39eto8CfH4j3PfsBNw8CN/YDGS8AE5sqGX65Pb8jfpfV0QPcuml6NEREpI0U5zwbixdRyGewPL2huTFR7Re8VLxtPQqwLPvi16rEEmHVJTF/Bou1W8G06uyU8u/n9jHxeQ8uqG9sREREREREVSU7Fbi6S7wfvESc0V8TPb8D/BUo3u/8IeAVUPx2prZAz7ni/RPfAGkJRbe5fwHYMQqQ5QEthgDv/A44tQCkOQXHShvcyi8P1tCvYtUXiIio9nt+R7y1cRNv5QmWF3eB3Ez1vpY0V737o5rp3lkg9jSgow+88ommR8MES7UpnM2VB6YVSbBkJYu3OenqGRcREREREVFVurEfyMs/wSLNEZMUMqlmx1ReORnAH6PF73AN/cSZOKVRNLxPAY7OQ3B0Av536g4SUrPEUmlbh4jHxL0XMGA9oKMjXoEJiDN9tIW8/4pHb82Og4iItFfhBvcAYOYIGFsDggx4dlN9rxOxDVjkBFzfq759Us0k773S+l3AykWzYwETLNVH3oPFxk2s1QtUrESYPCmTk6GecREREREREVWl/3aIt23GAAbmwIMwIPR/mh1TeR38HHhyDTB1AAZvBHT1S99eRxd4fSUACXDld6z/bQuWHLyBoUt3IPnHN4CsJKBBB7GHi56B+JwWQ8Q64o//A+KvVPU7KltOhljfHFCp/4pMxp5zRER1UuGLyoH8MmHyPixqanQvzQVOLBRnft45oZ59Us0UFwrcDRbLl2pJ2VkmWKqDTAokxor3bRoXlAjLqswMljS1DI2IiIiIiKjKpD4WvwQDwCsfA30WivePf11wQkbb3TySP6tEAgz+BbBwVu15DdriuecwAMACvU1obpGBX3UXwzLvGaJlDTBR+hlO3E0rSEyY2ADNXhfvX96q/vdRXrFngLwswKIBYN+sxM1SsnIxa89VfLn3ajUOjoiItMYLeYmwxgXL5GXC1NXo/toeIOWheD/1iXr2STXTqfzeK61GAFYNFYt/Pn0X/958qpEhMcFSHVIeArJcsS6cRf2Kz2ARhIIESy5nsBARERERkZa7tlssEdKgg3jipe1YwPVVsTzWvmnidxxtlpkE/P2ReN8vEHDrqvJTY5+lY8jtPkgSTOGlE4e/dT9HY53HeK7niHF5s3A0JhfjN11Er1Wn8H/n7yEzRwq0eld88tU/gLxs9b+f8lCUB+slXo1cjONRT9Bn5b/YdiEOOy7ex+0EXghIRFSnSHOBpDjxvm2TguWKBIsaGt0LAnB2bcHjtMeV3yfVTPfDxBlMOnrAq58qFt99moalB29g9K8XcO1hcrUPiwmW6iC/MsvaVZwqrmhyX84ES26GOBUOYA8WIqoxXF1dsXr1apW2lUgk+PPPP6t0PDVFeY4bERGR1pKXB2s5VLyVSIA31wL6JmJz0vBNGhuaSo58BaQ+AmzdgR6zVX7as7RsjNl4AXczjLDVbAwAQJL5AjCxg+3kA9j5+duY1LUxzI30cPdpOmb/eQ2vLjuJ07LmgHk9IDMRiD5QVe+qbIIA3Doi3i+mPNjztGxM23YZE367iMcpWWhka4Lf3+sEdwezah4oERFpVPJ98VylnjFg5lSw3F6eYFFDibA7J8QynXKpTLDUWfLeK77viOfZ8y07FI08mYAezRzQvL5ltQ+LCZbqULj/ClDxBEvhkmJMsBARERERkTZLuCH2EtHRA3zeKlhu0xjoMUe8f2QOkPxAM+Mry61jwOX/AyABBgQB+sYqPS0jJw8TNoXh3vMMNLA2xpBJswH33oC5M/DuLsDOHfWtjPFlfy+cm9UT8wK84WJjjGdp2Ri9KRznLPzFHV3+v6p7b2V5fkcsc62jrzRrRxAE7LvyCL1X/Yt9Vx5BRwJM6toYhz7qCr8mtpobLxERacZzef8VN0Cn0Glm+QyW5LiKtUgoTD57xWeQeJv+VGzHQHXLg3Bxdq1EF3h1hmLxxdgXOHT9MXQkwBf9Si5pWpWYYKkOifIES34tQkWCpZxTlrIKbc8ECxERERERlSUzSezn8X+DgaWNqre5vHz2intvwPSlk+8d3xfLhuWkAv98on2lwrKSgb+nifc7fQA07KTS0/KkMkz9/TKuPEiGtYk+fhvfAQ6WpsDIncDH14B6rZW2NzPUw7gubjj6STeM6NgQggB8cbcFAEC4cwJIfqjaeG8dBSL3qfz2yt5f/uyVRp0V318fJ2dh4uaLmLbtMl6k56Cpozn2TumCL/t7wdhAV32vTURENcfLDe7lTGwKZrQ8ja74/uOviL3cJLpAz3mAREcsPZpeBb02Uh8D59YDuVnq3zdVXuHZK/mTGARBwOID4iypoe1c4OlorpGhMcFSHRQlwvJnsBjlT1Uq9wwWJliIahVBEP8va+JHxZMYP/74I+rVqweZTKa0fMCAARg/fjzu3LmDAQMGwNHREWZmZmjfvj2OHTumtkN09epV9OjRA8bGxrC1tcWkSZOQllZQ2zs4OBgdOnSAqakprKys0KVLF9y7dw8AcOXKFbz22mswNzeHhYUF2rZti4sXL6r0umfOnMGrr74KY2NjuLi4YNq0aUhPL/i96+rqioULF2L48OEwNTVF/fr1ERQUpLSPuLg4DBgwAGZmZrCwsMDQoUPx5IlyM76///4b7du3h5GREezs7DBo0CCl9RkZGRg/fjzMzc3RsGFD/Pjjj+U6fkREVEdlJQNXtgO/DwOWuwN/TRGv+MtKAg5+DpxZVfVjkMmAqzvF+77Diq7X0QUGfA/oGogn8+XJGG1xZLbYS9ParWC2TRkEQcCcv67hxI0EGOrp4Ocx7dHEPr9klkQC6OqV+FwjfV0sHtQC64a3xnODBgiVNYNEkOHusZ/LfuHog8DWIcAfo4Gk+yqNtUyK/iu9AQB/XLyP3itP4VhUAvR1Jfiklyf+/vAV+LpYqef1iIioZiopwQIUzGJ5WokyYWfXibc+g8ST6qb24uPU+IrvsySHvwQOzwIuVOPFKKSajBfArcPi/UK9Vw5ee4xLcUkw1tfF9N6eGhocUHKER+rzIla8rXSJsEIJFja5J6r5cjOAxfU089pfPgIMTMvcbMiQIfjwww9x8uRJ9OzZEwDw4sULHDp0CAcOHEBaWhr69++PRYsWwdDQEJs3b0ZAQACio6PRsGHDSg0xPT0d/v7+8PPzQ1hYGBISEvDee+9h6tSp2LRpE/Ly8jBw4EBMnDgR27ZtQ05ODi5cuABJfhPWkSNHonXr1tiwYQN0dXUREREBfX39Ml/3zp076Nu3L7755hv8+uuvePr0KaZOnYqpU6di48aNiu2WL1+OL7/8EgsWLMDhw4fx0UcfwdPTE71794ZMJlMkV06dOoW8vDwEBgZi2LBhCA4OBgDs378fgwYNwldffYXNmzcjJycHBw4o11pfsWIFFi5ciC+//BK7du3CBx98gG7duqFp06aVOrZERFQLyaTA9b3AtT3iyXFpTsE6B2/xxER2qlhm49h8sYF6t5klNi+vtLhzYl12QwvAs2/x29g3FcdwYiFw6AugSQ/AzKFqxlMet48DlzYDkAAD1wMGJio9bd2J29h24T50JMDa4a3RtpF1uV86wLceWtS3xJ6N/dAx/QZ0rmzFEqMhmNG3GfR1i7k+MiEK2P0egPyLZ+6FAFbvlPt1leSkA7EhAADBvRdWHYnG2hO3AQC+LlZY9nZLNHXSzBWiRESkZV7cEW9LSrDcPVnxPixJcWJcAwBd8meVmjsBaU+A1CclP68iZDLgzknx/v0L6t03Vd6D/ItlbT0A2yYAgJw8Gb49dAMAMLFrYzhYGGlqdEywVDlBKJrNlSdYyluDMLtwD5a0krcjIlITa2tr9OvXD7///rsiwbJr1y7Y2dnhtddeg46ODnx9fRXbL1y4EHv37sW+ffswderUSr3277//jqysLGzevBmmpmIy6Pvvv0dAQAC+/fZb6OvrIzk5GW+88QaaNBH/wHp5eSmeHxcXh88++wzNmok1OD08PFR63SVLlmDkyJH4+OOPFc9bu3YtunXrhg0bNsDISPyj3aVLF3zxxRcAAE9PT4SEhGDVqlXo3bs3jh8/jqtXryImJgYuLi4AgM2bN8PHxwdhYWFo3749Fi1ahHfeeQcLFixQvHbhYwkA/fv3x5QpUwAAM2fOxKpVq3Dy5EkmWIiIqKjzG8SG7HJ2nmLfE59BgEOhetTGVsDxr4HgJWKSpefcqkmyyGekeL9Zeu+SLh8BkX8Bj/8DDswAhm5W/1jKIysF2Jd/Eqfj+2KJLBXsvHgfK4/eBAAsGNAc/j5OZTyjZK52pggMnI7s7/4HVzzB5TMHMPReItYMa42GtoWSPRkvgG3Dxe+GOvqALFdMsPhWMsEScxqQZkOwdMGCc1JsOid+n/2opwem9fSArk4VJeWIiKjmkZ/zzD/prUQ+gyUhsmL7Pr8BEKSAWzfAOf+7spkTgCtAmpob3SdcBzJfiPcfXVbvvqnyHuYnWBq0UyzaGnoP955nwM7MEO93LSbBV42YYKlq6U+B3HQAEsAq/2puQwvxttwzWJIK7udwBgtRjadvIs4k0dRrq2jkyJGYOHEi1q9fD0NDQ2zduhXvvPMOdHR0kJaWhvnz52P//v2Ij49HXl4eMjMzERcXV+khRkVFwdfXV5FcAcSkhkwmQ3R0NLp27YqxY8fC398fvXv3Rq9evTB06FA4OzsDAKZPn4733nsPW7ZsQa9evTBkyBBFIqY0V65cwX///YetW7cqlgmCAJlMhpiYGEUSx8/PT+l5fn5+WL16tWLsLi4uiuQKAHh7e8PKygpRUVFo3749IiIiMHHixFLH0rJlS8V9iUQCJycnJCQklPkeiIioDrqbf9Vl87fFxp8OXsUnTl79FNA1FJMxZ1aKM136fKPeJEtuFnD9T/F+y2LKgxWmqy82kP/pNTHRcnUX0GKw+sZSXkfnACkPAGtXMfmkguuPkvHV3msAgCndm2BUp0aVHoahiQXg+zZweQtGGJ7Gx3Fe6Lr8JMwN9VDf2hgulgb44vlXaJIWgwyT+njS5hO4nZkB3Dtb6deWlwc7p9MGm86JpVe/HuCD0X6uld83ERHVHtI8IFH8O1H8DBZv8bYiM1gyE4Hw38T78tkrAGDuKN6qewZLzL8F91MeivuXvxZp3oMw8TY/wZKcmYu1x28BAD7p7QFTQ82mONiDparJM7mWLoCeoXhfHSXC2IOFqOaTSMQyXZr4KcdJlICAAAiCgP379/8/e2ceF1XVh/HvzLDvKLIoCCqKKLjinluapmalVlaWaWplaoutvpW+b4uWldmi2aLZpplLpZlmmvsuiisoqGwqm8i+z8z7x5kZQLYBBgb0fD+f+dzLXc8dYObe85zf8xAXF8fevXuZMGECAC+//DK//fYb8+fPZ+/evYSFhREcHExBQUEVRzUN3333HQcPHqRv376sWbOGdu3acejQIQD++9//cvbsWUaNGsW///5Lhw4d+O2336o8ZlZWFk8//TRhYWGG18mTJ4mMjDRKoDEWW9tKRvPquNnSTKFQlMnDkUgkEokEjQbidA+efZ8Djw6Vf9f3nQkjPxLzB78QlSOm/H6J3Ab56eDUAnzvqHp7r05CFALY9DykRJmuLdXh4k4IXSnm71tilJ1qdn4Rs1adoECtYWigO68MN2GVadfHAbjX4jADWooK2sz8IiISMul7cRFtso6RrbVm7I1Z3LfdGQ0KuB5Vu04nrRbtBRFwvzzRH5VSwaKHOktxRSKRSCRlSY8T1ZMWNuBYjv15M913YlaiqLqsDsdWiAHrHkHQZkjxckcxoNLkGSwlBRaQVSwNCY0G4kPFvHcPAL7cdZEbOYX4uzswPsSnkp3rBymw1DWpl8W0iV/xMlNlsMhONolEUg/Y2NgwduxYfv75Z1avXk1AQADdunUDYP/+/UyaNIkxY8YQHByMp6cn0dHRJjlvYGAgJ0+eLBUuv3//fpRKZSmLrK5duzJnzhwOHDhAUFAQq1atMqxr164dL774Itu2bWPs2LGlMlQqolu3bpw7dw5/f/8yLysrK8N2eiGn5M/66pbAwEDi4uKIiysOmj137hxpaWl06CBG8XTq1IkdO3ZU812RSCQSiaQcksOFoGFpLzoijKHnNBj9GaCAo9/Cn8+LHBdToLcHC34AlEY+cg54RYgxBVmwdhIU5pqmLcaSnwkbZ4n5nk+BnxHCEDD3j7NcSsnG08mGDx/obMiCMwk+PaFpW5RFufzQ+wrn3h7O9tkD+HtgNJMtRNDrGu83cfLtgpWDK+Ea4ZhwMfSfGp8y91o4ivRY8rUWHFMEs3RCN8Z28zbJ5UgkEonkFkM/qNy1Vfnf99aOxW4+1aliKcqHw7qg+b6zSg8acdBVlWSZsIJFXWTIHsO9o5hKgaXhcD1K3Oda2IJ7R66k5bJiv+hvf/3u9liUl1FXz5i/Bbc6N/QCS4lSOb1FWEFm9R5iSmW2aKGonh86JBLJbcuECRPYvHkzK1asMFSvgMgn2bBhg6HK49FHHzVZhcWECROwsbHhiSee4MyZM+zcuZNZs2bx+OOP4+HhweXLl5kzZw4HDx4kJiaGbdu2ERkZSWBgILm5ucycOZNdu3YRExPD/v37OXr0aKmMlop47bXXOHDgADNnziQsLIzIyEj++OOPMpky+/fvZ+HChVy4cIElS5awdu1ann/+eQCGDh1KcHAwEyZM4Pjx4xw5coSJEycycOBAQkJESeu8efNYvXo18+bNIzw8nNOnT/PBBx+Y5L2TSCQSyW1GrE709w4BVTUsEro/AWOWgUIpQt1/n179EaY3k5MKF0Tnf5X2YCVRWcC4b8HODRJPi9D7+mTHO2IkrosvDJln1C4bjsez/ng8SgV8+nAXXO2tqt6pOigU0FV333XiZ+ysLPDPO0vAUV37Bv2HJ6c9x6/P9GH3K4OJcegCwKGdGzl86Xq1T5eRV8iaVSsACCWQJZP61ypLRiKRSCS3ODdnTpdHsxrksJxaIwQUpxbC+rQkjrrvpUwTZrBcCxN9tDYu0E1Uj0qBpQGhtwdr3hVUFnz893kKijT0atWEIYHu5m2bDimw1DUl1Vw9Nk7F89UJqy9ZwQIyh0UikdQbd955J02aNOH8+fM8+uijhuWLFi3C1dWVvn37Mnr0aIYPH26obqktdnZ2/P3336SmptKjRw8eeOABhgwZwhdffGFYHxERwbhx42jXrh1PPfUUM2bM4Omnn0alUnH9+nUmTpxIu3bteOihhxgxYkSpQPmK6NSpE7t37+bChQv079+frl27MnfuXJo3L13y/NJLL3Hs2DG6du3Ku+++y6JFixg+fDggrLz++OMPXF1dGTBgAEOHDqV169asWbPGsP+gQYNYu3YtGzdupEuXLtx5550cOXLEJO+dRCKRSG4z4g6Lacve1d+388MwbjkoVKJDY2ErWNxJVJHs/0wEnlen8v7c78IuxCMIPDpWry1OXjDuG0AhrLpOra3e/jVFXQQnfxHzoxaBtUOVu1xKzuLN30XuyvND2tGrddO6aVvnR8TvJu6QsDBb85h4fzvcJ6p+dNhbWzDk7jEAdNOGM+m7oxyISjH6NClZ+Tzy9SHapB8EwKfXfdzR1s201yKRSCSSWwuDwNKq4m0MQfdGVrBoNHDgczHfe7rIaitJXQgsl3eLqd8d0EIXon71OGi1pjuHpOYYAu67c+ZKOr+FXQHgjVGBpq0crgUy5L6uMViElfiwsbAGlZUIlMzPBBtn445VRmDJApqZpJkSiURSGUqlkqtXr5ZZ7ufnx7///ltq2YwZM0r9XB3LMO1NNzDBwcFljq/Hw8OjwkwVKysrVq9ebfR5b6ZHjx5s27at0m2cnJz49ddfK1zfsmVL/vjjj0qPMXbsWMaOHVvuuvLet7CwsEqPJ5FIJJLbFH0Fi0/Pmu0fNBYs7WDbm3A9EtJixOus/ntWAW7tRIVMz6egeZeKj3VK991YneqVkrS5UwgHexaKPJbmXcCtbc2OZSzxR4X1hG0TaDO4ys3zi9TMWn2CnAI1vVo1Yead/nXXNkdPaHsXXNgKPz8AmiLwCIb7vyxjx2LdWtiaBSjjsMpLZ/LKo3w9MYSB7Sp+ZswpKGLtsXi+2n2RtPQ0etlEAODT4766uyaJRCKR3BroBZamlWSVVjfoPvJvSLkg3H+6PVF2vYNOYMlOEmKMsVaklaHPX2k1EDyDQGkB2cki7N5Z2mSaHV0Fi7ZFCAu2hKPVwr2dm9PJ28W87SqBrGCpayoql9PnsJSy/aqCmwWWQlnBIpFIJBKJRCKR3NZkJggxBIUh+LNGBNwNs47Ba9Ew8Q9hkxU4Gpx9AC2knIewn+HrQfDbdMgoO/CCG9EQe1C0JfiBmrdl0Ovg11+E2/76RN1X7kdtF9M2d4JSVeXm72+J4OzVDFztLPn04a6olHU8erLrY2KqKRIWao+sAiv7sts5NAO3dijRMrVlAvlFGqZ9f4wd4WV96pMz8/l423n6vv8v8zae5Wp6HqMdI7GiSNik1bWoJZFIJJLGjzEWYfoKluRw4ypC9n8mpiGTSzsA6XFwBxTiOzGn+naYZSjKLx6o0moAWNoWt/nK8dofX1I7CrIh8SwABwpasz/qOlYqJa8MD6hix/pFCix1SW4a5Oo8jF39Sq/T57BUp9y+TAVLdvnbSSQSSQPk559/xsHBodxXx47VtBCpBSNGjKiwHfPnz6+3dkgkEolEYhL09mAeHY2vjK8MW1doPQj6z4bxP8GLZ+DlSHj0Vwh6ANDCyVXwWTfYOR/yS1gen9ZZerUaAE7Nyzu6cShVIo/F3h2SzsLW12pzRVWjF1j8h1a56T/nEvlufzQAHz/UGU9nmzpsmI62w4XQpbSE8T8WBwaXh29fAJ5tncTdHT0pUGt45qdQtp4RVipRSVnM2XCKfh/8y+f/RpGWU4hvUzveua8j7wXp7Fba3lU6UFgikUgkkpvRqMXACqhcYHFrJ7Lecm9UHUwffwxiD4jvu17PlL+NyhLsdRaWmdeq3eyy5zwKRXninqOZrtO+eVcxbWw5LNcvQvif5m6FabkaBloNWsfmvLM7DYAn+vri08TOrM26GWkRVpfoA+7t3YsrVvTof66OwJKvr3ZRAFopsEgkkkbFvffeS69evcpdZ2lpWe7yuuDbb78lNze33HVNmjQx6hjVsT2TSCQSiaROidUJLD7lf8eaBAd3aDdcvHpPh7/fEJkguz+A0O/hzjegy4Ta24OVxNFT5LH8cD8c/wF874DOJjjuzWQliXBb4IRVN/yyCyoMq7+Wnssr604CMOWOVtzZ3sP07SkPCyuY9i8U5oKrb+Xb+vaD0JWoYg/w+ZR3eHFNGH+eusaMVcfp3boJ+6OKR/t28XHh6QGtGdbRE5UCWKwTmtoOq7trkUgkEsmtQXq8iD5QWYNTJTZaljZCgLkeJYLu9RkqN6PVwvb/ivngBysfqOHgKSy8qhJsjMFgDzageHBB827i3qOxCSwbnhJ5JU9sEtdzK6CzB8tw60xEeCa2lipmDm54VbZSYKlLystf0WOoYKmBRZiDB2QlSIFFIpE0KhwdHXF0dKx6wzqmRYsW5m6CxMSo1WpWrlzJjh07SEpKQqPRlFpfUY6PRCKR3BLE6WwtahJwXxO8Q+DJrXDuD9g+T4xe3TgL9n0irEIsbIS1mCloPUjYhe1aAH++IPJYmpnYEuKi+I64ZNGGMT9EAVG0cLElqIUTQc2dCfJ2Jqi5M03srXj+lzDScgoJbuHMq3fXszWFg7tx2+kqWLh2EsuibBaP74KVSsmGE1fYH3UdhQKGBnrw1IDWhPi6FofDJkVAepzoKPPrXzfXIJFIJJJbB709mKtf1Tko7oE6gSVc2HGWR8SfEL1X3EcMer3y4zl6QOJp0wTdlxRY9JSsYNFqG0dVZ2EumisnUAJp5/7F5VYRWHQB92FqkXc3KKAZznb1N0DXWKTAUpdU5kVoU02BpTBPlKwBOHlJgUUiaaTcHOIukZiTW+Xv8fnnn2flypWMGjWKoKCg4s4iiUQiudUpyIFroqKiTitYbkahgI73Q8AIOPKNCKTXP/sEjCzfM72mDHgFYg7A5d0ij2XajvLzR2qKzh7sr7wgw6IrablcScvl77PFI2OdbS1Jzy3E3krF5490xdqi6qwWs+DsLSzE0mIh7ggW/kP48MHOtGxqR1pOIY/38aVNM4ey+0VuE1O/fmDVsGw3bkeWLFnChx9+SEJCAp07d+bzzz+nZ8+e5W47aNAgdu/eXWb5yJEj2bx5c103VSKR3K6kXhTTyuzB9Lh3gPBNFQfdF+bBtjfFfN9ZVVdr6qtgaiuwFGQbKiRKCSzuHcSAg7w04U5kzDWaGW3iWZSoAUiJ2I/LKDM3yBRotRAnfj+/pYiKpruDKqiAMjNSYKlL9BZhruVVsFTTIqykPZiD7o+pUAosEkljQW+BlZOTg62trZlbI5EIcnJEaHB9WrTVBb/88gu//vorI0eONHdTJBKJpH65elyEvDp6VZ7LUVdYWEPfmdDlUdi9EGL2Qf+XTHsOfR7LsjtEQO5vT8ODP1Q9WtYYNGqI2gHAbnVnhnXw4KOHOnPuagZnrqRz5ko6p6+kcyklm/TcQgDeGxOMn5sJBZ66wLefEFhiDoD/EFRKBS8MbVf5PlH/iKm0BzM7a9asYfbs2SxbtoxevXqxePFihg8fzvnz53F3L1vJtGHDBgoKCgw/X79+nc6dO/Pggw/WZ7MlEsntht61p2mbqrfVh8ZXJLAcWioqYh29oN8LVR9P3y+aVUuBJfaguI9yblk6O9vCCjyD4EqoCLpvBALLjaij6A3P3TPPkJtfiK21iZ/zM65CznXwDDbtcSs83xXISkCrULE11RNLlYLB7Y2s6K1npMBSl6RGi2l5/4jVFVjydAKLtVPxvrKCRSJpNKhUKlxcXEhKSgLAzs5OjrKXmA2tVktOTg5JSUm4uLigUjXQUbhGYmVlhb+/v7mbIZFIJPVPrM4ezKeXee0r7JrAiPfr7vgO7vDg9/DDvWIE7PZ5MOyd2h/3ahjkppKFHSe0/izt7o2TjSW9Wzeld+umhs2y84sIvyaex0L8jMtrMyu+feHkaiGwGEN2CsQcFPP+d9VduyRGsWjRIqZNm8bkyZMBWLZsGZs3b2bFihW8/npZ25ybMwR/+eUX7OzspMAikUjqFoNrTzmDym+mmU5gSY4Ajab0IInMBNj7sZgf+l+wLqfK8mZMVcFSXv6KnuZdhcBy9QQEP1C789QDWdGhBoHFiRy2HNjPiMGDTHeCwjxYPlyIHk/vrh+RJV7Yg6XY+5OXa80gfzecbBrm4FApsNQllX3Y6EWSPCMtwvT5KzbOxSXbBTm1a59EIqlXPD3FTYBeZJFIzI2Li4vh77Ix89JLL/Hpp5/yxRdfSOFSIpHcXsTpAu7rK3/FnPj2gfuWwoapcOAz8YwV8mTtjqmzB9ur7oizvV2FoyLtrS0ah7Cix7efmF45JjpELG0q3/7ot6ApFJ1JxoxEltQZBQUFhIaGMmfOHMMypVLJ0KFDOXjwoFHHWL58OQ8//DD29hVXWuXn55Ofn2/4OSOjGtmwEolEAnC9GhZhTduA0hIKskTeV0kLsB3viOUtukPwQ8aduy4Elptp3k1Mr4bV7hz1hFXyKQAKtSosFWoij+80rcAS9hOkx4r5w1/BfV+Y7tgVobNvO1ok7k2Gd2y4fRdSYKkrCnMh86qYL9ciTJ/BYmwFS5qY2jiBlU7NLciqVRMlEkn9olAo8PLywt3dncLCQnM3R3KbY2lp2agrV8aOHVvq53///ZctW7bQsWPHMpZnGzZsqM+mSSQSSf2g0RQLLPWZv2JOOj0obJh3vgebXxa2aP5Da348ncCyS9OF+7u2wFJlAtuxhkCT1uDgAVmJYvStX7+Kty3MFTk6IHzv5UCFGpOWlsaRI0dISkpCo9GUWjdx4kSjjpGSkoJarcbDw6PUcg8PDyIiIqrc/8iRI5w5c4bly5dXut2CBQv43//+Z1SbJBKJpAwadXEsQhMjhHmVJbi1g6SzoopFL7BcOQ5hP4v5uz8w3v7TYBGWWPl2lZF7ozjHrlX/suv1QffXwsT1Khvws3NRAW7ZQvCKbjaYtinbcbtxirNX0+nY3Nkkx2ff4uKfT6+Du94WFcwleG/zOaKSslgyoRt2ViaQHK6EArAjoyUKBdzVwaOKHcyHFFjqihvRYmrtXOYPTizXW4TVpIJFNxKlUFawSCSNEZVK1ag7tiWShoCzc+kbxTFjxpipJRKJRGImUs6LZwRLu/rzwm4IDHhFOAWcXA2/ToIpf4NHx+ofJycV7ZVjKIA96k6s6O5t6paaD4VC2ISd/U3YhFUmsJz8BXJShP984H3118ZbjE2bNjFhwgSysrJwcnIqVVGrUCiMFlhqy/LlywkODqZnz56Vbjdnzhxmz55t+DkjIwMfH5+6bp5EIrlVyLgK6gJRleJs5Pene6AQWJLOQbvhIsB86xxAC53Gg08P48/vqOtoz0wQx6nJ4ICYA6DVQNO24NS87PpmAeIeqyALrkeJnxso2qRzWFBEmtYey84PwI7tdFVG8dPhWN4bY4J7xFO/iMojBw+wayp+h2E/i4EZOq6l5/LNXiG6/XQohqcG1LIiVl0o7NmAE1p/evg1wc3BunbHrEOkwFJX6MOemviV/49e3QoWvRBj4yz+wUFmsEgkEonktuW7776rs2MvWbKEDz/8kISEBDp37sznn39eaUfF4sWL+fLLL4mNjcXNzY0HHniABQsWYGNThSWLRCKR1AZ9/kqL7mJk6O2CQgGjP4P0eIjeCz8/BNN2FNuFGMulnSi0Gs5rvGnaohWBXk51015z4dtPJ7DsB14pfxuNBg7qLD56TweV7B6oKS+99BJPPvkk8+fPx87OrsbHcXNzQ6VSkZhYelR2YmJilbau2dnZ/PLLL7z99ttVnsfa2hpr64bbUSWRSBo4qTp7MFc/4ys73NuLqT7o/sx6iDsk+jiH/rd653fQCSyaQshJBfumlW9fHpXZg4G4Lq/OEHtQVNo0YIEl7dIxXIGz2lZ079gfdkA7RRzbTkQxZ2QgDta1+H5XFxVn5PR9TmTkbHpe2Iv2nmGoOtp6ptiu7es9l3i8tx+2VrUYWJx4BoryyFI4cFnryWMN2B4M4BapgW6AGPJXKvAitNELLLWoYJECi0QikUgkXL58mcjIyDLLIyMjiY6Ortax1qxZw+zZs5k3bx7Hjx+nc+fODB8+vMLspFWrVvH6668zb948wsPDWb58OWvWrOE///lPTS5FIpFIjKeB5a+cjk/nq90XSc0uqPuTWVjBQz+IUacZ8bBqfPWfjaJ2ALBb05kHut1C1St6fPuKadwRMQq0PCL/FqNyrZ2h2+P117ZbkCtXrvDcc8/VSlwBsLKyonv37uzYscOwTKPRsGPHDvr06VPpvmvXriU/P5/HHnusVm2QSCSSKtH3eVYnt8u9g5gmnROZ0v/MEz/f8WL5FSSVYWENtjq3oKwa5rBUJbBAiRyWEzU7Rz2ReUmEwV+zbYdNE2+0zt6oFFr8iyLZGHa1dgc/s064NNk1hZDJEPyg6Ju+EW2wWgXYUkJgSckq4OfDMbU7ry7gPlTdGi1KhgdJgeX2RO9FWF7+CpSwCDM2g0UnsFg7SYFFIpFIJJISTJo0iQMHDpRZfvjwYSZNmlStYy1atIhp06YxefJkOnTowLJly7Czs2PFihXlbn/gwAH69evHo48+ip+fH8OGDeORRx7hyJEjNbkUiUQiMR59BYuPeQWWiIQMnv7xGKO/2MeCLRGMXbqf6JR6eE6xawITfhUP/NfCYP004ZFuDFothef/AWA/nbmvS4u6a6e5aBYItq5QmA3XTpW/zYHPxTRkUvHzqaRGDB8+nGPHjpnkWLNnz+abb77h+++/Jzw8nOnTp5Odnc3kyZMBkecyZ86cMvstX76c+++/n6ZNazCSWyKRSKpDVYPKy8M9UEyTL8D+xWKAhLNPKZupalGboPusJCH0APiVk7+iR5/D0sAFFouk0wDkNxN2YApvYbfWVRHFz4dj0Gq1NTuwRl1cvdJnpuiPtrKHLjoh/8jXACRn5nM0OhWA5+70B2DZ7kvkFhh5X1YeOoHlhMaf4BbOtHCxrfmx6gFZA1xXGCzCKviwqanAIjNYJBKJRCIpxYkTJ+jXr6y/fO/evZk5c6bRxykoKCA0NLRUp4VSqWTo0KEcPHiw3H369u3LTz/9xJEjR+jZsyeXLl3ir7/+4vHHKx4JnJ+fT35+vuHnjAwjq1klEkndo1EDCuNDVs1FVpJuQJeiep7lJuRichaLt0fy56mrBvtzF1tLoq/nMPbLAyx/IoSuLV3rthFNWsPDq+D7e+H8Ztj2Ftw9v+r9Es9gmZtEjtYap4ABuNpb1W07zYFSCS37ivclZj94dy+9/kqoWK60gF7PmKeNjZyNGzca5keNGsUrr7zCuXPnCA4OxtKytG3fvffea/Rxx48fT3JyMnPnziUhIYEuXbqwdetWQ/B9bGwsyps+o86fP8++ffvYtm1bLa5IIpHUGnUR/PWSGPzQ5RFzt6buuF4DgcXFDyxsoSgX9nwklt31NljWsOPc0VOIJDUJutdXr3gEV24vphdYEk6JatCGaMmqLsIt+wIA9n6673rvHnD2N7qpolh6NYOT8el08XGp/rHP/QEpF8DGBXpMLV7eYwocWiIqWK5fZFuUBVotdPJ2ZuadbVl//ApX0nJZfSSWJ++ooPCgKq4IgSVM48/dDbx6BaTAUncY1NwqKljyjLUIK5nBoq9gyap5+yQSiUQiuUVQKBRkZpYdsJCeno5abfyomZSUFNRqtaEDQ4+HhwcRERHl7vPoo4+SkpLCHXfcgVarpaioiGeeeaZSi7AFCxbwv//9z+h2SSSSeiIlEpbdASFPwt0LzN2aytFXr7h3EM8H9Uhcag6f7ohkw/F4NLoBkaOCvXhhaFucbS158vujnLmSwSPfHOLTh7sy3EjP7Jjr2ZxPyGRooAdKZTXCalv2hvuXwnrdw37zLtDpoUp3KTq/DQvggKYDY3pUo3OoseGrF1gOQL/nSq87oMteCXqg+tYsEgDuv//+MsvKyz9RKBTVuh8BmDlzZoWDRHbt2lVmWUBAQM1HKEskEtNx5RiEroQL225tgaUmFSxKpchhuXoCtGoxCKDjmJq3wUFfwXKt+vsaYw8G4vqsnSE/HZIjwNMEgfEmRpscgZW2gEytLS3bBomFugqWXpaXoEDLqsMx1RdYNJpiIaz39OKoCxDWcP53QdQ/cGwFW+PFIIIRQV5YWSiZMdif//x2mmW7L/Jor5bYWFYziyUnVViYAmGaNrzZwPNXoAFbhC1YsIAePXrg6OiIu7s7999/P+fPny+1zaBBg1AoFKVezzzTAEbfqAshPU7MV1jBonsQKsw2rpRdZrBIJBKJRFIuAwYMYMGCBaU6L9RqNQsWLOCOO+6o03Pv2rWL+fPns3TpUo4fP86GDRvYvHkz77zzToX7zJkzh/T0dMMrLi6uTtsokUiMJGo7FOXBsRXGD4IyF4b8lV71dsob2QW88dtpBn+0i3WhQlwZGujB5ufuYMmEbrT1cMTdyYY1T/VhcEAz8go1PPNTKCv3X670uFFJmby4JozBH+3iqR9D+Wbvpeo3LvgBjrScBkDRn7Mh/Uqlm2ec2QrAccvuDGjbrPrnayzoc1hiD4iOEj03YuDc72K+r/GVnpLSaDQao17VFVckEkkjJj1eTLMSS3/u3kpoNMWxCNURWEDYVwKgEINZFNUYUHEzjrpBcZm1qGCpSmBRKqF5ZzF/5Xj1z1MPpF8KBeCc1pcOzV3EQs9OoLTEUX0Db0UyG09eJT23gjy2ijj/FySdBStH6PV02fU9xX2X5viPnLgocl5G6CpNHujuTXNnG5Iy8/nlSGz1L+qKuKZLGk/c3L3wd3eo/jHqmQYrsOzevZsZM2Zw6NAh/vnnHwoLCxk2bBjZ2aVFhWnTpnHt2jXDa+HChWZqcQnS40BTBBY2xYrqzViX+OMwxibMILA4gZUuOK9AWoRJJBKJRPLBBx/w77//EhAQwOTJk5k8eTIBAQHs2bOHDz/80OjjuLm5oVKpSEwsfZOemJiIp2f53+dvvfUWjz/+OFOnTiU4OJgxY8Ywf/58FixYgKaChypra2ucnJxKvSQSSQMgWVepVpQnHirrm6thsHGW4aGyUuo5fyU9p5BHvjnEz4djKdJo6d/Wjd9n9OPbJ0Lo2Lx0BY29tQXfTAzhkZ4+aLXw303neG/zOTSa0qPrz15N59mfQ7nrkz38duKKoRrmy90XycyrXidA7PUcHo8aSJimDRYFmeSsfbrijq28DJySxXvsGHQ3FqoG+0hcezw7gZWDeJbUe80DHF4GWg20HtwgR+NKJBJJo0VfTaFVQ+4N87alrsi8Ku6VlBYiQ6U6tNLlnYRMFhWntcHRS0yrG3KfFisEIoWqeCBCZTTwoPuMy8JK64pNu+JKEUsb8OoEwEiXOPIKNfx+ovLBJ6XQamGPrn+911Mi0+1m/IeCqx/K/HRGKfbT3tMRPzdREGBloWT6YJHF8uXui+QVVnOggT5/RevP3Y2gegUasMCydetWJk2aRMeOHencuTMrV64kNjaW0NDSDxx2dnZ4enoaXg2ik0Kfv+LqV7F/s4U1qKzFfL4RI+RKVbDoxBlZwSKRSCQSCR06dODUqVM89NBDJCUlkZmZycSJE4mIiCAoKMjo41hZWdG9e3d27NhhWKbRaNixYwd9+vQpd5+cnJwyPugqlbixlVYdEkkjI7lEtfzptfV3XnUR7P4Qvh0Cx3+AVQ+LjJWKKMyFayfFfD1UsGTnFzF55REiEjJp5mjNL0/15scpvSq1mrBQKZk/JphXhgcA8M3ey8xafYK8QjUnYm8w9fujjPpsH3+dTkCrheEdPfh9Rj/aNLMnLaeQ7/ZHV6uNi/45T75GyUtF08nTWmIXv5eMvcvK3TYjfAcWqLmk8WRIv/oRqMyGygJ8dH8jMQfENPcGhH4v5mX1isl47rnn+Oyzz8os/+KLL3jhhRfqv0ESicQ8ZJSwq8qu5Lu8MaO3B3P1E98z1aHTw/DMfhj5ce3b4aCvYKmmwHJ5r5i26Fba9qoiDEH3DbOCRZV4CoBct06lV+hswu5vJv4mqxV2H/mPuNe0tIfeM8rfRqky5LI8odrGiJuEkIdCvPFytiExI59fj1XPsUEddwQQ+SvGWs2amwYrsNxMeroQGJo0aVJq+c8//4ybmxtBQUHMmTOHnJzKqzry8/PJyMgo9TI5xnoR6v+Rq1XB4gyWugqWwmyhKkokEolEcpvTvHlz5s+fz+bNm1m3bh1z584tc89gDLNnz+abb77h+++/Jzw8nOnTp5Odnc3kyZMBmDhxInPmzDFsP3r0aL788kt++eUXLl++zD///MNbb73F6NGjDUKLRCJpBGi1kBRe/PPFnZCVXPfnvX4Rvrsbdr4rKuCtHESHzO/TK67AuHIcNIWiUt7Ft06bl1+k5ukfQzkem4azrSU/TulJ79aVhMGWQKFQMGOwP4vHd8FSpWDz6Wv0X7iTMUsPsD08CaUC7u3cnL9fGMBXj4fQxceFF4a2A+CbPZdIyykw6jznrmbwx0lhTfHfyffzjfUkAKx2ziMzvmx+1pWjm8R+dj1o5+Fo1DkaNfrRuTH7xTR0pXiOdO8AbYaYrVm3GuvXr6dfv35llvft25d169aZoUUSSQNmy+vw23Tj7PIbGyXzQCobLNGYqUn+ih6lEjyDKh6MXh0c9Rks1RVYjLQH06MXWBLPQWFe9c5V12jUNM0U9zq2vl1Lr9MJLO0KI7CxVHIhMYvQGCOqqkpWr/R4Euwrvu/LDBxPntaSDsoYxjSLL7XO2kLF9EFtAPhy10Xyi4z8f9do0MSJ4oor9kEEtWgAhRRG0CgEFo1GwwsvvEC/fv1KjUR99NFH+emnn9i5cydz5szhxx9/5LHHHqv0WAsWLMDZ2dnw8vGpZjmbMdyIFlPXCgLu9eiD7o0RWPRVLiUzWLQaUZYnkUgkEsltTlpaGh9//DFTp05l6tSpfPLJJ4bBGdVh/PjxfPTRR8ydO5cuXboQFhbG1q1bDcH3sbGxXLtW/OD05ptv8tJLL/Hmm2/SoUMHpkyZwvDhw/nqq69Mdm0SiaQeyE6GvDRQKMEjSFh76DMq6gKtFo58A8vugPijIp9xzNcwdbuwGY7aDoe/LH/fOJ09WMtetfMur4IitYbnVp9gX1QKdlYqVk7uQXvP6j/k3t+1Bd8/2RNHGwuSM/OxUCp4sLs322cP5LNHuhLgWSxyjAr2or2nI5n5RUZnsXy07TxaLdzTyYv+bZtx/9P/5YgiGBsKuPb9E+Tl5xu21Wo0NLkmOlZsO95d7WtplPjqOv1jDkBRPhzWfT/1mVmnfz+3G9evX8fZ2bnMcicnJ1JSUszQIomkgZJxTXy/nVwlvv9uNUoKLNn1MFDDHFy/KKY1EVhMiV5gyUo0fvC5Vlt9gcWlJdg1FYNbks5Wv511yfWL2GjzyNVa0bJt59LrvEMAsEg8zdhgIZL8fNiIPJRLu8T/poUN9JlV6ab/xhTyu1rcZ/hE/VRm/UMhPng4WXMtPY+1x+LLrC+X1ItYFqaTp7WkdVAvFI3kXqVRCCwzZszgzJkz/PLLL6WWP/XUUwwfPpzg4GAmTJjADz/8wG+//cbFixcrPFa9BMsa1FwTCSzqIijI0u1TQmABmcMikUgkktueY8eO0aZNGz755BNSU1NJTU1l0aJFtGnThuPHq1/KPXPmTGJiYsjPz+fw4cP06lVswbNr1y5Wrlxp+NnCwoJ58+YRFRVFbm4usbGxLFmyBBcXFxNcmUQiqTf0+SuuftDlUTF/uo5GnWdcg5/GwV8vQ2GOeMB/9gB0Hg/ugTB8vtjun3kil+VmYnUB93WYv6LRaHlt/Wn+PpuIlYWSbyeG0LVlOf7bRtK3jRt/zOjH6yPas/PlQXz4YGdaNysbWKpUKph9l6hi+W5/NNez8stsU5Kj0an8G5GESqngpWHCjsynqQOuj35LhtaOdoURbP3qddS6gJeoc8fx0CaTr7UkZMDoGl9Po6JFN2FNnZ0EuxeKzj8HTwh+wNwtu6Xw9/dn69atZZZv2bKF1q3N3AkpkTQkrhwrnj+/xXztqCsyrhbP36oCi6HPs41526HPvC7KE4NkjOH6RZEho7IqttCsCoWiuIqlgQXdp18WIuU5rS+BLW66T3PxBftmoClkUmvR77z59DVuZFdRIbznIzHtPgkcPSrddMvpBH5UDwNAce6PMtVENpYqpg8srmIpKKqgOrsERbHCHuy0thXDgr2r3L6h0OAFlpkzZ/Lnn3+yc+dOvL0rf2P1HSBRUVEVblMvwbL6DJYqBRbdufOqGGFbMqPFxkn43FnYiJ/1wotEIpFIJLcpL774Ivfeey/R0dFs2LCBDRs2cPnyZe655x7pey6RSIxDl79S4NqOwsD7AYWoFLkRY9rznFkPS3vDxR3ifv7u9+HxP8C5xHNOyJPQ/h4xUnL9FMgvcb+v0UCcTmCpo/wVrVbL23+eY/3xeFRKBV880pW+/m61Pm7rZg48M7ANPk3sKt3urg4edPJ2JqdAzbLdFQ+c02q1fLBFCGPje/jQyq14EFrbtu1JuuMdAEZd/54lqzeg1Wq5ePAPAC7Zdy632uCWxMLaYBPCvkVi2uspsVxiMmbPns2rr77KvHnz2L17N7t372bu3Lm8/vrrvPjii+ZunkTScChZtXKhrCjZqNFqS3cw37IWYfo+TzOLx5Y2wuUHIDPRuH0u7xZTn15gaWv8uQxB92HG71MPpF8UVlqx1u2wt74pD0ehMHz/ty0Ip2NzJwqKNKw/XkklScwBiNknBKi+z1V67pyCInZdSOKs1o9sj+7C6laf8VaCh3u2xN3RmitpuawLrbqKJTlcWJpGqALo7lvzwT31TYMVWLRaLTNnzuS3337j33//pVWrKsQKICwsDAAvL686bl0laDTFFmFVfdhYG5nBoldiLe1BZSnm9VUshbKCRSKRSCS3N8eOHeO1117DwqL4ptLCwoJXX32VY8eOVbKnRCKRCIoSRf7Kt+eteGVrErTqL1acWW+yc2hDv4d1T4p7e68u8PQe6D29rA+5QgH3fg6OzeF6FGx9rXhdygWxv4UteN4UZmoiFm+PZOWBaAA+erATw+o5XFShKK5i+eFgDIkZ5Vsi7zyfxLGYG1hbKHl+SNsy6/2HTiGh+V1YKtQMOz+PRVtO4XxlFwCWAcPqrP0NEn0Oi1Yjnim7TzZve25BnnzyST7++GOWL1/O4MGDGTx4MD/99BNffvkl06ZNM3fzJJKGQ3yJe/PkiOLO+luB3BugLlF5eSuG3Gs0xrv21AeOuv7fLCNzWPSDVPzuqN55GmjQvTIhDIDcpkHlb6CzCVPEH2VCL5Hbt+pwbMVh97t12StdJoBzi0rPvft8MnmFGrxdbbHrN10sPLYC1IWltrOxVPGMroplyc6oKqtYtDoRVunTA5WycdiDQQMWWGbMmMFPP/3EqlWrcHR0JCEhgYSEBHJzcwG4ePEi77zzDqGhoURHR7Nx40YmTpzIgAED6NSpbh42jCIrAYpyQaEC5yryXYy1CMsrkb+ix1InsBRk16ydEolEIpHcIjg5OREbW9ZPNi4uDkfH2yDAWCKRCG5Ew0ft4K9Xq7VbVFImZ08KO4IoTXP+OHmV1Fb3ipU1EFgKijREJmay5fQ1vvg3khd+OcHUxevI3fgKAHuaPoR2yj/QLKDig9g1gXHfAAo48VNxO/T5Ky26Fw+8MiHf7r3EpzsiAXj7vo6M6Woea4aB7ZoR4utKfpGGJTvLuhNoNFoWbhVVR5P6+eHhZFP2IAoFnhOWkWvVhPbKONwOvEM3rRDSWvW+r07b3+DQCywA3R4Xf18SkzN9+nTi4+NJTEwkIyODS5cuMXHiRHM3SyJpOKiL4OoJMa/vL7uVqlhK2oMBZDVAizCNBiL+gpzUmu1fss/TpaVp21YTHHQWVsYG3SecFlOvLtU7j15gSY5oOP2wGg1NM0Qlr03LruVvo69gjT/GvV2aY2+l4lJKNjvPlyP+xR6CSztBaQF3VF15ueWMeM9HBHmi6HAf2LuLv4+IP8ts+2ivlrg5iCqWDZVU0Gjys3HPFfd9rbsMqrINDYkGK7B8+eWXpKenM2jQILy8vAyvNWvWAGBlZcX27dsZNmwY7du356WXXmLcuHFs2rTJvA3Xq+8uPlU/9BgElozKt9NbiJUUWKykwCKRSCQSCYhg+ilTprBmzRri4uKIi4vjl19+YerUqTzyyCPmbp5EIqkvji4XQacnfxEdCFWg1WpZczSW0Z/vp3mhEGkLm7RDq4Xv0zqB0hISz0DiOaNOfzklm7sX7yFw7lbu+mQP038+zkfbLvBHWDxTrn+MnSKfw5r2PHHlXpbsMcJ6zO8OGPCymN/0ghCQYuvOHmxdaDzvbhYCxCvDA5jYx8/k5zAWhaI4U2X1kVjib5Su2t948ioRCZk42lgYvL3Lxd4N27FLAHjC4h+sFYWkW3micq9E3LoV8ekJVo7ib7r3dHO35pYmOTmZ8+fPExYWJsPtJZKbSTonXFisnaHnU2LZrZTDUjLgHhpmBUvUP/DLI7BieM0ynfXVK66+dTLQo9rog+6NEVgK80QlMIBnBRUfFeHkJapltJpikcbcpEVjq80mX2tJi3YVCCzNu4JCCRnxOOQn8VhvUcWycOt5NJqbqlh2vS+mXSaI328l5Bep+TdC/H3fHeQFFlYiswXgyDdlthdVLMLl6aNtF/jw7wh2RiSRnlO62iUybC8WaEjUutI9uJq/IzPTYAUWrVZb7mvSpEkA+Pj4sHv3bq5fv05eXh6RkZEsXLiwbjJVqoOhVM4IL0IbYy3C9AJLiWuz0nkXS4FFIpFIJLc5H330EWPHjmXixIn4+fnh5+fHpEmTeOCBB/jggw/M3TyJRFIfqIvglBiIRX463KjcciQjr5BZq0/w2vrTWBem0Uwh7rfH3DUYgO/D0lH73yU2PmNc2P0n/1wgIiETtUaLg7UFnb2dGdutBd8HnaSP6hwaC1uuDvwILUo+2naBTSevVn3Qga+Dd08xIGv9VIg9IJabOOB+z4VkXl9/CoCnBrTm2UFmDq4F+rRpSj//phSqtXzxb3EVS0GRhkX/iA6SZwa2wcXOqvIDtR+Jtstjhh8t2t0lbNhuJ6zsYfJmmPI3uPqZuzW3JNnZ2Tz55JN4eXkxYMAABgwYgJeXF1OmTCEnR9p6SyRAcf5Ki27QfpSYj9lfdS5xY0FfwWLXVEwbYgVLsqh4IOUC/P2f6u8ftUNMzZ2/okcvsGQZkcGSHCFyQmxdwaly+6tyaWBB95nRIn8lXOtDoHfT8jeydgT3DmI+/hjTB7XB0caCiIRM/jh5pXi7ktUr/V+q8tz7IlPIyi/Cw8marj4uYmHIZFHZFLMfrp0qs8+EXr54u9qSkpXPkp0XmbzyKJ3f3sawT3YzZ8Np1ofGE3V8FwAJjkFYWaqMfSsaBA1WYGm06B/mXI3wIjTaIqySChaZwSKRSCSS2xwrKys+/fRTbty4QVhYGGFhYaSmpvLJJ59gbS1DfCWS24KLO0o/XOstSMrhROwNRn22lz9PXUOlVDC3t+4BzrklA4Nb0cLFlrScQo44CLGF0+tEcG0lRKdk8+cp0bGy7pk+nP7vMP6YeQeLhjgyIPoLAJTD3mHMkP5MvUM8J7y09iShMTcqvy6VBYz7VmQ3xh8tznr06VH5ftXg7NV0pv8USpFGy/1dmjNnRHsUDUSAmH2XqDRZGxpPdIoYWLbmaCyxqTm4OVgzuZ+fUcdR3L0AnIWViX2ne+ukrQ0er87CWk5SJ8yePZvdu3ezadMm0tLSSEtL448//mD37t289FLVnVUSyW2BPn/Fuwc0bQNN24oOb32nfWNHX0Xh1VlMs5OqvH+od0pWeoR+B+c2Gr/vhb9h3ydiPvgh07arpjjoK1iuVb4diKpkAI+gmg20MATdV3yPWZ/ciBL2trFWbXGyqaSaSJfDQvxRXOysDHkoH2+7QH6RWqyrRvUKlLQH80Kpz0lxag4ddBasB5eU2cfWSsXGmXfw/thgHujuTSs30a99ITGL1UdieWntSRRXhWhk08r0ldp1jRRYTE11KliMtQjLryyDJat67ZNIJBKJ5BbFzs4OFxcXXFxcsLOzM3dzJBJJfXLiJzFV6MSSa2FlNtFqtXy1+yIPLjtIXGou3q62rH2mD2O9dffTzQJQKRVM6C064j+OaS3uudNiSofylsNXey6i0cKd7d0J8WsiBAqNGn5/VniVtxoAIVMAmDMykKGBHhQUaXjqh2PEpVYxYMrVl/M93jH8eFnZkjStfdXviRFcSctl8ndHyS5Q06d1UxY+0LnBiCsA3X1dGRzQDLVGy6c7IskpKOLTHaKa5fkh/thZWRh3IBsneHIrjP8Z2t5Vhy2W3K6sX7+e5cuXM2LECJycnHBycmLkyJF88803rFtnXBWcRHLLo69g0edCBNwtprdKDkumroLFU5cLrS5oeNU5eoFFX8GxcRakX6l4ez0pkaKSFi2EPAmdx9dZE6uFoz6DxYgKlgSdwOIZXLNzNbSg+2snAchu0rHy7UrksAA82a8V7o7WxN/IZfXh2GpXrxSqNfxzTrzfdwd5ll7Zd5aYnllX7t9VE3srHu7Zko8e7MzOlwdx7M2hfPV4d54a0JruPk50U4ocQN9OA6psR0NDCiymZth78PhvEHhP1dta6wSTPJnBIpFIJBJJTSkqKuKtt97C2dnZYBHm7OzMm2++SWFhYdUHkEgkjZuc1GIPd72n+9WwMpttPZPAgi0RFGm0jOrkxebn+tOtpSski7B0fej8+BAfrFRKjl3JJ7XlMLHu9NoKT5+Qnse6UBHYWcpa69CXIpTeyhHuWwJK8eilUir49OEudGzuxPXsAp5ceZT03PI/qwqKNLy/JYK7dzRjTdEgAP4t6MjU74+RV6g24s2pmPScQiatOEJSZj7tPBxY9nh3rCwa3uOhvorl97ArvPn7GVKy8mnZxI7xPaoZruvcQjyjNSABSXLrkJOTg4eHR5nl7u7u0iJMIgHIvQHXReepoZqu3QgxjdwmrD4bOxm6KoomrcR3P0B2A7MJ0wssQ+YKwSAvDTY8JQaFVEReOqx+RAz+btkH7m5AFsyOXmKaZUQGS8kKlpqgF1iuR5lfONNqaZIucvOsfLpVvq13TzG9egLUhdhaqXh+aFsAPv83iqJ/F4j1RlavHLp0nfTcQtwcrOjh16T0yhbdwLefqEw78lWVx3JzsGZ4R0/+MzKQ9QMS8VTcQGvthI2v6Sq164uGdwfd2HFuAW3uNM7btroWYdblZbDImzWJRCKR3N7MmjWLr7/+moULF3LixAlOnDjBwoULWb58Oc8995y5myeRNCyKCoSgcGk3nPoV9n8Gf78hRiWuvAe+6Am/PVP5g3ZD4/Ra0BSKEaNddVkb106WCrrXarUs230RgCl3tOKLR7ribKuzU9D7kTdrD0BTB2tGdRIP7OsL+oh1ZzdU2Pnzzd5LFKq19GzVhBD9g2byBdjxtpgf/h64lBYD7K0tWP5EDzycrIlMymLmquMUqjWltrmcks0Dyw6wbPdFtFo43e2/XBz2HV9bPMyxmBu88EsY6psDSo0kv0jNUz8eIzIpCw8na1ZO7ln8fjQwgr2dubujJ1otbDguRkO+NKxdgxSDJLcvffr0Yd68eeTl5RmW5ebm8r///Y8+ffqYsWUSSQPhirD+oUlrsNflRfj0AhsXIb7EHzFb00yGvoLF0Qscmon5rAYWdK+30nJpCeOWg5UDxOyDfYvK316jgQ1PC3HMqQU89IMING8oOOgrWBIqt2PTaiFBlwtS0woW+6bF93O66hGzkR6HgyaDQq0Kr3ZVCCxN/cWA/aJcSDwLwEMhPrRys8cv5zQW0buMrl6BYnuwuzp4olKWM2hFX8VybGXV/d161EWwcz4Air6zivu8GxHyrtSc1CqDxUFMpUWYRCKRSG5zVq1axcqVK3n66afp1KkTnTp14umnn2b58uWsWrXK3M2TSBoOOamw7A5Y0hN+uBc2TIN/3oKDXwiRInovpJyHk6uLPbYbA3p7sK6PCZHEwkaMstRb9wKHL6dyMj4dawslzw5qU9oGy1DB0t6w6PE+YgTfJ5ebo7FtIkagRu8pc+rU7AJWHY4FYMZgf7FQXQS/PwPqfPAfCt0mlttsT2cblj/RA1tLFXsjU5i38SxarRatVsvaY3GM+mwvp+LTcba1ZNlj3Xh3bFfa9B3L4sf7Y6VSsvVsAu/8eQ5tNf3dNRotr6w9xeHLqThYW7Byck+au9hW6xj1zYt3tTMUnrT3dGR0p+bmbZBEchOffvop+/fvx9vbmyFDhjBkyBB8fHw4cOAAn376qbmbJ5GYn5L5K3pUFtBWVymqr0RtzOirQxy9wN5dzGc3IIFFqy3RRk+RgzPyI/HzzgUQd7TsPrsWwIUtoLKG8T9xMdeO+77YZ8idMzv6kPvCnMr7VtPjRd+q0sJQsVwjvLqIacLpmh/DBGRHC5uyC1pvOvq4V76xUgktinNYACxVSl4a1o7nLTYAkBf0iFHVK2qNlm1n9fkrnuVv1Ha4yFfKT4fjPxpxNcDJVZB6EeyaQu/pxu3TwJACizkxNoMlr7wMFp2aJ0PuJRKJRHKbY21tjZ+fX5nlrVq1wsqqAY2wkkjMzT9vCQHFwhbcAsCvPwQ/CH1mwrB3Yew3cOebYtud86vMHWkQJJwWIxKVluJaVBbFIxNL5LB8vUeILQ9096apg3Xx/nnpxSNOm7UzLO7q40JQCydyipSEuw4RC0+XzVFYuf8yuYVqglo4MaCtm1h44DMxUtfaGUZ/VqklVVALZz57pCsKBaw6HMtnO6KYtfoEr6w7RU6Bmt6tm7D1hf7cHeRl2KdPm6Z89JAI0F15IJpv91429t0CYOHf59l48ioWSgVfPtaNQC+nqncyMwGejjzcoyUWSgVvjupQHKgqkTQQgoKCiIyMZMGCBXTp0oUuXbrw/vvvExkZSceOVfjjSyS3A/p7Cn1Hr55bJYelqKDYDsypeYkKlgZkEZafIaoYoDgcvvPDEPQAaNWwfkpp66tzG2HPQjE/+lNo0Y1v9lziZHw6/9lwmrScgvptf3lY2Re7/WRVksOitwdzCwAL64q3q4qmOivYG9E1P4YJSNUF3F+29MfZzogK5JtyWABGOsUwQHWaQq2KZZr7jTrv0ehUUrIKcLa1pE+bpuVvpFRCn2fF/KEvq7b/K8yDXTrbuf4vFfeVNzKkwGJObHQfAjWqYJEZLBKJRCKRAMycOZN33nmH/Px8w7L8/Hzee+89Zs6cacaWSSQNiEu7iis9Jv4OM4/ApD9h3LfCwqrvLOj0EPR/GTqOLX7QNra031yE6arUAkaAnc6eSz+68OoJACITM/k3IgmFAqb2b116/+QLYuroVepeW6FQMLG3HwBLUnTHO7cRCnMN22TmFbLyQDQAMwb5i6qYxHNitCfAiPeFfXAV3NXBgzdGBgLwyfYL/HnqGiqlgleGB/Dz1N54OZetLrm3c3PDPu/9Fc7Gk8aNJP3xYLTBKu39cZ3o37aZUfs1BN69P4jQt+7iDr2QJZE0MOzs7Jg2bRoff/wxH3/8MVOnTsXWtmFXh0kk9YJWWyLg/iaBxX+oqCpIuQDXL9Z9WzQaYeF55BvTHlefAaKyEqPwG2IFi756xdq52IJJoYB7Fgnrq7QY2PyyWJ54TljGAvR+Fro8QkGRxmAPlZFXxJKdUfV8ARVQ0iasIvQVJzW1B9Ojj4Mws8CiuSosyrKaGJknYxBYiquUlHveB2CtegBLTxQSl1r1AP6tut//0EAPLFWVSAqdHxH/B+mxEP5H5QcN/Q4y4sGxOYRMqbINDRUpsJgTvcpamFO5omcQWEpmsEiBRSKRSCQSgBMnTvDnn3/i7e3N0KFDGTp0KN7e3mzatImTJ08yduxYw0siuS0pzIVNL4j5HlOhZe+Kt1Uo4J5PwNlHPDz+9Up9tLBmFBXAqTViXp+9AtC8i5jqgu711SvDO3jSys2+9DFSSgfcl2R05+Y421qyJcOXPDsvKMgUQbw6fj4cS0ZeEW2a2TO8o6eoOv99OqgLRHBv50eMvpQpd7RiQi/h692yiR3rnunDjMH+5Xtb65javxWT+voB8PKvJzl48Xq522XnF/H32QReXXeSeRuF9/bsu9rxQHdvo9vXEFApFQ02J0YiATh//jwzZ840WITNnDmTiIgIczdLIjE/1y+KMHULm7IB4zbO4NtXzNdHFUvcIdj7MWx5tdgtxhToA+4dPcW9lINOYGlIGSyZJdpYEhtnkceiUMHpX+HQMvjlESjMhlYD4K53ANgbmUx6biHWugy07w/EGNUpX+for8cogaWGAfd6GoLAotXimi7u5yy8uxq3TwtdTkvqRWEZHHNQDL5SWnDYexIFag2f/HOhwt1zC9Qs3BrBz4djgErswfRY2kKPaWL+wBcV5+PkZ4n/R4CBr4KljXHX0wCRAos5KVn2VFDJ6ECDwOJSvEwKLBKJRCKRAODi4sK4ceO455578PHxwcfHh3vuuYexY8fi7Oxc6iWR3Jbseh9uXBYjw4bMq3p7WxdhF6ZQijyWU2vrvIk1InIb5FwXIxfbDCle3lz3sHntJInpOfweJoLRnxrYuuwxbgq4L4mtlYqHQrzRomSHqr9YqLMJyytU8+3eyyjQMDcoBeXvT8NH7YQtma2rsNKoxBrsZhQKBe/eH8T66X3Z+kJ/urZ0NWqft+7pwIggTwrUGp768RjnE8QzRfyNHH44GM3EFUfo+vY/PP1jKL8ei0ejhUd6+jDrTn+j2yaRSKpm/fr1BAUFERoaSufOnencuTPHjx8nODiY9evXm7t5Eol50Y+a9+pSfkB6uxFiWh85LOGbxFSrgfgjpjuuQbzQWXra6ypEs1NMd47aUjJ/5WZ8esKgOWJ+62tCQHBpCQ+sFParwCZdtewjPVvSz78pBWoNH287X/ftrgp9BUtWJQKL3iLsZoGvuhgElhhRDWUOMhNwUt9ArVXg2ba7cfvYNRG5KCBswnaL6hW6TGDKPYMA+C3sCuHXyoqO/0Ykctcnu1m66yKFai0jgz0ZFGBEBXSPqUJUvXocYg+Wv83hZcJaz7VV6cFSjRALczfgtkZlKTywi3KFcm5bwYNUZRZhMoNFIpFIJLc53333nbmbIJE0XK6dhAOfi/lRH5euiK4M3z4w4FXxALZ5Nvj0KH6obCiE/SymncYbHv4Bnb+2LRRk8seOvRSqtfTwc6VbeaJFcsUVLACP9fbl232X+SKlK6Osf4ULf0NeOlv2n+LxvJ8Yb7MPz4Ml/NXd2onAWEePal+OQqGgu2/VwkpJVEoFn4zvQkrWYY5G3+Dx5YdpYm9FRELpwVs+TWwZ0t6DoYEe9PNvKuzMJBKJyXj11VeZM2cOb7/9dqnl8+bN49VXX2XcuHFmaplE0gC4og+4Dyl/fcDd8Pcc0QmbmyYGetQFWi2E/1n8c+whYVFmCm4WWBwasEVYeQILQP/ZcGknxOwXuc8PrwJ7kbORW6Bm2zmRcTK6c3OsLZTc8/k+fg+7ypQ7WhPsbcaBbFVVsORnQqour662FmFO3qLSR50vBB2n5rU7Xg3IiQ3FDojStqCDbxWVJCXx7gHXI+HgF3B5t7DmG/AynVxcGBXsxebT1/jw7/OsmCTsxK6m5fK/TWf5+6z4vTd3tuG/93ZkWEcjz+nQTGT8hK4UzyL6SjU9uTdg/2difvAboo+8ESMrWMyNIei+ggoWjUYEUcFNIff6CpasumubRCKRSCSNhKKiIrZv385XX31FZqb4Tr169SpZWfJ7UnIboy6CjbNEnkrHMdB+ZPX2H/AK+PQS96Lrp1UdUlmfZCUJsQPKjngrEXR/8dQ+AJ4a0Kb841RSwQLg29Sege2aEa5tSbKNH6jz0X49iDF77+F5i9/wJFl4mYc8CVN3wIwj0Hpgba+uWthYqvhmYghtmtmTlJlPREImSgX09GvC6yPas332APa8Mpj/3tuRO9q6SXFFIqkDrl27xsSJE8ssf+yxx7h27ZoZWiSRNCAqyl/R06S1GByhKYKo7XXXjoRTIhNCT+wh0x07Q5eFpu9wt2+IFmFVCCxKFTywQuRgPLqmlBjxb0QSOQVqWrjY0q2lC0EtnBnTVeTMzf8rHG1FFlD1QVUCS+I5QCvEL/ta5ripLMDFR8ybySbseqT4f7pk4U8T+3IqwipC//93ebeYdn1MVCkBLw1rh0qp4N+IJA5cTOGbPZcYumg3f59NRKVU8PSA1vwze6Dx4oqePro81PNbICWy9Lr9n0F+Orh3hKDGPwhBCizmpiqBpSAT0H1QWZeXwSIrWCQSiURyexMTE0NwcDD33XcfM2bMIDlZjCb/4IMPePnll83cOonEjBxaKipYbJzh7g+qv7/KQliFWTsJG409C03fxppyao0QjlqElF99osthaVsUSetm9gxp7152m4JsSNN1tFQgsAA83tsXULAmT2TXKFIvodEqOKjoTMH938DL50VujXdItWzBTImLnRU/Te3F0wNbs3h8F46/dRe/PtOHZwa2wd/dUYoqEkkdM2jQIPbu3Vtm+b59++jfv78ZWiSRNBAKciBBZ8+kD9ouj4C7xbQuc1j01SvNAsU0/pjIczMFZSpY9BZhyeVvbw5ubmN5OHqK0PtWA0ot3nhS2K2O7tzccE/x0rB2WKmUHLx0nV0XzHidDrpO/6zE8tcn6vJXamsPpsfMOSyaKycASHftUL0dS/7/KS2g/0uGH1s3c+ChECEcPb78CO/9FU5OgZoQX1c2P3cHc0YGYm9dAxMst7Y6C0AtHFxSvDwrSdiDAdz5JigbvzzR+K+gsWMQWCoI19Lbg6msS4f9WNmJqcxgkUgkEsltzvPPP09ISAg3btzA1tbWsHzMmDHs2LHDjC2TSMxI6mXYOV/MD3uvRpZVALj6CvEAYM+HEHPANO2rDVothK0S810nlLtJkWcXAIKVl5nWvzXK8sLiU3RhnvbNhDd1BQwKcMfb1ZZleUOJ8nmQ5VaP0Tf/M8IGfodVl4dEkGcDwMvZljkjArm/awtc7KoxolEikdSae++9l9dee42ZM2fy008/8dNPPzFz5kxef/11xowZw8aNGw0vieS24tpJMSDC0QucWlS8nT6HJfKfuquY1eev9HsebJsIu/6EU6Y5dsbNGSy6gR2FOSLIuyFQVQVLBWTkFbLzvBBQ7u1cbInl7WrHpH5+ALz/VwRqjZmqWKqqYNELfLUNuNdTMofFDDilnQPAsoWRAfd63DsI6zcoVb2i54WhbbGxVKLWaHGxs2ThuE78+nQf2nsaaS9cEX11VSwnVxdnEu39WPxvtOgOASNqd/wGgsxgMTd6H+yKKljKy18BsHIQUymwSCQSieQ2Z+/evRw4cAArq9Idin5+fly5csVMrZJIzIhWC3++IDoOWg2ofWhk8APCsuPkatjwFDyzz3h/dHUhJJ4V9iBxR0TQpaWdGEXnHSKmTdpUb+Ta1ROQdE4EZ3YcW+4muzKbMxQIUkbTuUsFIzX1+Stu5eev6FEpFTzW25f3t+QyJvZBMvOLcLSx4LHeLSvdTyKR3D48++yzACxdupSlS5eWuw5E1pJara7XtkkkZkVvD9aie+VVnj49heiRmwpxh8DvDtO24/pFSA4XI/cD7obwjXD+LzFwpCLrsuqgrw5x0t1zWDuI+53CHJHDYu1Q+3PUFl0I/LrzRQS6ptOxuXG5KdvOJlJQpMHf3YFAL8dS62YM8mfN0TjOJ2ayPjSeh3r4mLzZVVKlwKKrYKlt/ooec1awZCXjWpSMRqugWdtq/t2qLKD7ZIjcJmyAb8LDyYYvH+vOybg0Jvbxq579WGX49oPmXcX9+9FvocujcGyFWDdkrtmqv02NFFjMjd72q8IKlnLyV6BYdSzMFg/Rt8gfpEQikUgk1UWj0ZTbWREfH4+jo2M5e0gktzgnV8OlXUKAuGexae4TR34owmdvRMOK4eAeCHZNwc5NTO2b6n5uKmy34o6ITpWrJ0Tnws0knIJjy8W8jbOw+vIOEVPfPsVV3uWhD7dvf0+5Qo9Wq2XRceintcJekQfpl6FZu7LHMeSvVC6wADwU4sOify6QmS9G1T7Rxw9Hm8YdximRSEyHRqMxdxMkkoaJIX+lEnswEPkfbYfBqV9EXoOpBRZ99Ypff7B1hZZ9hMASewj6PVe7Y2u15dtv2TeDtBjIShY5M+ZEq0WbmYAC+PRoJpoLoex4aSA2lqoqd914UuTLjO7UvIzlqLOdJbPu9OfdzeF8/M95Rndujq1V1cc0KQ66Ku2CTDEIXR+pAKBRi0E5AB6NX2DJizuBDXBZ60mgXyUVYRVx93zxqoDBAe4MDijHVrc2KBQii2X9FDjyDVyPAnWBGATWepBpz2VGpMBibqrKYKmwgkX3gaEpEn+YFtZ10z6JRCKRSBo4w4YNY/HixXz99deAGB2alZXFvHnzGDmymqHeEkljJysZ/v6PmB/0OjStINy9ulg7wrgV8N3dQpjQixNG7essxBOfnmKanwVXjgnv86th4n734g7xAlGpHfwghEwGr86lj1WYB6fXifkK7MH2RqZwLjGHcGs/unFBiDzlCiw6i7BK8lf0NLG3YnSn5qw/Ho+NpZLJOksMiUQiuZm8vDxsbGyq3lAiuR2IPyamVQksICpLTv0icliGv2fadugFlsB7xLRlHzGNPVj7Qct56cWDSUoKLA7uQmDJNn/QvTY3DUVRHgBJWlfy03L5es8lnhvSttL9rmflsz9K2DqN7lx+RfDjfXxZeSCa+Bu5LN93iZl3Vn5Mk2PtCJb2YgB6ZkLpe9/Uy+J3Y2FruntiMwosKZGH8QaiLNow3LER9QN3uB+2/xfS4+D0WrHszrnmbJHJkQKLudFXsORVkcFic5PnXUlFtiBbCiwSiUQiuW35+OOPGT58OB06dCAvL49HH32UyMhI3NzcWL16tbmbJ5HUD0UFwlJj7yLIvSFsEPrMNO05vLvDjCOisyQnBXKuCy/lnOuQk1q8zK6p6Ejx6QnePcGtXVkLsI73i6neQkwvuMQcEJ0Rod+JV4vuEPKksAKzshOjTfPSwMkbWg0st5nf7L0EQKF7JyGiXAuDzuPLbliNChaAZwe34XjsDSb0aklTB3nvLZFIilGr1cyfP59ly5aRmJjIhQsXaN26NW+99RZ+fn5MmTLF3E2USOqf9CuQeRUUKmjepert2wwBpaUY4Z4SBW7+pmlHxlVxnwEQMEpMvTqLSt/cVEiJLH8ghrHoq1dsnIvzkkFUsIAI9DYza3Ye5WEgTWvP2J5tWH0kjqW7oniguzfNXSrOkvvrTAJqjZagFk60bla+zZm1hYpXhgfw/C9hLNt9iYd7tsStPu+TFAqRNZh6qazAos/Y8eggqqRMgYuvmGYlQEFO6d95XZF6GaK24xjxKwDpLtUMuDc3KgvoPb14EFjASPAxQnRtREiBxdzUtIJFZQkqK1G9UpBdaTCnRCKRSCS3Mt7e3pw8eZI1a9Zw8uRJsrKymDJlChMmTCgVei+R3HKkx4sw2KjtwhKsQBeiqlDCvZ+L+0VT06SVeJkKlaXodGneBXpMFaNIY/YLb+ZzG+FKqHht/Q90fliE5YKYL+dB+ezVdPZGpqBSKvDv0h/+WScqWG6mMA9uXBbzRlSwALRp5sDOlwfV6DIlEsmtzXvvvcf333/PwoULmTZtmmF5UFAQixcvlgKL5PZEL2p4dCg9SLgibJzAr5+4p7mwBdxmmaYdEZvF1LtncUaKhZWwJY3ZJ6pYTCGwODYnO7+IbecSaOvuSJBeYMlOrvmxTcCfp66yaf9xHrYCrYMH88cEczEpmyPRqby/JYLPHqk4LH2Tzh6sZLh9eYzu1Jxv9l7izJUMPt8Ryf/uM1GgvLE4eAqBJeumHJZEXcC9hwnbY+sqqrPz04Utrrtx95HVoihf3A9HbheZKdcjAXAGNFoFhT79TX/OuqbbRNjzkejnHvyGuVtjcqqRJimpE6oSWPIryGCBEjks5fhaSyQSiURyG2FhYcGECRNYuHAhS5cuZerUqWXElVGjRnHt2jUztVAiMREJZ2Dbm7CkN3zSUYTZR/wpxBU7N+j8CDzxpwiTbIwoFMJ3/YEVMDschv5PWDHkp8ORr0SVDoiAzHL4Zo+oXhkZ7EXTtr3EwmunhAd3Sa5HgVYDNi7CwkMikUhqwQ8//MDXX3/NhAkTUKmKxd/OnTsTEVENS0UdS5Yswc/PDxsbG3r16sWRI0cq3T4tLY0ZM2bg5eWFtbU17dq146+//qr2eSUSk2Js/kpJ2o0Q0/NbTdeOiD/FVG8Ppse3hE1YbcgQzxdReY70nr+DF9ecZMzS/YRn6qwCzVjBEhqTyuxfT+LBDQBcPVqiUCiYO7oDCoXIVzkanVruvtfScw3rRnWqXGBRKhX8Z2QgAD8fjuVScpYJr8IIDEH3iaWXJ+gEFiMD7jUaLVfScivfSKEAV10Vi6ltwuJDYfUj8EEr+HEMHFoC1yMpRMUhTSALCh9haMGHeHfsY9rz1gfWjjB1O0z7FzzrWYCrB6TAYm4MAktVFmHlCCxWuvK8gnr+4JJIJBKJpBGyZ88ecnOruGGWSBoyBdnw3Qg48Dkkh4tKFe+eYhTYtJ3wciSMWSZGf94KODSDO16AWSfgsQ0i1F6hgsDRZXy084vU/HAwmk2nRCfHU/1bC2sySzvhyX09qvSxDfZg7Wvnuy6RSCTAlStX8Pcva2ek0WgoLCys1rHWrFnD7NmzmTdvHsePH6dz584MHz6cpKTyO2kLCgq46667iI6OZt26dZw/f55vvvmGFi1qEIAskZiS6uSv6Am4W0xj9sPBJaKytTbkpMLlvWK+/U0CS8veYlpDgUWt0bL9XCJrdwkB9PgNWzLzi3Cxs6RQrWX1OZF5ojWTwBKdks3U749RUKShn0eRWKjLiAlq4czDPXwA+N+ms6g1Zd/nzaeuodVCDz9XWlRiI6anbxs3Bgc0o0ij5fN/o6rc3qQYBJabBtNVs4Llvb/C6ff+v6w5Glv5hnWUw5K/abawwy3MJlHrwpqiQTxT8ALd8r5imvJ/RLefyrMPjKC/v5tJz1tvNG1jnF1gI0RahJkbvXBSocCSJqbWTmXX6UssC2QFi0QikUgkEsktz4W/xT2joxcMexfa3Hl72MQqleA/RLwK80pZnxUUaVgbGseSf6O4mi46Mu7q4EGwt+4e27OTqHq5eqJ01kryeTE1Mn9FIpFIKqNDhw7s3bsXX1/fUsvXrVtH167VqyhctGgR06ZNY/LkyQAsW7aMzZs3s2LFCl5//fUy269YsYLU1FQOHDiApaX4fPTz86vZhUgkpkJdCFfDxHx1BBZXP+j9LBxaKvIarl+EEQtFhkNNuPA3aNXg3rFsyLl3TzFY5Ua0qEJxKj/E/WZuZBfw67E4fjwUQ/yNXN6xiAcLsHXz5oeRPenn78Yn/1zg0m5RdXsx+jItCtTYWpkoA8TINk5eeZQbOYV08nbmXj8FHKNYiABeHhbAn6euceZKButC4xjfo2WpY2zU2YONrsIerCQvDG3HzvPJbD51jTdGBdZfFouDh5hmlahgyUmFjCti3qNjlYeIuZ7N9weiAfhg63nuDvLC2bYCu906EFjyMm9gmSgyYx7In8sJRXu6+rjSv20zprV1o7O3MxYqWSfRUJG/GXNT0wwWKA5SKsg2fbskEolEIpFIJA2Lc7+LaafxEPzA7SGu3IylDShVFKo1rDkay+CPdvHGb2e4mp6Hp5MN79wfxBePlujM1Ful6Tt59JSsYJFIJJJaMnfuXGbOnMkHH3yARqNhw4YNTJs2jffee4+5c+cafZyCggJCQ0MZOnSoYZlSqWTo0KEcPFj+KPuNGzfSp08fZsyYgYeHB0FBQcyfPx+1Wl3u9gD5+flkZGSUekkkJiXxLBTlir6sJm2q3r4kw+fDsPcABRxbDqsegrwa/o1WZA8GIvNF3/GutyCtgtPx6Qz8cCcLtkQQfyMXZ1tLerkVADC6XzcGtGuGSqng5eEBjB/UHQBVTjIPf32QpMy8ml1DNckrVPPUj8e4nJJNCxdbvn0iBMscXRWNY7GI1NTBmueHtAXgw7/Pk5FXXG0XnZLNqfh0lAphu2osnX1c6OztTIFaw5qjcaa5IGPQX1dmiQyWhNNi6uonftdVsHh7JEW6Sp7U7AKW7qykCqcOBJZtW39HhYZYPHnqsQmcmDuMddP78vzQtnT3dZXiSgNH/nbMjV5gqejLQr/cxqXsOr1FWKEUWCQSiUQikUhuaQqy4cI2Md/xfrM2xZwUqTWsC41nyMe7eW39aa6k5dLM0Zr/ju7ArlcG8XhvX6wtSowQ1dsQ3Bx0b6hgqUWorUQikei477772LRpE9u3b8fe3p65c+cSHh7Opk2buOuuu4w+TkpKCmq1Gg8Pj1LLPTw8SEhIKHefS5cusW7dOtRqNX/99RdvvfUWH3/8Me+++26F51mwYAHOzs6Gl4+Pj9FtlEiMQp+/0iJEVKJWB4UC+s6E8T8Jq8+LO2DFcBEoXh0KsiFqh5i/2R5MT0t9DkvVAsvF5Cye+O4IGXlFtHV3YOG4ThyaM4R2droB046lKz0GdhPijZsyg5Px6dz/xX7Cr5Xf91ek1hAWl8aSnVE8/eMxNp+qWW6kRqPl1XWnOBp9A0cbC76b3AN3R5ti4cGh9GfLE339aNPMnpSsAj7fEWlYrg+37+fvVu0qlMf7+AGw6nBsudZjdYJjORUs1bAHi0jI4PcwUe3y0l3i3vC7/dHEpVbgGGRigSUuNYfk09sB0PjewbCOnjjZVFA9I2mQSIHF3Oitv2pSwWIpK1gkEolEIpFIbgsu/C1Ggrr6gVcXc7em3knPKWT5vssMXbSbl9eeJDY1BzcHK94cFcjeVwczqV8rbCzLsd7Qv1cJJYLu1YWQelHMywoWiURiIvr3788///xDUlISOTk57Nu3j2HDhpXaZvXq1WRnm/b5XaPR4O7uztdff0337t0ZP348b7zxBsuWLatwnzlz5pCenm54xcXV40hzye3BlVAxrY492M0E3gOT/wIHT0g6B98MESHgxhK1Q9w7ubSsOORcL7DEHKj0UNfSc5m4/Aip2QUEt3Dmtxn9eKiHj7D90oXcl7EYs28GgCO5BDS15Gp6Hg98eYCdEUloNFoiEjJYse8yU78/Ste3/+H+Jfv58O/z/H02kfe3hht/nSXYE5nMxpNXsVAqWPZYd9p56AZ167NJHEu30VKl5K17OgBCULioC6ffdKr69mB67unkhaudJVfSctkRnlj1DqbAoZwMFn0Fi2enKnf/eNsFtFoYGezJzDv96d/WjQK1hve3RpS/Q0mBpbY5QcC7m8/RnXMA+HYbVsXWkoaIFFjMjdEWYTKDRSKRSCQSieS25exvYtpxzG0Vyn46Pp1X152k14LtvPPnOaKv5+BqZ8mcEe3Z8+pgpvZvXb6wosetLVjaQ2EOpFwQy1IvgaZIVIM7yRBoiURSfzz99NMkJlbc4ejm5oZKpSqzTWJiIp6enuXu4+XlRbt27VCpij8LAwMDSUhIoKCgoNx9rK2tcXJyKvWSSEyKvoLFO6R2x2neFabtEFUI2UmwciSc/d24fQ32YPdWfO+kD7pPPFOhs8yN7AIeX36EK2m5tHazZ+XkHjhY6zJh1EWiXVCmggUbZ1BZAbD2MX/6tG5KdoGaKd8fpcd727l78V7e/vMc28OTyMwvwsnGgqGB7gDEpeaSlV9k3HWWICwuDYB7uzSnnz4IXastrmBxLPs5MijAnTvbu1Ok0fLun+eISMjgQmIWViolwzuW/7lTGTaWKh7qIarifjwUU+39a4T+uvLSoTBXzCfoKlg8K69gORF7g3/OJaJUwOy72qFQKHhjVCBKBWw+dY3QmNSyOzn7iPyeolzISqpV03dfSGb/2csEKy4DoPC7o1bHk5gHKbCYG73AUpQrRtPdjFEZLFl10zaJRCKRSG4h/vOf/9CkyW2YWSFp/ORnQaTOHqzD/WZtSm1Qa7SsC41n6a4o/gi7wtHoVK6k5VKk1pTaLq9Qzdpjcdz3xT5Gf7GPX4/Fk1eoob2nI+/eH8S+1+7k6YFtsLMyIvBWqQIv3chFfQ6LIX8l4LYSqyQSifnRVjHS2crKiu7du7Njxw7DMo1Gw44dO+jTp0+5+/Tr14+oqCg0muLP0gsXLuDl5YWVlZVpGi6RVIecVLiuy69o0b32x3P2hie3QtthUJQHa5+AvR+DRlPxPkUFcGGrmK/IHgzAqTm4+IJWUywKlSA7v4jJK48SlZSFp5MNP0zpSdOSllnZSWJfhQrs3UrvrFCAvRBMnNQ3+P7JnowP8UGjhevZBdhaqhjQrhmvj2jPppl3cGLuML59ogeeTjYAnE+oYCB2JURcE/t08CohmubeALVObC1HYAF4c1QglioFO88n88ZvQpgYGNCs4pD3Knisly8KBeyNTOFScvX6LG9kF5CRV4imOvZiNs5gId43shLF719/v1eFRdhH24Rt7Lhu3vi7iz7a9p5OPBQiRKJ3/gwv+9ltYQVO3mI+rVhEupKWy7rQePIKK87AKkl+kZr/bjxLiPI8KoUWXFuBsxz80xgx4qlEUqfoBRYQVSwlw0q12ioEFl0Gi7QIk0gkEsltzvnz5/n8888JDxfl9IGBgcyaNYuAgADDNnPmzDFX8ySS2hH5t+hQcG0FXp3N3ZoakVNQxPO/hPHPubIjt5UK8HSyobmLLW4O1hy8dJ30XDHwyEqlZGSwJ4/19qW7ryuKmggizbtC7EG4FgZdHimRvyLtwSQSScNj9uzZPPHEE4SEhNCzZ08WL15MdnY2kydPBmDixIm0aNGCBQsWADB9+nS++OILnn/+eWbNmkVkZCTz58/nueeeM+dlSG5n9PZgTf1L93HVBmtHeHg1/P0fOPIV7HgbYg/DmGXlnyN6r+hPs28GPj1Lrfrr9DUK1RqGdfAUFl8t+4hO8thD4D/EsF1BkYZnfgolLC4NFztLfpzSE29Xu9Ln0duDOXqKQR0349AMMuIhOwkrCyXvjwtmZCcvbC1VdPFxwcqi7Lj3AE9HEjLyiEjIoLuva7XepogEUYUTWFJg0Vev2LqCRfl5Kq2bOTC5Xyu+3nOJ0JgbANxbA3swPT5N7LgzwJ0dEUn8eCiGeaM7GrXfjwejeeuPs4DQpxytLXCytcTJxhInWwucbCxp5mjNs4P9aeFiW7yjQiHyZdJixPXmZ4GmEKydhUVcBeyPSmF/1HUsVQqeH9q21LrZw9qx8eRVwuLS2HTqWtn3w9UX0mOFTZhPT85cSeeJFUe4nl3Ar0fj+OaJkCoFqm/3XuZySjaT7CJBA8jqlUaLFFjMjcpSZKkU5kB+RukvhsIc0OpUz8oyWAqlRZhEIpFIbl/Wr1/Pww8/TEhIiGF056FDhwgKCuKXX35h3LhxZm6hRFJLDPZg9zfKioukjDymfH+M01fSsbIQdhNJGXlcTc8lIT2PQrWWq+l5XE3PM+zj7WrLhF6+PBTiXXqkaE3Q57Dog+5LVrBIJBJJA2P8+PEkJyczd+5cEhIS6NKlC1u3bjUE38fGxqIsERru4+PD33//zYsvvkinTp1o0aIFzz//PK+99pq5LkFyq6PVioG+Vvbl35fEHxPT2uSvlIfKAkYuBPdA2PKaGICy7A4Ytxx8b6rw0tuDtR9VSvj4I+wKz/8SBojO+9FdmvOsU2e8+UUMxtCh1miZ/WsYeyNTsLVUsWJSD9p6OFKGTJFVcnO2iQFdBYveRkqhUDCwXbNKL7O9lyO7LyQbqlGMJTu/iBhdKHt7zxJtrSB/5WZm3enPhuPxpGSJ6pohOruymvJ4H192RCSxLjSeV4YHVFl5fDE5i3c3F2fPaLWQkVdERl4RkFtq2/wiDR89eNOgI0evYoFFbxPmGVThvbNWq2Xh32LQzYRevmXEM3dHG6YPbMPH/1zggy0RDOvgUdqW1tVPCHk3ojkancqT3x0lU2frdiQ6lYe/PsT3T/bA3dGm3PNfScvli39Fpddop4uQhhRYGjFSYGkIWDvqBJabPjz11StKi2IxpSSGDBZpESaRSCSS25dXX32VOXPm8Pbbb5daPm/ePF599VUpsEgaN/lZEPmPmO84xrxtqQERCRk8+d1Rrqbn0cTeim8mdqe7b/GAIo1GS0pWPlfScrmalse19FzauDswoG0zVEoTiUnNu4ppwmnhlS4rWCQSSQNn5syZzJw5s9x1u3btKrOsT58+HDp0qI5bJZEger2/GyHECEt7Ubnh6CUC3vXzF7aIbU1hD1YeIZNFtsvaScKKbOUouPMN6PciKJXCOiziL7Ft+4dWI5gAAQAASURBVNGG3WKuZxvsr5xtLUnPLWTV4VgOKyzYYQ1FsUfJzMjCxdGe/248y5+nrmGpUrDs8e50a1lBJUlFAfd6HHRiSrbxOR2BnqL6pLoWYRcSM9FqoZmjdenBKZXkr5TE0caSN0YF8uKak4zp1sI4K9ZKGNC2GX5N7Yi+nsPvJ67yaK+KK0nUGi0vrz1JfpGG/m3d+GZiCJl5RWTkFZKRW0hGXhHpuYVEJWby2b9RbDubQMGY4NIVQI5ChCYrEdJixXwl9mD/nEvkZFwatpYqnh3cptxtpvZvzaojsVxJy2XF/ss8O8i/eKUu6P5adDiPbz9MXqGGnn5NeHl4AM/+fJzwaxk8uOwgPz7Zi5ZNy/bpvrf5HLmFaga0tME1WQTc49uvwvZKGjZSYGkIWDuKD4CbA7X0Aou1U/mKqwy5l0gkEomEa9euMXHixDLLH3vsMT788EMztEgiMSEXtgp7sCatwbOTuVtTLXadT2LmqhNk5RfRupk9303qgW9T+1LbKJUK3J1scHeyoWvFz921o6m/sNYtyILkcEiJFMtlBYtEIpFIJNUjakdxpUdhNqReFK/yqG3AfWV4BsNTu2HzbDi1RliGRe+DMV/DjcuQlSD60loNAITd13OrxT1JDz9XVk3rzdHLqaw5FseWMwpStQ400WQxbeEKtC1CCI25gUIBix7qUnnFSVXVIYYKlmSjLy1AV30SnpCBVqs12h41QifIlKpeAfFeVNbGEozp6k23lq54OpdfdVEdlEoFj/X25d3N4fxwMJpHevpUeC3f7r3Eidg0HK0t+GBcJ2wsVdhYqmjmWLqKWa3RsupIHClZ+Ry4mMKggBJVNg46ASnzmhhUAxUG3Ks1Wj7edgGAyf38KqwysbVS8erdAby45iRLd17koRAf3PTilU5gibt4jrxCDYMCmvHlhO7YWqlYP70Pjy0/TMz1HMYtO8APT/YsZdu2LzKFv04noFIqeLd7FootanE8F59K3lFJQ0aG3DcErHX/ZBVVsJRnDwYlBBaZwSKRSCSS25dBgwaxd+/eMsv37dtH//79zdAiicSE6O3BOtzfqOzBfjoUw5Tvj5GVX0SvVk3YML1vGXGl3lAqi8Wps7+DOh8sbMG5rhQdiUQiKR9fX18sLWsWGi2RNAgOLRHTHtNg1nGY9Jew6Br2HvSZCUEPiFH43SeBZx3nxlk7wJiv4L4l4nv94r+wrB/sXijWtx0mwsiBj/85z8n4dJxtLVn8cFcsVUr6+rvx6cNdOfqfu8h2F2JQF22EIYPk7Xs7MrqqHJIqBZbqV7C0aeaAhVJBZl5RKfvUqoi4Vk7+ChRXsDh4GHUc36b2WFuUkydTAx7s7oONpZKIhEyO6d7Xm4lMzOTjf4TY8dboDjQvma1yEyqlgruDxHVsOZ1QeqW+QiczsYTAElzucTadvMr5xEycbCx4ekD51St67uvcgk7ezmTlF/GJrp0A2xNEVYq3Iol7Onnx9eMhItMH8R6uf6Yv7T0dSc7MZ/xXBzkWnQoIsW/eRlFJ9XhvX1pmHBcHlPZgjRpZwdIQ0AfdlxFYdBUtFQksMoNFIpFIJBLuvfdeXnvtNUJDQ+nduzcgMljWrl3L//73PzZu3FhqW4mk0ZCfCVHbxXwjsQfTaLQs2BLON3svAzC2WwveH9up3BDXeqV5V4g9AKd+FT+7tRXCi0QikZiQY8eOER4uMgQCAwMJCSk9gv/MmTPmaJZEYhoSzwkRQ6GEvrNEyHfTyjun6xyFAro+JuzI1k4SOWtROmvVQGEPtudCMl/tvgTAB+OCS4ejA852ljh3uRP+2cVz/ikoPVrj38yBh3oYUU2QoctgcapAiHGofgWLlYUSf3cHIhIyOZ+QUaa9FRFeUQWLkRksdYGznSX3dW7BmmNx/HAwhh5+TUqtL1JreHntSQqKNAwOaMaD3b2rPObIYC9+OhTL3+cSeFcdhKVKdz+nF1iunoDcVFCooFlgmf0LijQs0gklTw9sg7Nd5aK3UqngjZGBjP/6EKuPxPJEXz/2XEhm6Y50jtuAp+IGnz4QiOqme113JxvWPNWHKd8f5VjMDR5bfpilE7oRmZjFxeRs3BysePGudvDTPrGDrxRYGjNSYGkIGASWCizCKqxgcRBTmcEikUgkktuYZ599FoClS5eydOnScteBCJVUq9X12jaJpFZc+FtnD9amwhF4DYmE9Dze/P0M28MTAZh9Vztm3elvtLVFndK8i5im6zy5Zf6KRCIxIfHx8TzyyCPs378fFxcXANLS0ujbty+//PIL3t5VdxpKJA0effVK4GghrjQk3ANh2k7Y8gqc+En0l/kPJTkzn9m/ngRgQq+W3B1UgcjQsg8ATsnH+M+k9sZXDddBBQsIm7CIhEzCr2VyZ/uqK0+0Wq2hgqW9ZwUVLFVksNQVj/fxZc2xOLaeuUZSZmApO66v9lziZHw6TjYWLBjbyah7xp5+TWhqb8X17AIOX0rljrZuYoW+QidZiNy4tQXLstZfvx6LIzY1BzcHKyb38zPqGnq1bsrwjh78fTaRx5cfJjEjH3AkX2mHtSYHMuLF+W7C2c6SH6f04tmfQ9l5PplpP4RiqRLX+PqIQJyV+UIQAvCT+SuNGTlsqyGgF1DKCCxpuvU3fTjqkRksEolEIpGg0WiMeklxRdLo0NuDdby/QduD5RQUsXj7BQZ/tIvt4YlYqZQsHt+F54a0bRjiChQH3euR+SsSicSETJ06lcLCQsLDw0lNTSU1NZXw8HA0Gg1Tp041d/MkktqTlQSn1or53jPM25aKsLITdmGP/w5PbERjac/La0+SkpVPOw8H3rqnQ8X7enUBCxvIuV6c1WYMevGiygqW6gksepEkwsig+2vpeWTkFWGhVNDG/SZL1kwx8MUcFSwAQS2c6dbShUK1ll+OxBmWRyRksHi7qCT5770djc59sVApGdZRiEV/nblWvOLm6ytncFJeoZrPdojf78zB/thZGV938PqIQCxVCp24Aq8Mb49Vs1Zi5Y3oCveztVLx9cQQxnRtgVqjJa9QQ3dfV8Z2bQFxh0CrBhdfcJHWtY0ZKbA0BCq0CKuqgkVnESYzWCQSiUQikUhuLfIzIVJncdFA7cE0Gi3rQuMZ/NEuFm+PJLdQTXdfV9ZP78v9XVuYu3mladIGrEpYZsgKFolEYkJ2797Nl19+SUBAsXgbEBDA559/zp49e8zYMonERBxdLjLMWoSAT09zt6Zy2gyGFt1Zvu8yuy8kY22h5ItHu2FjWUmuiIWVuDaA2IPGnSc/q3igdEXVIfqQ+7w0KCow7rhAey9xz3I+IaOKLQURuu3aNHMonZ+i1ZaosjEug6UumNjHD4BVh2MpUmsoVGt46deTFKq1DA30YEw17xtHBov3++8zCRSpNWLhzb8Dj7IB9z8ejCEpM58WLrY80qt6gkYrN3tevKsdDtYWvHNfR2YM9kfhWrXAAmCpUvLxg52ZMbgNgV5OLBgbjFKpgGidPZjMX2n0SIuwhkBFAov+g9rGpfz99BZhhVJgkUgkEsntTXZ2Nrt37yY2NpaCgtIPL88995yZWiWR1ILzW0VHRpM25T4gmptDl67z7uZznLki7le9XW2ZMyKQkcGeDadqpSRKJXh1hhjdg6wUWCQSiQnx8fGhsLCwzHK1Wk3z5lWEZEskDZ3CPDj6rZjvM6NBV9XqORWfxsK/IwCYO7oD7Twcq9gDaNlb3CfEHoLuT1S9vV64sHIs7te7GVtXkQWiVUN2MjgbJyToc1QuJmeTX6SuMnQ+/Jouf8XrpnbkpIJG99lkZMh9XTAi2JN3/rQiISOPf84lcj4xk7NXM3Cxs2T+2KBq3zv2bt0UVztLrmcXcCQ6lb5t3MR7rbICte5Z0LP0/XNeoZqv9ogsnueHtK3yPS2PZwf58/SANqiUuva6+olpFQILiCyXV4a355XhJe5Bo/eLqRRYGj1SYGkI6D+I86qZwWIpK1gkEolEIjlx4gQjR44kJyeH7OxsmjRpQkpKCnZ2dri7u0uBRdI4Ofe7mHYc06A6MqJTslmwJZy/zwq7CUdrC2bc6c+kvn6VjwxtCDTvIjpOVFbFD8QSiURiAj788ENmzZrFkiVLDMH2x44d4/nnn+ejjz4yc+skklpy+lfISQFnHwi819ytqZKs/CKeW32CQrWWEUGePNrTyEoFXQ6L0RUshoD7Sqy3lEqRw5KVUC2BxdPJBmdbS9JzC7mYlE2H5hVEB+gIrzB/RScC2TUFC2ujzl0XWFuoeLinD0t2XuTjfy4QnSL6Md++L6hUJouxWKqUDOvgyZpjcWw5nSAEFoUCHDyL8/Y8O5Xa59djcaRkieqVMd1qXmltEFegWgJLGfKz4OpxMe8r81caO9IirCFgrfsArMgizLqKDBZ1AajLjpaRSCQSieR24MUXX2T06NHcuHEDW1tbDh06RExMDN27d5edGpLGSV5Gg7MHu5KWy5wNpxi6aDd/n01EqYDHerdk5yuDeGZgm4YvrkBxDotbAKjkODOJRGI6Jk2aRFhYGL169cLa2hpra2t69erF8ePHefLJJ2nSpInhJZE0KrRaOLhUzPd6ulF8f879/QzR13No7mzD+0YGpwPg0wNQwI3LxdkqlWEIj68i28RBH3SfbFw7AIVCQYCuiiXCCJswfVZLmQqWLCPbWA882ssXpQKikrIo0gjxa3SnmrdrhM4mbOvZBNQarViot0Gzdy/OvwEK1Rq+2i2qV54e2BpLlYm6w2sjsMQdBk0ROLcEV1/TtEdiNhr+J+PtgMEirJoVLFYlgqsKssHWxeRNk0gkEomkoRMWFsZXX32FUqlEpVKRn59P69atWbhwIU888QRjx441dxMlkupxQWcP1tQfPDqatSlJGXks2RnF6iNxFOg8rgcFNOM/IwONs9toSHS4H5LOQZsh5m6JRCK5xVi8eLG5myCR1A0X/4XkcGFR322iuVtTJVvPJLDhxBWUCvj0ka4421kav7ONs7CVSjgtqliqGuSSqatgqUq8sK9Z0H2gpyNHLqdWGXSfV6jmUnIWAB28bq5g0QksZrQH09PCxZahgR5sO5dIE3sr3rm/+tZgJenbxg0nGwuSM/M5Fp1Kr9ZNi6/zJnuw305c4UpaLm4O1jwU4lObyyhNSYFFq61e1XmMtAe7lZACS0OgwgoWfQZLBQKLygqUFkLxlAKLRCKRSG5TLC0tUSrFKCR3d3diY2MJDAzE2dmZuLg4M7dOIqkBZ38XUzPag13PyuerPZf4/kA0+UVCWOndugkvDQugh18jHYGtsoAhc83dColEcgvyxBNG5DVIJI2Rg0vEtOvjFfdNNRDScwp5648zADwzsE3N7lda9tEJLIeqFlgydPZblVmEQXElRXb1BJb2OrGkKoElKikLjRZc7Sxxd7zJBswQcG/+ChaAV4YHkFOg5tlBbXBzqJ1lmZWFkrs6eLL+eDxbziQIgcVFVwni1cWwnVqjZdmuiwBM69/KtFXXzj6AAgqyRN6NfVPj95UB97cUUmBpCNjoBZZqVrAoFGBpD/npUJhTd+2TSCQSiaQB07VrV44ePUrbtm0ZOHAgc+fOJSUlhR9//JGgoIYXDi6RVEpeBkRtF/NmsAdLzynk670X+W5/NDkFagC6tXTh5WEB9PV3q/f2SCQSSWMjLy+PgoKCUsucnCrPT5BIGiRJ4XBxByiUwh6sgfPO5nMkZ+bTppk9zw1pW7ODtOwNR76GmANVb2uoYGle+Xb2OouwLOMtwoBii7BrlVuElcxfKVMRYrAx86zWueuKth6O/DS1l8mON6qTXmC5xtx7OqDsM0MMPg950rDNljPXuJSSjbOtJRN6m9iKy9IGnJpDxhVRxWKswFKQDVdCxbyfzF+5FZAZLA0Bg0VYBRksNpXcjOltwgqyTN8uiUQikUgaAfPnz8fLS4zKeu+993B1dWX69OkkJyfz9ddfm7l1Ekk1MdiDtQX3DvV66rjUHO76ZDdLdl4kp0BNcAtnvpvcg/XT+0pxRSKRSCohOzubmTNn4u7ujr29Pa6urqVeEkmj5JAue6X9KGjSyrxtqYJd55NYFxqPQgELH+hc8yoFfdh4wilIv1L5tnrxoo4qWAJ0VqxJmfmkZhdUuF2F+Ssl29hABBZT08/fDUdrCxIz8jkRdwOcW8DAV8Fe3LdqtVqW7BTVK5P7+eFgXQd1BgabsMvG7xN3RJe/4lNcdSNp1EiBxcTkF6k5EXuDpIw843eqUmCppAzTyk5MC2QFi0QikUhuT0JCQhg8eDAgLMK2bt1KRkYGoaGhdO7c2cytk0iqyZn1YlrP9mBZ+UVM++EYSZn5tHKz56vHu7NxZj8GB7jXyh9bIpFIbgdeffVV/v33X7788kusra359ttv+d///kfz5s354YcfzN08iaT6ZCXDyTVivs9M87alCrLyi3jjN2ENNqmvH919ayFqOnoKmzCAc79Xvm2GkfZbNcxgsbe2wLep6POrLOhevy7Qs5zB2ZkNJ+S+LrC2UDG0g8hd+et0Qpn1/0YkEX4tA3srFZP6+tVNI2oSdF/SHkzeZ98SSIHFxEz/6Thjlh5g69my/9gVohdYivKgSKdKF+aJ0YtQhcCir2DJrn5jJRKJRCKRSCQNg8Jc+GOmqGCBerUH02i0vPBLGBEJmTRztGbVtF4M7+gphRWJRCIxkk2bNrF06VLGjRuHhYUF/fv3580332T+/Pn8/PPP5m6eRFJ9jq0QfVItuoNPaUunT7dHMu7LA/znt9OsOhzLybg08grVNT5VfpGaY9GpfLnrIlNWHqXr29sY/fk+opIqzx7R88GWCK6k5eLTxJZXhgfUuB0GOo4VU/2gl/LQaCDLSPHCQWcRll09izAormKJuFb+e6HVagm/dvtWsACMCBLXtuX0NTQarWG5Vqvli51RADzW2xcXO6u6aUBtBBZfaQ92q9BgM1gWLFjAhg0biIiIwNbWlr59+/LBBx8QEFD8YZmXl8dLL73EL7/8Qn5+PsOHD2fp0qV4eHiYrd2dvJ35NyKJE7FpTOxj5E7WJVTm/EywaFoij0UBVuV8SOqx1AkshVJgkUgkEsntyfXr15k7dy47d+4kKSkJjUZTan1qaqqZWiaRGElKFKx9AhLPAAoYOg886s8e7MNt59kenoiVhZKvH++Ol7NtvZ1bIpFIbgVSU1Np3bo1IPJW9Pced9xxB9OnTzdn0ySS6lOYB0e/EfO9ny01wj6noIhPd1xAo4XQmBuG5SqlgrbuDnRs7kzH5k74NrXDQqXEUqnAQqVEpVRgqVJgoVRioVIQfyOHo9E3OBadysn4dAqKSt+/38hJZ8ySA3wxoRsD2zWrsKmHLl3nx0MxALw/thN2Vibo5uxwH2x9TWRk3Igu7kAvSXaysHhSKMGhij5IQwZL9SpYQATdbzuXWGEFS3KWsA9TKqCt+019h6VEoFtXYBnQrhn2ViqupudxMj6Nri1FBdPBi9c5EZuGlYWSKf3r0OKuugJLQU6J/BUZcH+r0GAFlt27dzNjxgx69OhBUVER//nPfxg2bBjnzp3D3l6ICi+++CKbN29m7dq1ODs7M3PmTMaOHcv+/fvN1m79P/KJ2BtVbFkCpUoIJYXZQlixb1o6f0VZSaGRrGCRSCQSyW3O448/TlRUFFOmTMHDw0OOupc0Ls5sgI2zRJ6efTMY9y20HlRvp99wPJ4vdwlv6oXjOhnuZSUSiURiPK1bt+by5cu0bNmS9u3b8+uvv9KzZ082bdqEi4uLuZsnkVSP02uFgODkLcSGEpy5koFGC03trXgwxIezV9M5ezWD1OwCIhIyiUjIZP3x6p/SzcGKEN8mhPi5EtTCmUXbLnAkOpXJ3x3hzVEdmNzPr8w9fm6BmtfXnwLgkZ4+9DNVXpyjh+j4vrxH3Kf1n112G33Avb07qKroWtVbhOVcB3VR1duXIFAXdH8+ofwKFn1li5+bPbZWN+XO5KYKEQiqFoEaMTaWKoYEerDx5FW2nEkw3Msu2SWqVx7u4YO7o03dNcAgsMQYt338EdAUiv+v8sQ7SaOkwQosW7duLfXzypUrcXd3JzQ0lAEDBpCens7y5ctZtWoVd955JwDfffcdgYGBHDp0iN69e5uj2XTxdgEg+noOqdkFNLE3sgTN2lEnsOg+NPUCi3Ul9mBQQmCRGSwSiUQiuT3Zu3cv+/btk3krksZFUT5sexOOfC1+9u0HD6yo1xGGx2Nv8Pr60wA8O6gN93dtUW/nlkgkkluJyZMnc/LkSQYOHMjrr7/O6NGj+eKLLygsLGTRokXmbp5EYjxaLRz6Usz3egpUlqVWn4xLAyDEz5XXR7TX7aLlWnoeZ69mcOaKEFySMvMoVGtRazQUqbUUabQUqTUUarSoNVpcbC0J8XMlxK8JPfya4NfUrpSA8tPUXrzx22nWhsbz9p/niEzK4u37OmKpKh6AvOif80Rfz8HTyYY5IwNN+z4EjRMCy9mKBBYjA+4B7JoCCkArRBZH48WOAL3AkpiJWqNFpSwtMlWev6LLiLFvVub3eKsxMtiTjSev8tfpa8wZ0Z6wuDT2R13HQqng6YFt6vbk+pD6jHgR+2BRRT+wIX+ln8xfuYVosALLzaSnC8GhSZMmAISGhlJYWMjQoUMN27Rv356WLVty8ODBCgWW/Px88vPzDT9nZFQcFFUTnO0sadPMnovJ2YTF3eDO9kZ+cNo4idI9vTVYXppuubECS1aN2iuRSCQSSWOnffv25ObmmrsZEonx3IiBtZPgqm6I5x2zYfAb1RrRWB5arZYV+6NJzsznge4t8L/ZKqIEV9JyeeqHUArUGu7q4MHLw0zgWS6RSCS3KS+++KJhfujQoURERBAaGoq/vz+dOnUyY8skkmpyaRcknRUuK92eKLM6LD4NgM4+LoZlCoWC5i62NHex5a4OpqmUsLJQsvCBTrTzcGT+lnBWH4nlckoWX07ojqu9FWFxaSzfdxmA98YE4WRjYgEh8F7Y/BIknIaUSHBrW3p9hq6CxZjweJWFEFlyUiA7qVoCi29Te2wsleQVaohNzaGVm32p9foKlvaeleSvONy69mB6BrZzx9ZSRfyNXM5cyWCJLntlTNcWtHCpY+tbB3ewsIWiXEiPg6ZVCDrROtclaQ92S1EnIfcajYYLFy6wb98+9uzZU+pV0+O98MIL9OvXj6CgIAASEhKwsrIqU27r4eFBQkLFAfMLFizA2dnZ8PLx8alRmyqj2CYszfid9EH3hgoWndBirMBSKCtYJBKJRHJ7snTpUt544w12797N9evXycjIKPWSSBoUUdvhq/5CXLFxgUd/FZkrtRRXAH4+HMs7f55j2e6LDF20h4eWHWTD8fgywbM5BUVM+/4YKVn5tPd0ZPH4LiiVcgSdRCKRmApfX1/Gjh0rxRVJ4+PQUjHtOgFsXcqs1lew6N1b6hKFQsG0Aa35dmII9lYqDl1K5f6l+zl3NYNX151Eo4X7uzRnSGAd2F/ZNSm2bD2zoex6fXWIMQILiE54qHYOi0qpKBF0X/a5JjxBH3BfSQXLLZy/osfWSsWdgeI9/mT7BbaHJ6FQwPRBdVy9AqIKxdgcloIcuHJMzEuB5ZbC5BUshw4d4tFHHyUmJgatVltqnUKhQK1WV7BnxcyYMYMzZ86wb9++Wrdvzpw5zJ5dXN6XkZFhcpGla0sX1oXG11Jg0WewVCGwWNqJqcxgkUgkEsltiouLCxkZGQbLUD1arbbG9x4SSZ2gUcP6aeI+r0UIPPgduLQ0yaHD4tJ4e9M5ADp5O3P2agZHolM5Ep3KfzeeZWw3bx7t1RL/Zg689OtJzl3LoKm9Fd8+EYK9daMpapdIJJIGy9GjR9m5cydJSUloNKUDu6VNmKRRkHwBIrcBCuj1TJnVKVn5xN8QVeNB3lX0VZmQIYEebHi2H1O+P0rM9Rzu+XyvIQdm7uiOdXfioHFiYMyZ9TDw1dJ2Thk68cIYizAoDrrPTq52MwI8HTkZn054QiYjgovPV6jWEJVkRAXLbSCwAIwM8mLzqWv8GyFErJHBXrRu5lA/J3f1g+TwqgWW+KOgLgDH5uDaqj5aJqknTP409cwzzxASEsLmzZvx8vKqddDszJkz+fPPP9mzZw/e3t6G5Z6enhQUFJCWllaqiiUxMRFPz4o/PKytrbG2tq5Vm6qiq4+oYAmLSyvXI7H8huk+DPXCSsmQ+8qw0n1YSIswiUQikdymTJgwAUtLS1atWiVD7iUNm5QLInDU0g4m/wUWprknTc0uYMbPxylQaxjWwYOvHu9OUmY+a4/FsfpIHFfScll5IJqVB6Lxa2pH9PUcLFUKvnq8O96udiZpg0QikdzOzJ8/nzfffJOAgIAy9yLyvkTSaDisy14JGFGuzdEpnT1Ym2b2prfkqoIAT0f+mNGPZ34K5Wj0DQD+d19H43OPa0L7UaCygpTzkHQOPEqIOYbqkObGHUtfwVIDgaW9Ll/lfELpCpZLydkUqrU4WFvg7VqODZZBYDFSBGrkDApoZrBTA5gxyL/+Tm5sBUtMCXsw+d1wS2FygSUyMpJ169bh71+7P2StVsusWbP47bff2LVrF61alVb2unfvjqWlJTt27GDcuHEAnD9/ntjYWPr06VOrc9eWdh4O2FmpyMov4mJyFu08Kva/NqAPs69uBYuVvoJFWoRJJBKJ5PbkzJkznDhxgoAAmSEhaeBcCRXT5l1NJq6oNVqe/+UEV9JyaeVmz0cPdUahUODhZMPMO9vy7CB/9kalsPpwLNvDE4m+Lu4Z548JJsSviUnaIJFIJLc7n376KStWrGDSpEnmbopEUjNyUiFstZjv/Wy5m4TFiX6qkvkr9UlTB2t+mtqLr3Zfws5KxajgOhYObJzBfyic/0vYhJUrsBhZHWJfM4swgPZeOoswnR2YHn3AfXtPx/KFXIPAUgcWag0Qe2sLBrVzZ+vZBIa0d6dD8yoGrJsSYwSWghw4qfsfa9W/rlskqWdMLrD06tWLqKioWgssM2bMYNWqVfzxxx84OjoaclWcnZ2xtbXF2dmZKVOmMHv2bJo0aYKTkxOzZs2iT58+FQbc1xcWKiWdvJ05dCmVE7E3jBRYbrIIy69mBou0CJNIJBLJbUpISAhxcXFSYJE0fOJ1nsstupvskJ/uiGRvZAo2lkq+fKxbmRGlSqWCge2aMbBdM5Iy8th48ipNHawY09W7giNKJBKJpLoolUr69etn7mZIJDUn9DsR0u0ZXGE2hL6CpYuZBBYAawsVzw1pW/WGpiJonBBYzm6AO98srjrQh9w7GVvBUnOLMH0FS8z1HLLziwzWruH6gHuvCvocq5sTcwvw2oj2uNpbMWNwPWSvlEQvsKTFVLzN3o8hLRacvKHj2HpplqT+MInAcurUKcP8rFmzeOmll0hISCA4OBhLy9IPecaGvH35pShNHDRoUKnl3333nWFUyCeffIJSqWTcuHHk5+czfPhwli5dWvMLMSFdfFw5dCmVsLg0xvcwwlvbILDohBWjM1j0IfdSYJFIJBLJ7cmsWbN4/vnneeWVV2p17yGR1Dn6UEvvEJMcbmdEEp/tiARgwdhgwwN4Rbg72TC1f2uTnFsikUgkxbz44ossWbKExYsXm7spEkn1KSqAI9+I+d4zyrUu0mq1hoD7zvUQcN9gaHc3WNhC6iW4FiaqkAtzIS9NrDdWvKhFBUsTeyvcHa1JysznQmImXVuKWILiCpYK7v9uswwWgFZu9iwYG1z/J66qgiUlEvZ/KuZHvA/W9ZQNI6k3TCKwdOnSBYVCUSrU/sknnzTM69dVJ2i25LEqwsbGhiVLlrBkyZLqN7qO6drSBcD4oHt91srNFmHWVWWwyAoWiUQikdzejB8/Hqj9vYeeJUuW8OGHH5KQkEDnzp35/PPP6dmzZ4Xbp6Wl8cYbb7BhwwZSU1Px9fVl8eLFjBw5smYXJLk1KciBRBFCb4oKlrjUHF5YEwbAY71byooUiUQiMSMvv/wyo0aNok2bNnTo0KHMYI8NGzaYqWUSiRGc+11UOzh4iIqNcohLzeVGTiFWKmXFFRO3ItYO0G4YnPtD2IQ171pcGWJpV/WgaD2GDJbqCywgMmiSMvOJSCgWWMKvCYElsLzfh0YDWYli/jaqYDEbLrqB9XnpkHsDbF2L12m1sPkl0BRC2+HQ/h7ztFFSp5hEYLl8+bIpDnNL0VVXMnk+MZOs/CIcrKt4q2+2CJMZLBKJRCKRGIUp70PWrFnD7NmzWbZsGb169WLx4sUMHz6c8+fP4+7uXmb7goIC7rrrLtzd3Vm3bh0tWrQgJiYGFxcXk7VJcotw7SRo1eDgCU4tanWovEI1038OJT23kM4+Lrx1TwcTNVIikUgkNeG5555j586dDB48mKZNm8pge0njQauFQzonmB7TwKL80PgwnT1YYHMnrC1U9dS4BkLQOCGwnP0N7nobMkrkrxj7v26vswjLqr5FGECglxN7I1M4r8thSc0uIDEjH6D8WIKcFHHfiaK4ekZSd1jZiXv8rARRxVJSYDmzHi7vBgsbGPGBDLe/RTGJwOLr62uKw9xSuDvZ0MLFlitpuZyKS6Ovv1vlO5QRWIzNYNGVlckKFolEIpHcphh7HzJq1Ci+/fZbvLwqHsW1aNEipk2bxuTJkwFYtmwZmzdvZsWKFbz++utltl+xYgWpqakcOHDAMFrVz8+v0nbk5+eTn59v+DkjI8Oo9ksaOSXtwWr5YPW/TWc5cyUDVztLlk7odvt1dEgkEkkD4/vvv2f9+vWMGjXK3E2RSKpH7CG4ekJ0/oY8WeFmenuwLt5GVmzcSrQdJvre0uMg/miJbBMj81egRAVLsqguUSqr1YT2nqLPUF+1orcH82lii+NN+XtAcRvtm4HK5PHbkvJw9SsWWJp3Fcvy0uHv/4j5/i9Dk1bmap2kjqnef7QRLFiwgBUrVpRZvmLFCj744ANTn65BY7AJ030RVYq17ktKX7lidAaLroJFZrBIJBKJRFIpe/bsITc3t8L1BQUFhIaGMnToUMMypVLJ0KFDOXjwYLn7bNy4kT59+jBjxgw8PDwICgpi/vz5ldqSLViwAGdnZ8PLx8en5hclaTyYKOD+12NxrD4Sh0IBnz7clRYutiZonEQikUhqQ5MmTWjTpp5DlSUSU3BIZ7nfaTzYN61wM0P+ihkD7s2GpS0EjBDzZzaUCLivhvWWnW7QtVYtLKSqSYBOYIlIyESr1RKhD7iX+SsNh/JyWP59T1i1NfWHfs+Zo1WSesLkAstXX31F+/btyyzv2LEjy5YtM/XpGjR6X8QTsUZ8eFZoESYzWCQSiUQiqQ9SUlJQq9V4eHiUWu7h4UFCQkK5+1y6dIl169ahVqv566+/eOutt/j444959913KzzPnDlzSE9PN7zi4uJMeh2SBsqVUDGthcCSml3AfzeeBWD20HYMaNfMFC2TSCQSSS3573//y7x588jJkdbdkkbEjWiI2Czmez9b4WaFag1nroo+qttSYIHibJqzv0HGFTFfnWwTCyuwcRHzNchh8Xd3QKVUkJ5bSGJGvqGCJdCzgjwcg8Ai81fqjZsFlqthcPQbMT/yI7CwNkOjJPWFyQWWhISEcq03mjVrxrVr10x9ugZNyaB7rVZb+cYlBRZ1YXFFiv4DuCL0FmFFeaCpXoivRCKRSCSS2qHRaHB3d+frr7+me/fujB8/njfeeKPSQSXW1tY4OTmVeklucTITha0EimLLgBqwYt9lcgrUBLdwZsZgf9O1TyKRSCS14rPPPmPLli14eHgQHBxMt27dSr2qy5IlS/Dz88PGxoZevXpx5MiRCrdduXIlCoWi1MvGxqY2lyO5XTj8FWg10GYIuJcdKK3nQmImeYUaHK0taNXUvh4b2IBoc6dwnslKgPBNYplTNSzCoNgmLKv6Aou1hYo2zcR7H56QQYQui6W9V1UVLB7lr5eYnpICi0YDm2eL/6+gcdBmsDlbJqkHTG7E5+Pjw/79+2nVqrSv3P79+2nevJofPo2cjs2dsFIpuZ5dQFxqLi2b2lW8sUFgySjOXwGwrqqCpcQxC7KrrniRSCQSiURSLm5ubqhUKhITE0stT0xMxNOz/PJ6Ly8vLC0tUamKMzACAwNJSEigoKAAK6vyg0Iltxn66pVm7Wt8r5aRV8j3B6MBmDHYH6VSBmRKJBJJQ+H+++832bHWrFnD7NmzWbZsGb169WLx4sUMHz6c8+fP4+5efli1k5MT58+fN/yskCHKkqrIy4DjP4r5PhVXrwCcjBPVK518nG/f+w8Lawi8B8J+LlHBUk37LXt3SLkgclhqQICnExcSszh3NcMQdt++wgoWfU6MrGCpN0oKLMdXivt/K0cY9p4ZGyWpL0wusEybNo0XXniBwsJC7rzzTgB27NjBq6++yksvvWTq0zVorC1UdGjuRFhcGifiblQusOgfttUFxR+2Vg5Vh1FZ2IBCKVTRwhwpsEgkEolEUkOsrKzo3r07O3bsMHSUaDQaduzYwcyZM8vdp1+/fqxatQqNRoNSF1Z54cIFvLy8pLgiKcYQcF9ze7AfD8aQmVdEW3cHhnWQoxElEomkITFv3jyjtlu9ejX33nsv9vYVVwEsWrSIadOmMXnyZACWLVvG5s2bWbFiBa+//nq5+ygUigoHg5RHfn4++fn5hp8zMjIq2VpyS3LiRyjIBLcAUcFSCYb8FW+Xum9XQyZorBBY9FQn5B7AQWftWoMKFhBiyqaT8PfZBPKLNNhYKvGtqKJIZrDUP66+YpoWB9v/J+bvfKN6WT2SRovJLcJeeeUVpkyZwrPPPkvr1q1p3bo1s2bN4rnnnmPOnDmmPl2Dp6RNWKXorb4A0uPFtKqAewCFAixlDotEIpFIJKZg9uzZfPPNN3z//feEh4czffp0srOzDZ0cEydOLHU/M336dFJTU3n++ee5cOECmzdvZv78+cyYMcNclyBpiBgC7kNqtHtugZoV+y4D8OzgNrfv6FGJRCJp5Dz99NNlKmVLUlBQQGhoKEOHDjUsUyqVDB06lIMH/8/efYdHVWB9HP9Oek8IIQmQQOidhCJNKSpSX7GtoqIouLiCrIVVV3ZXFNRFXUVEXezdVVwLuhYsFBFEkd57IAmQBqSHlJl5/7iZgZg2SSaZlN/neea5N7eeIJLJnHvO2VDheTk5ObRv357o6GiuuOIKdu/eXWkcCxcuJDg42P6Kjo6u/jcjjZfFDL+WtLMdMtP4XKkS25MygGY8f8Wmw0jwDT33dXU/OPcvqUCrbAZL3mn4z/Xw0S2w+a1SA9N7tDaqVXYkGRVF3SICca/oPWGOZrDUu4BIcPcGqxnOZkBkH7hghqujknri9AoWk8nEk08+yUMPPcTevXvx9fWlS5cueHs3z2E+/dq14M31R6sedO/mbiRZCnNKenRTdXswGy9/48mDwpzaBSsiItIIZWVlVTjH5NChQ3TubMyq+Nvf/kZoaGi5x9lMnjyZtLQ05s2bR3JyMnFxcaxYscI++D4hIcFeqQJGa9Rvv/2We++9l759+9K2bVvuvvtu/vrXvzrpu5NGz2KBE1uN9RoOuP9gYwKncgtpF+rH5X2bV8tdEZGmpKrZrOnp6ZjNZvv7DpuIiAj27dtX7jndunXjjTfeoG/fvmRmZvL0008zbNgwdu/eTVRUVLnnzJ07lzlz5ti/zsrKUpKlOdn3JWQkGMmC2OsrPTSvsJgDKUY7qrjmnmBx94Sek4zEBxgfqFeHvYKlkhZhqx6DA98Y63uWG8sWHaDTxcRGXkgQFrIwHrLuHlnJZ4aqYKl/bm5GFUv6AePric9W3ZVImow6+y8dEBBgH3bfXJMrAP1KfgDtPpHF2SIzPp7uFR/sHVSSYKlGBQucm8NSmFfzQEVERBqpiRMn8sMPP5R5v7F//34uvfRSkpKMn6uOVtLOnj27wpZga9asKbNt6NCh/PLLL9ULWpqPUweNGXuefhDes9qnFxSbeWXtEQDuGNkJD3enF6CLiEgjNnToUIYOHWr/etiwYfTo0YOXX36ZRx99tNxzvL29m/XnNM3ery8by4HTwdO30kN3Hc/CYoXIIB8ignzqIbgGrvcfjARLUBR4VLMdsL2CpYIES+pe2PymsT7odkjeCUm/wZl42BRPS95gq4+JHZZOPFt8Dd1bV/C+0mKGnJJKueomgaR2wroaCZb+t0D0Ba6ORuqR039Ds1gsLFiwgODgYNq3b0/79u0JCQnh0UcfxWKxOPt2DV5UC1/CArwotljZfSKz8oNtg+6rnWBRizAREWm+AgICuOqqqyguLrZv27t3L6NGjeKaa65xYWQinGsP1jquRk+xfbblOMlZZ4kI8uaaAW2dG5uIiDQoYWFhuLu7l2kjlpKS4vCMFU9PT/r168ehQ4fqIkRp7LJT4NjPxvrA6VUebp+/Eu3g51NNXYfhcOVSuObV6p8bUEmLMKsVvv2bMV+5x+Uw4V8wfQX89Sjc8CEM+hOEdcUdK/3cDvFvz+foG5hd/n1y04zrmNzAv1X145Sau/RhGP0IjP2nqyOReub0BMvf//53XnjhBZ544gm2bt3K1q1b+ec//8nzzz/PQw895OzbNXgmk4m46BaAA3NYappgsc1gKVKCRUREmp9PP/2UzMxMpkyZgtVqZdeuXYwaNYobbriB5557ztXhSXNXiwH3xWYLS388DMCM4R3x9qikElpERBo9Ly8vBgwYwMqVK+3bLBYLK1euLFWlUhmz2czOnTvtHUVESjn4LWCFNv0huOoHN7Zp/kpZcTdC+2HVP89WwVJei7CD38PhVeDuBZctOLfdOxC6jYcJT8Hs3/hXz0/ZZOlKgOksfbfNNxIzv2drD+YfrhZV9a1VV7joXvAOqPpYaVKcnmB5++23ee2115g5cyZ9+/alb9++zJo1i1dffZW33nrL2bdrFOyD7ksy/xWyJ1gSjKVPNWawgCpYRESkWfL19eWrr75i//79XHfddVx66aVMnTqVRYsWuTo0kVoNuP9q50mOncoj1N+LGwe3c3JgIiLSEM2ZM4dXX32Vt99+m7179zJz5kxyc3OZNm0aAFOnTi3V9nTBggV89913HDlyhC1btnDTTTdx7Ngx/vjHP7rqW5CGbP8KY9ltvEOH2ypY4qJC6iae5sQ2gyU3tXRixFwE3/3dWB/8JwjtWOEl2rTvzF+LZlCIB55HfoBdn5Q9SPNXROqd01OZp0+fpnv37mW2d+/endOnTzv7do2CLcGyraoKFltCJetEydfVncGiBIuIiDQPWVlZpb52c3Nj2bJlXHbZZVxzzTU89NBD9mOCghx8YEHE2YryIWW3sV7NAfcWi5V/rzaqV6ZfGIOfl55AFBFp7Nq3b4+np2elx0yePJm0tDTmzZtHcnIycXFxrFixwj74PiEhATe3c8/KnjlzhhkzZpCcnEyLFi0YMGAAP//8Mz17Vn/ulzRxRflGlQQ4lGBJzykg6Uw+JhP0jlKLsFqzVbCYC+FsJviGGF9vetOY2+HXEkbcX+klLu0ewdKQzmwKm86wxFfgm79Cp0vAL/TcQdknjaUSLCL1xum/qcXGxvLCCy+wZMmSUttfeOEFYmNjnX27RqFvVAhuJjiekU9K1tmKB4PZKlgsJT3kHU6wlJSeKcEiIiLNREhICCaTqcx2q9XKSy+9xMsvv4zVasVkMmE2m10QoQhwcjtYzRAQAcFR1Tr1h70p7E/JJtDbg5uHxtRNfCIi4hSJiYmYTCaioox/6zdu3Mh//vMfevbsye23324/bteuXQ5db/bs2cyePbvcfWvWrCn19bPPPsuzzz5bs8CleTnyIxTnQ3A0RPSu8vAdJe3BOob5E+RTeWJQHODpA95BUJBlzEnxDYH8M7CmZF7HxX+v8nPAyGAf1v31Eii+CF7+CdL2wnf/gCv/fe4gVbCI1DunJ1ieeuopJk6cyA8//GDvEbphwwYSExP5+uuvnX27RiHA24OuEYHsS85ma0IG43pX8I+c9++esHV4BktJBUtRXs2DFBERaURWr17t6hBEqnZ+e7ByEoIVsVqtvLjaGE5889D2BPvqQw0RkYbsxhtv5Pbbb+fmm28mOTmZyy67jF69evH++++TnJzMvHnzXB2iCOwv+Uyu6ziH3pdsS8wENH/FqfxbGQmWnFQI6wI/PmUkWVr1gP63OH4dDy+YtAReHwPb3oc+10Kni419ObYEi+YwidQXpydYRo4cyYEDB3jxxRfZt28fAFdffTWzZs2iTZs2zr5do9GvXQsjwZJ4xvEEy++/rohmsIiISDMzcuRIV4cgUrUaDrhff+gU25My8fF047aLOtRBYCIi4ky7du1i0KBBAHz00Uf07t2b9evX891333HHHXcowSKuZ7HAgW+NdQfnr9gqWOKUYHGegHA4fdiYw5J+CDa+Ymwf+3j1B9JHD4JBM4xr/O9umPWLMUJAFSwi9a5Omjm3adOGxx9/vC4u3Wj1axfCBxsT2FrZHBZbizAbtQgTERGp0ptvvklAQADXXnttqe3//e9/ycvL45ZbqvE0mIgzJW02ltWcv/LC6oMA3DCoHS0DvJ0dlYiIOFlRURHe3sa/1z/88AOTJk0CjFm0J0+edGVoIoaTW43KBq9AiLmoysOtVqt9wH2sBtw7j3+YscxJgx0PGSMCuoyBzpfW7HqXzoN9X0HGMaPV2JjHzs1gCVCCRaS+uFV9SPWdOXOGp59+mttuu43bbruNZ555ptkOuLfpXzLofkdSBsVmS/kHlUmwhDh2cQ25FxGRZmzhwoWEhYWV2R4eHs4///lPF0QkgtH6ITMBMEGb/g6ftvnYaX45chpPdxO3j+hYd/GJiIjT9OrVi5deeomffvqJ77//nnHjxgFw4sQJWrZs6eLoRID93xjLzpeAR9UPbySezudMXhFe7m50bx1Y5fHiINug+92fGi3bTO5GUqSmvANh4iJjfcOLcGKbKlhEXMDpCZa1a9cSExPDkiVLOHPmDGfOnGHJkiV06NCBtWvXOvt2jUbHsAACfTw4W2RhX3J2+QfVuIKlpEWYZrCIiEgzlJCQQIcOZdsotW/fnoSEBBdEJAIcL6leadUNfBxr+2q1WnlupTF75Zr+UbQO9q2r6ERExImefPJJXn75ZUaNGsUNN9xAbGwsAF988YW9dZiIS+1fYSy7TXDo8G0l7cF6tAnC28O9joJqhgJKEiwJG4zlBX803ivWRrdx0OtqsFrgi9mQm2Zs1wwWkXrj9BZhd955J5MnT2bp0qW4uxv/CJvNZmbNmsWdd97Jzp07nX3LRsHNzURcdAg/HUxna2IGvduWkzz5/S/fDg+5t81gyaldkCIiIo1QeHg4O3bsICYmptT27du366lRcZ3zB9w76NWfjrD2QBrubibuGNmpjgITERFnGzVqFOnp6WRlZdGiRQv79ttvvx0/Pz8XRiYCZCRAyk4wuRntqBxgaw8WF+Xg51LiGP9W59Z9QmDUg8657vgn4fAqSC75zNXkfq4dmYjUOadXsBw6dIi//OUv9uQKgLu7O3PmzOHQoUPOvl2j0q9kMNjWhDPlH/D7ofYOPu2oIfciItKc3XDDDdx1112sXr0as9mM2Wxm1apV3H333Vx//fWuDk+aq2oOuF+9L5WF3+wD4KGJPYgJ86+ryERExMny8/MpKCiwJ1eOHTvG4sWL2b9/P+Hh4S6OTpo9W/VK9BDwC3XoFPv8FQ24d66A8/49GPlXh/97OHTdsf8s/bWbKo9E6ovTEyz9+/dn7969Zbbv3bvXXibbXPVrZ7zZ2lbRoPvzW4R5+DjUFxM4bwaLWoSJiEjz8+ijjzJ48GAuvfRSfH198fX1ZcyYMVxyySWawSKuYbHA8a3GugMD7g+lZnPXB1uxWuGGQdHcMiymbuMTERGnuuKKK3jnnXcAyMjIYPDgwTzzzDNceeWVLF261MXRSbN3oGT+SrfxDh1eZLaw60QmoASL04X3NCqJWnU32oM5U9yN0GGksa75KyL1yuktwu666y7uvvtuDh06xJAhQwD45ZdfePHFF3niiSfYsWOH/di+ffs6+/YNWlzJD6Yj6blk5BUS4udV+oDzK1gcbQ8G4BVgLNUiTEREmiEvLy+WLVvGo48+yvbt2/H19aVPnz60b9/e1aFJc3XqEBRkgocvhPeq9NCMvEL++PYmsguKGRQTyvxJvTGZTPUUqIiIOMOWLVt49tlnAfj444+JiIhg69atfPLJJ8ybN4+ZM2e6OEJpts5mQfxPxrqDCZYDKdmcLbIQ6O1Bh5aqqHWqlp1g5s9GAsTDq+rjq8NkgknPwxd/NpItIlJvnJ5gueGGGwB44IEHyt1nMpmwWq2YTCbMZrOzb9+gtfD3okOYP/HpuWxLzGBUt9+VCp9fwVKdBItnSQWLhtyLiEgz1rVrV7p06QKgD6jFtWztwdrEgXvFb7eLzRZm/2crR0/l0TbEl6U39cfLw+kF5iIiUsfy8vIIDDR+n//uu++4+uqrcXNzY8iQIRw7dszF0UmzdnglWIqgZWcI6+LQKdsTjeqVvtHBuLnpPbXThfeou2u3aA+3fFF31xeRcjn9N7j4+PhKX0eOHLEvmyNbFcuW8tqEeQUAJT+8fj+PpTKawSIiIs3cO++8Q58+fewtwvr27cu7777r6rCkubIPuK+8PdhjX+1l3aF0/Lzcee2WgbQMcLA9rIiINCidO3dm+fLlJCYm8u233zJmjDFIPDU1laCgavxuL+Js+6vXHgxgR1IGALFRIc6PR0SkCXJ6BYvacVQuLjqEz7Yet//AKsXNzahiKciqZouwkgRLUZ7R89tNTz6KiEjzsWjRIh566CFmz57NhRdeCMC6deu44447SE9P595773VxhNLsHN9sLKMGVnjIhxsTeOvnowAsui6OHq31AZyISGM1b948brzxRu69914uueQShg4dChjVLP369XNxdNJsmYvh4HfGelfHEyxbEs4Amr8iIuIopydYAN59911eeukl4uPj2bBhA+3bt2fx4sV06NCBK664oi5u2WjYfkBtT8ywt0orpTYJFjCSLN4BtQ9URESkkXj++edZunQpU6dOtW+bNGkSvXr14pFHHlGCRepXUT6k7DLWK6hg2Rh/moc+N46Zc1lXxvXWIFIRkcbsD3/4AxdddBEnT54kNjbWvv3SSy/lqquucmFk0qwl/gr5Z8C3BUQPduiULQlnOJCSg6e7iYHtW9RxgCIiTYPTSx2WLl3KnDlzmDBhAhkZGfY5KyEhISxevNjZt2t0erQOxMvdjTN5RSSezi97gG0OS3USLB6+59Y1h0VERJqZkydPMmzYsDLbhw0bxsmTJ10QkTRrJ3eApRj8wyE4uszuxNN53PHeZorMVib2ac2fL+nsgiBFRMTZIiMj6devHydOnCApKQmAQYMG0b17dxdHJs3W/q+NZZexlc6EO9+ra412/lfGtVXrUhERBzk9wfL888/z6quv8ve//x13d3f79oEDB7Jz505n367R8fZwp0cbowXEtvLahNkTLNVoE+HmBp62OSw5tQtQRESkkencuTMfffRRme3Lli2zD70XqTe2AfdRA+F3lcrbEzO4+fVfOZ1bSK82Qfzr2r5lq5lFRKTRsVgsLFiwgODgYNq3b0/79u0JCQnh0UcfxWKxuDo8aa4OrDCW3cY5dPjR9FxW7E4GYMaIjnUVlYhIk+P0FmHx8fHl9hj19vYmN1dD2AHiooLZnpjBtoQMJsW2Kb3TNty+OhUsYLQJK8qFQlWwiIhI8zJ//nwmT57M2rVr7TNY1q9fz8qVK8tNvIjUKdv8lfPagxWbLby4+jBLVh3EbLHSOtiHV6YOxM+rTrr1iohIPfv73//O66+/zhNPPFFqHtwjjzzC2bNnefzxx10coTQ76Qfh1CFw84ROlzp0yuvr4rFaYVS3VnSNCKzjAEVEmg6n/1bXoUMHtm3bVmbY/YoVK+jRo4ezb9coxUaHwIZjbC+vgiW4bcmybEuJSnn5QS5QqCSWiIg0L9dccw2//vorzz77LMuXLwegR48ebNy4UYNlpX5ZrZDwq7FekmA5kpbDvR9tZ3tiBgAT+7bm8St7E+Ln5aIgRUTE2d5++21ee+01Jk2aZN/Wt29f2rZty6xZs5Rgkfpnaw/WYbhDHVJO5xby382JANyu6hURkWpxeoJlzpw53HnnnZw9exar1crGjRv54IMPWLhwIa+99pqzb9co2Qbd7zqeSZHZgqf7eZ3aLn0YOl4M3f+vehf1KhlsrxZhIiLSDA0YMID33nvP1WFIc5ewAbKSwCsQa/Qg3vvlGI9/tYezRRYCfTx47MreTIpto7ZgIiJNzOnTp8udtdK9e3dOnz7tgoik2dtf0h6s63iHDn93wzHOFlno3TaIoR1b1mFgIiJNj9MTLH/84x/x9fXlH//4B3l5edx44420adOG5557juuvv97Zt2uUOrT0J9DHg+yzxexPzqZ32/PagfmHQe+rq39RTz9jqSH3IiLSDGRlZTl8bFBQNeaaidTGtvcByO96OXe8t5sfD6QBcGHnlvzrD7G0CfF1ZXQiIlJHYmNjeeGFF1iyZEmp7S+88AKxsbEuikqardxTkPiLse7A/JWzRWbe2XAUgNtHdNKDICIi1VQnjZ+nTJnClClTyMvLIycnh/Dw8DLHrF+/noEDB+Lt7V0XITRobm4m4qJD+OlgOtuTMkonWGrKyzbkXi3CRESk6QsJCanylz+r1YrJZMJsNtdTVNKsFebC7uUAzNrdnR/z0/D2cOPB8d25ZWgMbm76sEJEpKl66qmnmDhxIj/88ANDhw4FYMOGDSQmJvL111+7ODppdg5+B1YLRPSGkHZVHv7JliRO5RbSNsSXCb0j6yFAEZGmpU4na/r5+eHn51fuvvHjx7Nt2zY6dmyevR1jo0oSLIkZTBncvuoTqqIEi4iINCOrV692dQgipe39EgpzSLCGs/psJ3q3DWLx5Dg6h2tIrIhIUzdy5EgOHDjAiy++yL59+wC4+uqrmTVrFm3atHFxdNLsHPjGWHaruj2YxWLltZ/iAbjtog54nN/CXkREHFKnCZbKWK1WV926QbDNYdlWMvC01pRgERGRZmTkyJGuDkGklOIt7+EB/Ld4BKN7RPLvKf3x8tCHFCIizUWbNm00zF5cr7gADq001h2Yv/LD3hTi03MJ8vFg8gXRdRyciEjT5LIES3MXG2W0BTuYmkNOQTEB3rX8T6EZLCIi0oydOXOG119/nb179wLQs2dPpk2bRmhoqIsjk+bAmpGA27GfAPjZ/zLeuDZWyRURkSZux44dDh/bt2/fOoxEXMJcDIXZUJANBTnG8vyvTSaIuQhaxNRvXEd/gsIcCIiANv2qPPyVtUcAuGlIe/xr+7mUiEgzpX89XSQ8yIc2wT6cyDzLzqRMhnZqWbsL2itYcmofnIiISCOydu1aLr/8coKDgxk4cCAAS5YsYcGCBfzvf/9jxIgRLo5QmrodX71CLFY2WHry95vGEuzn6eqQRESkjsXFxWEymarszqF5cE3Qzy/A9/PA6sB/15ZdoPNo6DIa2l8Enj51G9v+kvZgXceBW+UPe2w+doZNx87g6W7i1mExdRuXiEgTpgSLC8VGh3AiM5ntSRlOTLCogkVERJqXO++8k8mTJ7N06VLc3d0BMJvNzJo1izvvvJOdO3e6OEJpyvaeyCT4wH/BBGd7Xc/Qdi1cHZKIiNSD+Ph4V4cgrvLba+eSK+7e4B0I3gHG0ivQWBZkQeJGOHXQeP26FDx8ocNw6HwZdB0LLZwwj/d8VivsX2Gsd5tQ5eGvllSvXBnXlvCgOk78iIg0YS5LsJhMJlfdusGIiw7hm13JbHfGHBbNYBERkWbq0KFDfPzxx/bkCoC7uztz5szhnXfecWFk0tTlFhTz73f/w/OmZM6afBh5xXRXhyQiIvWkffvqfzg+ceJEXnvtNVq3bl0HEUm9OHMUzsSDyR0eOAy+lTxYcTYTjqyBg98bc1GyT8DB74zXigdhxkqH2ng5LHknZCUZiZyOlc8rPJqey7d7kgGYMaKj82IQEWmGNOTehWyD7p2SYLHPYFGCRUREmpf+/fuzd+9eunXrVmr73r17iY2NdVFU0tRZrVYeWr6LodnfggeYel2Jm0+gq8MSEZEGbO3ateTn57s6DKmNIz8ay6gLKk+uAPgEQ88rjJfVCql7jGTL5jeNRE38WucmWGztwTpdDJ6+lR76+rp4rFa4uFsrukbo/YuISG04PcGSn5+P1WrFz8/4wP/YsWN89tln9OzZkzFjxtiPy87OdvatG50+bYNxM8GJzLOkZp2tXUmmV4CxVAWLiIg0A+cPlr3rrru4++67OXToEEOGDAHgl19+4cUXX+SJJ55wVYjSxH28OYmvtx5hvvcvAHgPvNnFEYmIiEidiy9JsFRRIVKGyQQRvYyXpRhWPWpUnDjTgZIES7fxlR52OreQ/25OBOD2EZ2cG4OISDPk9ATLFVdcwdVXX80dd9xBRkYGgwcPxtPTk/T0dBYtWsTMmTOdfctGy9/bgy7hgexPyWZbYgZjekXW/GKawSIiIs1IeYNlH3jggTLH3XjjjUyePLk+Q5OGrigfis9W/dRpJQ6mZDPv892McdtEoCkfQtpBu2FODFJEREQaHIvlXAVLx1E1v05kX2OZvKvWIdllnYATWwGTMeC+Eu9uOMbZIgt92gYzpGOo82IQEWmm3Jx9wS1btjB8+HAAPv74YyIiIjh27BjvvPMOS5Ysqda11q5dy+WXX06bNm0wmUwsX7681P5bb70Vk8lU6jVuXOU/SBqa2OhgALYnZdTuQl4lLcJUwSIiIs1AfHw8R44cIT4+vtLXkSNHXB2qNBTph2DFXHimGzzTHdIO1Ogy+YVm7vzPFvKLzPwxyKheIfZGcHP622oREWmmXnzxRWJiYvDx8WHw4MFs3LjRofM+/PBDTCYTV155Zd0G2Fyl7oa8dPD0h7YDa36dyN7GMv2A8eCHMxwoGW7fdgAEhFd42MnMfF5bZ7w/vn1ER81HFhFxAqdXsOTl5REYaPRv/O6777j66qtxc3NjyJAhHDt2rFrXys3NJTY2lunTp3P11VeXe8y4ceN488037V97e3vXPHgXiI0O4aNNSWxPzKzdhewtwnJqH5SIiEgDp8Gy4hCL2fjAYeOrcGR16X27P4NRf632JR/7ag8HUnLoFZBDn7NbjI2x1zshWBEREVi2bBlz5szhpZdeYvDgwSxevJixY8eyf/9+wsMr/uD86NGj3HffffYHXqUOHFljLGMuBA+vml8nsDX4tYS8U5C6F9r2r31s+6tuD2a1Wnnwk51kny0mNjqE8b1r0UVFRETsnP6oXefOnVm+fDmJiYl8++239rkrqampBAUFVeta48eP57HHHuOqq66q8Bhvb28iIyPtrxYtKm/3UFBQQFZWVqmXK8XZBt0nZWCxWCs/uDL2IfdqESYiIlIeDZZtRnLS4Kdn4LlY+PDGkuSKCbqMhQv+aBxz8NtqX/Z4Rj4f/mb0LP937wOYsEL7CyG0gxODFxGR5mzRokXMmDGDadOm0bNnT1566SX8/Px44403KjzHbDYzZcoU5s+fT8eOHesx2mbGlmCpTXswMOaxRPYx1lOc0CasMPdc67JuEyo87KNNifx4IA0vDzeeubYvHu6qvhURcQan/2s6b9487rvvPmJiYhg8eDBDhw4FjGqWfv36Oft2rFmzhvDwcLp168bMmTM5depUpccvXLiQ4OBg+ys6OtrpMVVH14hAfDzdyD5bTPypWrT3ss9gUYswERERaaYyEuDz2fBsT1i5ADITwTcULrwb7t4GUz6CEfcbxx7fYiRiquGdDUcxW6wM6xhK+8TPjY1xNzr3exARkSbrb3/7G6GhFc+8KCwsZPPmzYwePdq+zc3NjdGjR7Nhw4YKz1uwYAHh4eHcdtttDsXR0B48bRSKC+HYz8Z6bRMsABElbcKcMej+8GowF0BIewjvUe4hSWfyePTLvQDcP6YbncMDa39fEREB6qBF2B/+8AcuuugiTp48SWxsrH37pZdeWmklSk2MGzeOq6++mg4dOnD48GH+9re/MX78eDZs2IC7u3u558ydO5c5c+bYv87KynJpksXT3Y3ebYLZdOwM2xMz6NQqoGYXOj/BYrUaT0SIiIiINAdZJ4yKlc1vg6XI2NZ2oFGt0usq8PQ5d2xgJLSOhZPb4dAPEHeDQ7fIKyzmw41G9co9PbJg5UGjgrjnFc7+bkREpBE6ePAgq1evJjU1FYvFUmrfvHnzAOPziMqkp6djNpuJiIgotT0iIoJ9+/aVe866det4/fXX2bZtm8OxLly4kPnz5zt8vABJvxkdQ/xbQXjP2l/PPujeCQmW89uDlfNZkNVq5a+f7CCnoJgB7Vsw/SJV3oqIOJPTEyyAvV0XGAmMVatW0a1bN7p37+7U+1x//bl+13369KFv37506tSJNWvWcOmll5Z7jre3d4Ob0xIbHcKmY2fYlpjB1f2janYRW4IFqzEkzTb0XkRERKSpykmDdc/Cb68ZT26C8VTpqL9Bu8EVn9dljJFgOfitwwmW5VtPkJlfRLtQPwZmlFSv9JgE3noCVESkuXv11VeZOXMmYWFhREZGlhocbjKZ7AkWZ8vOzubmm2/m1VdfJSwszOHzGtqDp42CrT1Yh5HOeaDV1iIseRdYLOBWwwYztnlzUOH8lfd+TWD9oVP4eLrx9LWxuLvpgVwREWdyeoLluuuuY8SIEcyePZv8/HwGDhzI0aNHsVqtfPjhh1xzzTXOvqVdx44dCQsL49ChQxUmWBqiWNsclsSMml/E87yESlGeEiwiIiLSdOWdhp+XwK8vn5s/124oXPx36ODAcN8uY2Htv+DQKjAXg3vlb4mtVitv/RwPwPTBrXH7+VNjh9qDiYgI8Nhjj/H444/z17/+tVbXCQsLw93dnZSUlFLbU1JS7A+xnu/w4cMcPXqUyy+/3L7NVj3j4eHB/v376dSpU5nzGuKDpw2es+av2IR1AXcvKMyGjGM1n+d2fDPkpYN3sDEX7ncSTuWx8GujNdhfx3WnQ5h/mWNERKR2nD6DZe3atQwfbvxi+9lnn2G1WsnIyGDJkiU89thjzr5dKUlJSZw6dYrWrVvX6X2crV9JgmXPySwKis01u4ibO3j4GuuFOc4JTERERKSh2fcVLO5rVK4U5UGb/nDTpzDtG8eSKwBt+4NfSyjIhMRfqzx8/aFTHEjJwd/LneuCdhjnBUdDjIP3ExGRJu3MmTNce+21tb6Ol5cXAwYMYOXKlfZtFouFlStX2ufbnq979+7s3LmTbdu22V+TJk3i4osvZtu2bapKcZazmUYiA5yXYHH3PDcvpTZtwvZ/bSw7X2pc8zwWi5X7P95OXqGZQR1CuWVoTM3vIyIiFXJ6giUzM9M+tG3FihVcc801+Pn5MXHiRA4ePFita+Xk5NjfJADEx8ezbds2EhISyMnJ4f777+eXX37h6NGjrFy5kiuuuILOnTszduxYZ39bdSqqhS+h/l4Uma3sPZld8wvZqlYK85wTmIiISBNS1WBZaSS++4fxtGdEH7jhQ5ixyvhQoTrtOtzcoXPJAOGD31V5+JvrjeqVawdG47d7mbEx9vqat/MQEZEm5dprr+W776r+eeKIOXPm8Oqrr/L222+zd+9eZs6cSW5uLtOmTQNg6tSp9lkuPj4+9O7du9QrJCSEwMBAevfujZeXl1NiavaOrgerGUI7QYgTk1a2NmEpu2p+jf229mATyux6e8NRfo0/jZ+XO0//IRY3tQYTEakTTm8RFh0dzYYNGwgNDWXFihV8+OGHgPFEh4+PTxVnl7Zp0yYuvvhi+9e2HqG33HILS5cuZceOHbz99ttkZGTQpk0bxowZw6OPPtroSl1NJhOxUcGs3p/G9sQM4koqWqrNyx/yThmD7kVERJoRZwyWlUYgIxFOHwGTO0z7GnyCan6tLmNgxzIjwXJZxYN+j6bnsmp/KgDTe5ng3ZKnimMdm90iIiJNX+fOnXnooYf45Zdf6NOnD56epSsJ7rrrLoevNXnyZNLS0pg3bx7JycnExcWxYsUK++D7hIQE3JTgr1/Obg9mE2Gbw1LDCpbTRyBtr/G+qMvoUrvi03N5csU+AOZO6EG7lmojLyJSV5yeYLnnnnuYMmUKAQEBtG/fnlGjRgFG67A+ffpU61qjRo3CarVWuP/bb7+tTagNSmx0iD3BUmOeJb00i5RgERGR5sNVg2XFBeJ/NJZt+tUuuQLQ6RIwuUHqHiNxU8ETqW/9fBSrFS7u1op2hz8ArMa5Lcv2tBcRkebplVdeISAggB9//JEff/yx1D6TyVStBAvA7NmzmT17drn71qxZU+m5b731VrXuJQ6wvf9wdoIlspYJFlv1Svth4NvCvtlssXL/f7dztsjChZ1bMmVQu1oGKiIilXF6gmXWrFkMGjSIxMRELrvsMvuTFR07dqzzGSyNmW3Q/bbaJFi8ShIsqmAREZFmxFmDZaUROGL7gGNk7a/lFwpRgyDxF6OK5YLbyhySfbaIjzcnAXDb4Nbwv3eNHRfMqP39RUSkyYiPj3d1CFJXsk5C2j7ABDEXOffakb2NZWYi5J8plSRxiG3+SrfxpTa/uT6eTcfOEODtwZPX9FVrMBGROlYndaUDBw7kqquuwt/f316BMnHiRC688MK6uF2TEBsVAsCR9Fwy84pqdhF7gqWBzmDJPQX/nQavXQY5aa6ORkREmghnDZaVBs5qhfi1xnqHmidYzhaZOZGRb3zRdYyxrGAOy383JZFTUEzn8AAuLFhrfPgR3A66Nq55fyIiUn+sVmulnTikkbFXz8YZD2c4k08whJRUlyRXcw5L/hk49rOxfl6CpbDYwourDwHw94k9iGqh1mAiInWtThIs77zzDn369MHX1xdfX1/69u3Lu+++Wxe3ajJC/b1oX9ITc8fxjJpdxJ5gyXFOUM50dB28dCHs/hSSNsKqBa6OSEREmghnDpaVBiz9AOQkg4cPRA+u0SWKzRYmv/ILw55YxZKVB7F2vszYceRHKDpb6liLxcrbG44CcOuwGEy/vWbsGDgN3Nxr+l2IiEgTpc9Bmqi6mr9iE9nXWFa3TdihlWA1Q6vuENrRvnntgTTO5BXRKtCb6waW3/5UREScy+ktwhYtWsRDDz3E7Nmz7RUr69at44477iA9PZ17773X2bdsMmKjQjh2Ko/tiRkM79Kq+hdoiC3CLGZY+zT8+ARYLcbTGRkJsOVdGDjd6KEuIiJSC84cLCsNmK09WPRg8PSp0SXeWB9vn3e36PsDHE1rwzOBrTFlnzQeBjlvQOzq/akcO5VHkI8Hf4hMgRVbwN0L+k+t7XciIiJNjD4HaaKs1npIsPSBfV9CSjUrWGztwbqOK7V5+bbjAEyKbYO7WoOJiNQLpydYnn/+eZYuXcrUqed++Zw0aRK9evXikUce0RuLSsRGh/DF9hNsS8ys2QU8S0o/ixpIi7DsZPjkj3D0J+Pr2Bthwr/gy3tg53/hmwdh+gow6Ye+iIjUnLMHy0oDFV+7+SuJp/N49vuDAEzs05oVu5P5dNsJJrSIYzQnjTZh5yVY3lx/FIAbBrXDZ+sSY2Ovq8A/rMbfgoiINE36HKSJSj8A2SdLqmeH1M09IkrmsCTvcPwccxEc/MFY7zbBvjn7bBHf70kB4Mq4ts6KUEREquD0BMvJkycZNmxYme3Dhg3j5MmTzr5dkxIXHQwYg+6tVium6iYevAKMZUNoEXboB/j0T5CXDp7+8H+LIPZ6Y9/o+bDvK2Oo7M6Poa/65ouISM1psGwzYDGfe2Cjw6hqn261Wpn3+S7yi8wM6hDKCzf2Y+3BdO58fwvLMnsw2usbivatwHP8k2AycSAlm3WH0nEzwS1xAfD6J8aFNNxeRETKoc9Bmihb9Wy7ITWunq1SZB9jmboPigvBw6vqc479DAWZ4BcGUQPtm7/dnUJBsYWOrfzp3TaobuIVEZEynD6DpXPnznz00Udlti9btowuXbo4+3ZNSq82wbi7mUjPKeBk5tmqT/g9r5IKFlcOuTcXwfcPw3vXGMmViN7wpx/PJVcAgtvC8DnG+vfzGlZLMxERadQ0WLaJOrkNzmaCdxC0jq326V/vTGb1/jQ83U3886o+mEwmRnZtxSczhxEfOJACqweeWcfYvm0TcK56ZWyvSNrEfwrmAuO+532IISIiYqPPQZooW3uwDjWrnnVISDvwDgZLkVEx44j93xjLrmNLzYX7vKQ92JVxbav/wK6IiNSY0ytY5s+fz+TJk1m7dq299+j69etZuXJluW845BwfT3e6Rway+0QW2xIzaBPiW70LNIQZLF/8GbZ/YKxf8EcY83j5T3oM/bMxhyXjGPy0CC59qH7jFBGRJuWdd97hX//6FwcPGi2gunbtyv3338/NN9/s4sjEKWxPkMZcBO7Ve/uadbaIR/63G4CZozrTOTzAvq9bZCD/mX0pe5b0oV/RVr769C225bfis61JAEwb2g7+97px8AUz1NZURETKpc9BmiBz8bnq2WrOX0nNPsvOpEwu7haOW1VzUEwmiOwNx9Ybg+4je1d+vMUMe/9nrHcbX+qe6w+lA2oPJiJS35xewXLNNdfw66+/EhYWxvLly1m+fDlhYWFs3LiRq666ytm3a3Jio0MA2J6UUf2TPUsSLEWVJFhW/A2ejIET26p//apYzLB7ubF+1Ssw8ZmKy2g9fWDs48b6z8/DabV3ERGRmlm0aBEzZ85kwoQJfPTRR3z00UeMGzeOO+64g2effdbV4Ykz2Oav1OAJ0qdW7CMtu4COYf7MGtWpzP7wQB96jTTalY5kKw9/sZuzRRZ6tQniguLNxsMgPiHQ+5rafAciItKE6XOQJujEVijIMt4DVLN69v7/7uC2tzfx9Hf7HTvB1iYseWfVx8avhawko+ql82X2zf/bfhKLFfq3C6FdS79qxSsiIrXj9AoWgAEDBvDee+/VxaWbvNioYP7zK+xMqsGg+6oqWJJ3wi//Bqzwv7thxqpS5aS1ln4QivONRE+fP1R9fPf/Mz4oif8RvvsHXP++82IREZFmQ4Nlm7jiAkj4xViv5oD7zcfO8P6vCQA8dlVvfDzLf9/j1WMc/PA3hnjsJ6Aojxz8uHVYDKbfSv7u9LvpXCtWERGRcjjyOcgTTzzBHXfcQUhISP0EJTVnbw82olqfm2TkFbKupJLk32sO079dC0b3jKj8JFuCJcWBBMu2/xjLPteUeqB1+daS9mD9VL0iIlLfnFLBkpWV5fBLKtenbQhgJFgslmr2kK9qBssP84GSa57cBpvfrEmIFTu53VhG9nHsDYjJBOOfBJM77Pvy3BsYERGRatBg2SYucSMUn4WACGjV3eHTiswW/vbpTqxW+MOAKIZ1Cqv44JadILQT7tZi3hqZy50Xd+Kq9oVw6Adj/8DptfwmRERE4J///CenT592dRjiCNvnE9VsD7Zmfxpmi9XeVfTej7aRcKqKObkRJW3BkndCZbMEz2bC3i+M9bib7JsPp+Ww83gm7m4mJvZpXa14RUSk9pySYAkJCaFFixaVvmzHSOW6RgTg7eFGdkEx8aeqOUvFq6SneGFO2X3xa+HQ9+DmAUPuNLatXAA5abUL+Hy2BEt1ymfDexizWgC+edDocyoiIlINGizbxNnbg42o1gyU136KZ39KNi38PPnbhB5Vn9BlDAADCzdx/9jueGx9E7BC59FGAkZERKSWrJV9eC4NR2EuJG001quZYPl+TwoAtw/vSP92IWSfLWbm+5s5W2Su+KRW3Y3PavLPQNbxio/b/Znx0ElYN2jb377585LqlRFdwmgZ4F2teEVEpPac0iJs9erVzriMAB7ubvRqE8SWhAx2JmXSqVVA1SfZ2FqEFf3u6QirFX54xFgfcCuMedQY1pa8A354GK78tzNCr1mCBeDiubDzv5C2Fza9DoP/5Jx4RESkWdBg2SbuSPXnryScyuO5lQcA+MfEnoT6e1V9Utcx8OtSOPi9UQ28taTNywUzqhuxiIiINGYJG8BcCMHtILSjw6cVFJtZsz8VgPF9WnPrhTFMXLKO3SeyeOSL3TxxTd/yT/T0MZImqbsheRcER5V/nK09WL8p9odOrFYry7edANQeTETEVZxSwTJy5EiHXzazZs0iPT3dGbdvcvpGhQA1GHTvaWsR9rvKl71fwPHNxmyUEQ8Y7bv+71nABNveh2MbahsyWCxGwgaqn2DxbQGX/MNYX/045J6qfTwiItJsOHuw7IsvvkhMTAw+Pj4MHjyYjRs3OnTehx9+iMlk4sorr6z2PaUCZ7OM9zBgVLA4wGq18o/Pd3G2yMKwTi25ur+DHza0v9B4r5STbDyYkn/G+GCly2VVnioiIiJNiL09WPWqZzccPkVuoZnwQG/6tg2mdbAvS67vh8kEH/6WyEebEis+uapB9+kHIfFXMLlB38n2zVsTM0g4nYeflzuXVTXrRURE6oRTEiw18d5772kmSwX6RgUDNRh0b28Rdl6CxVxktAIDGDYbAkt+4EYNhP4lw4C/+kvtW3NlHIWCLHD3hlbdqn/+gFshoo/RU3T1Y7WLRUREmh3bYNnNmzezefNm3nvvPfr161fqmCeeeIKMjIxKr7Ns2TLmzJnDww8/zJYtW4iNjWXs2LGkpqZWet7Ro0e57777GD58eG2/FTnfsZ/BaoYWMdCivUOnfLH9BGsPpOHl4cZjV/bG5OgHIx7e59qAbHzZWF4wvVqDbUVERKQJSN1nLKMGVes0W3uw0T0jcHMz3n9c1CWMOaO7AvDQ8l3sPlHB5zyRtjksO8rfb6te6TwaAiPtm23D7cf2isTPyylNakREpJpclmBR79GK2SpYdp3IpNhscfxEr/MqWGx/vlvfhVOHwC8Mhs4uffzoR8A31ChDtX2QUFO29mARvcDds/rnu7kbA+8BNr8FmZX0HRUREakBRwbLLlq0iBkzZjBt2jR69uzJSy+9hJ+fH2+88UaF55jNZqZMmcL8+fPp2NHxNhLigPjqtQdLyy5g/v/2ADD74s50rE6rVShdreLuDf2mVu98ERERafxyjEQJgY4PjLdarfyw1zjv95Ukd17cmYu7taKg2MKs97eQmV9U9gK2CpaUXWX3Wcyw/UNjPW6KfXOR2cKXO04CcEVcG4djFRER53JZgkUq1jHMnwBvD84WWTiUVs7A+orYZrBYzVBcYCRa1jxhbBv5APgElT7eL9RIsgCsXghZJ2setH3+SgU9RR0Rc6Ex3M1qMeaxiIiIOFFVD3cUFhayefNmRo8ebd/m5ubG6NGj2bCh4naaCxYsIDw8nNtuu82hOAoKCsjKyir1kgrY5q90rDrBYrVamfvpTk7nFtKjdRB3jKzBYPqSQfcA9L4a/FtW/xoiIiIVGD58OL6+vq4OQ6qSm2YsA1o5fMrO45mkZBXg5+XO0I6l3z+4uZl4dnIcbUN8OXYqj/v/u73s+9KIkgTL6SNQkF1635HVkH3CaK/ebbx987qD6ZzOLSQswIuLOoc5HKuIiDiXEiwNkJubid5tjWTIjsRqtAnz9D+3XpQHv/zbePIipD0MmFb+Of1uhqgLoDAbvvt7zYOu6YD732sRYywzEmp3HRERkWpKT0/HbDYTEVH6qcOIiAiSk5PLPWfdunW8/vrrvPrqqw7fZ+HChQQHB9tf0dHRtYq7ycpJM6pswaEKlo83J/HD3hS83N1YdF0sXh41eJsb3NaYxeLmCYPvqP75IiLSLI0cOZJ33nmH/Pz8So/7+uuvad3a8aoIcQGLBXJKWsMGOD7TxNYebGTXVvh4lm0vGuLnxdKb+uPl7sZ3e1J4Ze2R0gf4t4TAkiqUlN2l99nag/W51mhpWmL5NqPzx//1bYOHuz7eExFxFf0L3EDZ2oTtOJ7h+EnuHkY7C4CMY7DuOWP90nng4VX+OW5uMPEZY1Dark/ODXOrDqvVeQmWkJL+6meO1e46IiIidSw7O5ubb76ZV199lbAwx58anDt3LpmZmfZXYmIlA0+bs6NrjWVEb/Cv/M836UyevTXYvZd1pUfroEqPr9T1/4HZG6FNXM2vISIizUq/fv247777iIyMZMaMGfzyyy+uDklqKv+M0RUEwN/xChZbgqWyQfN9o0J4eFJPAJ76dr/9HLvyBt3nn4G9XxrrcTfaN+cWFPPdbuP8K/u1dThOERFxPiVYGijboPsd1R50XzKHZeUCoyolsi/0urryc1rHwgUzjPWv74fiwurdM+s45J0CkzuE96reub9nG2CboQSLiIjUr7CwMNzd3UlJKf3LbkpKCpGRkWWOP3z4MEePHuXyyy/Hw8MDDw8P3nnnHb744gs8PDw4fPhwuffx9vYmKCio1EvKccSx+SsWi5X7/7uDnIJiBrRvwe0jajkHxzcEQjVLR0REHLd48WJOnDjBm2++SWpqKiNGjKBnz548/fTTZd5XSANnm7/iG+rwfNnE03nsS87G3c3EJd3DKz32xkHtuHZAFGaLlVnvb+bb3edVSZeXYNn1KZgLjM9aWsfZN3+/J4X8IjMxLf2ILfn8SEREXMNlCZabbrpJHyhUom/bEAD2nsyioNjs+IleJcNcD68ylpfNN6pUqnLJ38E/HNIPwIYXqhesrXolvAd4+lTv3N9TBYuIiLiIl5cXAwYMYOXKlfZtFouFlStXMnTo0DLHd+/enZ07d7Jt2zb7a9KkSVx88cVs27ZNrb9qyz7gfkSlh7294SgbjpzC19OdZ66Nxd3NVA/BiYiIlObh4cHVV1/N559/TlJSEjfeeCMPPfQQ0dHRXHnllaxatcrVIYojcm3twSpPlJzPVolyQUwLQvwq6B5SwmQysfDqPlwe24Yis5U739/Cil0lSZbI3sby/ASLrT1Y3I1gOvce57OtRnuwK+LaYjLpvY+IiCt51MVFMzIy2LhxI6mpqVgsllL7pk6dCsDSpUvr4tZNRnSoLyF+nmTkFbE/OdveMqxKnn7n1juOgk6XOHaeTzCMeQw+ux3W/gtir4egNo6d66z2YAAh7YylKlhERMTJHBksO2fOHG655RYGDhzIoEGDWLx4Mbm5uUybZswymzp1Km3btmXhwoX4+PjQu3fvUueHhIQAlNku1XTmGJw5alTHth9W4WGHUnN44pt9APxtYg9iwvwrPFZERKQ+bNy4kTfffJMPP/yQ8PBwbr31Vo4fP87//d//MWvWLJ5++mlXhyiVyal5gmV0D8dmtni4u/HsdbG4meDzbSeY/Z8tvHBjP8a17msckLoHzMVw+jAc32S8H+p7nf389JwC1h1KB9QeTESkIXB6guV///sfU6ZMIScnh6CgoFKZdJPJZE+wSOVMJhN92gbz08F0diRlOp5g8Trvg4XRj1Tvpn2vg99ehaTfjDLUYbMdO8+ZCRZbi7C8U1CQA94Btb+miIg0aSNHjuS2227j2muvrTSB8vXXX1d5rcmTJ5OWlsa8efNITk4mLi6OFStW2AffJyQk4OZIZajUjq16pe0A8Cm/4rnYbOEvH22joNjC8C5h3DS4XT0GKCIick5qairvvvsub775JgcPHuTyyy/ngw8+YOzYsfbPRG699VbGjRunBEtDZ2sR5uCA+4y8QjYePQ3AmJ5lW8pWxMPdjWeujcUELN92gjv/s5Xnr49lgqc/FOUayZVt7xsHdx1bKuHz5fYTmC1WYqOC6aCHS0REXM7pnxD85S9/Yfr06eTk5JCRkcGZM2fsr9OnTzv7dk1arG3QfVKG4yfZEhK9r4E2/ap3Q5MJev/BWD+wwvHznJlg8QkGnxBjXVUsIiLiAGcPlp09ezbHjh2joKCAX3/9lcGDB9v3rVmzhrfeeqvCc9966y2WL19eq/sL5+avdKx4/sq/1xxme1ImQT4ePPWHvmqPISIiLhMVFcVrr73GLbfcQlJSEh9//DHjxo0r9bOpb9++XHDBBS6MUhxiq2Dxd6yCZfX+VMwWK90iAmnX0q/qE87j4e7GM9fFcXW/tpgtVv784XbOBHYxdp7YBtuXGetxN2KxWPnpYBp3/mcL//zaqN5V9YqISMPg9ATL8ePHueuuu/Dzq94PFimrRoPuB8+EbhPgskdrdtOuY4xlwgbIz6j6+OwUyD4JmCDCSe1Q7IPuE5xzPRERadI0WLaJsVohfq2xXsGA+13HM1my8iAAC67oTevgylu/iYiI1KWVK1eyd+9e7r//flq1alXuMUFBQaxevbqeI5Nqq2aLMFt7sMt6Olbx8nvubib+dW0sV/c3kixfpYUZO35+HnKSMfuG8kJSJ0b8azU3v76Rr3acpNBsYXCHUP4wIKpG9xQREedyeoJl7NixbNq0ydmXbZZsbcEOpGSTX+jgoPvuE+CGDyC4hk8yhHaEsG5gKYbDK6s+PnmHsQzr4rx2Xhp0LyIi1aTBsk1I6l5jwKyHL0QPKrP7bJGZOR9to9hiZUKfSK6Ic3BmnIiISB2Jiori4MGDZbYfPHiQo0eP1n9AUnPVGHJfUGzmx/1pQM0TLFCSZPlDLNf0j2K3peTzkBRj0P072YN4emU8SWfyCfTxYOrQ9nz554tY9qehBPp41vieIiLiPE6fwTJx4kTuv/9+9uzZQ58+ffD0LP0P/qRJk5x9yyYrMtiH8EBvUrML2H0ik4ExofVz427jIH0/HPjWaDVWGWe2B7OxV7AowSIiItWjwbJNgK16pd0Q8PAus/u5lQc5kJJDWIA3j13ZR63BRETE5W699VamT59Oly5dSm3/9ddfee2111izZo1rApPqq0YFy4bDp8gtNBMe6E2ftsG1uq27m4mn/tCXF/MvgPjX7ds/Mo9kSMdQJl8QzfjerfHxdK/VfURExPmcnmCZMWMGAAsWLCizz2QyYTY7WIkhgNEm7Ie9qexIqscES9dxsP45OPgdmIvBvZK/JnWRYFEFi4iIVIMGyzYxR38ylh1GlNmVll3Am+vjAXj8qt6E+nvVZ2QiIiLl2rp1KxdeeGGZ7UOGDGH27NkuiEhqrBozWGztwUb3jMDNrfYPfLi7mZh9/SQsC2fhhoUUv678e/YtGmQvItLAOT3BYrFYnH3JZq1vVEhJgiWj/m4aNQh8W0D+GUj6DdoPrfjYukywqIJFREQcEBUVRadOnZg+fTq33nprub3PNVi2EUk2WmIQNbDMrtfXxXO2yEJcdAhjatGKQ0RExJlMJhPZ2dlltmdmZuoh08bEYoa8dGM9oPL3GRaLlR/21m7+SnncvP2NFuzp+4kYcRsouSIi0uA5fQaLOFcf26D749UYdF9b7h7Q+TJj/cA3FR+Xf+ZcEiSyr/Pu3+K8Char1XnXFRGRJkmDZZuQwlzISDDWW/UotSsjr5B3NxwF4M+XdFZrMBERaTBGjBjBwoULSyVTzGYzCxcu5KKLLqr29V588UViYmLw8fFh8ODBbNy4scJjP/30UwYOHEhISAj+/v7ExcXx7rvv1uj7aPZy08FqAUzg17LSQ3cezyQlqwB/L3eGdar82Gob+08Y9CfoP9W51xURkTrhlAqWJUuWcPvtt+Pj48OSJUsqPfauu+5yxi2bjb4lfTyPpOWSdbaIoPoaYtZ1LOz8yJjDclnZdm8AnCwZcN8iBnxDnHfvkHbGsjDbSOL41VNrNBERaZRsg2V/3/f84MGDeHp6EhMT45rApPrSDwBW40ONgNLJsjfXHyW30EyP1kFc0r3qth0iIiL15cknn2TEiBF069aN4cOHA/DTTz+RlZXFqlWrqnWtZcuWMWfOHF566SUGDx7M4sWLGTt2LPv37yc8vOzPv9DQUP7+97/TvXt3vLy8+PLLL5k2bRrh4eGMHTvWKd9fs2EbcO8fVnmrdLBXr4zo2gpvDyfPReky2niJiEij4JQEy7PPPsuUKVPw8fHh2WefrfA4k8mkBEs1tQzwpm2IL8cz8tl1PJNhncLq58adR4PJHdL2wel4CO1Q9hhbezBnVq8AePoa5bg5KXDmqBIsIiJSKQ2WbUJS9xnL31WvZJ8t4q2fjwIw+2JVr4iISMPSs2dPduzYwQsvvMD27dvx9fVl6tSpzJ49m9DQ6v0+u2jRImbMmMG0adMAeOmll/jqq6944403ePDBB8scP2rUqFJf33333bz99tusW7dOCZbqyjGSJlW1B4Nz81ec2R5MREQaJ6ckWOLj48tdF+eIjQ7meEY+O5LqMcHiGwLthxmDZg98C0PuKHtMXcxfsQlpb7y5yUiAtv2df30REWkyNFi2CUnbayzDu5fa/N4vCWTmF9GplT/jeke6IDAREZHKtWnThn/+85+1ukZhYSGbN29m7ty59m1ubm6MHj2aDRs2VHm+1Wpl1apV7N+/nyeffLLC4woKCigoKLB/nZWVVau4m4ycNGPpX37LWZvE03nsS87G3c2kqloREdEMlsagT9sQAHYm1eMcFjDahAEcWFH+fnuCJc75926hQfciIuIYDZZtQuwVLOcSLPmFZl776QgAd17cGXc3Va+IiEjDlJeXx759+9ixY0epl6PS09Mxm81ERJSuioiIiCA5ObnC8zIzMwkICMDLy4uJEyfy/PPPc9lll1V4/MKFCwkODra/oqOjHY6xSXOwguW7kuqVC2JaEOLnVddRiYhIA+eUCpbfS0pK4osvviAhIYHCwsJS+xYtWlQXt2zSYksG3W9PyqjfG3cdD9/9A46ug4Js8A48t68gG04dMtZbO7lFGBgVLGAMuhcREamEbbDsBx98gLu70QO7NoNlxYXSyiZYPtiYwKncQqJDfZkU28ZFgYmIiFQsLS2NadOm8c0335S7v64f+AgMDGTbtm3k5OSwcuVK5syZQ8eOHcu0D7OZO3cuc+bMsX+dlZWlJAtAbkkFS0DlFSxfbD8BwGU9VVUrIiJ1kGBZuXIlkyZNomPHjuzbt4/evXtz9OhRrFYr/fur1VNN9CoZdJ90Jp/TuYWE+tfTExJhnSG0E5w+DIdXQc8rzu1L3gVYIbANBNRBSawqWERExEHOHCwrLlSYe+7nfrgxg6Wg2MzLaw8DMHNkZzzcVXwtIiINzz333ENGRga//voro0aN4rPPPiMlJYXHHnuMZ555xuHrhIWF4e7uTkpKSqntKSkpREZW/GG+m5sbnTt3BiAuLo69e/eycOHCChMs3t7eeHt7OxxXs+FABcuOpAy2J2bg6W7Sgx8iIgLUQYuwuXPnct9997Fz5058fHz45JNPSExMZOTIkVx77bXOvl2zEOzrSccwf8D4YV6vuo4zlge+Lb29LuevAIS0M5aqYBERkSrYBsted911pKamkp2dzdSpU+0PekgjkbbfWPqFgb8xc+7jzUmkZBUQGeTDNQPaujA4ERGRiq1atYpFixYxcOBA3NzcaN++PTfddBNPPfUUCxcudPg6Xl5eDBgwgJUrV9q3WSwWVq5cydChQx2+jsViKTVjRRxkS7D4V/wQ6TsbjM8oJvZpTatAJalERKQOKlj27t3LBx98YFzcw4P8/HwCAgJYsGABV1xxBTNnznT2LZuFPlHBHEnPZUdSJqO61eMQtW7j4JcXjQSLxQJuJTm5Ok+w2CpYEkrfV0REpBzOGCwrLmZrD1ZSvVJktrB0jVG98qeRHfH2cHdVZCIiIpXKzc0lPNz4Pb1FixakpaXRtWtX+vTpw5YtW6p1rTlz5nDLLbcwcOBABg0axOLFi8nNzWXatGkATJ06lbZt29oTNwsXLmTgwIF06tSJgoICvv76a959912WLl3q3G+yObANua+gS8fp3EJ7e7Cpw2LqKSgREWnonJ5g8ff3t89dad26NYcPH6ZXr16AMbBNaqZvVAifbzvBjvoedN9uKHgHQ146HN8M0RcY2+s6wRIcBSY3MBcYT5EEta6b+/zed/8AcxGMf7J+7iciIk6Tl5dX7vy3vn3rYFaYOF/qXmNZMn/li20nSDqTT1iAF9df0M6FgYmIiFSuW7du7N+/n5iYGGJjY3n55ZeJiYnhpZdeonXr6v0uO3nyZNLS0pg3bx7JycnExcWxYsUK++D7hIQE3M57ADE3N5dZs2aRlJSEr68v3bt357333mPy5MlO/R6bhSpahH20KZHCYgu92wbRLzqk/uISEZEGzekJliFDhrBu3Tp69OjBhAkT+Mtf/sLOnTv59NNPGTJkiLNv12zYBt3Xe4swd0/ofCns/hQOrDASLEX5554yrasEi7snBEVBZoLRj70+Eiz5Z+Dn5431i+ZAYMV9V0VEpOFw9WBZcRJbi7BW3TBbrLy45hAAt13UEV8vVa+IiEjDdffdd3Py5EkAHn74YcaNG8f777+Pl5cXb731VrWvN3v2bGbPnl3uvjVr1pT6+rHHHuOxxx6r9j3kd8xFkH/aWC+ngsVssfJuSXuwqUNjMJlM9RmdiIg0YE7vu7Ro0SIGDx4MwPz587n00ktZtmwZMTExvP76686+XbPRs00QbiZIzS4gJets/d7cPodlhbFM3QNWs9EjPagOh7q1OK9NWH3ITDq3npVU8XEiItKgnD9Y1tfXlxUrVvD222/TpUsXvvjiC1eHJ45KK6lgCe/BN7tOciQtl2BfT24aouoVERFp2G666SZuvfVWAAYMGMCxY8f47bffSExMVCVJY5Fb0h7M5A6+oWV2r96XyvGMfEL8PDXcXkRESnFqBYvZbCYpKcneisPf35+XXnrJmbdotvy8POgaEci+5Gy2J2Ywpldk/d28y2VGu66UXZCRWLo9WF0+tRHSHvip/gbdZx4/bz0J2g6on/uKiEitrFq1is8//7zUYNnLLruMoKAgFi5cyMSJE10dolSlIMf+QIW1VXdeWL4HgGkXxhDo4+nKyERERCpVVFRE9+7d+fLLL+nRw5gj5ufnR//+/V0cmVRLTqqx9G9V7gzYtzccBWDywGh8PFVZKyIi5zi1gsXd3Z0xY8Zw5swZZ15WSvRpa7QJ23m8nuew+IVCtFGVxMFv637+io29guVo3d7HJjPxvPXjFR8nIiINSnmDZYEaDZYVF0kvaQ/m34qVx8zsS84mwNuDWzVAVkREGjhPT0/Onq3nLhPifLYESzntwY6k5fDTwXRMJrhpSPt6DkxERBo6p7cI6927N0eOHHHKtdauXcvll19OmzZtMJlMLF++vNR+q9XKvHnzaN26Nb6+vowePZqDBw865d4NUd+SIWrb63vQPUDXscZy/4r6S7CElLQEqU4Fy3+nwRvjoLiw6mN/r1SLMCVYREQaC9tgWcA+WPb48eM1GiwrLpJaMtutVXfe+cX4uX/TkPaE+Hm5MCgRERHH3HnnnTz55JMUFxe7OhSpKfuA+7IJlndL3ptc0i2c6FC/+oxKREQaAacPuX/ssce47777ePTRRxkwYAD+/v6l9gcFBTl8rdzcXGJjY5k+fTpXX311mf1PPfUUS5Ys4e2336ZDhw489NBDjB07lj179uDj41Pr76Wh6WurYEnKwGq11u9Qta7j4IdHIH4tYDW21XmCxVbB4mCCJfM47P7UWE/fD5F9qne/rN+1CBMRkUbB2YNlxQXSjASLpVV3tmw0KqEvj1VyTEREGofffvuNlStX8t1339GnT58yn4N8+umnLopMHJZrq2CJKL25oJiPNxufD0xVZa2IiJTD6QmWCRMmADBp0qRSCQBbQsBsNjt8rfHjxzN+/Phy91mtVhYvXsw//vEPrrjiCgDeeecdIiIiWL58Oddff30tvouGqXvrQDzdTZzJK+LLHSfxdDeRlV9M1tkisvKLyDpbTFZ+Ed6e7vx9Yg8CvJ34n7dVdyPhYUt2eAdDixjnXb88thZhmcfBXAzuVXw/CRvOrWckVj/BogoWEZFG6aabbrKv2wbL7tu3j3bt2hEWFubCyMRhJQmWNJ8O5BQU4+flTreIQBcHJSIi4piQkBCuueYaV4chtXH+DJbzLN92nOyzxcS09GN4Z72vFBGRspyeYHnzzTeJjo7G3b300C+LxUJCQoLT7hMfH09ycjKjR4+2bwsODmbw4MFs2LChwgRLQUEBBQUF9q+zsrKcFlNd8/Zwp3tkEDuPZ/LnD7ZWemzHMH9mjOjovJubTEYVy8aXja9b963bAfcAAZHg7g3mAshKqjqhk/DLufWMGvxdKzXkXgkWEZHGQINlm4iSFmE7i4yqldioEDzcnd7JVkREpE68+eabrg5BaiunbAWL1Wrl3Q3GQ6Y3D43Bza0eu4iIiEij4fQEy/Tp0zl58qR92KzNqVOnGD16NLfccotT7pOcnAxARETp8s2IiAj7vvIsXLiQ+fPnOyUGV5h+UQzPfn8QH083gnw8CfL1JMjHo2TpydFTuXy54yTf70lxboIFoNv5CZY6bg8G4OYGIdFw6pCRMKnLBIvFXLpqJfskmIvA3bN61xERkXqlwbJNQEEOZBo/t386EwZk0799iEtDEhERkWamnCH3G+NPsy85G19Pd/4wIMpFgYmISEPn9ARLRbNBcnJyGsRclLlz5zJnzhz711lZWURHR7swouq5ql8UV/Wr+Af78Yx8vtxxkk3HTnMqp4CWAd7Ou3n7C8ErAApz6ifBAkZbslOHjEH3HSo5Lj8DUnad+9rRuS02OSlgNYPJHUxuYCkykiwh7WoStYiI1CPbYNnXXnsNDw+nv7WRupa231j6h7PuhAWA/u1auDAgERGR6unQoUOlM1KPHDlSj9FIjeSWTbC8UzLc/sp+bQn21cOXIiJSPqd9CmFLWphMJh566CH8/Pzs+8xmM7/++itxcXHOuh2RkZEApKSk0Lr1uSGoKSkpld7H29sbb28nJh0amLYhvvRqE8TuE1ms3JfKdQOdmDzy8IZRc+Hgt9B1rPOuW5kWDg66T/oNsJ77OjOxevexzV8Jamu0Pss4ZrQJU4JFRKTB02DZRq5k/kpRy64cPpALQD8lWEREpBG55557Sn1dVFTE1q1bWbFiBffff79rgpLqyUkxliUtwlKyzvLtLqM7ytSh7V0VlYiINAJOS7Bs3WrMBLFarezcuRMvLy/7Pi8vL2JjY7nvvvucdTs6dOhAZGQkK1eutCdUsrKy+PXXX5k5c6bT7tMYjekZye4TWXy3O8W5CRaAYbONV32xJTjOVJFgsQ24b9MPTmytfoswW4IluK1RwZJxTIPuRUQaCQ2WbeTS9gKQ4m2UqnYI8yfU36uyM0RERBqUu+++u9ztL774Ips2barnaKTais7C2UxjvWTI/X9+TaDYYmVQTCg9Wge5MDgREWnonJZgWb16NQDTpk3jueeeIyio9j+AcnJyOHTokP3r+Ph4tm3bRmhoKO3ateOee+7hscceo0uXLnTo0IGHHnqINm3acOWVV9b63o3ZZT0jePaHA6w7lEZ+oRlfL3dXh1RzIQ5WsBwrSbD0uc5IsOSfgbNZ4OPg30N7giUKMJXeJiIiDZoGyzZyJQPu95nbANAvOsSFwYiIiDjP+PHjmTt3rt6rNHS5acbSzRN8W1BYbOE/G42HNqcOU/WKiIhUzs3ZF3zzzTedklwB2LRpE/369aNfv36A0YasX79+zJs3D4AHHniAP//5z9x+++1ccMEF5OTksGLFigYx68WVerQOJKqFL2eLLKw9mObqcGrH1iKssgqW4gI4vtlY7zIGfEvailSnTdj5LcKC2xrrqmARERGpeyUtwjZkGz3P+7VXezAREWkaPv74Y0JDQ10dhlTl/AH3JhPf7k4mLbuA8EBvxvaKdG1sIiLS4DXoSbCjRo3CarVWuN9kMrFgwQIWLFhQj1E1fCaTict6RvDm+qN8vyelcb8hCIkxljnJUJQPnr5ljzmxDcwF4BcGLTsZbcXyz0BGIkT0cuw+tmRKcJQxgwVUwSIi0khosGwjVpBtfyDim1QjsdK/XYgLAxIREam+fv36lXovYrVaSU5OJi0tjX//+98ujEwc8rsB959vOwHA9YPa4enu9OeSRUSkiWnQCRapuTE9I3lz/VFW7k2h2GzBo7G+KfALBa8AKMwxEiatupY9JuFnY9luiJEcCWkHJ7dXbw6LrdpFLcJERBodDZZtxNIOAFDsF86J0z74ebnTLSLQxUGJiIhUz+/blLu5udGqVStGjRpF9+7dXROUOO68AfdWq5XtSRkAjOwa5rqYRESk0VCCpYm6IKYFIX6enMkrYvOxMwzu2NLVIdWMyWTMYUndbSRMyk2w/GIs2w01lsHtjGVVc1vOl3leBYuNWoSJiDQKGizbiJUMuE/3NQbcx0aFNN6HQkREpNl6+OGHXR2C1EZOSWt1/1YkZ50lLbsAdzcTPVsHuzYuERFpFPQbbBPl4e7GJd2N8tbv9qS4OJpass1hyThadp/Fci7B0r4kwRJiS7A4WMFSlA956cZ6UFvjBZB3ytgnIiKN0vjx4/nkk09cHYZUJtVIsByyGg849G8f4sJgREREaubrr7/m22+/LbP922+/5ZtvvnFBRFIt51WwbE/MBKBLeAC+Xu4uDEpERBoLJViasDE9IwD4fk9KpbNsGryQSgbdp+2Dsxng6QeRfUuOr2aCJcvor4qnP/i2MF6efqX3iYhIo6PBso1AyYD733KNh0L6t9OAexERaXwefPBBzGZzme1Wq5UHH3zQBRFJtZw3g2Xn8QzAqKoVERFxhFqENWEjurbC28ONhNN57E/JpntkkKtDqpmQSlp+JWwwllEDwd2z9PG2uSpVOX/+im0wYVBbOHXQmMPSslPN4hYRkXqhwbKNWKqRYFmf1QqAfkqwiIhII3Tw4EF69uxZZnv37t05dOiQCyKSask5l2DZscuoYOkbrfZgIiLiGCVYmjA/Lw8u6hzGyn2pfL87pfEmWFpUUsFin78y7Ny2kGhjmXcKCnLAO6Dy69vnr7Q9ty046lyCRUREGjQNlm2kzmZBlvFz9qA1ig5h/oT6e7k4KBERkeoLDg7myJEjxMTElNp+6NAh/P39XROUOK6kRZjVvxU7kowEiypYRETEUUqwNHFjekWwcl8q3+1J4c+XdnF1ODVjaxFWWQVLuyHntvkEG6+zmUZ1SniPyq9vS6KcP+DelmzRoHsRkQZPg2UbqfQDAOR4tiTzbACXRoe4Nh4REZEauuKKK7jnnnv47LPP6NTJ6IBw6NAh/vKXvzBp0iQXRydVKhlyf7woiMz8TLzc3egaEejioEREpLHQDJYm7pLuEZhMsPN4JicyGunAdlsFS/4Z42lXm4xEI4FicoeoC0qfU505LLYWYUHnJVhs66pgERFp8DRYtpEqGXB/1M34md2vvdqDiYhI4/TUU0/h7+9P9+7d6dChAx06dKBHjx60bNmSp59+2tXhSWUK86AwG4Admd4A9GgThJeHPi4TERHH6CdGE9cq0JsBJf3Mf9ib4uJoasg7EHxLhhSfX8WS+KuxbN23bBswe9WLAwkWW5WKKlhERBolDZZtpEoG3G87GwlA/3YhLgxGRESk5oKDg/n555/56quvmDVrFn/5y19YuXIlq1atIiQkxNXhSWVsA+49fNhyshiA2CjNXxEREcepRVgzcFnPCDYdO8N3u1OYOjTG1eHUTIv2kH/aSJhE9jG2HfvZWLYbWvb4alWw2FqEnTeDJahkPVMJFhGRhk6DZRupkgqW3cVt8PNyp5tacYiISCNmMpkYM2YMY8aMcXUoUh3nD7g/bnTM6Kv5KyIiUg2qYGkGxvQyngz95cgpMvOLXBxNDYWUM+jePuB+SNnjg0sG3VeVYLFazxtyH33e+SXVLKpgERFp8GyDZX9Pg2UbuLT9ABywRBEbFYKHu96WiohI43TXXXexZMmSMttfeOEF7rnnnvoPSBxXkmCx+oez64Qx4L6vKlhERKQa9JtsM9AhzJ/O4QEUW6ys2Z/q6nBqxl6RUpJgyT8DqXuM9dpUsOSfgaJcYz2ozbnttgqWgiw4m1mzmEVEpF7YBssePnzYvk2DZRu4s1mQZVSQHrS2pX/7ENfGIyIiUguffPIJF154YZntw4YN4+OPP3ZBROKwHKOVeq5nS/IKzfh5udOpVUAVJ4mIiJyjBEszMaZnBADf7Wmkc1ha/K6CJXEjYIXQThAQXvZ4W4LFNsC+IrYKFb8w8PQ9t907AHxCSq6hKhYRkYZMg2UboZLqlXRTC7IIoH87DbgXEZHG69SpUwQHl616CAoKIj093QURicNKKlhSLEEA9G4bjLubyZURiYhII6MESzNxWUmCZc2+VAqKyw4CbvBCYoylrYIlYYOxLK96Bc4lWHLToDCv4uuWN3/FRm3CREQaBQ2WbYTSjPkre4uNn7/9lGAREZFGrHPnzqxYsaLM9m+++YaOHTu6ICJxWMmQ+4QCo2qlb1u1BxMRkerRkPtmIjYqhPBAb1KzC9hw+BSjupVT9dGQnV/BYrVWPn8FwDcEvIOMFl+ZidCqW/nH2RMs0WX3BbWFlF3njhERkQZLg2UbmdR9ABy0RhHT0o9Qfy8XByQiIlJzc+bMYfbs2aSlpXHJJZcAsHLlSp555hkWL17s2uCkciUVLPtzjY4WfaNDXBiMiIg0RqpgaSbc3EyMbsxtwmwJkKJcyDoBxzcbX7cfVvE5jsxhsSdYosq5Z0lViypYREQaNA2WbYTSjATLAWuU2oOJiEijN336dJ555hlef/11Lr74Yi6++GLee+89li5dyowZM1wdnlSmJMGyK8MHgFgNuBcRkWpSgqUZsc1h+WFPChaL1cXRVJOnDwS2Ntb3LAdzIfi3gtBKyq2rk2AJKqdFmG2bZrCIiDRoGizbCNkSLJYo+rVXgkVERBq/mTNnkpSUREpKCllZWRw5coSpU6fW6FovvvgiMTEx+Pj4MHjwYDZu3Fjhsa+++irDhw+nRYsWtGjRgtGjR1d6vPxOyZD7E+Yggn09aRfq5+KARESksVGCpRkZ2qklAd4epGYXsCXhjKvDqb6QkjZh2z80lu2GgKmS4XOOJFhs1SnlVrDYZrCoRZiISEOmwbKNzNlM+8/fQ9a29G8X4tp4REREnKhVq1YEBATU+Pxly5YxZ84cHn74YbZs2UJsbCxjx44lNTW13OPXrFnDDTfcwOrVq9mwYQPR0dGMGTOG48f1oGCVrFZjbiuQTjB9o4IxVfYZg4iISDmUYGlGvD3cGdsrEoB/rzns4mhqwJYwSd5hLNtV0h4MzrUVq3GLsKjSx4iISIOkwbKNTNp+AJKtLSj2CqJbRKCLAxIREam9jz/+mOuuu44hQ4bQv3//Uq/qWLRoETNmzGDatGn07NmTl156CT8/P954441yj3///feZNWsWcXFxdO/enddeew2LxcLKlSud8W01bYU5UJQHQLrVSLCIiIhUlxIszczsSzrj7mZi1b7UxlfFYht0b1PRgHubqipYLGZjnguUn2CxtQjLOmE82SIiIg3SnDlzeOCBB3j44Yf58ccf+fHHH5k3bx4PPvgg9957r6vDk99L3QsY7cFio0LwcNfbURERadyWLFnCtGnTiIiIYOvWrQwaNIiWLVty5MgRxo8f7/B1CgsL2bx5M6NHj7Zvc3NzY/To0WzYsMGha+Tl5VFUVERoaGiFxxQUFJCVlVXq1SyVzF/Jx4c8fOgbFeLaeEREpFHSb7TNTIcwf67uZyQOFn13wMXRVFPIeQkWT3+I7FvF8SUJlszE8vdnJ4PVDG4eEBBRdn9QG2NZfBbyTlU/XhERqRcaLNvIlFSwHLRG0b99iGtjERERcYJ///vfvPLKKzz//PN4eXnxwAMP8P3333PXXXeRmZnp8HXS09Mxm81ERJT+/TQiIoLk5GSHrvHXv/6VNm3alErS/N7ChQsJDg62v6Kjox2OsUkpSbCkWo3KlVglWEREpAaUYGmG7rq0C57uJtYdSueXI40ocXB+BUvUQHD3qPx4W4IlJwWK8svut81fCWwDbu5l93t4g3+4sa42YSIiDZozB8tKHTv6EwD7rNH0b6cB9yIi0vglJCQwbJjRwtrX15fs7GwAbr75Zj744IN6i+OJJ57gww8/5LPPPsPHx6fC4+bOnUtmZqb9lZhYwUOJTV3JgPs0azCtAr2JCPJ2cUAiItIYKcHSDEWH+nHdQOMJlUXfHcDaWNpfnV/B0r6K+SsAvi3Aq2S4YHkJEltlS3Dbiq9h25elAYEiIo1BbQfLSh07vgWSd1Bg9eAHc3/6KcEiIiJNQGRkJKdPnwagXbt2/PLLLwDEx8dX6/ftsLAw3N3dSUlJKbU9JSWFyMjISs99+umneeKJJ/juu+/o27fybg/e3t4EBQWVejVLJQPu06zBxGrAvYiI1JASLM3U7Es64+Xhxsajp1l3KN3V4TgmqC2YSipNqpq/AmAynTeH5VjZ/ZklSZPy5q+cf8/zjxURkQbJWYNlpY5tfguAbyyDCG4ZSai/l2vjERERcYJLLrmEL774AoBp06Zx7733ctlllzF58mSuuuoqh6/j5eXFgAEDSg2otw2sHzp0aIXnPfXUUzz66KOsWLGCgQMH1vwbaW5KKliMAfchro1FREQaLSVYmqnWwb5MGWwkH55pLFUs7h5w0T3Q43Jo50AFC5yXYCmn5NlW1RJUWQVLSfKlojkuIiLics4aLCt17GwW7PwYgA+KL1V7MBERaTJeeeUV/v73vwNw55138sYbb9CjRw8WLFjA0qVLq3WtOXPm8Oqrr/L222+zd+9eZs6cSW5uLtOmTQNg6tSpzJ071378k08+yUMPPcQbb7xBTEwMycnJJCcnk5OT47xvsKkqmcGSZg2hT1Swi4MREZHGSgmWZmzmqE74eLqxLTGDVftSXR2OYy6dB5PfAw8Hn3i1J1gSyu6zJVgqq2Cx7VOLMBGRBstZg2Wlju38LxTlkuQeza/W7vRvrwSLiIg0DW5ubnh4nJsRev3117NkyRL+/Oc/4+V17nfXWbNmkZ5eeQeJyZMn8/TTTzNv3jzi4uLYtm0bK1assA++T0hI4OTJk/bjly5dSmFhIX/4wx9o3bq1/fX00087+btseoqykgFII1gD7kVEpMaUYGnGwgN9uGVYDACLvj+AxdIIqliqq7IES5YDCRa1CBMRafAaymBZqYTVCpvfBODNsyMxmUyM7hHh4qBERETq13vvvUdWVlaVx82ePZtjx45RUFDAr7/+yuDBg+371qxZw1tvvWX/+ujRo1it1jKvRx55pA6+g6bl7BkjUWX1b6W2pSIiUmNKsDRzfxrRCX8vd3afyOLb3cmuDsf5gqONpSpYRESaLGcNlpU6dGILJO+k2OTFJ+bhDO3YkshgH1dHJSIiUq/0vqSBKWkR1jIi2sWBiIhIY6YESzMX6u/FbRd1AODZHw5gbmpVLBVVsBTlQ94pY92RCpasE2AxOz8+ERGpNWcNlpU6tMmoXlnjMZQMArkyrpL5ZyIiIiJ1zWrFp8D4TKBN2/YuDkZERBozJViE24Z3JMjHgwMpOXy544Srw3GukJI3SjnJUFxwbrut5ZenP/iEVHx+YCSY3MFqhpyUOgtTRERqzpmDZQFefPFFYmJi8PHxYfDgwWzcuLHCY1999VWGDx9OixYtaNGiBaNHj670+GbpbBbs+gSAl3NG4uXhxrg+kS4OSkRERJq1s5l4UgRApw4dXByMiIg0ZkqwCMG+nswY3hGAxT8cpNhsKXOMxWJl1/FMXv7xMC+uPlTuMQ2SX6iRRIFzLcGg9PwVk6ni893cIbB12fNFRKTBcOZg2WXLljFnzhwefvhhtmzZQmxsLGPHjiU1NbXc49esWcMNN9zA6tWr2bBhA9HR0YwZM4bjx9Va0m7nR1CUR7pPDL9Zu3Fp93CCfDxdHZWIiIg0Y2dSjd/vs6y+9GqvuXAiIlJzSrAIANMu6kALP0/i03P5bKvxoVDi6Tw+2JjAnf/ZwoDHvuf/nl/Hwm/28a9v97NsU6KLI3aQyQQhtjksx85tt89fcaBFia2FmBIsIiKNmiODZRctWsSMGTOYNm0aPXv25KWXXsLPz4833nij3OPff/99Zs2aRVxcHN27d+e1117DYrGwcuXKuvgWGh+rFTa9BcC7RRcDJq5QezARERFxsaPH4gHIdGtBoB78EBGRWlCCRQAI8PbgjpGdAHjim32MeGo1w59azdxPd/LVjpOcySvCz8ud7pGBALz2U3zjmddS3hwWW4uwyuav2NiSMI4Mui8uAHNR9eITEZF6UdVg2cLCQjZv3szo0aPt29zc3Bg9ejQbNmxw6B55eXkUFRURGhpa4TEFBQVkZWWVejVZx7dAyk4sbl68lTuUIB8PLu7eytVRiYiIuMRNN91EUFCQq8MQ4ORx4/OBAl+9LxERkdrxqPoQaS6mDo3h1Z/iSc8p4FRuIR5uJuKiQ7iwcxgXdQkjNiqEIrOFYU+sIj49l+/3pDCudyPooW5PsJxXdZNZsh7kQILFNug+s4oES0E2LB0G3sHwpx+N9mIiItJopKenYzabiYgo3SYiIiKCffv2OXSNv/71r7Rp06ZUkub3Fi5cyPz582sVa6Ox2aj82Rp0MZl5AVzfpzXeHvr5KCIiTU9GRgYbN24kNTUVi6V0S+2pU6cC1Gg2nNSNzDSjQ4V7YLiLIxERkcZOCRax8/Vy55WpA1i1N5X+7UMY1KElAd6l/4p4ebhx05B2vLj6MK+sPdzIEiznV7CcN4OlKrZjsqpoEbbn83P3SNoE7QZXL04REWnUnnjiCT788EPWrFmDj49PhcfNnTuXOXPm2L/OysoiOjq6PkKsX2czYdenADyXcSGA2oOJiEiT9L///Y8pU6aQk5NDUFAQpvPmfJpMJnuCRRoGq9VK/plkAPxD9d5ERERqRy3CpJT+7Vpw39huXNI9okxyxeaWYTF4ubuxJSGDTUdP13OENRBsm8FyXoLF1u7LkRksjlawbPvPufV9Xzoen4iINAhhYWG4u7uTkpJSantKSgqRkZU/UPD000/zxBNP8N1339G3b99Kj/X29iYoKKjUq0naYQy3zw7qzNqznWgd7MPgDhW3ThMREWms/vKXvzB9+nRycnLIyMjgzJkz9tfp043gd+Zm5mTmWQKKTgHQIlwJFhERqR0lWKTawgN9uLq/8Sbk5bVHXByNA0LaG0tbgsVqPa+CxYEnhm1JmMqG3J8+AsfWn/t6/9fVj1NERFzKy8uLAQMGlBpQbxtYP3To0ArPe+qpp3j00UdZsWIFAwcOrI9QGz6rFTa9CcDXnuMAE5Ni2+DmZqr8PBERkUbo+PHj3HXXXfj5+bk6FHHAjqRMwkyZAHgGN4KuHCIi0qApwSI18sfhHQH4YW8Kh1JzXBxNFWwtwrJPQnEh5J+BojxjW1Cbqs+3JWFyU40h9uXZ/qGxjB4M7l5w6hCkHahd3CIi4lSODJadM2cOr776Km+//TZ79+5l5syZ5ObmMm3aNMDooT537lz78U8++SQPPfQQb7zxBjExMSQnJ5OcnExOTgP/2VjXkjZB6m6sHj78KzkOUHswERFpusaOHcumTZtcHYY4aHtSBq1MGcYX/prBIiIitaMZLFIjncMDuKxnBN/vSeG1n47wxDWVt0NxKf8w8PCF4nxjjkpByYdefmHg6Vv1+X4twcMHis9C1gkI7VB6v8UC2z8w1gfdbqwf+gH2fwWtujr3exERkXI5a7Ds5MmTSUtLY968eSQnJxMXF8eKFSvsg+8TEhJwczv3fMrSpUspLCzkD3/4Q6nrPPzwwzzyyCO1/K4asc1G9crRiDGkH/aja0QAPVoHujgoERGRujFx4kTuv/9+9uzZQ58+ffD09Cy1f9KkSS6KTH6vyGzhi20nmGrKMjYEKMEiIiK1owSL1NifRnTk+z0pfLrlOHPGdCU8sOKBvi5lMkFINKQfMNqEFeUb2x0ZcG87P6iN0QYs63jZBMux9cZ1vYOg+0RjqO+hH2Df13DRvc79XkREpAxnD5adPXs2s2fPLnffmjVrSn199OjR6obb9OVn2Ifbv1kwCjCqV87/7yIiItKUzJgxA4AFCxaU2WcymTCbzfUdklTg650nOZGRSysfo0WYEiwiIlJbahEmNTYwJpT+7UIoNFt4++ejrg6ncrY2YRkJ581fcTDBApUPurcNt+91lVER022C8XXSb5CdUvZ4ERFxKg2WbWB2fATF+RS17M67x43Kn0mxDrTkFBERaaQsFkuFLyVXGg6r1cpLPx4hhBw8KPnv4t/KtUGJiEijpwSL1MrtIzoB8N4vCeQWFLs4mkrYEyyJNUuw2I7N+t2g+4Ic2PO5sR43xVgGtYY2/QErHPimxiGLiIhjNFi2gTn0PQCbWkzAajUxsH0LokP130ZERERc66eD6ew9mUW0V0nbcN8W4OHt2qBERKTRU4swqZXLekbQIcyf+PRclv2WyPSLOlR9kiucX8FiKUkEBVVj2K69guV3CZY9n0NRLoR2guhB57Z3nwAnthhtwgbcWuOwRUSkarbBsh07dnR1KAKQth+AT5ONlhtX9NNwexERaXqWLFnC7bffjo+PD0uWLKn02LvuuqueopLKvLz2MADXdvOCg2jAvYiIOIUSLFIr7m4mZgzvyN8+28nr6+K5eWh7PN0bYGFUcLSxzEgAa8nw42pVsFTQIsw23D7uRmNWi023ibDqMTiyxqhy8Q6oUdgiIlI1DZZtQIryjZ+1wMr0EDzcTEzs09rFQYmIiDjfs88+y5QpU/Dx8eHZZ5+t8DiTyaQESwOwMymT9YdO4e5mYmInDyPBovkrIiLiBI06wfLII48wf/78Utu6devGvn37XBRR83R1/7Ys+n4/xzPy+XrnSa6Ia4BPqoa0N5YZCecSIdVKsJQkaLLOS7CcOQpHfwJMEHt96ePDe0CLGOOYw6ugpz7cExGpKxos24CkHwSs5HkEc5ogLu3ailB/L1dHJSIi4nTx8fHlrkvDZKtemRTbhlDLEWOjEiwiIuIEDbDUoHp69erFyZMn7a9169a5OqRmx8fTnVuGxgDw8o9HsFqtrg2oPLYWYdknIOuEsV6jIffntQjb/qGx7Diq7LVMJuj+f8b6/q+rHa6IiDhOg2UbkPQDABy0GEPt1R5MREREXC3hVB5f7zwJwO0jOkJuqrEjIMKFUYmISFPRqCtYADw8PIiMjHR1GM3eTUPa8+81h9lzMov1h05xUZcwV4dUWkA4ePhA8VnjazeP6r2ZsrUIO5sBhbng4Qvb/mNsi7ux/HO6TYANL8CBFWAuBvdG/7+biIhI5Urmr+wujMTfy53LeuiDCxERaR6SkpL44osvSEhIoLCwsNS+RYsWuSgqAXht3REsVri4Syg9EpfBlneMHapgERERJ2j0n/gePHiQNm3a4OPjw9ChQ1m4cCHt2rWr8PiCggIKCgrsX2dlZdVHmE1eC38vJl8QzVs/H+XltYcbXoLFZDLafJ06aHwd2Abc3B0/3ycYvAKhMNuYw5KbChnHjG22SpXfix4MvqGQfxoSNkCH4bX/PkREBNBg2YbKmn4AE3DY2oaxvSLx9arGz1oREZFGauXKlUyaNImOHTuyb98+evfuzdGjR7FarfTv39/V4TVrp3IK+GhTIsPcdvFC9sfwtVFtS6se0Otq1wYnIiJNQqNOsAwePJi33nqLbt26cfLkSebPn8/w4cPZtWsXgYGB5Z6zcOHCMnNbxDluu6gD7/5yjJ8OprNi10nG9W5gQ21DzkuwBNegZUlwW0jbB5mJsOtTY1vvq8DLr/zj3T2g6zjY/h+jTZgSLCIiTqPBsg1TWvwOwoF4ovjz0PauDkdERKRezJ07l/vuu4/58+cTGBjIJ598Qnh4OFOmTGHcuHGuDq9Z+3zVep7jacZ6bYIMwLcFXPx3GDBNXSZERMQpGvUMlvHjx3PttdfSt29fxo4dy9dff01GRgYfffRRhefMnTuXzMxM+ysxMbEeI27aokP9uHmI8WHKXR9s46eDaS6O6HdCzqtsqs78FRvbHJb0g7D7M2M9bkrl53SfYCz3fQUNcTaNiEgjFR8fT8uWLe3rFb2OHDni4kibj1fX7Cc4LwGAa8ddSr92LVwckYiISP3Yu3cvU6dOBYw25vn5+QQEBLBgwQKefPJJF0fXTJ3NomjFP7hpy7WMdd+ExeQOg/4Ef94Cg2YouSIiIk7TqBMsvxcSEkLXrl05dOhQhcd4e3sTFBRU6iXO84+JPZjQJ5JCs4Xb39nMpqOnXR3SObVNsNjO2fgyFOVCaEejDVhlOl1izH7JOAape6p/TxERkUbgk81JvP/tT3ibiily82H8hRe4OiQREZF64+/vb5+70rp1aw4fPmzfl56e7qqwmq8T2+D5AXj+8jxeFLPRLQ7rn9bBhKfAL9TV0YmISBPTpFL2OTk5HD58mJtvvtnVoTRbHu5uLJ7cj9yCTfx4II1pb/7GB7cPoXfb4CrPjU/P5eEvdnMqp4A3br2AiCAf5wYXcl6rkqCatAgrSbCcLnkaOvZGY7ZLZbz8oePFcOAb2Pc1RPSq/n1FRKRKGizrOqv3p/LAJzu42HQCAM/wruDWpJ7hERERqdSQIUNYt24dPXr0YMKECfzlL39h586dfPrppwwZMsTV4TU/a/8FuakkmlrzcMEULv6/mxgU2cHVUYmISBPVqBMs9913H5dffjnt27fnxIkTPPzww7i7u3PDDTe4OrRmzcvDjZduGsAtb2xk49HTTH1jIx/9aQidw8ufi2O2WHl93RGe+e4ABcUWAO75cBvv/XEw7m5VJDCqIzi6/HVHlUrKmCD2esfO6z7BSLDs/wpG3l/9+4qISKU0WNZ1tiacYdZ7WzBbrEyKzoE0IKyrq8MSERGpV4sWLSInJweA+fPnk5OTw7Jly+jSpYse9KhvViskbQJgztkZHPbry4sD21VxkoiISM016scLk5KSuOGGG+jWrRvXXXcdLVu25JdffqFVq1auDq3Z8/Vy5/VbB9KnbTCncwu56bWNJJ7OK3PcgZRsrl76M//8eh8FxRaGdAzFz8udDUdOsWTlQecGVapFWA2H3Nt0GAEhDiZpuo4DTHBiK2Qer/59RUSkUrbBsjt37sTHx4dPPvmExMRERo4cybXXXuvq8JqsQ6k5TH/rN/KLzIzo2oqJrbONHa26uTYwERGRemQ2m0lKSqJdO+P3TX9/f1566SV27NjBJ598Qvv27au4gjhV1nHIScaMGzutHbhlaAy+Xu6ujkpERJqwRp1g+fDDDzlx4gQFBQUkJSXx4Ycf0qlTJ1eHJSUCfTx5e/oguoQHkJx1limv/UpK1lkAiswWnl95kIlLfmJ7YgaB3h48eU0fPpgxhH9e1QeAJasO8vMhJ/arDYiAgEjwCoQWNSgPDjpvbktVw+1L3TccogcZ6/u/rv59RUSkUhosW/+SM89yyxsbOZNXRGxUMEun9Mf91AFjpypYRESkGXF3d2fMmDGcOXPG1aEI2KtX9lmiMXn6MXWoElwiIlK3GnWCRRq+UH8v3vvjYNqF+pFwOo+bXvuV9YfSueKF9Tzz/QGKzFYu7R7O93NGMvmCdphMJq7s15brBkZhtcLdy7aRll3gnGDc3GDGKrhjLXgHVP/8kGgIbGO0Cuvxf9U7t9sEY6kEi4iI02mwbP3KzCviljc2cjwjn45h/rxx6wX4e7lDekmCRRUsIiLSzPTu3ZsjR464OgwBrIm/AbDV0pnrBkbRwt/LxRGJiEhTpwSL1LmIIB/e/+NgIoN8OJiaw5TXfmXPySxa+Hny3PVxvHbLQCKDSw+0nz+pN13CA0jLLmDOR9uwWKzOCSa4LYR2rNm5Ht4wcz3csc4YXl8d3Scay/if4Gxmze4vIiLlsg2WBeyDZR9//HGmT5+uwbJ14JH/7WZ/Sjbhgd68PX0QLQO8ITsZCrLA5Fbzn7MiIiKN1GOPPcZ9993Hl19+ycmTJ8nKyir1qq4XX3yRmJgYfHx8GDx4MBs3bqzw2N27d3PNNdcQExODyWRi8eLFtfhOGr/0Az8DsNetK3de3NnF0YiISHOgBIvUi+hQP9774yBCS54emdinNd/PGckVcW0xmcoOsvf1cufFKf3x8XTjp4PpLP3xcJljXMIv1HhVV1gXaNkFLEVw6AfnxyUi0owtWrSIwYMHA8Zg2UsvvZRly5YRExPD66+/7uLompZDqTks32bME3tl6kCiQ/2MHbbqlRYdjAcSREREmpEJEyawfft2Jk2aRFRUFC1atKBFixaEhITQokWLal1r2bJlzJkzh4cffpgtW7YQGxvL2LFjSU1NLff4vLw8OnbsyBNPPEFkZKQzvp1GKys3j8DTuwDoO+RSwoN8qjhDRESk9jxcHYA0H53DA1lxz3BOZpwlNjqkyuO7RgSy4IrePPDxDp75bj8XxIQyqEMNkhsNRfeJsH4x7Psael/j6mhERJoE22DZvn37AucGy0rdeGHVQaxWuKxnBHHn/yxXezAREWnG3nzzTaKjo3F3Lz1M3WKxkJCQUK1rLVq0iBkzZjBt2jQAXnrpJb766iveeOMNHnzwwTLHX3DBBVxwwQUA5e5vTpZ99S0zKCQHf6667GJXhyMiIs2EEixSr8IDfQgPdPwpkmsHRPHL4VN8uvU4d32wla/vHm6vgml0bAmW/V9D2n59CCUi4gS2wbJ79+4lJCTE1eE0aYfTcvhi+wkA7r60S+mdafuNpQbc1zuz2UxRUZGrwxARqTZPT88yCYnGavr06Zw8eZLw8PBS20+dOsXo0aO55ZZbHLpOYWEhmzdvZu7cufZtbm5ujB49mg0bNjgt3oKCAgoKzs06rUkbs4bmUGo2CTvWggcURsYR4KmPuxoavWcRkYbGWe9F9BNHGjSTycSjV/ZmW1IGR9Jy+ctH23j9lgtwcyvbVqzBi7oAOoyA+LWw7GaYsQq8A1wdlYhIo2cbLNuhQwdXh9KkvbDqEBYrjO4RQe+2waV3pivBUt+sVivJyclkZGS4OhQRkRoLCQkhMjKy3LbRjYnVai33e8jJycHHx/EHDNPT0zGbzURERJTaHhERwb59+2odp83ChQuZP3++067nalarlUe+2MOVpkMAhHYd5uKI5Hx6zyIiDZkz3osowSINnr+3By/e2J8rX1zP6v1pvPrTEf40spOrw6o+kwmueR1eHmF8EPW/u4yvG/kvEyIirmYbLPvoo48yYMAA/P39S+0PCgpyUWRNx5G0HD4vmb1yz+guZQ9IU4uw+mb7oCI8PBw/P79G/+GkiDQvVquVvLw8+1yR1q1buziimpkzZw5gPBj40EMP4efnZ99nNpv59ddfiYuLc1F0FZs7d649djAqWKKjo10YUe18tyeFdYfSme9tJFhoO9C1AUkpes8iIg2RM9+LKMEijUKP1kE8fHkv/vbZThZ+s49dJ7K4f0w32rX0q/rkhiQgHK59C96aCLs+gejBMPhPro5KRKRRmzBhAgCTJk0q9Qub7WlSs9nsqtCajHPVK+Flq1fOZkJOsrEeVk7yRZzObDbbP6ho2bKlq8MREakRX19fAFJTUwkPD2+U7cK2bt0KGO85du7ciZfXuXbWXl5exMbGct999zl8vbCwMNzd3UlJSSm1PSUlxakD7L29vfH29nba9VzpbJGZR7/cQxC5dDIZrUyJUoKlodB7FhFpyJz1XkQJFmk0bhgUzeG0HN5YH8//tp9gxa6T3DSkPX++pEvjmsvSbgiMeQxWPAjf/g1ax0G7wa6OSkSk0XLmYFkp60haDstLqlfuvrScFmDpB41lYGvwCS67X5zO1r/8/CelRUQaI9u/Y0VFRY0ywbJ69WoApk2bxnPPPVfrqlkvLy8GDBjAypUrufLKKwHj/czKlSuZPXt2bcNtkl5Ze4SkM/lMCkyEIqBFDPiHuTosKaH3LCLS0DnjvYgSLNJomEwmHvq/nlzdvy1PfLOPnw6m8+b6o3y8KYk7RnVi+oUd8PVqJG/KB98BiRth96fw31vgTz9BQCtXRyUi0ig5a7CslM9WvXJp93D6RJWTQNGAe5dRiw0Raeyayr9jb775ptOuNWfOHG655RYGDhzIoEGDWLx4Mbm5uUybNg2AqVOn0rZtWxYuXAhAYWEhe/bssa8fP36cbdu2ERAQQOfOnZ0WV0OUdCaPf68x2oLN6pwBe1F7sAaqqfy/LiJNjzP+fXJzQhwi9apXm2DevW0w7942iJ6tg8guKOZf3+7n4qfX8NGmRMwWq6tDrJrJBJOeh7BukH0SPp4G5mJXRyUi0ig5a7CslBWfnnuueqW82SugAfciIiJONHnyZJ5++mnmzZtHXFwc27ZtY8WKFfbB9wkJCZw8edJ+/IkTJ+jXrx/9+vXj5MmTPP300/Tr148//vGPrvoW6s3Cr/dxtsjC4A6hdCsueT+i9mAiIlLPVMEijdbwLq248M9hfL79OE9/e4DjGfk88PEOFn69l5YB3gT5eBDk60mgj6d9PcjHk7AALzqFB9CpVQDBvp6u+wa8A2Dyu/DKxXD0J1j9GIx+xHXx1LXM4/Dp7dDvJoi7wdXRiEgT0FgHyzYmz686iMUKl3QPp29USPkHacC9iIiIU82ePbvClmBr1qwp9XVMTAxWayN4yNDJfj6Uzlc7T+Jmgkcu74npvU3GDlWwiIhIPVOCRRo1NzcTV/WLYnzv1ry74RjPrzrImbwizuQVOXR+WIA3nVr52xMuHVv50y86hBC/eprp0qobXPE8fDwd1j0LURdA94n1c+/69utSOLYOknca36NP7foTi4g4e7CslHY0PZfPtxnDYu++tJLh9eklCRZVsEg9i4mJ4Z577uGee+5xdShSQ0ePHqVDhw5s3bq1woT4mjVruPjiizlz5gwhISG1vqezryfn3HrrrWRkZLB8+XJXhyJNXLHZwiP/2w3AzUPa08PnNOSdAjdPiOzj4uhEytJ7lsbPkfcs4nomk4nPPvvMPsesvijBIk2Cj6c7M0Z05MbB7YhPzyXrbBFZ+cVkny0i62wxWflFZJ8tJjO/iOSsfA6n5pKcdZb0nALScwr4Nf60/VqBPh68fNMAhnWu3mC8jLxCHvliN8UWK1MGt2dIx1DH+vj1vobiY7/i8dvL5CybwZKOr3DfDRPw8mhCHfwsZtj5sbFekAmb3oCL7nFpSCLS+Dl7sKyU9vyqQ5gtVi7u1orY6JDyDyougDPxxroqWMQBo0aNIi4ujsWLF9f6Wr/99hv+/v61D0pERBoNq9XKou8PcCAlhxZ+ntx7WVc4/IWxs3Vf8FR7WHEOvWcREUcpwSJNir+3B73bljOAtxw5BcUcScvhcFoOh1NzOZyWw87jmSSdyeeWNzfy9LWxXBHX1qFrHUnL4ba3NxGfngvAlztO0jUigJuHxnB1v7b4e5f/v9rxjHze2XCUj38bycuW1Qx0O8Cth/7Msle2ccMf78fDy9uxb7yhi19rzJqx+eXfMPiO6r35TdkN/7sHek6CobONOTYiIjh3sKwYjpaavVJJZcqpw2C1gHcQBETUU3TSlFmtVsxmMx4eVf+a0qpVq3qIyHUKCwtLVeaJiDR3FouVBV/u4a2fjwIwd0IPo/tEktqDSf3Te5Zz9J5Fmrsm9Ii8SPUEeHvQNyqEq/pFcd/Ybiy9aQA/zBnJhD6RFJmt3P3hNl768XCV/WzXH0rnyhfXE5+eS9sQX24YFI2flzsHUnJ4aPkuhvxzJY98sZvDaTmA8UN4Y/xpZr2/mRFPreblH49w6iw87vcAGV6RtDGd5ubUf5Hxr35Ytn1gVH80djuWGct+N0NQFOSkwPb/OH6+1Qpf3AVJG+G7f8AXfwazY23gRESk+l5Yfa56Ja6i6hUoPeBeiW+XsVqt5BUWu+RVnb7/t956Kz/++CPPPfccJpMJk8nEW2+9hclk4ptvvmHAgAF4e3uzbt06Dh8+zBVXXEFERAQBAQFccMEF/PDDD6WuFxMTU+qpUpPJxGuvvcZVV12Fn58fXbp04YsvvnAoNrPZzG233UaHDh3w9fWlW7duPPfcc2WOe+ONN+jVqxfe3t60bt261IyEjIwM/vSnPxEREYGPjw+9e/fmyy+/BOCRRx4p005i8eLFxMTElPrzufLKK3n88cdp06YN3boZVWHvvvsuAwcOJDAwkMjISG688UZSU1NLXWv37t383//9H0FBQQQGBjJ8+HAOHz7M2rVr8fT0JDk5udTx99xzD8OHD3foz+aTTz6xf88xMTE888wzpfbHxMTwz3/+k+nTpxMYGEi7du145ZVXHLq2zb59+xg2bJj9z+3HH3+sVUwFBQX89a9/JTo6Gm9vbzp37szrr79e7rXy8vIYP348F154IRkZGZXe9+jRo5hMJj766COGDx+Or68vF1xwAQcOHOC3335j4MCBBAQEMH78eNLS0uzn/fbbb1x22WWEhYURHBzMyJEj2bJlS6lrm0wmli5dyvjx4/H19aVjx458/PHHlcZzvsTERK677jpCQkIIDQ3liiuu4OjRo/b9tr9f8+fPp1WrVgQFBXHHHXdQWFhY6s/trrvuIjw8HB8fHy666CJ+++23Uvep6O/a+Z5++mlat25Ny5YtufPOOykq0vt2qb3CYgv3frTNnlx55PKeXDcw2tiZVPL3VAPuG4XG8L5F71niSl1L71nK9+OPPzJo0CD7n/GDDz5IcXGxff/HH39Mnz598PX1pWXLlowePZrcXOPB7DVr1jBo0CD8/f0JCQnhwgsv5NixY1Xe0/bf54033qBdu3YEBAQwa9YszGYzTz31FJGRkYSHh/P444+XOm/RokX06dMHf39/oqOjmTVrFjk5Ofb9b731FiEhISxfvpwuXbrg4+PD2LFjSUxMdPjP4/PPP6d///74+PjQsWNH5s+fX+rPw5H3Ojt37uSSSy6x/5ndfvvtpeKEyv9uA6Snp9fo/63aUAWLyHl8PN154Yb+PBa0lzfWx/PEN/s4kZHPw5f3wt2t7AdH7/1yjIe/2I3ZYqV/uxBevnkgrQK9mTuhB59sTuKdDceIT8/lrZ+P8tbPRxneJYzTuYXsPpFlv8bQji2ZdmEMl/aIwL14Ivu+XEyr7f8mrOg4LL8D67pFmEY9CD2vArdGmBMtzIU9Jf+Y9bsZInrDir/C+ueg31Rwd+CfoZ0fw/FN4OED5kLY+i5kJsF1b4OPYxVLIiLimGOncvlsqwPVK6AB9w1EfpGZnvO+dcm99ywYi5+XY79SPPfccxw4cIDevXuzYMECwPglG+DBBx/k6aefpmPHjrRo0YLExEQmTJjA448/jre3N++88w6XX345+/fvp127dhXeY/78+Tz11FP861//4vnnn2fKlCkcO3aM0NDQSmOzWCxERUXx3//+l5YtW/Lzzz9z++2307p1a6677joAli5dypw5c3jiiScYP348mZmZrF+/3n7++PHjyc7O5r333qNTp07s2bMHd3d3h/5sbFauXElQUBDff/+9fVtRURGPPvoo3bp1IzU1lTlz5nDrrbfy9ddfA3D8+HFGjBjBqFGjWLVqFUFBQaxfv57i4mJGjBhBx44deffdd7n//vvt13v//fd56qmnqoxn8+bNXHfddTzyyCNMnjyZn3/+mVmzZtGyZUtuvfVW+3HPPPMMjz76KH/729/4+OOPmTlzJiNHjrR/4FKV+++/n8WLF9OzZ08WLVrE5ZdfTnx8PC1btqxRTFOnTmXDhg0sWbKE2NhY4uPjSU9PL3OtjIwMJk6cSEBAAN9//z1+fn4Oxfvwww+zePFi2rVrx/Tp07nxxhsJDAzkueeew8/Pj+uuu4558+axdOlSALKzs7nlllt4/vnnsVqtPPPMM0yYMIGDBw8SGBhov+5DDz3EE088wXPPPce7777L9ddfz86dO+nRo0el8RQVFTF27FiGDh3KTz/9hIeHB4899hjjxo1jx44d9qeKV65ciY+PD2vWrOHo0aNMmzaNli1b2j+EeeCBB/jkk094++23ad++PU899RRjx47l0KFDhIaGVvp3zWb16tW0bt2a1atXc+jQISZPnkxcXBwzZsxw6M9WpDx5hcXMfG8LPx5Iw8PNxDPXnddtorgAkncY620HuC5IcVhjeN+i9yxVa67vWWyOHz/OhAkTuPXWW3nnnXfYt28fM2bMwMfHh0ceeYSTJ09yww038NRTT3HVVVeRnZ3NTz/99P/t3Xd8jdcfwPHPzd6SCBErgiBWbEJVraa0itqUqNGqUbRFteavLaq20qFFqVptqVK7KLFHzIgtdozsndzz++Opy5U9SML3/XrdV+6zz3Puk3u/957nnC9KKZKSkmjXrh39+/dn+fLlJCQkcPDgwcylGQAuXrzIxo0b2bRpExcvXqRjx45cunSJChUqsGvXLvbu3UufPn1o0aIF9evXB8DExIQ5c+bg4eHBpUuXGDhwICNHjmT+/PmG/cbExPDll1+yZMkSLCwsGDhwIF27djVcO+nZvXs3vXr1Ys6cOYZGs3fffRfQ4qaH0ot1oqOjDfHMoUOHCAkJoV+/fgwePJjFixcD6V/bD2X3fytH1AsuPDxcASo8PDyviyLymQX/XlRlPlmv3EetV/1/PqRiE5IMyxKTktX4P08p91Ha8mErjhktfyg5Wa92BYWovosPGvblPmq9qvDZ32rUb8fVmZupX3d/Hjyrpnz2rnowrrhS4x20x7wGSp3+U6nk5Kd2zhmKi1AqOeV5puv4Kq38s6orpdcrFR+l1JQy2rwTqzPePj5Kqele2vq7pip1dqNSX7g9qpPQ4OydixAiXfL5+Ozkp7rW6/Wq38+HlPuo9cpv4YGMN1jdR3s/3j3zqZdNPBIbG6vOnDmjYmNjlVJKRccnGmKMZ/2Ijk/MUtmbNGmihg4dapjesWOHAtTatWsz3LZKlSpq7ty5hml3d3c1c+ZMwzSgxowZY5iOiopSgNq4cWOWyvjQoEGDVIcOHQzTxYsXV5999lmq627evFmZmJiooKCgVJePHz9eeXt7G82bOXOmcnd3N0z7+fkpV1dXFR8fn265Dh06pAAVGRmplFJq9OjRysPDQyUkJKS6/ldffaW8vLwM07///ruys7NTUVFR6R5HKaW6d++uWrZsaTRvxIgRqnLlyoZpd3d39fbbbxum9Xq9Klq0qPr2228z3P/ly5cVoKZMmWKYl5iYqEqWLKm++uorpdSjayQ0NDRTZQoKClKA2rp1a6rHfLi/wMBAVb16ddWhQ4cM6/zJ8v7444+GecuXL1eA2r59u2He5MmTVcWKFdPcT3JysrK3t1d//fWXYR6gBgwYYLRe/fr11fvvv59huZYuXaoqVqyo9Hq9YV58fLyytrZWmzdvVkpp15ezs7OKjo42rPPtt98qOzs7lZycrKKiopS5ublatmyZYXlCQoIqXry4mjp1qlIq42vNz89Pubu7q6SkR98XOnXqpLp06ZJm2Z98P3tcfvp8fN7l57oOjY5X7eftUe6j1quKY/5W/5y9Y7zCtcNaLDKljPZ9U+Qrqf2PF5S4RWKWRyRmeRQDHDt2TCml1Keffpris3fevHmGz9UjR44oQF25ciXFvu7fv68AtXPnzgyP+6Tx48crGxsbFRERYZjn6+urypQpo5If+72wYsWKavLkyWnuZ/Xq1apw4cKG6UWLFilA7d+/3zAvMDBQAerAgYy/FzZv3lxNmjTJaN7SpUuVm5ubYTqjWOeHH35QTk5ORq/3hg0blImJibp9+7ZSKv1r++Exsvq/lRuxiPRgESIN/RqXxa2QNcNXBrDlzB26L9jPj351MTPVMfjXY/x7Tuv2P8K3IgNfKZdqS7OJiY6XKxTh5QpFuPYghjXHbmBtbkqH2iVxtk17fMo361YkUv8pjde0oI/pJgZZbcIy5Ays6gkm5mBpBxb/PSwf/2sPNs7aOPh2rmBX9NFzG+fsD98SfQ/++RyO/AxV2kGnxZnf9sQK7W/1LtrxLWyhwfuw40vYMwuqdki/XHvnQsQNKFRay71ibg3v/A2/doGQM/Bjc+i+EorXzN65CSGEMFh+8Bpbz9zB3FTHSN9KGW/w+BBhIs9Ym5ty5n++eXbs3FCnjvGwLlFRUUyYMIENGzZw69YtkpKSiI2NJTg4ON39VK9e3fDc1tYWBweHFENTpGXevHksXLiQ4OBgYmNjSUhIMAyRERISws2bN2nevHmq2wYEBFCyZEkqVMjZ/0K1atVSjGF+5MgRJkyYwPHjxwkNDUWv1wMQHBxM5cqVCQgIoHHjxpibm6e6z969ezNmzBj2799PgwYNWLx4MZ07d85Ust3AwEDatm1rNK9Ro0bMmjWL5ORkw92uj9e7TqejWLFima53AB8fH8NzMzMz6tSpQ2BgYLbKFBAQgKmpKU2aNEn3mC1btqRevXqsXLkyy3ftPn6+rq5a/qlq1aoZzXv8/O/cucOYMWPYuXMnISEhJCcnExMTk+J6frweHk4HBARkWJ7jx49z4cIFo94wAHFxcUbDd3l7exv10vHx8SEqKopr164RHh5OYmIijRo1Miw3NzenXr16htcio2sNoEqVKkb16ebmxsmTJzM8ByFSczs8jl4LD3DuThSFrM1Z2Lsutd2djFe68V/+lZJ1ZLjSAqKgxy0Ss2he1Jjl8eP5+PgY/RbYqFEjoqKiuH79Ot7e3jRv3pxq1arh6+vLq6++SseOHXFycsLZ2ZnevXvj6+tLy5YtadGiBZ07d8bNzS1Txy5TpozRZ76rqyumpqaYPDbqzZOxyLZt25g8eTJnz54lIiKCpKQk4uLiiImJMcQGZmZm1K1b17BNpUqVcHR0JDAwkHr16qVbpuPHj+Pv7280NFlycnKKY6QX6wQGBuLt7W30ejdq1Ai9Xk9QUBA6nS7da/uhnPxvZZc0sAiRjteru+FiZ0H/JYc5GhxGx2/3YmKi40JIFNbmpszs4s1rVTP3BljK2YYPmntm+tg96rsTHZ/EpL9tWBz9Kku8DlHjxgpIiITYUO2RFSbmWoNL6QZQtx+U9sk4AE1OhIMLYOcUiA/X5p1eA/XeBfeGGR8z8g5c/Ed7Xr3Lo/l1+2lDhN05CRe2gWfL1LcPv6E1wgC0nKg1rgAUrwH9t8OyzhByGha1ho4LoWKrjMskhBAiVRdCovjfem3og5G+lahc3CH9DfR6uHdBey5DhOUpnU6X6WG68qsnvzh//PHHbN26lWnTplG+fHmsra3p2LGjUb6I1Dz5hV2n0xm+3KdnxYoVfPzxx0yfPh0fHx/s7e35+uuvOXDgAADW1tbpbp/RchMTkxTjvqeWl+LJeng4VIKvry/Lli2jSJEiBAcH4+vra6iLjI5dtGhR2rRpw6JFi/Dw8GDjxo3s3Lkz3W2yKrv1/jRkVB8Pvf766/z++++cOXPGqHEkMx4/34c/rDw57/Hz9/Pz4/79+8yePRt3d3csLS3x8fHJ8HrOrKioKGrXrs2yZctSLMvNxMqZqdv8dC2Igu3S3Sh6/nSQG2GxuDpYsqRPfSoWs0+5oiS4L3AKetwiMYtGYpb0mZqasnXrVvbu3cuWLVuYO3cun332GQcOHMDDw4NFixbxwQcfsGnTJlauXMmYMWPYunUrDRo0yNY5pHdeV65c4Y033uD999/nyy+/xNnZmT179tC3b18SEhIyPURqeqKiopg4cSJvvfVWimVWVlY53j9kPsbLi1ikACZ0EOLZql+2ML+/35ASjtZcuhfNhZAo3ApZsXqAT6YbV7Lr3ZfL8UFzTyKwo11gU35rtguGn4aBB6DfP9DrT+iyDNp/D62nQYsJ0HAIVOsMHk2giBdY/zfGoD5R6wly6ndY1Aq+bQSHF0J8VOoHv7ANvm0Im0drjSvFqoPnf3eZbP9cSzyfkVO/g9JrwW7hco/m2zhD7d7a890z0t5++0RIioVSDYgo9wbf77rI5XtaQjAKlYQ+m6BcM0iMgRXd4UD2k5MJIcSLLD4pmaErjhGXqKexpwt9X/LIeKPwYO092tQCHN2ffiHFc8HCwoLk5OQM1/P396d37960b9+eatWqUaxYMaOE3bnN39+fhg0bMnDgQGrWrEn58uWN7vy3t7enTJkybN++PdXtq1evzvXr1zl37lyqy4sUKcLt27eNfrDITM+Es2fPcv/+faZMmULjxo2pVKlSijvwqlevzu7du9NNJN6vXz9WrlzJDz/8QLly5Yx6KaTHy8srxbjW/v7+VKhQIcu9PtKzf/9+w/OkpCSOHDmSZt6RjMpUrVo19Ho9u3btSveYU6ZMwc/Pj+bNm3PmzJmcn0Q6/P39+eCDD2jdurUhKWtqOWEer4eH0xnlXwGoVasW58+fp2jRopQvX97oUajQo3yFx48fJzY21mj/dnZ2lCpVinLlymFhYWFUt4mJiRw6dIjKlSsDmbvWhMgNgbci6PTdPm6ExeLhYstvAxqm3rgCjyW4l/wrIndJzCIxS0bH27dvn1E9+fv7Y29vT8mSJQHth/1GjRoxceJEjh07hoWFBWvWrDGsX7NmTUaPHs3evXupWrUqv/76a66XE7SeRXq9nunTp9OgQQMqVKjAzZs3U6yXlJTE4cOHDdNBQUGEhYVlOhYJCgpKEYeUL1/eqGdNerGOl5cXx48fJzo62rDc398fExMTKlasmOG1nZekgUWITPB0teePgQ1pVL4wjT1d+HNQI6qWeDbJ1Ye38KTffz90jfzzLH9e1kHRSloAWfYV8HoDvLtCvf7w0nB49QvosAD81sGg/TDqMoy5C8PPwDsboVYvMLPWen6sHw4zvODvkYRePcXwlQGs3f6vNvzWLx3g3jmwcYE2c+DdnfDGTDC1hOC9cDETb2gPhwfz7ppymc8grVdN8F4I3p9y+bVDcGIlAHrfyQxZHsDkjWfp8v0+QiLitHWsHKD7Ku2clB42joBdX2e9koUQ4gU3fcs5Tt+MwMnGnGmdvDExycQQGw8T3BcuD6YF9y5E8WyVKVOGAwcOcOXKFe7du5fm3WSenp788ccfBAQEcPz4cbp37/5U7zzz9PTk8OHDbN68mXPnzjF27FgOHTpktM6ECROYPn06c+bM4fz58xw9epS5c+cC0KRJE15++WU6dOjA1q1buXz5siH5KMArr7zC3bt3mTp1KhcvXmTevHls3Lgxw3KVLl0aCwsL5s6dy6VLl1i3bh2ff/650TqDBw8mIiKCrl27cvjwYc6fP8/SpUsJCgoyrOPr64uDgwNffPEF77zzTqbr5aOPPmL79u18/vnnnDt3jp9//plvvvmGjz/+ONP7yIx58+axZs0azp49y6BBgwgNDaVPnz7ZKlOZMmXw8/OjT58+rF27lsuXL7Nz505WrVqVYl/Tpk2jR48eNGvWjLNnz+bqOT3O09OTpUuXEhgYyIEDB+jRo0eqd2GuXr2ahQsXcu7cOcaPH8/BgwcZPHhwhvvv0aMHLi4utG3blt27dxvO+YMPPuD69euG9RISEujbty9nzpzh77//Zvz48QwePBgTExNsbW15//33GTFiBJs2beLMmTP079+fmJgY+vbtC2TuWhPCIDkpczflPSEkIo4+iw9xPzqBKsUdWD3Ah1LOadxdHX0fQi9rzyXBvchlErNIzJKegQMHcu3aNYYMGcLZs2f5888/GT9+PB9++CEmJiYcOHCASZMmcfjwYYKDg/njjz+4e/cuXl5eXL58mdGjR7Nv3z6uXr3Kli1bOH/+fKYaMrKjfPnyJCYmGl6bpUuX8t1336VYz9zcnCFDhnDgwAGOHDlC7969adCgQYbDgwGMGzeOJUuWMHHiRE6fPk1gYCArVqxgzJgxRuulF+v06NEDKysr/Pz8OHXqFDt27GDIkCH07NnTMCRretd2XpIGFiEyydXBimX9GrC0b32KOuRO97bM0Ol0fPa6F93qlUavYOiKAMb9eYq4xIzvpDAws4BCJbRhvd6cCx8Fgu9kcC4H8RFw8HucFjWi1+m+tP63HZzbBCZmWs6TIUegth+YmGr7qNdf22dGvVhCzsKt49p+qqTsIohDcajRTXu+Z6bxMqVg0yfa8xo9+Pa8A7v+y3kTEhnP+8uOkpD0X8Biaq41ADUfp03v+EIbxkwIIUSm7Dl/jx/+vQTA1I7euGb2M+7efw0skn9FZMHHH3+MqakplStXNgwdkZoZM2bg5OREw4YNadOmDb6+vtSqVeupleu9997jrbfeokuXLtSvX5/79+8zcOBAo3X8/PyYNWsW8+fPp0qVKrzxxhucP3/esPz333+nbt26dOvWjcqVKzNy5EjDna9eXl7Mnz+fefPm4e3tzcGDBzP1hb9IkSIsXryY1atXU7lyZaZMmcK0adOM1ilcuDD//PMPUVFRNGnShNq1a7NgwQKj4RFMTEzo3bs3ycnJ9OrVK9P1UqtWLVatWsWKFSuoWrUq48aN43//+x+9e/fO9D4yY8qUKUyZMgVvb2/27NnDunXrcHFxyXaZvv32Wzp27MjAgQOpVKkS/fv3N7ob8nEzZ86kc+fONGvWLM27eXPqp59+IjQ0lFq1atGzZ08++OADihYtmmK9iRMnsmLFCqpXr86SJUtYvny5ofdIemxsbPj3338pXbo0b731Fl5eXvTt25e4uDgcHB4N99i8eXM8PT15+eWX6dKlC2+++SYTJkwwLJ8yZQodOnSgZ8+e1KpViwsXLrB582acnLScF5m51oQA4Px/oyFc2JalzeISk+m/5DC3wuMoV8SWX/s3wMXOMu0NbhzR/hb2BGuntNcTIhskZpGYJT0lSpTg77//5uDBg3h7ezNgwAD69u1raFBwcHDg33//pXXr1lSoUIExY8Ywffp0WrVqhY2NDWfPnqVDhw5UqFCBd999l0GDBvHee+89lbJ6e3szY8YMvvrqK6pWrcqyZcuYPHlyivVsbGwYNWoU3bt3p1GjRtjZ2bFy5cpMHcPX15f169ezZcsW6tatS4MGDZg5cybu7sYjHaQX69jY2LB582YePHhA3bp16dixI82bN+ebb74xbJ/RtZ1XdOrJgfVeMBERERQqVIjw8HCj4FOI/CZZr5iyMZAFu7U7dCq62jO3e00quKbRVToz9HrUpR2cWjuDypH+mOq0t4Mdyd5cqTOG3m+2NErYBWgJ72d7Q0IUdF4Kld80LLofFY+TjYV25/O2CVrDSYVW0H1F6se/dwG+qQMoeH8vuFbR5p9YDX/0A3NbjrTdRqdll9Er+KBZeRbvvUJEXBLd65dmUvsnxsve9Cnsn6f10Om7Gdy8s183Qrzg5PPx2cnLug6NTsB31r+ERMbTo35pvnzyfTU964bA0SXw8kho9tnTK6RIIS4ujsuXL+Ph4ZFrYxqL51/fvn25e/cu69aty+uiiFTodDrWrFlDu3btnsr+e/fuTVhYGGvXrn0q+8+u9N7PJBZ5dnK9rreMgb1zwaUivO+v3RSXAb1eMWTFMTacuIWjjTlrBzaijEsGia13TIJdX4F3N2if8m5skfckZhHZITHLs7d48WKGDRtGWFjYUzvG0451sis3YhHpwSJEAWFqouOz1yuz+J26uNhZEHQnkjZz9/DL/qspEpBlmokJ31wtTZt7A3klcTYXa4/l7xrf8k7iKCbuS2TalqCU+7Z1gQbva893fAn6ZKLjkxj35ylqf7GN7j/uJzY+UWskAfDuQppcykPlttrzh8nsE2Jg23gAout9wIA/b6JX8FatEgxvWYHZ3Wqi08GvB4JZfvCJO0ha/g/KNddyAizvDlHG430KIYR4RCnFqN9PEBIZT/midox5PeO7pI08HCJMEtwLka+Fh4ezZ88efv31V4YMGZLXxRFCvAgafww2heFeEBxZnKlNZm0/z4YTtzA31fHd27UzblyBxxLcy/BgQjwPJGYRBZU0sAhRwLxSsSgbh75MkwpFiE/SM2btKd5beoTQ6IQs72v9iZtM36r9QDag7SuUa/Mxrdt1Z8zr2riP83ZcZOrmVBpZfAaDlSPcPcu5bQvxnfUvS/ZdBWD/pQfM+mkxRFwHSwetB0t6Xhqu/T31O4Regb1zIOIGqlApBl3x4W5kPJ5F7fiiXVV0Oh1NKxbl41e1H/PG/XmKI1dDH+3L1Aw6LtS6iEdchxU9ICk+y/VS4MRHwa6pWu6c0Kt5XRohRAGx/OA1tpy5g4WpCbO71sDaIgvJH5XSfjQBGSJMFAgDBgzAzs4u1ceAAQPyunhPVdu2bXn11VcZMGAALVu2NFrWqlWrNOtl0qRJOT72pEmT0tx/q1YZxIh5IL+WN7+WS4g0WTvCK6O15zsnQ2xYuqv/GXCDOdu1IV6+bF+NBmULZ3wMvR5u/NfAUrJu9ssqRD4jMcuLHbNUqVIlzXIsW7bsmZWjoJQrv5AhwqTbsSig9HrFQv/LfLXpLInJimIOVszsUgOfcpkIRoFjwaF0/WE/8Ul6+r7kwdg3jO9cXuR/mYl/nQHgvZfL8kmrSkbDhcXvmIblrs+5qi9K84RpuDra06+xB1M3BTFBfUsXs53oa/bEpO03ZGhpe7j4D3i10cbrTYplQ8VJDDpeBmtzU/4a0ojyRR8NhaaUYuCyo2w8dZui9pb8NeQl45wB9y7AgmYQHw41ekDbefDkUGfPg+REbXienVMg+r/eOp6+0CNlElchsko+H5+dp1LXyYnpDsdxISSKN+buJi5Rz5jXvejXuGzW9h91F6aVB3Tw6U2wSCP5rHgqZLiNrAsJCSEiIiLVZQ4ODqnmw3gR3Lhxg9jY2FSXOTs74+zsnKP9P3jwgAcPHqS6zNramhIlSuRo/7ktv5Y3v5YrN8gQYfnD04lFkrQ8LPeCoOEH8Ornqa529L/vpQlJet57uSyjW2cyyfO989pw02ZWMPp6poYhE8+exCxZJzFL6l6UmOXq1askJiamuszV1RV7+xykCciB/Fqu3JAbsYjZ0y6kEOLpMDHR0a9xWRqULcwHy49x6V403X/cT88G7rzTyAOPdLpUXw+Nof+Sw8Qn6WnhVZRPUwli32nkgamJjnF/nub7fy+RrFd89roXOp2Of8/dZcI+L1aqQribhDC9/Ema9/wEO0szPJ3M8F55AIAfwurynlIp87g86aXhWgNL4F8AhBepzeATWiKsSW9VNWpcAW3cxmmdvLl4N4pzd6J4/5cjLH+3AZZm/9197VIeOi2CZR0hYJmW28VnUGarNltCIuL449gNGpVzoVrJQk/1WCgFZ9dreW7uX9DmObpDxA04v1mry3LNnm4Zsir0itbwVb7589nYJUR+ErQR/h4BHX6C0vVTLI5PSmboimPEJepp7OlCn0YeWT/GwwT3jqWkcUUUCEWLFn1hf5BIz9P+sSA3fvB4lvJrefNruYRIl6kZvPoF/NoJDnwHdfqAs3HMcSMslneXHCEhSU8LL1dGvlYp8/t/ODyYWw1pXBHPFYlZUveixCxPJoXPL/JrufILGSJMiAKuaolC/DXkJTrXKYlSsGTfVZpO20nvRQfZERSCXm/cSS0yLpG+iw9zLyoBLzcHZnetialJ6j949/IpwxftqgLw457LTFh3mlG/naDXwoNcioBlFp0AaBv+C3YmWkv2S/pD2OtiuaFc+CrQmS82BGacI6ZMYyhRxzA56H4nlNLRrV4p2tcsmeomtpZm/NCzDg5WZhwNDmPCujPGK5RvDq9+qT3fMgYubEu/DDkQFZ9Ez58OMmXjWdp8s4e23+xh1eFrxCYk5/7BgvfDQl9Y+bbWuGJTGFpNhcGHoW5/bZ3Nn2l3jOUSpRRL9l1h0LKjBN+PyfoO7pyG71+GZR1g97RcK5cQIg2B6yH8Gvw1FJJSDh85Z/t5Tt+MwMnGnOmdvDFJ4zMgXYbhwST/ihBCCCHS4NlSu/ErOcGQZ/OhqPgk+i4+xL2o+P++l9ZI83tpqgzDg9VJfz0hhBDiKZMGFiGeA7aWZkzt6M0vfevTrFJRdDrYGXSXdxYdotn0nfy05zIRcYkkJev5YPkxgu5EUsTekp/86mBrmX5HtrcbuDOpfTUAft53lZWHrwHQu2EZ3h3+PyhUCiJvwaGftA1OrAQgwrMdChN+2nOZOdsvpH8COh00G4PSmbLR5k32xJTGy82B8W2qpLtZGRdbQ9L75QeD+fXAE0nvG7wPNd8GpYfVfbRu5Gm4GxnPmmPXCY9JvcsjSkFMyu6iyXrFsBVandpbmWFuquP49XBG/naC+pO28b+/znAhJCr9809LcpKWU+Xybji2DJZ31xpXrh0AM2steeQHAVD/PTCzgCYjtdw4IWfg2JLsHfMJ8UnJfLz6BOP+PM2Gk7doP9+fY8GhGW/4UOgVWPoWxIVr0/98ASd/y5WyFRhJ8bBuiDYU3sZRcOhH7TWNvKNdV0Lktlc/1xpf7wbC3tlGiwJvRfD9rksATH6rOkUdsjlUgyS4F0IIIURGdDqtF4vOBM78CVf3AY++Q529HYmLnSU/ZuJ7aQrXpYFFCCFE/iBDhAnxHHnJ04WXPF24ci+apfuvsurwNa7cj+Hz9WeYviWISsXsORochpW5CT/2qkNxR+tM7bd7/dKYmsCna05RysmaqR29qefxX9fJJiO1H4/3zACvNww9Rbx832W8hwUT/zrDzG3nsLcyo89L6QxDU64ps2tvYdae29hZmjG/Ry2szDNOuPww6f3Xm4MYv+4UpibQxrs4NhZmWkD/+gxtaKpr+7Uk8H7roNCjXjHXHsSwYPclVh66RnySHs+idvzSr/6jnC6xYXBiFRxZDCGnocFA8J1kGOZq2pYgtgWGYGFmwpI+9SjlbMPqw9f59eBVrj2IZaH/ZRb6X8anbGHebuBOy0ouWCRFQmxoykf0Pe2u87Bg7RFxQ2scepzOBGr21JJGOrgZL7Nx1uZvGgX/fAlVO4BV9ocruxsZz3tLD3M0OAxTEx0lnay5ej+Grj/sZ3bXmrxWtVj6O4i6qzUqRN2GopXBvaHWuLD2fXAoAe4+2S5bgaHXw9qBcOq/RqWL/xgvtyqkJQh3qQBV3gLPFs++jOL5Y+MMr02BP/rDrq+1a6twOZL1itF/nCRJr2hVtVjG/8PpkQT3QgghhMgM1ypQq5f2fWrzp6h+2/h8/Vm2BYZgaWbCgl61KZHJ76UGibFw55T2vIQ0sAghhMhbkuReEueJ51hMQhJrjt3g571XOHfnUS+K+T1q0bqaWzpbpu5eVDyFrM0xN32s81tyEsyrBw8uaj+03TunjYP73i5AG4pmxlbtTuepHavTuU4p4hKTuXQ3mnN3Igm6E8m525GcC4nk2gMtYdm87rV4vXrmy/d40nsAWwtTXq/uRodaJann4Ywu+h4saKo1XgC41eB+iab8fM+L+edsSdJrjSUWZiYkJOkp7WTN6jfMcD2/Ak79AUlPJFJrMAh8v2RNwA2GrzwOwKwuNWhX89GYoHq9Ytf5uyzbf5V/zt6ht8km3jf7kyK61JPVpcnUQusl5FgKCpfXhgErajw2sVKKiNgkbobHEhIWSc31r+MQfZl/i3ZnqV1fQiLiuBMRj14pOtUpyTuNPHCxs0z3sKdvhtP/58PcDI/DwcqMeT1qUau0E4N/PcqOoLvodPBZay/6vuSReo6duAj4+Q24dRwKlYa+W8DOFVb11PLHWDtBv+1QuFzW6qOg2TIG9s4FEzNo+qnWkHb3nPZ/EnbVuAFNZwJv/55v8ufI5+Oz81TqWin45S2tUc/jZei1jiX7rzLuz9PYW5qx7aMmjxqSs2NGFYi4Du9sejEaS/MZSRgrhHheSJL7/OGp13VUCMypCQlRbK74Oe8dL4dOB3O71eSN6sWzvr+HwybbucJHQZLjMR+TmEUIkd/lRiwiDSwStIkXgFKK/ZcesObYdep5FKZj7dTzmmTbyd/g976Ppn0ng89Aw7G/3BDIj3suY6KDMoVtuXI/Gn0a7zyDmpZjhG8Wkhv+Jy4xmQX/XmL1kesEP3iUJ6S0sw0dapWki3skxf79BHXtIDoeHfyOcuSMnQ/F6rbFoWx9Vi+dj2/8JrxMrj3aedHKUPsdQMHGkQDcrvYeLx97hYQkxcBXyqWdkDE5iag/P8TuxM9GsyOVNTGm9pjbOePgVBQzW2ftrvNCJbWE9Y6ltYYVO1f06AiJjOd6aAw3wmK1R2gsNx97Hv1YvpdmJkdZaDGNeGVGi4SvuaZcjY5tZW5C17qlefflsqn2Ytp06hbDVx4nNjGZsi62/OhXh7JF7ABIStYzft1plv03HFvvhmUY+0Zl4/GSE+NgWUe4shtl48LZ1qtZecmSB9EJfPaqO66/d4CbR8G5rNbIYpP3ieTSFRcOawZAYgy8MStFcs407ZsPm0drz9v/AN5djJcnxsGDS1pPgBOrIWgDWDtrjZOOpXP1FLJDPh+fnadW1w8uwXwfSIoj7NXZvLTZjaj4JD5vV5WeDXKQpDA+Cib/16A88nL+/x9+DsmPFUKI54U0sOQPz6Sud0+H7f/jpnKmWfx0Rr9ZC7+GZbK3rz2ztJwuFV+Hbr/mZilFLpOYRQiR30kDSy6QoE2IXKDXw/eNtW7aOlP46CzYFTUsVkrxye8nDflbAApZm1PR1Z4Kxeyo4GpveDjbWuSoKEopDl0J5bcj19hw4pZRw0NZF1si7t2kqekxmpkco6nZKaxUbKr7iVUWbDVpRJU2H1CuZtNHd0Ud+hE2fATAN0ltOe45hO971kk9SXR8FPz2DpzfAuhIbjGRvXYtWX4iki1n75P0XyuTpZkJraoWo1U1N2ISkrj+IJbrobFcD4vh+n8NKYnJGb9VO9ta4Opghau9BZ/d/xTP6MNcdW3JuSbzcHWw5GZYHN/uvMDx61o+FHNTHe1rlmBAk3KULWKHUopv/rnA9P96HDX2dOGbbrUoZGOeoo4X7L7EpL/PAtDCqyhzutXUhmXTJ8Pq3hC4jgRTG4ZYfs7mB496IxVzsGJRJ3e81reH8GAo7QO9/gSz9HvU5Jm4cPilA1w/pE1bFoL230Gl1ulvd+oP+K0PoKDFBHhpePrrJ8bBotfg5jGtB1ifzWCet19A5PPx2Xmqdb1nJmybQJSJA41jpuJRujS/DWiYvcT2D908Bj+8AjYuMPJirhVVZN6L/GNFmTJlGDZsGMOGDcvroog0ZOY10ul0rFmzhnbt2uXKMXN7f0KzePFihg0bRlhY2FM7hjSw5A/Poq7/PnaZ6mtbUFJ3D//SA2jU56vs7SgkEH5sCQmR2pCoDd7P3YKKXCUxi8Qs+Zm8RvnfK6+8Qo0aNZg1a9ZTO0ZuxCKSg0UIkXMmJtBiIvzaCSq3NWpcAe1L76S3qtG0UhFsLMyoWMyeovaWqQ8tlUM6nY56Hs7U83BmwptV2Hz6Nr8fuYH/xXtcuheNmYkjeu+38XxlHFbOFnDVH85thqCN2pBNRSsTXa0nfY+WZf+tZOz/TGSRcyh1ymh3aMd492bJjnMMiPmewWZ/klCiIiYmdVMWJOIm/NoZbp8EMyt4awGmld+kMdC4BtyPimfNsRusOnyNc3eiWBtwk7UBN9M8L1MTHcUcrCjhZE1JR2tKOFlTwtGa4o89N8pZc2cOfPcS7ne24m57EUo2pHpJ8K3iiv+F+8zfeYG9F++z6vB1Vh+5TuuqWiPIhpO3AK1nypjXvTB7fDi4x+r43ZfLUcLRhuGrAtgWGEKX7/czq4s36q/hlL+2jnhlRu/Y4eyLdsPK3ATfKsU4czOC8yFRvLXkAj+0+pbGu7pD8D74cxC8teDpde2Pi4ANH2pDE7w+A1zKZ367h40rVo5aj5ubR2FFN2j4ATQfB6bmKbe7sgfWvAcoqPcuNBqW8bHMraDzEvi+CdwK0Brx2n4jwx2InPMZTMSh5TiEBzHWfBlV3lqes8YVkAT3QgghhMiS3efvMvS3QF5TXZlr8Q0Nby2FyOFgn8V8cNH3tbyaCZHg/hLU6ZvxNkIIIcRTJg0sQojc4dkChh4H26KpLjY10fFa1aznfckJGwsz2tcsSfuaJbkRFsvhKw+o7e5ESSebRyuVa6Y9XpsCcWFg5YitTseCuon0XXyYg1ce0POng/zQqzaNyrnw8erj/P2gCdHWcXykfsZiz1Qwt4AmIx7t8/YprXEl4oZ2h3f3lVDSOPliYTtL+jUuS9+XPDhxPZxVh69x8PIDithbUtLJmhKONpR0stYezja42lum2tiRJtcqUMsPjiyCTaOh/w4wMUGn0/GSpwsvebpwNDiU+Tsusi3wjqFhxcxEx//aVqV7/YyHqHq9uhvFClnSf8kRTt4IZ/2cIQw1W4Ne6RieNAidx8tMq1WS16oWw87SjIi4RAYtO8ru8/fouS6cOfWn0ObkEHQnV4OTBzT7LPPnl1mhV7UvYXcDtekfmkCb2VCtY/rbxUVo+SseNq74rYMiXrBtAuyfB3vnaMs6LgKHx67rO2dgeXdITgCvNtp1ldlGEsfS0HGhdtyAX6BkbajTJztnLYRBZCIMi+7Nj+pT3jLdDdGHgaY52+nDpLKS4F6ILElOTkan02FikoXPcyGEKOACroXx3tIjJCYrVLW3UDEH0N04BP98od1QlFlJCVo+x7Cr4FQGuiwFs5yNfiCESJ3ELEJkjfynCCFyj2PpPB/WKC0lHK1pW6OEcePK43Q6LfH6fz+G21uZ83OfejSpUITYxGT6Lj7MoF+P8vfJ25ib6mjcawK0/J+27Y4vYPcM7fmFbbDwNa1xxaUC9NuWonHF+LA6vEs58mX7amz9sAm/9m/A1I7eDG3hSYfaJalftjAlHK2z1rjyUNPPwNJB6xFxYmWKxbVKO/GjXx02DWtM2xrFqVTMnl/61c9U48pDtd2dWdO3Gl/a/8FQszUA7K4wmrEjR/Nr/wZ0rF0SO0utLd/BypxFvevi56PlfvjgQCFWuWrDrfHvVDi2LOvnmJ5rB2FBM61xxa4YlGoACVFavqB1H0CiNjxcaHQC3+26yNRNZzly9QH62PCUjStu3toXuNcmaT1NLB203jffN4ZLO7XjhV/XerzEh2tDn721AExM0yxeqso1hWZjted/j4Trh3OtOsSL6evNQfwT5c5a81bajPXDDdd+likFe7+Bff/9GFK8Zu4UUuScUpAQnTePLIw2/MMPP1C8eHH0er3R/LZt29KnTx8uXrxI27ZtcXV1xc7Ojrp167Jt27ZsV8uMGTOoVq0atra2lCpVioEDBxIVFWW0jr+/P6+88go2NjY4OTnh6+tLaGgoAHq9nqlTp1K+fHksLS0pXbo0X375JQA7d+5Ep9MZDZ0UEBCATqfjypUrgDa8kqOjI+vWraNy5cpYWloSHBzMoUOHaNmyJS4uLhQqVIgmTZpw9OhRo3KFhYXx3nvv4erqipWVFVWrVmX9+vVER0fj4ODAb7/9ZrT+2rVrsbW1JTIyMsN6OXnyJM2aNcPa2prChQvz7rvvGtVL7969adeuHdOmTcPNzY3ChQszaNAgEhMTM133kZGRdOvWDVtbW0qUKMG8efNyVCaAhQsXUqVKFSwtLXFzc2Pw4MFp7m/8+PG4ublx4sSJDMtapkwZvvjiC3r16oWdnR3u7u6sW7eOu3fv0rZtW+zs7KhevTqHDz/6TL5//z7dunWjRIkS2NjYUK1aNZYvX26031deeYXBgwczePBgChUqhIuLC2PHjiWzI3THx8fz8ccfU6JECWxtbalfvz47d+40LH94fa1duxZPT0+srKzw9fXl2rVrRvv59ttvKVeuHBYWFlSsWJGlS5caLU/rWnvc5s2b8fLyws7Ojtdee41bt25l6hyEuBASSe9FB4lJSKaxpwszutRE99okbeGxX+DaocztSCmtR/pVfy0O77ZScsAVZAUgbpGY5cWJWR4XHBxs+Ox3cHCgc+fO3Llzx7D8+PHjNG3aFHt7exwcHKhdu7YhPrh69Spt2rTByckJW1tbqlSpwt9//53hMR++Pps3b6ZmzZpYW1vTrFkzQkJC2LhxI15eXjg4ONC9e3diYh7lG960aRMvvfQSjo6OFC5cmDfeeIOLFx8N33zlyhV0Oh0rVqygYcOGhtdm165dma6PU6dO0apVK+zs7HB1daVnz57cu3fPsDwzsU5oaCi9evXCyckJGxsbWrVqxfnz542Ok961Ddr1PXLkSJydnSlWrBgTJkzI9Dk8K9KDRQgh0mBtYcqCXnUYtvIYf5+8zcZTtwH4ol1V6nk4g8dQ0CfB9v/B9olw+wScWQcqGco01u6qsnbKuxOwKwKNP9ISQG6fCJXfBAvbFKtVKubA7K7Z+KE0LhwO/ID7vm9wTwwDQL3yKU1eGZXmJmamJkxsW5VyRe2Y+NcZRl32xrxwV96KXgF/DoTDP0HVDlC5HZGWRTl+LZyjwaEcDQ4lNiGZ+mUL81J5F2qUcsTCLJ1GpxOrtaHHkuOhWDXtS5idK+yaAv9Og6M/k3D1ID8UG8u8E6bEJmq5epbsPMmv1l9TXQWRaFEI3l6LuZu38b4rtwXXqrCql3Yn/5J28PIICPwLIm+CS0Xo+iuYW2e9TkHL13LjCJxdDyt7wnv/aq+lEFl0NDiUpfuvAlDirUmwMQBCL8O/X2tD3GVFYiz8NfRRY22Nt6FG99wtsMi+xBiYVDxvjv3pzVQ/W1LTqVMnhgwZwo4dO2jevDkADx48YNOmTfz9999ERUXRunVrvvzySywtLVmyZAlt2rQhKCiI0qUz3/j/kImJCXPmzMHDw4NLly4xcOBARo4cyfz58wHtx4XmzZvTp08fZs+ejZmZGTt27CA5WftMGD16NAsWLGDmzJm89NJL3Lp1i7Nnz2apDDExMXz11Vf8+OOPFC5cmKJFi3Lp0iX8/PyYO3cuSimmT59O69atOX/+PPb29uj1elq1akVkZCS//PIL5cqV48yZM5iammJra0vXrl1ZtGgRHTs+6o35cNre3j7d8kRHR+Pr64uPjw+HDh0iJCSEfv36MXjwYBYvXmxYb8eOHbi5ubFjxw4uXLhAly5dqFGjBv3798/UeX/99dd8+umnTJw4kc2bNzN06FAqVKhAy5Yts1Wmb7/9lg8//JApU6bQqlUrwsPD8ff3T7EvpRQffPAB69evZ/fu3ZQvn7lhQWfOnMmkSZMYO3YsM2fOpGfPnjRs2JA+ffrw9ddfM2rUKHr16sXp06fR6XTExcVRu3ZtRo0ahYODAxs2bKBnz56UK1eOevXqGfb7888/07dvXw4ePMjhw4d59913KV26dKbqcfDgwZw5c4YVK1ZQvHhx1qxZw2uvvcbJkyfx9PQEtOvryy+/ZMmSJVhYWDBw4EC6du1qqJs1a9YwdOhQZs2aRYsWLVi/fj3vvPMOJUuWpGnTpuleaw/FxMQwbdo0li5diomJCW+//TYff/wxy5bl8o0x4rlzIyyWnj8dJCwmEe9Sjnz3dm0tfi9VT4v3T/0Oi1tD00/BZwiYpvPz1P75cGwp6Ey0Ht9FKz27ExG5rwDELRKzvDgxy0N6vd7QuLJr1y6SkpIYNGgQXbp0Mdzg0KNHD2rWrMm3336LqakpAQEBmJtrw4YPGjSIhIQE/v33X2xtbTlz5gx2dnaZPv6ECRP45ptvsLGxoXPnznTu3BlLS0t+/fVXoqKiaN++PXPnzmXUqFGG+vnwww+pXr06UVFRjBs3jvbt2xMQEGDU82jEiBHMmjWLypUrM2PGDNq0acPly5cpXLhwuuUJCwujWbNm9OvXj5kzZxIbG8uoUaPo3Lkz//zzj2G9jGKd3r17c/78edatW4eDgwOjRo2idevWnDlzBnNz8wyv7YfH+PDDDzlw4AD79u2jd+/eNGrUKNW4Ms+oF1x4eLgCVHh4eF4XRQiRTyUmJauRq48r91Hr1aS/z6RcYedXSo13ePT4/V2lEuOffUFTkxin1MxqWrn+mZQ7+4wJVWrHFKUml3p0znNqK3VitVJ6faZ3sysoRFUdt0mVGbVO/fF5Z6Wf4GhUjwfH1lVjPx2i6oz6RbmPWm/08Bq7UfVeeEAt+PeiCrwVrvQPj6vXK/XPl4/282s3peIijY575eB6FfE/d6XGO6iocUXUB6M/Ua/N+leNWLpbHR1XV6nxDip0nJtq/clcVX3CZjV85TG1+dQtFROfZHwCCTFKrR1k/NpPq6hUaLBWTfFJ6p/AO2r8n6dU02k7VKMp29XbP+5X4/88pX7ee1ntPndX3QiNUcnJqdRZbLhWp+MdlFr0ulJJiVl4gXKHfD4+O0+jrhOSktWrM3Yp91Hr1UerArSZZ9Zp19REZ6Vun8r8zsKuK/V9E23bCU5K7f8+S//rIvfFxsaqM2fOqNjYWG1GfJTxe9GzfMRHZansbdu2VX369DFMf//996p48eIqOTk51fWrVKmi5s6da5h2d3dXM2fOzHKdKaXU6tWrVeHChQ3T3bp1U40aNUp13YiICGVpaakWLFiQ6vIdO3YoQIWGhhrmHTt2TAHq8uXLSimlFi1apAAVEBCQbrmSk5OVvb29+uuvv5RSSm3evFmZmJiooKCgVNc/cOCAMjU1VTdv3lRKKXXnzh1lZmamdu7cme5xlFLqhx9+UE5OTioq6tHrtmHDBmViYqJu376tlFLKz89Pubu7q6SkR597nTp1Ul26dMlw/0ppr9Frr71mNK9Lly6qVatWhmlArVmzJtNlKl68uPrss8/SPCagVq9erbp37668vLzU9evXM1XWh+V9++23DdO3bt1SgBo7dqxh3r59+xSgbt26leZ+Xn/9dfXRRx8Zpps0aaK8vLwexShKqVGjRikvL68My3T16lVlamqqbty4YTS/efPmavTo0UqpR9fX/v37DcsDAwMVoA4cOKCUUqphw4aqf//+Rvvo1KmTat26tVIq42vt4TEuXLhgmDdv3jzl6uqa4TlkVor3s8dILPLs5HZd34+KV02n7VDuo9arZtN2qPtRT3w3ir6v1C8dH32W/NBMqZDUr0N1botSD78n7P0mV8onnp1U/8cLSNwiMUtKz2PM8vA12rJlizI1NVXBwcGG5adPn1aAOnjwoFJKKXt7e7V48eJU91WtWjU1YcKETB33cQ9fn23bthnmTZ48WQHq4sWLhnnvvfee8vX1TXM/d+/eVYA6efKkUkqpy5cvK0BNmTLFsE5iYqIqWbKk+uqrrzIs1+eff65effVVo3nXrl1TgOH1zijWOXfunAKUv7+/Yfm9e/eUtbW1WrVqlVIq/Wv74TFeeuklo3l169ZVo0aNyvAcMis3YhHpwSKEEBkwMzXhq47V+aRVJZxsUxnnt8lIQAf+s6HhEG06vyQnN7PUhjJb7Qf+s+DWca1nhbmN9tfC5rHntmBTWMsbY1sEbF20HjgPh7mKDYX938L+77RhsEDrrdFkJFRpn+XhsF6uUIQ/Bjak78+HGf6gF5N4k1amB3jDdD/1TIKo+99jgvlS7jjX4WaxZuyNdGXdDXvOx1izI+guO4LuasWws6ReSWveD5tOtbDtAFyp1J/IRp9RJM6MwmZ6Dl8J5ft/L7IzCIrwBbPN59HQ9AyzLeaj3CPQ3T8POq3nytLS07l92ZHw6AT+OHqDP47ewEQHZQrbUrGYPRWL2VOpmD0VG32Fe6kGmPz9McrUnGutfmbLyUR2nTvAgcsPSEgy7lJ+PTSW3efvGc2zNjfFw8WW8kXttH27avsv0fkXTH5qDld2w/YJ8OoXWX75xYvrh38vEXQnEmdbCz5r7aXN9GoDld7Qekf9NQz6bIaMxlUO3q/1pIoOAWtn6PwzeLz81MsvssjcRrsjM6+OnQU9evSgf//+zJ8/H0tLS5YtW0bXrl0xMTEhKiqKCRMmsGHDBm7dukVSUhKxsbEEBwdnq2jbtm1j8uTJnD17loiICJKSkoiLiyMmJgYbGxsCAgLo1KlTqtsGBgYSHx9vuGs1uywsLKhevbrRvDt37jBmzBh27txJSEgIycnJxMTEGM4zICCAkiVLUqFC6nmO6tWrR5UqVfj555/55JNP+OWXX3B3d+fllzP+3wwMDMTb2xtb20d37zZq1Ai9Xk9QUBCurq4AVKlSxagXg5ubGydPnsz0efv4+KSYnjVrVrbKpNPpuHnzZoavxfDhw7G0tGT//v24uLhkuqyA0Wv0sA6qVauWYl5ISAjFihUjOTmZSZMmsWrVKm7cuEFCQgLx8fHY2Bj/PzRo0ADdYzGhj48P06dPJzk52ah+n3Ty5EmSk5NTXAPx8fFGd5yamZlRt25dw3SlSpVwdHQkMDCQevXqERgYyLvvvmu0j0aNGjF79mwg42sNwMbGhnLlyhmm3dzcCAkJSXN9IQDGrD3JpbvRFC9kxdK+9XF+8juUjTN0XwUBy7R8kTcOw3cvQfOx0GDgo+8VIYGw+h1QeqjVS1smCr4CErdIzPJixCyPH69UqVKUKlXKMK9y5cqGz9W6devy4Ycf0q9fP5YuXUqLFi3o1KmT4TPygw8+4P3332fLli20aNGCDh06pKjP9DwZi9jY2FC2bFmjeQcPHjRMnz9/nnHjxnHgwAHu3btnGM4uODiYqlWrGtZ7PCYzMzOjTp06BAYGZlie48ePs2PHjlR74Vy8eNHwmqcX6wQGBmJmZkb9+vUNywsXLkzFihUNZUjv2n7oyXrMj7GINLAIIUQmpdq48lCTEdpwXPkxCVzltuDeSBuz+NzGLG6s074A2bhA5C2Ij9BmF/HSzrlyu6znGXmMp6s9awc14sNVARy6bEpg8a5Yl36faJd46sTsxP78OkxuHMHtwUHcHhykNjAESC5UiLtWHpxNcmN/ZBHOxRSl/6W1VDO5QKIy5bOkPqwKaAoBe1Mc00QH9apWxq7xerj4A+z6Cl3AL9pCq0KY91rHkOI1GKhXHLkayqZTt9l8+jY3wmK5dC+aS/eiDcPFAViZF6a2y0+ExiRyZsk94FEDSglHa5pULEKTCkVwtrXg0t0oLt2N5uLdaC7diyL4fgyxicmcuRXBmVsRcPxROW0tTOnl+AGjEibB3rlcjjbHtlQNnF2KYGbjDNaOWo6YfJr3SOSdK/eimbNdG9d27Btexu9drabCpV1w/SDMqgalG/z38IGiXsb/z0cWw4aPQZ+oDYvXdZmWVFbkPzpdpofpymtt2rRBKcWGDRuoW7cuu3fvZubMmQB8/PHHbN26lWnTplG+fHmsra3p2LEjCQkJWT7OlStXeOONN3j//ff58ssvcXZ2Zs+ePfTt25eEhARsbGywtk57KMf0lgGGoRfUY2NMpzbet7W1tdGXTgA/Pz/u37/P7NmzcXd3x9LSEh8fH8N5ZnRsgH79+jFv3jw++eQTFi1axDvvvJPiODnxcLiLh3Q6XYpx6J+VzNQHQMuWLVm+fDmbN2+mR48eWTrG4+f7sB5Tm/ewDr7++mtmz57NrFmzDGPmDxs2LFvXamqioqIwNTXlyJEjKRpisjLcSEYyU7epXQsqC7mXxItp3BtVuB+VwJftq1HcMY3rTKeDmm9D2Ve0/IgXt8OWMdqwu23nazd6/doFEiLB/SVoPT3/3MQmcqaAxC0Ss0jM8qQJEybQvXt3NmzYwMaNGxk/fjwrVqygffv29OvXD19fXzZs2MCWLVuYPHky06dPZ8iQIZna95NxR0bn1aZNG9zd3VmwYIEhX1DVqlVzNRZp06YNX331VYplbm5uuXIMyH4skldxaVqkgUUIIXJLfmxcAS2A7boMLv7zX3K/GG3c28TY//7+9zw+EqLvQcw97W9cGKAg5r72AChaWeux4tU2187X2daCxe/UQyn1RKBVA14ZBqFX4PQaLWn93bMQegXT+HCKxQdQjABeMQH++/041syBpaW+4J6qTLXIeEIi47gXlUCyXmFhZkKn2iXp37gsZVz+C+hLjwb3hvBHfy2fztu/Q/EaAJia6Kjn4Uw9D2fGvuHF3ch4gu5EEnQ7krO3tb/n7kQSl6jH/xaAORamJtQv60yTCkV4pWIRyhWxMzqnumWMk3EmJuu59iCGS3ejOR8SRdDtCILuRHExJIrohGS+DalKIbM3GGC2Ho/jM4waYB5KMrEi2dIBZe+G5fu7cjVYFQXT/9afIT5JT2NPF9rVKGG8sFAJeGOGlqMo4jqc+k17AFgW0sZFL90Awq9pDSygNaS2m18gvgiL/M/Kyoq33nqLZcuWceHCBSpWrEitWrUALcFl7969ad++PaB9sXuYfDWrjhw5gl6vZ/r06YYfFlatWmW0TvXq1dm+fTsTJ05Msb2npyfW1tZs376dfv36pVhepIiWG+vWrVs4OWn51gICAjJVNn9/f+bPn0/r1q0BuHbtmlHC0OrVq3P9+nXOnTuX5h2hb7/9NiNHjmTOnDmcOXMGPz+/TB3by8uLxYsXEx0dbbgj1N/fHxMTEypWrJipfWTG/v37U0x7eXllq0z29vaUKVOG7du307Rp0zSP+eabb9KmTRu6d++OqakpXbt2zbXzeZK/vz9t27bl7bffBrSGl3PnzlG5cmWj9Q4cOGA0vX//fjw9PdPtvQJQs2ZNkpOTCQkJoXHjxmmul5SUxOHDhw15X4KCgggLCzPUtZeXF/7+/kbXh7+/v6GcmbnWhMiOYoWsWPFug8zFpYVKajH40SWw+TO4dgC+a6Td1BF2VfvbeQmYpXOzmxBPgcQsL0bM8vjxrl27xrVr1wy9WM6cOUNYWJjR53uFChWoUKECw4cPp1u3bixatMhwHZQqVYoBAwYwYMAAQ16czDawZMX9+/cJCgpiwYIFhjhhz549qa67f/9+Q4+hpKQkjhw5wuDBgzM8Rq1atfj9998pU6YMZmZpNx+kF+t4eXmRlJTEgQMHaNiwoVHZH49F0rq2CxJpYBFCiBeBtZOWTDIrkhMh5sF/DS53wcRcu8v9KTUkpfkFzKmMlvj9ocRYuH8B7gZpj3v//bUtgnWb2bxbuByPD4ah1ysexCRgZW6KnWUqH3tlm8CwU1oDi0XqXcZ1Oh1FHawo6mBFY89HCeeT9Yqr96M5dycSS3NT6ns4Y2OR+Y9Wc1MTyhaxo2wRO1pUdn10isl6rt6P5uztSM7fKsNfgc4UjzyBRVIEDiqKQrpoHIjBRKcw08dhFhvHnZhEiii5sU/A2De0YHV8m8qp/19V7wyVXofrh7UhwIL3wfVD2tB/F7ZqDwB00GyM1jtPLiyRi3r06MEbb7zB6dOnDT9Qg/YDwR9//EGbNm3Q6XSMHTs223enlS9fnsTERObOnUubNm3w9/fnu+++M1pn9OjRVKtWjYEDBzJgwAAsLCzYsWMHnTp1wsXFhVGjRjFy5EgsLCxo1KgRd+/e5fTp0/Tt25fy5ctTqlQpJkyYwJdffsm5c+eYPn16psrm6enJ0qVLqVOnDhEREYwYMcLo7r0mTZrw8ssv06FDB2bMmEH58uU5e/YsOp2O1157DQAnJyfeeustRowYwauvvkrJkiUzdewePXowfvx4/Pz8mDBhAnfv3mXIkCH07NnTMNRGbvD392fq1Km0a9eOrVu3snr1ajZs2JDtMk2YMIEBAwZQtGhRQzJdf3//FD9atG/fnqVLl9KzZ0/MzMyMkurmJk9PT3777Tf27t2Lk5MTM2bM4M6dOykaWIKDg/nwww957733OHr0KHPnzs3UdVKhQgV69OhBr169mD59OjVr1uTu3bts376d6tWr8/rrrwPaHZ1Dhgxhzpw5mJmZMXjwYBo0aGBocBkxYgSdO3emZs2atGjRgr/++os//viDbdu2AZm71kTemDdvHl9//TW3b9/G29ubuXPnGl7X1KxevZqxY8dy5coVPD09+eqrrww/iOaVLN30o9NBbT8o1wzWDYZLO7UbqyzsodsKsE0/GbMQT4vELM9/zPJQixYtqFatGj169GDWrFkkJSUxcOBAmjRpQp06dYiNjWXEiBF07NgRDw8Prl+/zqFDh+jQQfudZdiwYbRq1YoKFSoQGhrKjh070ry5JKecnJwoXLgwP/zwA25ubgQHB/PJJ5+kuu68efPw9PTEy8uLmTNnEhoaSp8+fTI8xqBBg1iwYAHdunVj5MiRODs7c+HCBVasWMGPP/5ouFkkvVjH09OTtm3b0r9/f77//nvs7e355JNPKFGiBG3btgUyvrYLjFzLCFNASeI8IYQQBUVysl7dDItRey/cU8v3X1Yz1h1Uny38Sw2etlCNmPljrh5LPh+fnXxR10mJSt04ptS+b5Va2Uupha2VOrsx78oj0pVeIsaCIDk5Wbm5uaVI3nn58mXVtGlTZW1trUqVKqW++eYb1aRJEzV06FDDOllJGDtjxgzl5uamrK2tla+vr1qyZEmKJK87d+5UDRs2VJaWlsrR0VH5+voalicnJ6svvvhCubu7K3Nzc1W6dGk1adIkw7Z79uxR1apVU1ZWVqpx48Zq9erVKRLGFipUKEW5jh49qurUqaOsrKyUp6enWr16dYrzun//vnrnnXdU4cKFlZWVlapatapav3690X62b9+uAEOS0Mw6ceKEatq0qbKyslLOzs6qf//+KjIy0rDcz89PtW3b1miboUOHqiZNmmRq/+7u7mrixImqU6dOysbGRhUrVkzNnj3baB0eS3KfmTIppdR3332nKlasqMzNzZWbm5saMmRImvtbuXKlsrKyUr///numyvvkNfXk/h4mij127JhSSnt92rZtq+zs7FTRokXVmDFjVK9evYzqrUmTJmrgwIFqwIABysHBQTk5OalPP/3UKBFsehISEtS4ceNUmTJlDOfcvn17deLECaXUo+vr999/V2XLllWWlpaqRYsW6urVq0b7mT9/vipbtqwyNzdXFSpUUEuWLDFant61lto1vGbNGpWbPyNIkvuUVqxYoSwsLNTChQvV6dOnVf/+/ZWjo6O6c+dOquv7+/srU1NTNXXqVHXmzBk1ZswYZW5ubkh0nBn5qq71eqUO/aTUT75KXdyR16UROSQxy8xMHUdiltQ9i5jl8XO5evWqevPNN5Wtra2yt7dXnTp1Urdv31ZKKRUfH6+6du2qSpUqpSwsLFTx4sXV4MGDDdf24MGDVbly5ZSlpaUqUqSI6tmzp7p3716GZXiY5P7x1zq112P8+PHK29vbML1161bl5eWlLC0tVfXq1dXOnTuN4peHscuvv/6q6tWrpywsLFTlypXVP//8k6m6UUpLUt++fXvl6OiorK2tVaVKldSwYcMMsUxmYp0HDx6onj17qkKFChmu73PnzhkdJ71r+8n/K6WUatu2rfLz88v0eWQkN2IRnVIFfwDVrN7d8biIiAgKFSpEeHg4Dg4OT7mkQgghRMHwIn8+Puu7Rl/kuhbZExcXx+XLl/Hw8MDKSvIwvaiWLl3K8OHDuXnzJhYWMnROfvPKK69Qo0YNZs2a9VT2v3jxYoYNG0ZYWNhT2f+zkt772Yv6+Vi/fn3q1q3LN998A2hD0JUqVYohQ4akeodyly5diI6OZv369YZ5DRo0oEaNGinugk/Li1rX4umTmEWAxCx54cqVK3h4eHDs2DFq1KjxVI7xtGOdZyU3YpF8mjAg81auXMmHH37I+PHjOXr0KN7e3vj6+hISEpLXRRNCCCFEAZPVuGLv3r1069aNvn37cuzYMdq1a0e7du04derUMy65EOJFERMTw8WLF5kyZQrvvfee/FAhxHMkISGBI0eO0KJFC8M8ExMTWrRowb59+1LdZt++fUbrA/j6+qa5PkB8fDwRERFGDyGEyG0Ss4gXRYFvYJkxYwb9+/fnnXfeoXLlynz33XfY2NiwcOHCvC6aEEIIIQqYrMYVs2fP5rXXXmPEiBF4eXnx+eefU6tWLcNdp0KIp2PZsmXY2dml+qhSpUrWyRwtAAAT8UlEQVReF++pmjp1KpUqVaJYsWKMHj3aaNmkSZPSrJdWrVrl+Ni7d+9Oc/92dnY53n9uy6/lza/lEnnv3r17JCcnp8gv4Orqyu3bt1Pd5vbt21laH2Dy5MkUKlTI8HiY0FkIkfskZnmxY5YBAwakWYYBAwY8s3IUlHIVVAV6iLCEhARsbGz47bffaNeunWG+n58fYWFh/Pnnnym2iY+PJz4+3jAdERFBqVKlpCusEEII8ZgXcaiI7MQVpUuX5sMPP2TYsGGGeePHj2ft2rUcP3481eNILCJySobbgMjISO7cuZPqMnNzc9zd3Z9xifKHBw8e8ODBg1SXWVtbU6JEiRztPzY2lhs3bqS5vHz58jnaf27Lr+XNr+XKCzJEmLGbN29SokQJ9u7di4+Pj2H+yJEj2bVrFwcOHEixjYWFBT///DPdunUzzJs/fz4TJ05M831SYhHxrEjMIjFLWl6UmCUkJCTNXoIODg4ULVr0mZTjSfm1XHkhN2IRs6ddyKcpvbs7zp49m+o2kydPZuLEic+ieEIIIYQoQLITV2T3rlGJRYTIGXt7e+zt7fO6GPmOs7Mzzs7OT23/1tbWBerH//xa3vxaLpH3XFxcMDU1TfFj7J07dyhWrFiq2xQrVixL6wNYWlpiaWmZ8wILITIkMUvqXpSYpWjRovmysSK/lqugKvBDhGXV6NGjCQ8PNzyuXbuW10USQgghxAtEYhGRWwpwR3QhhADkfexJFhYW1K5dm+3btxvm6fV6tm/fbtSj5XE+Pj5G6wNs3bo1zfWFyAvyvy6EyK9y4/2pQPdgyc7dHXKnhhBCCCFSI3eNioLC3Nwc0BKHWltb53FphBAi+2JiYoBH72sCPvzwQ/z8/KhTpw716tVj1qxZREdH88477wDQq1cvSpQoweTJkwEYOnQoTZo0Yfr06bz++uusWLGCw4cP88MPP+TlaQgBSMwihMj/ciMWKdANLI/f3fFwrPSHd3cMHjw4bwsnhBBCiAIlO3HFw7tGH8/BIneNiqfN1NQUR0dHQkJCALCxsUGn0+VxqYQQIvOUUsTExBASEoKjoyOmpqZ5XaR8o0uXLty9e5dx48Zx+/ZtatSowaZNmwxDkgYHB2Ni8mgwkoYNG/Lrr78yZswYPv30Uzw9PVm7di1Vq1bNq1MQwkBiFiFEfpWbsUiBbmCBjO/uEEIIIYTILLlrVBQUD3tJPfzBQgghCiJHR8d0e32+qAYPHpzmzR07d+5MMa9Tp0506tTpKZdKiOyRmEUIkZ/lRixS4BtYMrq7QwghhBAis+SuUVFQ6HQ63NzcKFq0KImJiXldHCGEyDJzc3PpuSLEC0BiFiFEfpVbsYhOveCZpiIiIihUqBDh4eE4ODjkdXGEEEKIfEE+H58dqWshhBAiJfl8fHakroUQQoiUMvv5aJLmEiGEEEIIIYQQQgghhBBCCJEqaWARQgghhBBCCCGEEEIIIYTIImlgEUIIIYQQQgghhBBCCCGEyKICn+Q+px6moImIiMjjkgghhBD5x8PPxRc8VdszIbGIEEIIkZLEIs+OxCJCCCFESpmNRV74BpbIyEgASpUqlcclEUIIIfKfyMhIChUqlNfFeK5JLCKEEEKkTWKRp09iESGEECJtGcUiOvWC3w6i1+u5efMm9vb26HS6HO8vIiKCUqVKce3aNRwcHHKhhC8Wqb+ckfrLGam/7JO6y5n8WH9KKSIjIylevDgmJjKi6NMksUj+IvWXM1J/OSP1l31SdzmTH+tPYpFnJ7djEcif11RBIXWXM1J/OSP1l31SdzmTH+svs7HIC9+DxcTEhJIlS+b6fh0cHPLNxVAQSf3ljNRfzkj9ZZ/UXc7kt/qTu0WfDYlF8iepv5yR+ssZqb/sk7rLmfxWfxKLPBtPKxaB/HdNFSRSdzkj9ZczUn/ZJ3WXM/mt/jITi8htIEIIIYQQQgghhBBCCCGEEFkkDSxCCCGEEEIIIYQQQgghhBBZJA0suczS0pLx48djaWmZ10UpkKT+ckbqL2ek/rJP6i5npP5EbpLrKWek/nJG6i9npP6yT+ouZ6T+RG6Tayr7pO5yRuovZ6T+sk/qLmcKcv298EnuhRBCCCGEEEIIIYQQQgghskp6sAghhBBCCCGEEEIIIYQQQmSRNLAIIYQQQgghhBBCCCGEEEJkkTSwCCGEEEIIIYQQQgghhBBCZJE0sAghhBBCCCGEEEIIIYQQQmSRNLDksnnz5lGmTBmsrKyoX78+Bw8ezOsi5Uv//vsvbdq0oXjx4uh0OtauXWu0XCnFuHHjcHNzw9ramhYtWnD+/Pm8KWw+M3nyZOrWrYu9vT1FixalXbt2BAUFGa0TFxfHoEGDKFy4MHZ2dnTo0IE7d+7kUYnzl2+//Zbq1avj4OCAg4MDPj4+bNy40bBc6i7zpkyZgk6nY9iwYYZ5Un9pmzBhAjqdzuhRqVIlw3KpO5FbJBbJHIlFsk9ikZyRWCT3SCySNRKLiGdFYpHMkVgk+yQWyRmJRXKPxCJZ87zGItLAkotWrlzJhx9+yPjx4zl69Cje3t74+voSEhKS10XLd6Kjo/H29mbevHmpLp86dSpz5szhu+++48CBA9ja2uLr60tcXNwzLmn+s2vXLgYNGsT+/fvZunUriYmJvPrqq0RHRxvWGT58OH/99RerV69m165d3Lx5k7feeisPS51/lCxZkilTpnDkyBEOHz5Ms2bNaNu2LadPnwak7jLr0KFDfP/991SvXt1ovtRf+qpUqcKtW7cMjz179hiWSd2J3CCxSOZJLJJ9EovkjMQiuUNikeyRWEQ8bRKLZJ7EItknsUjOSCySOyQWyZ7nMhZRItfUq1dPDRo0yDCdnJysihcvriZPnpyHpcr/ALVmzRrDtF6vV8WKFVNff/21YV5YWJiytLRUy5cvz4MS5m8hISEKULt27VJKaXVlbm6uVq9ebVgnMDBQAWrfvn15Vcx8zcnJSf34449Sd5kUGRmpPD091datW1WTJk3U0KFDlVJy7WVk/PjxytvbO9VlUncit0gskj0Si+SMxCI5J7FI1kgskj0Si4hnQWKR7JFYJGckFsk5iUWyRmKR7HleYxHpwZJLEhISOHLkCC1atDDMMzExoUWLFuzbty8PS1bwXL58mdu3bxvVZaFChahfv77UZSrCw8MBcHZ2BuDIkSMkJiYa1V+lSpUoXbq01N8TkpOTWbFiBdHR0fj4+EjdZdKgQYN4/fXXjeoJ5NrLjPPnz1O8eHHKli1Ljx49CA4OBqTuRO6QWCT3SCySNRKLZJ/EItkjsUj2SSwiniaJRXKPxCJZI7FI9kkskj0Si2Tf8xiLmOV1AZ4X9+7dIzk5GVdXV6P5rq6unD17No9KVTDdvn0bINW6fLhMaPR6PcOGDaNRo0ZUrVoV0OrPwsICR0dHo3Wl/h45efIkPj4+xMXFYWdnx5o1a6hcuTIBAQFSdxlYsWIFR48e5dChQymWybWXvvr167N48WIqVqzIrVu3mDhxIo0bN+bUqVNSdyJXSCySeyQWyTyJRbJHYpHsk1gk+yQWEU+bxCK5R2KRzJNYJHskFsk+iUWy73mNRaSBRYgCbNCgQZw6dcpovEKRsYoVKxIQEEB4eDi//fYbfn5+7Nq1K6+Lle9du3aNoUOHsnXrVqysrPK6OAVOq1atDM+rV69O/fr1cXd3Z9WqVVhbW+dhyYQQIvskFskeiUWyR2KRnJFYRAjxPJJYJHskFskeiUVy5nmNRWSIsFzi4uKCqakpd+7cMZp/584dihUrlkelKpge1pfUZfoGDx7M+vXr2bFjByVLljTML1asGAkJCYSFhRmtL/X3iIWFBeXLl6d27dpMnjwZb29vZs+eLXWXgSNHjhASEkKtWrUwMzPDzMyMXbt2MWfOHMzMzHB1dZX6ywJHR0cqVKjAhQsX5NoTuUJikdwjsUjmSCySfRKLZI/EIrlLYhGR2yQWyT0Si2SOxCLZJ7FI9kgskruel1hEGlhyiYWFBbVr12b79u2GeXq9nu3bt+Pj45OHJSt4PDw8KFasmFFdRkREcODAAalLQCnF4MGDWbNmDf/88w8eHh5Gy2vXro25ublR/QUFBREcHCz1lwa9Xk98fLzUXQaaN2/OyZMnCQgIMDzq1KlDjx49DM+l/jIvKiqKixcv4ubmJteeyBUSi+QeiUXSJ7FI7pNYJHMkFsldEouI3CaxSO6RWCR9EovkPolFMkdikdz13MQiqSS+F9m0YsUKZWlpqRYvXqzOnDmj3n33XeXo6Khu376d10XLdyIjI9WxY8fUsWPHFKBmzJihjh07pq5evaqUUmrKlCnK0dFR/fnnn+rEiROqbdu2ysPDQ8XGxuZxyfPe+++/rwoVKqR27typbt26ZXjExMQY1hkwYIAqXbq0+ueff9Thw4eVj4+P8vHxycNS5x+ffPKJ2rVrl7p8+bI6ceKE+uSTT5ROp1NbtmxRSkndZVWTJk3U0KFDDdNSf2n76KOP1M6dO9Xly5eVv7+/atGihXJxcVEhISFKKak7kTskFsk8iUWyT2KRnJFYJHdJLJJ5EouIZ0FikcyTWCT7JBbJGYlFcpfEIpn3vMYi0sCSy+bOnatKly6tLCwsVL169dT+/fvzukj50o4dOxSQ4uHn56eUUkqv16uxY8cqV1dXZWlpqZo3b66CgoLyttD5RGr1BqhFixYZ1omNjVUDBw5UTk5OysbGRrVv317dunUr7wqdj/Tp00e5u7srCwsLVaRIEdW8eXNDEKGU1F1WPRlISP2lrUuXLsrNzU1ZWFioEiVKqC5duqgLFy4YlkvdidwisUjmSCySfRKL5IzEIrlLYpHMk1hEPCsSi2SOxCLZJ7FIzkgskrskFsm85zUW0Sml1NPtIyOEEEIIIYQQQgghhBBCCPF8kRwsQgghhBBCCCGEEEIIIYQQWSQNLEIIIYQQQgghhBBCCCGEEFkkDSxCCCGEEEIIIYQQQgghhBBZJA0sQgghhBBCCCGEEEIIIYQQWSQNLEIIIYQQQgghhBBCCCGEEFkkDSxCCCGEEEIIIYQQQgghhBBZJA0sQgghhBBCCCGEEEIIIYQQWSQNLEIIIYQQQgghhBBCCCGEEFkkDSxCiAJt586d6HQ6wsLC8rooQgghhHgBSSwihBBCiLwksYgQeUsaWIQQQgghhBBCCCGEEEIIIbJIGliEEEIIIYQQQgghhBBCCCGySBpYhBA5otfrmTx5Mh4eHlhbW+Pt7c1vv/0GPOqmumHDBqpXr46VlRUNGjTg1KlTRvv4/fffqVKlCpaWlpQpU4bp06cbLY+Pj2fUqFGUKlUKS0tLypcvz08//WS0zpEjR6hTpw42NjY0bNiQoKCgp3viQgghhMgXJBYRQgghRF6SWESIF5s0sAghcmTy5MksWbKE7777jtOnTzN8+HDefvttdu3aZVhnxIgRTJ8+nUOHDlGkSBHatGlDYmIioAUAnTt3pmvXrpw8eZIJEyYwduxYFi9ebNi+V69eLF++nDlz5hAYGMj333+PnZ2dUTk+++wzpk+fzuHDhzEzM6NPnz7P5PyFEEIIkbckFhFCCCFEXpJYRIgXnBJCiGyKi4tTNjY2au/evUbz+/btq7p166Z27NihALVixQrDsvv37ytra2u1cuVKpZRS3bt3Vy1btjTafsSIEapy5cpKKaWCgoIUoLZu3ZpqGR4eY9u2bYZ5GzZsUICKjY3NlfMUQgghRP4ksYgQQggh8pLEIkII6cEihMi2CxcuEBMTQ8uWLbGzszM8lixZwsWLFw3r+fj4GJ47OztTsWJFAgMDAQgMDKRRo0ZG+23UqBHnz58nOTmZgIAATE1NadKkSbplqV69uuG5m5sbACEhITk+RyGEEELkXxKLCCGEECIvSSwihDDL6wIIIQquqKgoADZs2ECJEiWMlllaWhoFE9llbW2dqfXMzc0Nz3U6HaCNgyqEEEKI55fEIkIIIYTISxKLCCGkB4sQItsqV66MpaUlwcHBlC9f3uhRqlQpw3r79+83PA8NDeXcuXN4eXkB4OXlhb+/v9F+/f39qVChAqamplSrVg29Xm80dqkQQgghBEgsIoQQQoi8JbGIEEJ6sAghss3e3p6PP/6Y4cOHo9freemllwgPD8ff3x8HBwfc3d0B+N///kfhwoVxdXXls88+w8XFhXbt2gHw0UcfUbduXT7//HO6dOnCvn37+Oabb5g/fz4AZcqUwc/Pjz59+jBnzhy8vb25evUqISEhdO7cOa9OXQghhBD5gMQiQgghhMhLEosIISTJvRAiR/R6vZo1a5aqWLGiMjc3V0WKFFG+vr5q165dhkRrf/31l6pSpYqysLBQ9erVU8ePHzfax2+//aYqV66szM3NVenSpdXXX39ttDw2NlYNHz5cubm5KQsLC1W+fHm1cOFCpdSjZG6hoaGG9Y8dO6YAdfny5ad9+kIIIYTIYxKLCCGEECIvSSwixItNp5RSeda6I4R4ru3cuZOmTZsSGhqKo6NjXhdHCCGEEC8YiUWEEEIIkZckFhHi+Sc5WIQQQgghhBBCCCGEEEIIIbJIGliEEEIIIYQQQgghhBBCCCGySIYIE0IIIYQQQgghhBBCCCGEyCLpwSKEEEIIIYQQQgghhBBCCJFF0sAihBBCCCGEEEIIIYQQQgiRRdLAIoQQQgghhBBCCCGEEEIIkUXSwCKEEEIIIYQQQgghhBBCCJFF0sAihBBCCCGEEEIIIYQQQgiRRdLAIoQQQgghhBBCCCGEEEIIkUXSwCKEEEIIIYQQQgghhBBCCJFF0sAihBBCCCGEEEIIIYQQQgiRRf8HQU/H9lOR8m0AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABo4AAANBCAYAAADeHky3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeViVdf7/8dc57CCgsiPuOy6guGRqGpJGjqmp1TiladlUNi1OOTlNZtu0WGamozMNbvWbb5ZbVo6JWJlmaggmYajlhshiCggq2zm/PwwmApT9PsDzcV3nusb73Pfnfh2uc32/5937vt+3yWq1WgUAAAAAAAAAAIAmz2x0AAAAAAAAAAAAANgGGkcAAAAAAAAAAACQROMIAAAAAAAAAAAAv6BxBAAAAAAAAAAAAEk0jgAAAAAAAAAAAPALGkcAAAAAAAAAAACQROMIAAAAAAAAAAAAv6BxBAAAAAAAAAAAAEmSvdEBUPssFotSUlLk7u4uk8lkdBwAAACgzlmtVl24cEGBgYEym7k+DtdG3QQAAICmpCo1E42jRiglJUWtW7c2OgYAAABQ706dOqWgoCCjY6ABoG4CAABAU1SZmonGUSPk7u4u6coXwMPDw+A0AAAAQN3Lzs5W69atS34LA9dC3QQAAICmpCo1E42jRqh4zIKHhwcFEAAAAJoURo6hsqibAAAA0BRVpmZi+DcAAAAAAAAAAAAk0TgCAAAAAAAAAADAL2gcAQAAAAAAAAAAQBLPOAIAAMA1FBUVqaCgwOgYaOLs7Oxkb2/PM4wAAABgc6xWqwoLC1VUVGR0FDRxDg4OsrOzq/E6NI4AAABQoZycHCUnJ8tqtRodBZCrq6sCAgLk6OhodBQAAABAkpSfn68zZ87o4sWLRkcBZDKZFBQUpGbNmtVoHRpHAAAAKFdRUZGSk5Pl6uoqHx8f7vSAYaxWq/Lz85WRkaFjx46pc+fOMpuZug0AAABjWSwWHTt2THZ2dgoMDJSjoyN1EwxjtVqVkZGh5ORkde7cuUZ3HtE4AgAAQLkKCgpktVrl4+MjFxcXo+OgiXNxcZGDg4NOnDih/Px8OTs7Gx0JAAAATVx+fr4sFotat24tV1dXo+MA8vHx0fHjx1VQUFCjxhGX6QEAAOCquGIOtoK7jAAAAGCL+J0KW1Fb9TvfaAAAAAAAAAAAAEiicQQAAAAAAAAAAIBf0DgCAAAAKtCuXTstXLiwVtb64osvZDKZlJmZWSvrNWTHjx+XyWRSfHy80VEAAAAA1BB1U90wsm6yr/czotFLSr2gdfuT9XB4J3k4OxgdBwAANDHDhw9XaGhorRQu+/btk5ubW81DAcCv5OQVavPBM3KyN2tsaCuj4wAAgCaIuglXwx1HDcD48ePVokULTZw40ego12S1WjXzP/v1rx0/afN3Z4yOAwAAUIbValVhYWGl9vXx8ZGrq2sdJwLQ1Pz34BnNXvud3tp2RFar1eg4AAAAZVA3NW00jhqARx99VKtXrzY6RqWYTCZNDAuSJK2NTTY4DQAAqE1Wq1UX8wsNeVX2P6zec889+vLLL/XWW2/JZDLJZDJp5cqVMplM+u9//6uwsDA5OTlp586d+vHHHzV27Fj5+fmpWbNm6t+/v7Zt21Zqvd+OXDCZTPr3v/+t8ePHy9XVVZ07d9amTZuq/Tddt26devToIScnJ7Vr105vvPFGqff/8Y9/qHPnznJ2dpafn1+pC4nWrl2rXr16ycXFRV5eXoqIiFBubm6lzvvvf/9b3bt3l7Ozs7p166Z//OMfJe8Vj0N4//33df3118vZ2Vk9e/bUl19+WWqNL7/8UgMGDJCTk5MCAgL01FNPlSosLRaLXnvtNXXq1ElOTk5q06aNXnrppVJr/PTTT7rxxhvl6uqqkJAQ7d69u9J/O6Ahi+wVIBcHO/10Nlf7T2YaHQcAANQio+qmqlyMQt1E3XQtjKprAIYPH64vvvjC6BiVNr5PK7225Qd9e+K8jp3NVXtvblMEAKAxuFRQpOC5nxly7sTnR8nV8do/Xd966y0dPnxYPXv21PPPPy9J+v777yVJTz31lF5//XV16NBBLVq00KlTp3TLLbfopZdekpOTk1avXq0xY8YoKSlJbdq0qfAczz33nF577TXNnz9fb7/9tv7whz/oxIkTatmyZZU+U2xsrG6//XbNmzdPd9xxh77++ms99NBD8vLy0j333KNvv/1WjzzyiN59911df/31OnfunL766itJ0pkzZ/T73/9er732msaPH68LFy7oq6++qlSx+P/+3//T3LlztXjxYvXp00dxcXGaMWOG3NzcNHXq1JL9nnzySS1cuFDBwcFasGCBxowZo2PHjsnLy0unT5/WLbfconvuuUerV6/WDz/8oBkzZsjZ2Vnz5s2TJM2ZM0fvvPOO3nzzTQ0ZMkRnzpzRDz/8UCrL008/rddff12dO3fW008/rd///vc6evSo7O0pUxqSJUuWaP78+UpNTVVISIjefvttDRgwoNx9hw8fXqaYlqRbbrlFn376qSRp/fr1WrZsmWJjY3Xu3DnFxcUpNDS0ZN9z587p2Wef1datW3Xy5En5+Pho3LhxeuGFF+Tp6Vknn7G2NXOyV2Qvf63ff1prY5MV1raF0ZEAAEAtMapuqmzNJFE3UTddm+F3HLVr166kq/nr18yZMys8ZseOHRozZowCAwNlMpm0cePGMvu8/PLL6t+/v9zd3eXr66tx48YpKSmpVrNXJod0pZBq166dnJ2dNXDgQO3du7dWc9gaPw9nDeviI0lax11HAACgHnl6esrR0VGurq7y9/eXv7+/7OzsJEnPP/+8brrpJnXs2FEtW7ZUSEiI/vjHP6pnz57q3LmzXnjhBXXs2PGaV8Ldc889+v3vf69OnTrp73//u3Jycqr1+27BggUaMWKEnnnmGXXp0kX33HOPHn74Yc2fP1+SdPLkSbm5uel3v/ud2rZtqz59+uiRRx6RdKUAKiws1G233aZ27dqpV69eeuihh9SsWbNrnvfZZ5/VG2+8odtuu03t27fXbbfdpscff1z//Oc/S+338MMPa8KECerevbuWLl0qT09PRUVFSbpyRV/r1q21ePFidevWTePGjdNzzz2nN954QxaLRRcuXNBbb72l1157TVOnTlXHjh01ZMgQ3XfffaXO8cQTT2j06NHq0qWLnnvuOZ04cUJHjx6t8t8SxlmzZo1mzZqlZ599Vvv371dISIhGjRql9PT0cvdfv369zpw5U/JKSEiQnZ2dJk2aVLJPbm6uhgwZoldffbXcNVJSUpSSkqLXX39dCQkJWrlypbZs2aJ77723Tj5jXSme1PDJdym6XFBkcBoAANCUUDdRN12L4Zfy7du3T0VF//uRnJCQoJtuuqlU4fBbubm5CgkJ0fTp03XbbbeVu8+XX36pmTNnqn///iosLNRf//pXjRw5UomJieU+qGvXrl0aMGCAHBwcSm1PTEyUl5eX/Pz8qpWjuJBatmyZBg4cqIULF2rUqFFKSkqSr6+vJCk0NLTceZFbt25VYGBghX8HWzYxrLU+T8rQuv3JevymLrIzm4yOBAAAasjFwU6Jz48y7Nw11a9fv1L/zsnJ0bx58/Tpp5+WFBSXLl3SyZMnr7pO7969S/63m5ubPDw8KvyP5Fdz6NAhjR07ttS2wYMHa+HChSoqKtJNN92ktm3bqkOHDrr55pt18803l4x6CAkJ0YgRI9SrVy+NGjVKI0eO1MSJE9WixdXvWsjNzdWPP/6oe++9VzNmzCjZXlhYWOZOjUGDBpX8b3t7e/Xr10+HDh0qyT5o0CCZTP/7jTd48GDl5OQoOTlZqampysvL04gRI66a59d/y4CAAElSenq6unXrdtXjYDsWLFigGTNmaNq0aZKkZcuW6dNPP9Xy5cv11FNPldn/t1eYvv/++3J1dS1V/919992Sroz/KE/Pnj21bt26kn937NhRL730ku666y4VFhY2mDvWrmvvpVbNXXQ685K2Jqbp1pCGWfsBAIDSjKqbaqNmkqibJOomyQYaRz4+PqX+/corr6hjx44aNmxYhcdERkYqMjLyqutu2bKl1L9XrlwpX19fxcbG6oYbbij1nsVi0cyZM9W5c2e9//77Jd3VpKQkhYeHa9asWZo9e3a1clSmkIqPj7/qGg3RiO6+8nRx0Jmsy9r9488a0tnb6EgAAKCGTCZTpUcf2KLfXjz0xBNPKDo6Wq+//ro6deokFxcXTZw4Ufn5+Vdd57cXGplMJlksllrP6+7urv379+uLL77Q1q1bNXfuXM2bN0/79u1T8+bNFR0dra+//lpbt27V22+/raefflp79uxR+/btK1wzJydHkvTOO+9o4MCBpd4r/g1cG1xcXCq136//lsXFVF38LVE38vPzFRsbqzlz5pRsM5vNioiIqPTc9aioKN15553lXtxXFVlZWfLw8Lhq0ygvL095eXkl/87Ozq7ROWvKbDZpQliQFsUc0drYZBpHAAA0EtRNV1A3XZst102Gj6r7tfz8fL333nuaPn16qS5cbcjKypJU9go36Upxs3nzZsXFxWnKlCmyWCz68ccfFR4ernHjxpXbNKqM4kIqIiKi1LmqUkhVxZIlSxQcHKz+/fvX+tpV5exgV1L4fBh7yuA0AACgKXF0dCx1R3tFdu3apXvuuUfjx49Xr1695O/vX+EdDnWhe/fu2rVrV5lMXbp0KSlG7O3tFRERoddee03fffedjh8/ru3bt0u6UjAMHjxYzz33nOLi4uTo6KgNGzZc9Zx+fn4KDAzUTz/9pE6dOpV6/bZw+uabb0r+d2FhoWJjY9W9e/eS7Lt37y41G3zXrl1yd3dXUFCQOnfuLBcXF8XExFT/DwSbd/bsWRUVFZWZzuDn56fU1NRrHr93714lJCSUGcVRnRwvvPCC7r///qvu9/LLL8vT07Pk1bp16xqdtzZM6NtKkrTzSIZSsy4bnAYAADQl1E0Vo26ygTuOfm3jxo3KzMzUPffcU6vrWiwWPfbYYxo8eLB69uxZ7j6BgYHavn27hg4dqsmTJ2v37t2KiIjQ0qVLq33eqxVSv33A1dVERETowIEDys3NVVBQkD788MNSt8AVmzlzpmbOnKns7GybeCjsxLAgvfvNCW1JSFX25QJ5ODtc+yAAAIAaateunfbs2aPjx4+rWbNmFV6J1blzZ61fv15jxoyRyWTSM888U693u/z5z39W//799cILL+iOO+7Q7t27tXjxYv3jH/+QJH3yySf66aefdMMNN6hFixbavHmzLBaLunbtqj179igmJkYjR46Ur6+v9uzZo4yMjJIC5Wqee+45PfLII/L09NTNN9+svLw8ffvttzp//rxmzZpVst+SJUvUuXNnde/eXW+++abOnz+v6dOnS5IeeughLVy4UH/605/08MMPKykpSc8++6xmzZols9ksZ2dn/eUvf9Hs2bPl6OiowYMHKyMjQ99//32Dew4N6k5UVJR69eqlAQMGVHuN7OxsjR49WsHBwSUPGK7InDlzSn3Hs7OzDW8etfVy04D2LbX32Dmtj0vWQ8M7GZoHAAA0HdRNV9fU6yabahxFRUUpMjKy1p/rM3PmTCUkJGjnzp1X3a9NmzZ69913NWzYMHXo0EFRUVG1fudTdWzbts3oCNXSO8hTnX2b6Uh6jj797ox+P6CN0ZEAAEAT8MQTT2jq1KkKDg7WpUuXtGLFinL3W7BggaZPn67rr79e3t7e+stf/lKvo6v69u2rDz74QHPnztULL7yggIAAPf/88yUXUTVv3lzr16/XvHnzdPnyZXXu3Fn/93//px49eujQoUPasWOHFi5cqOzsbLVt21ZvvPHGNccoS9J9990nV1dXzZ8/X08++aTc3NzUq1cvPfbYY6X2e+WVV/TKK68oPj5enTp10qZNm+TtfWX8cKtWrbR582Y9+eSTCgkJUcuWLXXvvffqb3/7W8nxzzzzjOzt7TV37lylpKQoICBADzzwQK39/WA8b29v2dnZKS0trdT2tLQ0+fv7X/XY3Nxcvf/++3r++eerff4LFy7o5ptvlru7uzZs2FBmHMpvOTk5ycnJqdrnqysTw4K099g5rY1N1oPDOtpEDQoAABo/6qara+p1k8n66/ukDHTixAl16NBB69evL/Owq6sxmUzasGGDxo0bV+77Dz/8sD766CPt2LHjqnMLpSsFzrBhw9SlSxft27dPEydO1Ntvv13tHPn5+XJ1ddXatWtLbZ86daoyMzP10UcfVWrtqiq+46h4zreR/vnlj3r5vz8orG0LrXvwekOzAACAqrl8+bKOHTum9u3by9nZ2eg4qCfHjx9X+/btFRcXp9DQUKPjlHK176Qt/QZuSgYOHKgBAwaU1E0Wi0Vt2rTRww8/XPJM1/KsXLlSDzzwgE6fPi0vL69y97nadzE7O1ujRo2Sk5OTNm/eLFdX1ypnt5XvTE5eofq/uE2XCoq0/qHr1bfN1R/WDAAAbAc1U9Nlq3VTbdVMNvOMoxUrVsjX11ejR4+ulfWsVqsefvhhbdiwQdu3b79m0+js2bMaMWKEunfvrvXr1ysmJkZr1qzRE088Ue0Mjo6OCgsLKzWj0GKxKCYmptxRc43R+D6tZDZJsSfO66eMHKPjAAAAAKhFs2bN0jvvvKNVq1bp0KFDevDBB5Wbm6tp06ZJkqZMmaI5c+aUOS4qKkrjxo0rt2l07tw5xcfHKzExUZKUlJSk+Pj4kucmZWdna+TIkcrNzVVUVJSys7OVmpqq1NTUSs3ptzXNnOwV2evKHVprY5MNTgMAAADYSOPIYrFoxYoVmjp1quztS0/PW7x4sUaMGFFqW05OjuLj4xUfHy9JOnbsmOLj43Xy5MmSfWbOnKn33ntP//nPf+Tu7l5SSFy6dKnc80dGRqpt27Zas2aN7O3tFRwcrOjoaK1YsUJvvvlmubkrk+NahVRj5+vhrGFdfCRJ6/ZTBAEAgMbrgQceULNmzcp91eeogYoyNGvWTF999VW95UDTcMcdd+j111/X3LlzFRoaqvj4eG3ZsqXkOa8nT57UmTNnSh2TlJSknTt3Vji3fdOmTerTp0/JRYV33nmn+vTpo2XLlkmS9u/frz179ujgwYPq1KmTAgICSl6nTp2qw09bdyaGBUmSPj6QossFDa/5BQAAUFnUTQ2DTYyq27p1q0aNGqWkpCR16dKl1Hvz5s3TypUrdfz48ZJtX3zxhW688cYy60ydOlUrV66UpArnQq9YsaJk/uGvRUdHa+jQoWVu34qLi5OPj4+CgoLKHFOZHNKV5tf8+fOVmpqq0NBQLVq0SAMHDiw3X22wlZELxT797oxm/me/AjydtfMv4bIzM7MbAICGgLELVZOenl7hrG8PDw/5+vrWS46jR49W+F6rVq3k4uJSLznqAqPqUJts6TtjsVg19LXPdTrzkhb9vo9uDand5/4CAIC6Qc1UddRNdau2aiabaByhdtlSASRJeYVFGvBSjLIuFejdewdoaGcfoyMBAIBKoAiCraFxhNpka9+ZBVuTtGj7Ud3QxUerpw8wOg4AAKgEaibYmkb3jCM0Xk72dhobeuWKOWZ2AwDQ8HCdEWwF30U0ZhN+GVe380iGUrMuG5wGAABUBb9TYStq67tI4wj1onhm95aEVGVfLjA4DQAAqAw7OztJUn5+vsFJgCsuXrwoSXJwcDA4CVD72nq5aUC7lrJYpfVxXHAHAEBDUPy7tPh3KmC04vq9uJ6vLvvaCANcS69Wnuri10yH03L0yYEzmjywjdGRAADANdjb28vV1VUZGRlycHCQ2cw1RzCG1WrVxYsXlZ6erubNm9e4CAJs1cSwIO09fk7rYpP14LCOFT67FwAA2AY7Ozs1b95c6enpkiRXV1f+/zcMY7FYlJGRIVdXV9nb16z1Q+MI9cJkMmliWJD+vvkHrY09ReMIAIAGwGQyKSAgQMeOHdOJEyeMjgOoefPm8vf3NzoGUGdu6R2gZzd9rx8zchV/KlN92rQwOhIAALiG4t+nxc0jwEhms1lt2rSpcQOTxhHqzbjQVnp1S5L2n8zUjxk56ujTzOhIAADgGhwdHdW5c2fG1cFwDg4O3GmERq+Zk70ie/prfdxprY1NpnEEAEADUHzBna+vrwoKeEQHjOXo6Fgr00JoHKHe+Ho4a1gXH23/IV3rYpM1++ZuRkcCAACVYDab5ezsbHQMAGgSJoYFaX3caW06kKJnfhcsZwcapgAANAR2dnZc6IRGg0H1qFcTw4IkSev3n1aRxWpwGgAAAACwLdd18FKr5i66cLlQ0YlpRscBAABAE0TjCPVqRHdfebo4KDX7snYdPWt0HAAAAACwKWazSRP6tpIkrY1NNjgNAAAAmiIaR6hXTvZ2GhsaKIkiCAAAAADKM+GXSQ1fHclQatZlg9MAAACgqaFxhHo3Kay1JOmz71OVdYkHxgEAAADAr7X1ctOAdi1lsUob4k4bHQcAAABNDI0j1LuerTzU1c9deYUWffrdGaPjAAAAAIDNKX4+7NrYU7JaeT4sAAAA6g+NI9Q7k8lUqggCAAAAAJQW2ctfzg5m/ZiRq/hTmUbHAQAAQBNC4wiGGNsnUHZmk/afzNTR9Byj4wAAAACATXF3dlBkzwBJPB8WAAAA9YvGEQzh6+6s4V18JEnr9lMEAQAAAMBvFU9q+PhAii4XFBmcBgAAAE0FjSMYprgIWr8/WUUWZnYDAAAAwK8N6uClQE9nZV8u1LZDaUbHAQAAQBNB4wiGCe/uq+auDkrLztPOo2eNjgMAAAAANsVsNmlCyfNhmdQAAACA+kHjCIZxsrfT2JBASRRBAAAAAFCeCX2vNI52HM5QWvZlg9MAAACgKaBxBENNDGstSfrs+1RlXSowOA0AAAAA2JZ23m7q366FLFZpQ9xpo+MAAACgCaBxBEP1bOWhrn7uyi+06JPvUoyOAwAAAAA2Z+KvxtVZrTwfFgAAAHWLxhEMZTKZNKkfM7sBAAAAoCK39AqQs4NZR9NzdCA5y+g4AAAAaORoHMFwY0Nbyc5sUtzJTB1NzzE6DgAAAADYFHdnB0X2DJAkrY09ZXAaAAAANHY0jmA4H3cn3djVRxJ3HQEAAABAeYrH1W2KT9HlgiKD0wAAAKAxo3EEm1BcBG2IS1aRhZndAAAAAPBrgzp4KdDTWdmXC7XtUJrRcQAAANCI0TiCTQjv5qcWrg5Ky87TV0cyjI4DAAAAADbFbDZpQhjPhwUAAEDdo3EEm+Bob9bY0FaSKIIAAAAAoDy39b3SONpxOENp2ZcNTgMAAIDGisYRbEbxuLqtiWnKulhgcBoAAAAAsC3tvd3Ur20LWazShrjTRscBAABAI0XjqAEYP368WrRooYkTJxodpU71CPRQN3935Rda9PF3KUbHAQAAAACbM/FX4+qsVp4PCwAAgNpH46gBePTRR7V69WqjY9Q5k8lUqggCAAAAAJR2S+8AOTuYdTQ9R98lZxkdBwAAAI0QjaMGYPjw4XJ3dzc6Rr0YG9pKdmaT4k9l6mj6BaPjAAAAALiGJUuWqF27dnJ2dtbAgQO1d+/eCvcdPny4TCZTmdfo0aNL9lm/fr1GjhwpLy8vmUwmxcfHl1nnX//6l4YPHy4PDw+ZTCZlZmbWwSezTR7ODrq5h78kLrgDAABA3TC8cdSuXbtyC4eZM2dWeMyOHTs0ZswYBQYGymQyaePGjdXap6Yqe46qFFJNnY+7k27s6itJWhvLzG4AAADAlq1Zs0azZs3Ss88+q/379yskJESjRo1Senp6ufuvX79eZ86cKXklJCTIzs5OkyZNKtknNzdXQ4YM0auvvlrheS9evKibb75Zf/3rX2v9MzUEE8NaS5I2HUjR5YIig9MAAACgsTG8cbRv375ShUN0dLQklSocfis3N1chISFasmRJjfb5tV27dqmgoKDM9sTERKWlpVX7HJUppEJDQ9WzZ88yr5SUpvmcn+JxdRviklVkYWY3AAAAYKsWLFigGTNmaNq0aQoODtayZcvk6uqq5cuXl7t/y5Yt5e/vX/KKjo6Wq6trqfrv7rvv1ty5cxUREVHheR977DE99dRTuu6662r9MzUEgzp6KdDTWVmXChRzqPwmHQAAAFBd9kYH8PHxKfXvV155RR07dtSwYcMqPCYyMlKRkZFXXbcy+xSzWCyaOXOmOnfurPfff192dnaSpKSkJIWHh2vWrFmaPXt2tc7x60JKkpYtW6ZPP/1Uy5cv11NPPSVJ5Y5eaMrCu/mqhauD0rLztONIRskdSAAAAABsR35+vmJjYzVnzpySbWazWREREdq9e3el1oiKitKdd94pNze3uopZIi8vT3l5eSX/zs7OrvNz1hU7s0m39Q3S4s+Pam3sKY3uHWB0JAAAADQiht9x9Gv5+fl67733NH36dJlMpno7r9ls1ubNmxUXF6cpU6bIYrHoxx9/VHh4uMaNG1du06gyigupX18pV9VCqiqWLFmi4OBg9e/fv9bXrk+O9maNDW0liZndAAAAgK06e/asioqK5OfnV2q7n5+fUlNTr3n83r17lZCQoPvuu6+uIpby8ssvy9PTs+TVunXrejlvXZnwy6SGLw9nKD37ssFpAAAA0JjYVONo48aNyszM1D333FPv5w4MDNT27du1c+dOTZ48WeHh4YqIiNDSpUurvWZNC6liERERmjRpkjZv3qygoKAKm04zZ85UYmKi9u3bV+3MtqJ4XF3092nKulh2hCAAAACAhi0qKkq9evXSgAED6uV8c+bMUVZWVsnr1KlT9XLeutLe20392raQxSptiOP5sAAAAKg9NtU4ioqKUmRkpAIDAw05f5s2bfTuu+9qzZo1sre3V1RUVL3e+VSRbdu2KSMjQxcvXlRycrIGDRpkdKQ61yPQQ9383ZVfZNGm75rms54AAAAAW+bt7S07O7syz4RNS0uTv7//VY/Nzc3V+++/r3vvvbcuI5bi5OQkDw+PUq+GrviCu7WxybJaeT4sAAAAaofNNI5OnDihbdu21duYgvKkpaXp/vvv15gxY3Tx4kU9/vjjNVqvJoVUU2cymUoVQQAAAABsi6Ojo8LCwhQTE1OyzWKxKCYm5poXu3344YfKy8vTXXfdVdcxG7VbegfI2cGsI+k5+i45y+g4AAAAaCRspnG0YsUK+fr6avTo0Yac/+zZsxoxYoS6d++u9evXKyYmRmvWrNETTzxR7TVrUkhBGtenlezNJh04lakjaReMjgMAAADgN2bNmqV33nlHq1at0qFDh/Tggw8qNzdX06ZNkyRNmTJFc+bMKXNcVFSUxo0bJy8vrzLvnTt3TvHx8UpMTJQkJSUlKT4+vtS479TUVMXHx+vo0aOSpIMHDyo+Pl7nzp2ri49pszycHTSqx5WLErngDgAAALXFJhpHFotFK1as0NSpU2Vvb1/qvcWLF2vEiBGltuXk5Cg+Pl7x8fGSpGPHjik+Pl4nT56s0j6/Pn9kZKTatm1bMqYuODhY0dHRWrFihd58881yc1fmHNcqpFAx72ZOGt7VV5K0dj9FEAAAAGBr7rjjDr3++uuaO3euQkNDFR8fry1btpQ85/XkyZM6c+ZMqWOSkpK0c+fOCsfUbdq0SX369Cm5qPDOO+9Unz59tGzZspJ9li1bpj59+mjGjBmSpBtuuEF9+vTRpk2b6uJj2rTiSQ2bDqTockGRwWkAAADQGJisNjAIeevWrRo1apSSkpLUpUuXUu/NmzdPK1eu1PHjx0u2ffHFF7rxxhvLrDN16lStXLmy0vv8WnR0tIYOHSpnZ+dS2+Pi4uTj46OgoKAyx1T2HIsXL9b8+fOVmpqq0NBQLVq0SAMHDixzXG3Jzs6Wp6ensrKyGvzc7i0JqXrgvVj5ujvp66fCZW9nE71OAAAA2JjG9BsY9aOxfGeKLFYNeXW7zmRd1pLJfTW6d4DRkQAAAGCDqvL71yYaR6hdjaUAkqT8QouuezlG53LztWJaf934yx1IAAAAwK81pt/AqB+N6Tsz/7MftOTzHxXezVfL7+lvdBwAAADYoKr8/uX2Ddg0R3uzxoYGSmJmNwAAAACUZ0LfKxMyvjycofTsywanAQAAQENH4wg2r3hmd/T3acq8mG9wGgAAAACwLR18mimsbQsVWazaGH/a6DgAAABo4Ggcweb1CPRU9wAP5RdZ9PGBFKPjAAAAAIDNKb7gbm1ssphIDwAAgJqgcYQG4ddFEAAAAACgtNG9A+Rkb9bhtBwdPJ1ldBwAAAA0YDSO0CCMDQ2UvdmkA8lZOpx2weg4AAAAAGBTPJwddHNPf0lccAcAAICaoXGEBsG7mZNu7OYrSVpHEQQAAAAAZRRPavgoPkV5hUUGpwEAAEBDReMIDUZxEbQ+7rQKiywGpwEAAAAA23J9R28FeDor61KBYg6lGx0HAAAADRSNIzQYN3b1VUs3R2VcyNNXR84aHQcAAAAAbIqd2aTb+raSxLg6AAAAVB+NIzQYjvZmjQulCAIAAACAitzW98qkhi8PZyg9+7LBaQAAANAQ0ThCg1I8ri46MU2ZF/MNTgMAAAAAtqWjTzP1bdNcRRarNsafNjoOAAAAGiAaR2hQggM9FBzgofwiiz4+kGJ0HAAAAACwORPDWku6MqnBarUanAYAAAANDY0jNDjFdx19yLg6AAAAAChjdO8AOdmbdTgtRwdPZxkdBwAAAA0MjSM0OGNDA2VvNum75CwlpV4wOg4AAAAA2BRPFweN6uEvSVrHBXcAAACoIhpHaHC8mjkpvJuvJGndfoogAAAAAPit4kkNHx1IUV5hkcFpAAAA0JDQOEKDVFwErd9/WoVFFoPTAAAAAIBtGdzJW/4ezsq8WKDth9KNjgMAAIAGhMYRGqQbu/nKy81RZ3PytONIhtFxAAAAAMCm2JlNuq1vK0nSWsbVAQAAoApoHKFBcrAza2woRRAAAAAAVGTCL5MavjicofQLlw1OAwAAgIaCxhEarOJxddsS03U+N9/gNAAAAABgWzr6NFPfNs1VZLHqo7gUo+MAAACggaBxhAYrONBDPQI9lF9k0cffUQQBAAAAwG9NDGst6cqkBqvVanAaAAAANAQ0jtCgFd91xLg6AAAAAChrdO8AOdmblZR2QQmns42OAwAAgAaAxhEatLGhreRgZ9J3yVlKSr1gdBwAAAAAsCmeLg4a2cNfkrQ29pTBaQAAANAQ0DhCg9bSzVHh3XwlUQQBAAAAQHmKJzV8dCBFeYVFBqcBAACAraNxhAaveGb3hrgUFRRZDE4DAAAAALZlSCdv+Xk4KfNigbYfSjc6DgAAAGwcjSM0eMO7+sjLzVFnc/K043CG0XEAAAAAwKbYmU26rS/PhwUAAEDl0DhCg+dgZ9a4Pq0kUQQBAAAAQHkm/NI4+uJwhjIu5BmcBgAAALaMxhEaheKZ3dsOpel8br7BaQAAAADAtnTybaY+bZqryGLVR/GnjY4DAAAAG0bjqIEYP368WrRooYkTJxodxSZ1D/BQj0APFRRZtelAitFxAAAAAMDmFF9w9+G3ybJarQanAQAAgK2icdRAPProo1q9erXRMWxacRHEuDoAAAAAKOt3vQPlaG9WUtoFfZ+SbXQcAAAA2CgaRw3E8OHD5e7ubnQMmzY2tJUc7Ew6eDpLP6RSBAEAAAD1YcmSJWrXrp2cnZ01cOBA7d27t8J9hw8fLpPJVOY1evTokn3Wr1+vkSNHysvLSyaTSfHx8WXWuXz5smbOnCkvLy81a9ZMEyZMUFpaWl18vEbF08VBo3r4S+KCOwAAAFSsQTSO2rVrV25xMXPmzAqP2bFjh8aMGaPAwECZTCZt3LixTrJV5jxVKaRQfS3dHDWim58kaR1FEAAAAFDn1qxZo1mzZunZZ5/V/v37FRISolGjRik9Pb3c/devX68zZ86UvBISEmRnZ6dJkyaV7JObm6shQ4bo1VdfrfC8jz/+uD7++GN9+OGH+vLLL5WSkqLbbrut1j9fY1Q8qWFj/GnlFRYZnAYAAAC2qEE0jvbt21equIiOjpakUsXFb+Xm5iokJERLliyp1Dl27dqlgoKCMtsTExOveuXatc5TmUIqNDRUPXv2LPNKSeFZPVVVXARtiDutgiKLwWkAAACAxm3BggWaMWOGpk2bpuDgYC1btkyurq5avnx5ufu3bNlS/v7+Ja/o6Gi5urqWqu3uvvtuzZ07VxEREeWukZWVpaioKC1YsEDh4eEKCwvTihUr9PXXX+ubb76pk8/ZmAzp5C0/DydlXizQ5z+U3+ADAABA09YgGkc+Pj6liotPPvlEHTt21LBhwyo8JjIyUi+++KLGjx9/zfUtFotmzpypyZMnq6jof1dcJSUlKTw8XKtWrar2eSpTSMXHxyshIaHMKzAw8JrZUdqwrj7ybuaoszn5+jIpw+g4AAAAQKOVn5+v2NjYUg0es9msiIgI7d69u1JrREVF6c4775Sbm1ulzxsbG6uCgoJS5+3WrZvatGlz1fPm5eUpOzu71KspsjObdFtfng8LAACAijWIxtGv5efn67333tP06dNlMplqZU2z2azNmzcrLi5OU6ZMkcVi0Y8//qjw8HCNGzdOs2fPrnbWmhZSVbFkyRIFBwerf//+tb52Q+FgZ9a40FaSKIIAAACAunT27FkVFRXJz8+v1HY/Pz+lpqZe8/i9e/cqISFB9913X5XOm5qaKkdHRzVv3rxK53355Zfl6elZ8mrdunWVztuYTPilcfR5UoYyLuQZnAYAAAC2psE1jjZu3KjMzEzdc889tbpuYGCgtm/frp07d2ry5MkKDw9XRESEli5dWu01a1pI/VpERIQmTZqkzZs3KygoqNzG08yZM5WYmKh9+/ZVO3NjMOGXcXUxP6TpXG6+wWkAAAAAlCcqKkq9evXSgAED6uV8c+bMUVZWVsnr1KlT9XJeW9TJt5lCWzdXkcWqj+JPGx0HAAAANqbBNY6ioqIUGRlZJ2Pc2rRpo3fffVdr1qyRvb29oqKiau2uppratm2bMjIydPHiRSUnJ2vQoEFGR7JZ3QM81LOVhwqKrNpEEQQAAADUCW9vb9nZ2ZV5JmxaWpr8/f2vemxubq7ef/993XvvvVU+r7+/v/Lz85WZmVml8zo5OcnDw6PUqykrfj7sh98my2q1GpwGAAAAtqRBNY5OnDihbdu2VXmUQWWlpaXp/vvv15gxY3Tx4kU9/vjjNVqvJoUUamZi8czu/YyrAwAAAOqCo6OjwsLCFBMTU7LNYrEoJibmmhe6ffjhh8rLy9Ndd91V5fOGhYXJwcGh1HmTkpJ08uRJLrCrgjG9A+Vob1ZS2gV9n9I0n/cEAACA8jWoxtGKFSvk6+ur0aNH1/raZ8+e1YgRI9S9e3etX79eMTExWrNmjZ544olqr1mTQgo1c2toKznYmZRwOluHzlAEAQAAAHVh1qxZeuedd7Rq1SodOnRIDz74oHJzczVt2jRJ0pQpUzRnzpwyx0VFRWncuHHy8vIq8965c+cUHx+vxMRESVeaQvHx8SXjvj09PXXvvfdq1qxZ+vzzzxUbG6tp06Zp0KBBuu666+rw0zYunq4OGhl8Zaw6z4cFAADArzWYxpHFYtGKFSs0depU2dvbl3pv8eLFGjFiRKltOTk5io+PV3x8vCTp2LFjio+P18mTJ8tdOzIyUm3bti0ZUxccHKzo6GitWLFCb775ZoW5rnWeaxVSqBst3Rw1otuVImgdRRAAAABQJ+644w69/vrrmjt3rkJDQxUfH68tW7aUPOf15MmTOnPmTKljkpKStHPnzgrH1G3atEl9+vQpuWDwzjvvVJ8+fbRs2bKSfd5880397ne/04QJE3TDDTfI399f69evr6NP2XgVj6v7KP608gstBqcBAACArTBZG8gw461bt2rUqFFKSkpSly5dSr03b948rVy5UsePHy/Z9sUXX+jGG28ss87UqVO1cuXKMtujo6M1dOhQOTs7l9oeFxcnHx8fBQUFlZurMudZvHix5s+fr9TUVIWGhmrRokUaOHDgNT5x9WVnZ8vT01NZWVlNem53zKE03bvqW3k3c9TuOSPkYNdg+qQAAACoIn4Do6r4zkhFFquufyVGadl5WnZXmG7uyUh1AACAxqoqv38bTOMIlUcBdEVBkUWDXt6uszl5+veUfor4ZQwDAAAAGh9+A6Oq+M5c8cp/f9CyL39URHc//XtqP6PjAAAAoI5U5fcvt2Cg0XKwM2t8n0BJ0oexpwxOAwAAAAC2Z2JYK0nS50npyriQZ3AaAAAA2AIaR2jUJvwyszvmULp+zqEIAgAAAIBf6+TrrtDWzVVkseqj+NNGxwEAAIANoHGERq2bv4d6tfJUocWqTQdSjI4DAAAAADZn4i8X3K2NTRbT7AEAAEDjCI3er4sgAAAAAEBpY3oHytHerB9SL+j7lGyj4wAAAMBgNI7Q6N0aEigHO5O+T8lWIkUQAAAAAJTi6eqgm4L9JHHBHQAAAGgcoQlo4eaoiO5XiqB1+ymCAAAAAOC3iic1fBR/WvmFFoPTAAAAwEg0jtAkFBdBG+NOq6CIIggAAAAAfm1oJ2/5ujvp/MUCbf8h3eg4AAAAMBCNIzQJw7r4yLuZk37OzdcXSRlGxwEAAAAAm2JvZ9b4vq0kMa4OAACgqaNxhCbB3s6s20qKoFMGpwEAAAAA2zOx75VJDZ8npSvjQp7BaQAAAGAUGkdoMib8UgTFHErXzzkUQQAAAADwa5393BXSurmKLFZ9FH/a6DgAAAAwCI0jNBld/d3VO8hThRarPopPMToOAAAAANic4ufDrttP4wgAAKCpsq/ugRaLRUePHlV6erosFkup92644YYaBwPqwsSwIH2XnKW1scmaPqS90XEAAAAAQ1DPoSK39g7UCx8n6tCZbH2fkqUegZ5GRwIAAEA9q1bj6JtvvtHkyZN14sQJWa3WUu+ZTCYVFRXVSjigto3pHagXPzmkRIogAAAANFHUc7gaT1cH3dTDT59+d0ZrY5OpmQAAAJqgao2qe+CBB9SvXz8lJCTo3LlzOn/+fMnr3LlztZ0RqDUt3BwVEewrSVoXy+gFAAAAND3Uc7iW4nF1H8WnKL/Qco29AQAA0NhU646jI0eOaO3aterUqVNt5wHq3MSwIG0+mKqN8af1VGQ3OdrzqC8AAAA0HdRzuJahnbzl6+6k9At5+jwpXaN6+BsdCQAAAPWoWv/FfODAgTp69GhtZwHqxQ2dfeTdzEnncvP1RVK60XEAAACAekU9h2uxtzNrfN9WkqS1sckGpwEAAEB9q/QdR999913J//7Tn/6kP//5z0pNTVWvXr3k4OBQat/evXvXXkKgltnbmXVb31b6146ftDY2WSO5eg4AAACNHPUcqmpi3yD988uf9PkP6TqbkyfvZk5GRwIAAEA9qXTjKDQ0VCaTqdTDU6dPn17yv4vf42GqaAgmhgXpXzt+0vYf0vVzTp68KIIAAADQiFHPoao6+7krJMhTB5Kz9FF8iu4d0t7oSAAAAKgnlW4cHTt2rC5zAPWqy2+KoOkUQQAAAGjEqOdQHRPDgnQgOUtrY5NpHAEAADQhlW4ctW3bti5zAPXu10UQjSMAAAA0ZtRzqI4xIYF64ZNDOnQmW9+nZKlHoKfRkQAAAFAPzNU56OWXX9by5cvLbF++fLleffXVGocC6sOYkEA52pmV+EsRBAAAADQF1HOorOaujrop2E+StDY22eA0AAAAqC/Vahz985//VLdu3cps79Gjh5YtW1bjUEB9oAgCAABAU0Q9h6qYGBYkSfooPkX5hRaD0wAAAKA+VKtxlJqaqoCAgDLbfXx8dObMmRqHAuoLRRAAAACaGuo5VMXQzt7ycXfSudx8fZGUbnQcAAAA1INqNY5at26tXbt2ldm+a9cuBQYG1jgUUF9+XQR9ThEEAACAJoB6DlVhb2fWbX1aSWJSAwAAQFNhX52DZsyYoccee0wFBQUKDw+XJMXExGj27Nn685//XKsBgbpUXAT9c8dPWhubrFE9/I2OBAAAANQp6jlU1YSwIP1zx0/a/kO6fs7Jk1czJ6MjAQAAoA5Vq3H05JNP6ueff9ZDDz2k/Px8SZKzs7P+8pe/aM6cObUaEKhrxUXQ5z+k62xOnrwpggAAANCIUc+hqrr4uSskyFMHkrP0UXyKpg9pb3QkAAAA1KFqjaozmUx69dVXlZGRoW+++UYHDhzQuXPnNHfu3NrOB0njx49XixYtNHHiRKOjNErFRVChxaqP4lOMjgMAAADUKeo5VEfx82EZVwcAAND4VatxVKxZs2YKCAhQ8+bN5eTEXRp15dFHH9Xq1auNjtGoUQQBAACgqaGeQ1WMCQmUo51ZiWey9X1KltFxAAAAUIeq1TiyWCx6/vnn5enpqbZt26pt27Zq3ry5XnjhBVksltrO2OQNHz5c7u7uRsdo1G4NaSVHO7MOUQQBAACgkavtem7JkiVq166dnJ2dNXDgQO3du7fCfYcPHy6TyVTmNXr06JJ9rFar5s6dq4CAALm4uCgiIkJHjhwptc7+/ft10003qXnz5vLy8tL999+vnJycKmdH5TV3ddRNwX6SpHWxpw1OAwAAgLpUrcbR008/rcWLF+uVV15RXFyc4uLi9Pe//11vv/22nnnmmSqt1a5du3ILh5kzZ171uGsVJxcuXNBjjz2mtm3bysXFRddff7327dtX5c96NTt27NCYMWMUGBgok8mkjRs3VisrjOfp6qCbelwpgj78lruOAAAA0HjVZj23Zs0azZo1S88++6z279+vkJAQjRo1Sunp6eXuv379ep05c6bklZCQIDs7O02aNKlkn9dee02LFi3SsmXLtGfPHrm5uWnUqFG6fPmyJCklJUURERHq1KmT9uzZoy1btuj777/XPffcU+2/CSpnQlgrSdLG+NPKL+SiUQAAgMaqWo2jVatW6d///rcefPBB9e7dW71799ZDDz2kd955RytXrqzSWvv27StVOERHR0tSqcLhtypTnNx3332Kjo7Wu+++q4MHD2rkyJGKiIjQ6dPlXxm1a9cuFRQUlNmemJiotLS0co/Jzc1VSEiIlixZUqOsoaGh6tmzZ5lXSgrP26lPxePqPqIIAgAAQCNWm/XcggULNGPGDE2bNk3BwcFatmyZXF1dtXz58nL3b9mypfz9/Ute0dHRcnV1Lan/rFarFi5cqL/97W8aO3asevfurdWrVyslJaXkQr1PPvlEDg4OWrJkibp27ar+/ftr2bJlWrdunY4ePVqTPw2u4YbOPvJu5qRzufn6Iqn85iAAAAAavmo1js6dO6du3bqV2d6tWzedO3euSmv5+PiUKhw++eQTdezYUcOGDavwmGsVJ5cuXdK6dev02muv6YYbblCnTp00b948derUSUuXLi2znsVi0cyZMzV58mQVFRWVbE9KSlJ4eLhWrVpVbo7IyEi9+OKLGj9+fLWzSlJ8fLwSEhLKvAIDA6/590PtGdrJW77uTjp/sUDbf6AIAgAAQONUW/Vcfn6+YmNjFRERUbLNbDYrIiJCu3fvrtQaUVFRuvPOO+Xm5iZJOnbsmFJTU0ut6enpqYEDB5asmZeXJ0dHR5nN/ytnXVxcJEk7d+6s8Fx5eXnKzs4u9ULV2NuZdVvfK3cd8XxYAACAxqtajaOQkBAtXry4zPbFixcrJCSk2mHy8/P13nvvafr06TKZTBXuc63ipLCwUEVFRXJ2di51rIuLS7mFhNls1ubNmxUXF6cpU6bIYrHoxx9/VHh4uMaNG6fZs2dX+/PUtJCqiiVLlig4OFj9+/ev9bWbAns7s8ZTBAEAAKCRq6167uzZsyoqKpKfn1+p7X5+fkpNTb3m8Xv37lVCQoLuu+++km3Fx11tzfDwcKWmpmr+/PnKz8/X+fPn9dRTT0mSzpw5U+H5Xn75ZXl6epa8WrduXbkPilIm9L0yqWH7D+n6OSfP4DQAAACoC9VqHL322mtavny5goODde+99+ree+9VcHCwVq5cqfnz51c7zMaNG5WZmXnV2dSVKU7c3d01aNAgvfDCC0pJSVFRUZHee+897d69u8JCIjAwUNu3b9fOnTs1efJkhYeHKyIiotw7lCqrpoVUsYiICE2aNEmbN29WUFBQhU2nmTNnKjExsdaf5dSUTPylCPo8KV0ZFyiCAAAA0PjUVT1XVVFRUerVq5cGDBhQpeN69OihVatW6Y033pCrq6v8/f3Vvn17+fn5lboL6bfmzJmjrKysktepU6dq+hGapK7+7uod5KlCi1UfxTNeHQAAoDGqVuNo2LBhOnz4sMaPH6/MzExlZmbqtttuU1JSkoYOHVrtMFFRUYqMjKyVEW3vvvuurFarWrVqJScnJy1atEi///3vr1pItGnTRu+++67WrFkje3t7RUVFVXjnU33atm2bMjIydPHiRSUnJ2vQoEFGR2q0Ovu5K6R1cxVZrPoovvznYQEAAAANWW3Vc97e3rKzsyvzTNi0tDT5+/tf9djc3Fy9//77uvfee0ttLz7uWmtOnjxZqampOn36tH7++WfNmzdPGRkZ6tChQ4XndHJykoeHR6kXqqf4+bBMagAAAGic7Kt7YGBgoF566aVaC3LixAlt27ZN69evv+p+lS1OOnbsqC+//FK5ubnKzs5WQECA7rjjjqsWEmlpabr//vs1ZswY7du3T48//rjefvvtan+mmhRSMM7EsCAdOJWptbHJundIe5toHgIAAAC1qTbqOUdHR4WFhSkmJkbjxo2TdOX5sTExMXr44YeveuyHH36ovLw83XXXXaW2t2/fXv7+/oqJiVFoaKgkKTs7W3v27NGDDz5YZp3i6Q7Lly+Xs7Ozbrrpphp9JlTOmN6BevGTQ0o8k63ElGwFB9KEAwAAaEyqdceRJJ0/f16vv/56yWiDN954o0oPUv2tFStWyNfXV6NHj77qfr8uTooVFyfl3Ynj5uamgIAAnT9/Xp999pnGjh1b7rpnz57ViBEj1L17d61fv14xMTFas2aNnnjiiWp/pqpmhW24tXegHO3M+iH1gr5P4YG5AAAAaHxqq56bNWuW3nnnHa1atUqHDh3Sgw8+qNzcXE2bNk2SNGXKFM2ZM6fMcVFRURo3bpy8vLxKbTeZTHrsscf04osvatOmTTp48KCmTJmiwMDAkuaUdOV5TPv379fhw4e1ZMkSPfzww3r55ZfVvHnzKn8GVF0LN0dFBPtKktbt564jAACAxqZajaMdO3aoXbt2WrRokc6fP6/z589r0aJFat++vXbs2FHl9SwWi1asWKGpU6fK3r70TVCLFy/WiBEjSm27VnEiSZ999pm2bNmiY8eOKTo6WjfeeKO6detWap9fnz8yMlJt27YtGVMXHBys6OhorVixQm+++Wa5uXNychQfH6/4+HhJ0rFjxxQfH6+TJ09WKStsi6erg27qceXKRUYvAAAAoLGpzXrujjvu0Ouvv665c+cqNDRU8fHx2rJlS8mdQCdPnizznNmkpCTt3LmzzJi6YrNnz9af/vQn3X///erfv79ycnK0ZcsWOTs7l+yzd+9e3XTTTerVq5f+9a9/6Z///KceeeSRKv4lUBPF4+o2xp1WQZHF4DQAAACoTSar1Wqt6kG9evXSoEGDtHTpUtnZ2UmSioqK9NBDD+nrr7/WwYMHq7Te1q1bNWrUKCUlJalLly6l3ps3b55Wrlyp48ePl9q+ePFizZ8/X6mpqQoNDdWiRYs0cODAkvc/+OADzZkzR8nJyWrZsqUmTJigl156SZ6enuVmiI6O1tChQ0sVI5IUFxcnHx8fBQUFlTnmiy++0I033lhm+9SpU7Vy5cpKZ61t2dnZ8vT0VFZWFnO7q+mLpHTds2KfWrg6aM9fI+RoX+2b8wAAAFAP+A1cebVdzzVUfGdqprDIoute3q6zOXl6Z0o/3RTsZ3QkAAAAXEVVfv9Wq3Hk4uKi+Ph4de3atdT2pKQkhYaG6tKlS1VdErWIAqjmiixWXf9KjNKy87Tsrr66uWeA0ZEAAABwFfwGrjzquSv4ztTc3zcf0r92/KRRPfz0z7v7GR0HAAAAV1GV37/Vuo2ib9++OnToUJnthw4dUkhISHWWBGyKndmk8X2u3GXGuDoAAAA0JtRzqC0T+l6pmWIOpevnnDyD0wAAAKC22F97l7IeeeQRPfroozp69Kiuu+46SdI333yjJUuW6JVXXtF3331Xsm/v3r1rJylQzyaGtdKyL3/U50kZyriQJx93J6MjAQAAADVGPYfa0tXfXb1aeerg6SxtOpCiaYPbGx0JAAAAtaBao+rM5qvfqGQymWS1WmUymVRUVFTtcKgeRi7UnnFLdin+VKb+Nrq77hvaweg4AAAAqAC/gSuPeu4KvjO1Y9XXx/Xspu/VI9BDnz4y1Og4AAAAqEBVfv9W646jY8eOVSsY0NBMDAtS/KlMffhtsu4d0l4mk8noSAAAAECNUM+hNt0aEqgXP03U9ynZSkzJVnAgTTgAAICGrlqNo7Zt29Z2DsAmjekdqOc/SVRS2gV9n5Ktnq08jY4EAAAA1Aj1HGpTCzdHRXT3038TUrVuf7KCA4ONjgQAAIAauvqMgqt49913NXjwYAUGBurEiROSpIULF+qjjz6qtXCA0TxdHTQy2E+StDY22eA0AAAAQO2gnkNtmhgWJEnaGHdaBUUWg9MAAACgpqrVOFq6dKlmzZqlW265RZmZmSVzr5s3b66FCxfWZj7AcCVFUPxp5RU23hnvAAAAaBqo51DbbujiI+9mTvo5N19fJGUYHQcAAAA1VK3G0dtvv6133nlHTz/9tOzs7Eq29+vXTwcPHqy1cIAtGNrZR34eTsq8WKDPf0g3Og4AAABQI9RzqG0OdmaN7xMoSVobe8rgNAAAAKipajWOjh07pj59+pTZ7uTkpNzc3BqHAmyJndmk2/peueuIcXUAAABo6KjnUBcm/DKpYfsP6TqXm29wGgAAANREtRpH7du3V3x8fJntW7ZsUffu3WuaCbA5E35pHH2elKH0C5cNTgMAAABUH/Uc6kI3fw/1auWpgiKrNsWfNjoOAAAAasC+OgfNmjVLM2fO1OXLl2W1WrV371793//9n15++WX9+9//ru2MgOE6+TZTnzbNFXcyUx/FpWjGDR2MjgQAAABUC/Uc6srEsCAdPJ2ltfuTdc/g9kbHAQAAQDVVq3F03333ycXFRX/729908eJFTZ48WYGBgXrrrbd055131nZGwCZMDAtS3MlMrY1N1n1D28tkMhkdCQAAAKgy6jnUlVtDAvXip4lKOJ2tQ2ey1T3Aw+hIAAAAqIZqjaqTpD/84Q86cuSIcnJylJqaquTkZN17772l9tm1a5fy8vJqHBKwBb/rHShHe7OS0i4o4XS20XEAAACAaqOeQ11o4eaoiO5+kqR1PB8WAACgwap246iYq6urfH19y30vMjJSp08z2xiNg6eLg0b18JckrY09ZXAaAAAAoOao51Dbip8PuzH+tAqKLAanAQAAQHXUuHF0NVartS6XB+rdxLArRdBHB1KUV1hkcBoAAACg7lDPoTqGdfWRdzNHnc3J15dJGUbHAQAAQDXUaeMIaGyGdPKWn4eTMi8WaPuhdKPjAAAAAIBNcbAza1xoK0nSWsbVAQAANEg0joAqsDObdNsvoxcoggAAAACgrAm/TGqI+SFN53LzDU4DAACAqqJxBFRR8bi6Lw5nKP3CZYPTAAAAAIBt6R7goZ6tPFRQZNWmeJ6TBQAA0NDUaePIZDLV5fKAITr6NFPfNs1VZLHqo7gUo+MAAAAAdYJ6DjUxsXhSw34mNQAAADQ0ddo44mGqaKwmhrWWJH0Ye4rvOQAAABolfueiJm4NbSUHO5MSTmfrh9Rso+MAAACgCqrVOLp06ZIuXrxY8u8TJ05o4cKF2rp1a6n9Lly4oA4dOtQsIWCDRvcOkJO9WYfTcnTwdJbRcQAAAIBKo55DfWjp5qgR3fwkSet4PiwAAECDUq3G0dixY7V69WpJUmZmpgYOHKg33nhDY8eO1dKlS2s1IGCLPF0cNKqHvyRpLUUQAAAAGhDqOdSX4ufDbohLUUGRxeA0AAAAqKxqNY7279+voUOHSpLWrl0rPz8/nThxQqtXr9aiRYtqNSBgq4qLoI/iU5RXWGRwGgAAAKByqOdQX4Z19ZF3M0edzcnTjsMZRscBAABAJVWrcXTx4kW5u7tLkrZu3arbbrtNZrNZ1113nU6cOFGrAQFbNbiTt/w9nJV1qUAxh9KNjgMAAABUCvUc6ouDnVnjQltJYlIDAABAQ1KtxlGnTp20ceNGnTp1Sp999plGjhwpSUpPT5eHh0etBgRslZ3ZpNv6UgQBAACgYaGeQ32a8Mukhm2H0nQ+N9/gNAAAAKiMajWO5s6dqyeeeELt2rXTwIEDNWjQIElXrlbr06dPrQYEbFlxEfTl4QylZ182OA0AAABwbdRzqE/dAzzUI9BDBUVWbTqQYnQcAAAAVEK1GkcTJ07UyZMn9e2332rLli0l20eMGKE333yz1sLhivHjx6tFixaaOHGi0VHwGx19mqlvm+Yqsli1Mf600XEAAACAa6KeQ30rfj4skxoAAAAahmo1jiTJ399fffr0kdlsVnZ2tjZu3Ch3d3d169atNvNB0qOPPqrVq1cbHQMVmBjWWtKVIshqtRqcBgAAALg26jnUp7GhreRgZ9LB01n6ITXb6DgAAAC4hmo1jm6//XYtXrxYknTp0iX169dPt99+u3r37q1169bVakBIw4cPL3l4LWzP70IC5GRv1uG0HB08nWV0HAAAAOCqarueW7Jkidq1aydnZ2cNHDhQe/furXDf4cOHy2QylXmNHj26ZB+r1aq5c+cqICBALi4uioiI0JEjR0qtc/jwYY0dO1be3t7y8PDQkCFD9Pnnn1c5O+pHSzdHhXfzlSSt464jAAAAm1etxtGOHTs0dOhQSdKGDRtktVqVmZmpRYsW6cUXX6zSWu3atSu3cJg5c+ZVj7tWcVJUVKRnnnlG7du3l4uLizp27KgXXnihVu8I2bFjh8aMGaPAwECZTCZt3LixWlnRsHk4O+jmnv6SpA+/pQgCAACAbavNem7NmjWaNWuWnn32We3fv18hISEaNWqU0tPTy91//fr1OnPmTMkrISFBdnZ2mjRpUsk+r732mhYtWqRly5Zpz549cnNz06hRo3T58v+eKfq73/1OhYWF2r59u2JjYxUSEqLf/e53Sk1NrcZfBPWheFLDhrgUFRRZDE4DAACAq6lW4ygrK0stW7aUJG3ZskUTJkyQq6urRo8eXeZKsGvZt29fqcIhOjpakkoVDr9VmeLk1Vdf1dKlS7V48WIdOnRIr776ql577TW9/fbb5a65a9cuFRQUlNmemJiotLS0co/Jzc1VSEiIlixZUqOsoaGh6tmzZ5lXSgoPDm0oimd2bzqQossFRQanAQAAACpWm/XcggULNGPGDE2bNk3BwcFatmyZXF1dtXz58nL3b9mypfz9/Ute0dHRcnV1Lan/rFarFi5cqL/97W8aO3asevfurdWrVyslJaXkQr2zZ8/qyJEjeuqpp9S7d2917txZr7zyii5evKiEhITq/2FQp4Z39ZGXm6PO5uRpx+EMo+MAAADgKqrVOGrdurV2796t3NxcbdmyRSNHjpQknT9/Xs7OzlVay8fHp1Th8Mknn6hjx44aNmxYhcdUpjj5+uuvNXbsWI0ePVrt2rXTxIkTNXLkyHLv9rFYLJo5c6YmT56soqL//Uf/pKQkhYeHa9WqVeXmiIyM1Isvvqjx48fXKGt8fLwSEhLKvAIDA6/6t4PtuL6jtwI8nZV1qUAxh8q/uhIAAACwBbVVz+Xn5ys2NlYREREl28xmsyIiIrR79+5KrREVFaU777xTbm5ukqRjx44pNTW11Jqenp4aOHBgyZpeXl7q2rWrVq9erdzcXBUWFuqf//ynfH19FRYWVuG58vLylJ2dXeqF+uNgZ9a4Pq0kXXk+LAAAAGxXtRpHjz32mP7whz8oKChIgYGBGj58uKQrIw969epV7TD5+fl67733NH36dJlMpgr3qUxxcv311ysmJkaHDx+WJB04cEA7d+5UZGRkmTXNZrM2b96suLg4TZkyRRaLRT/++KPCw8M1btw4zZ49u9qfp6aFVFUsWbJEwcHB6t+/f62vjauzM5t0W9/iIuiUwWkAAACAitVWPXf27FkVFRXJz8+v1HY/P79KjYzbu3evEhISdN9995VsKz7uamuaTCZt27ZNcXFxcnd3l7OzsxYsWKAtW7aoRYsWFZ7v5ZdflqenZ8mrdevWlf6sqB3Fkxq2HUrT+dx8g9MAAACgItVqHD300EPavXu3li9frp07d8psvrJMhw4dqjwT+9c2btyozMxM3XPPPRXuU9ni5KmnntKdd96pbt26ycHBQX369CkpkMoTGBio7du3a+fOnZo8ebLCw8MVERGhpUuXVvvz1LSQKhYREaFJkyZp8+bNCgoKqrDpNHPmTCUmJmrfvn3Vzozqm9D3ShH05eEMpWdfvsbeAAAAgDHqqp6rqqioKPXq1UsDBgyo0nFWq1UzZ86Ur6+vvvrqK+3du1fjxo3TmDFjdObMmQqPmzNnjrKyskpep05xwVd96x7goR6BHioosurj7xjNDgAAYKvsq3tgv3791K9fP1mtVlmtVplMJo0ePbpGYaKiohQZGVkrI9o++OAD/b//9//0n//8Rz169FB8fLwee+wxBQYGaurUqeUe06ZNG7377rsaNmyYOnTooKioqArvfKpP27ZtMzoCKqGDTzOFtW2h2BPntSHutP44rKPRkQAAAIBy1UY95+3tLTs7uzLPhE1LS5O/v/9Vj83NzdX777+v559/vtT24uPS0tIUEBBQas3Q0FBJ0vbt2/XJJ5/o/Pnz8vDwkCT94x//UHR0tFatWqWnnnqq3HM6OTnJycmpSp8RtW9iWJC+T0nU2thkTRnUzug4AAAAKEe17jiSpNWrV6tXr15ycXGRi4uLevfurXfffbfaQU6cOKFt27aVGlNQnsoWJ08++WTJXUe9evXS3Xffrccff1wvv/xyhWunpaXp/vvv15gxY3Tx4kU9/vjj1f48VcmKxqN49MLa2GRZrVaD0wAAAADlq416ztHRUWFhYYqJiSnZZrFYFBMTo0GDBl312A8//FB5eXm66667Sm1v3769/P39S62ZnZ2tPXv2lKx58eJFSSq5U6qY2WyWxWKp0mdA/Rsb2koOdiZ9l5ylpNQLRscBAABAOarVOFqwYIEefPBB3XLLLfrggw/0wQcf6Oabb9YDDzygN998s1pBVqxYIV9f32te5VbZ4uTixYtlCgk7O7sKC4mzZ89qxIgR6t69u9avX6+YmBitWbNGTzzxRLU+T1WyovEY3TtAzg5mHUnP0XfJWUbHAQAAAMqozXpu1qxZeuedd7Rq1SodOnRIDz74oHJzczVt2jRJ0pQpUzRnzpwyx0VFRWncuHHy8vIqtd1kMumxxx7Tiy++qE2bNungwYOaMmWKAgMDNW7cOEnSoEGD1KJFC02dOlUHDhzQ4cOH9eSTT+rYsWM1noKButfSzVHh3XwlSev2JxucBgAAAOWp1qi6t99+W0uXLtWUKVNKtt16663q0aOH5s2bV+U7dSwWi1asWKGpU6fK3r50pMWLF2vDhg2lmi+zZs3S1KlT1a9fPw0YMEALFy4sVZxI0pgxY/TSSy+pTZs26tGjh+Li4rRgwQJNnz693PNHRkaqbdu2WrNmjezt7RUcHKzo6GiFh4erVatW5X6mnJwcHT16tOTfx44dU3x8vFq2bKk2bdpUOisaDw9nB93cw18b41O0NjZZIa2bGx0JAAAAKKU267k77rhDGRkZmjt3rlJTUxUaGqotW7aUPOf15MmTZS7oS0pK0s6dO7V169Zy15w9e7Zyc3N1//33KzMzU0OGDNGWLVvk7Ows6cpkhy1btujpp59WeHi4CgoK1KNHD3300UcKCQmp6p8DBpgY1lqffZ+m9ftPa/aorrK3q/YwFAAAANQBk7Ua87ScnZ2VkJCgTp06ldp+5MgR9erVS5cvX67Selu3btWoUaOUlJSkLl26lHpv3rx5WrlypY4fP15q++LFizV//vyS4mTRokUaOHBgyfsXLlzQM888ow0bNig9PV2BgYH6/e9/r7lz58rR0bFMhujoaA0dOrSkGCkWFxcnHx8fBQUFlTnmiy++0I033lhm+9SpU7Vy5cpKZ61t2dnZ8vT0VFZWVsnMb9SfnUfO6q6oPfJwttfepyPk7GBndCQAAIBGj9/AlVfb9VxDxXfGOAVFFl339xj9nJuv5ff0U3g3P6MjAQAANHpV+f1brcZRz549NXnyZP31r38ttf3FF1/UmjVrdPDgwaouiVpEAWSsIotVQ1/drpSsy1o8uY9+1zvQ6EgAAACNHr+BK4967gq+M8Z6/uNELd91TLf08tc//hBmdBwAAIBGryq/f6s1qu65557THXfcoR07dmjw4MGSpF27dikmJkYffPBBdZYEGg07s0m39Q3S4s+Pam1sMo0jAAAA2BTqOdiCiWFBWr7rmLYlput8br5auJWdDAIAAABjVGuQ8IQJE7Rnzx55e3tr48aN2rhxo7y9vbV3716NHz++tjMCDc6EsCujDXcczlBadtMY9QEAAICGgXoOtiA40EPBAR7KL7Lo4+9SjI4DAACAX6nWHUeSFBYWpvfee682swCNRntvN/Vr20LfnjivDXGn9cCwjkZHAgAAAEpQz8EWTAwL0vOfJGptbLKmDGpndBwAAAD8otKNo+zs7Eovynxo4EoR9O2J81obm6w/3tBBJpPJ6EgAAABooqjnYIvGhgbq75sP6bvkLCWlXlBXf3ejIwEAAEBVaBw1b978mv/h22q1ymQyqaioqMbBgIbult4Bmvfx9zqanqMDyVkKbd3c6EgAAABooqjnYIu8mjkpvJuvtiamad3+ZP31lu5GRwIAAICq0Dj6/PPP6zIH0Oh4ODvo5h7+2hiforWxp2gcAQAAwDDUc7BVE8OCtDUxTRviTmv2qK6yt6vWo5gBAABQiyrdOBo2bFiVF3/ooYf0/PPPy9vbu8rHAo3BxLDW2hifok3xKfrb6GA5O9gZHQkAAABNEPUcbNWN3Xzl5eaojAt5+urIWd3YzdfoSAAAAE1enV7K895771VpljbQ2Fzf0UuBns7KvlyobYfSjI4DAAAAVBr1HOqDg51ZY0NbSZLWxiYbnAYAAABSHTeOrFZrXS4P2Dyz2aQJYUGSpA+/pQgCAABAw0E9h/oy8ZeaKToxTZkX8w1OAwAAAIYHA3VsQt8rRdBXRzKUmnXZ4DQAAAAAYFuCAz0UHOCh/CKLPj6QYnQcAACAJo/GEVDH2nm7qX+7FrJYpQ1xp42OAwAAAAA2p3hSA+PqAAAAjEfjCKgHE0uKoFOM/AAAAACA3xgbGih7s0kHkrN0OO2C0XEAAACaNBpHQD24pVeAnB3M+jEjV/GnMo2OAwAAAAA2xbuZk27s5itJWsddRwAAAIaq08bRXXfdJQ8Pj7o8BdAguDs7KLJngCRGLwAAAKBhoJ5DfSue1LA+7rQKiywGpwEAAGi67Kt7YGZmpvbu3av09HRZLKV/0E2ZMkWStHTp0pqlAxqRiWFB2hB3WpsOpOiZ3wXL2cHO6EgAAABooqjnYItu7Oqrlm6OyriQp6+OnC25AwkAAAD1q1qNo48//lh/+MMflJOTIw8PD5lMppL3TCZTSaEB4H8GdfBSoKezUrIuKzoxTWNCAo2OBAAAgCaIeg62ytHerLGhgVqx67jWxibTOAIAADBItUbV/fnPf9b06dOVk5OjzMxMnT9/vuR17ty52s4INApms0kTfhm9wLg6AAAAGIV6DraseFxddGKaMi/mG5wGAACgaapW4+j06dN65JFH5OrqWtt5gEatuAj66kiGUrMuG5wGAAAATRH1HGxZj0BPdQ/wUH6RRR8fSDE6DgAAQJNUrcbRqFGj9O2339Z2FqDRa+vlpgHtWspildbHcdcRAAAA6h/1HGxd8QV3a/efNjgJAABA01StZxyNHj1aTz75pBITE9WrVy85ODiUev/WW2+tlXBAYzQxLEh7j5/T2thkPTisY6mZ8gAAAEBdo56DrRsbGqiXNx/SgVOZOpJ2QZ393I2OBAAA0KSYrFartaoHmc0V36hkMplUVFRUo1ComezsbHl6eiorK0seHh5Gx8Fv5OQVqv+L23SpoEjrH7pefdu0MDoSAABAg8dv4MqjnruC74xtm7H6W0UnpumPwzpoTmR3o+MAAAA0eFX5/VutUXUWi6XCV1MpMoDqauZkr8ie/pKktbGMqwMAAED9op5DQ1A8rm7D/tMqLLIYnAYAAKBpqVbjCEDNFBdBHx9I0eUCinMAAAAA+LUbu/qqhauD0i/k6aujZ42OAwAA0KRU+hlHixYt0v333y9nZ2ctWrToqvs+8sgjNQ4GNGbXdfBSq+YuOp15SVsT03RrSKDRkQAAANCIUc+hoXG0N2tsaCut/Pq41sYm68auvkZHAgAAaDIq/Yyj9u3b69tvv5WXl5fat29f8YImk3766adaC4iqY1Z3w7Bga5IWbT+qG7r4aPX0AUbHAQAAaND4DXx11HNl8Z2xfQmns/S7t3fK0c6sfU9HyNPVwehIAAAADVZVfv9W+o6jY8eOlfu/AVTPhLAgLdp+VDuPZCg167L8PZ2NjgQAAIBGinoODVGPQA9183fXD6kXtOm7FN19XVujIwEAADQJPOOoARg/frxatGihiRMnGh0Ftaitl5sGtGspi1VaH5dsdBwAAAAAsCkmk6nk+bBrY6mZAAAA6kul7zj6reTkZG3atEknT55Ufn5+qfcWLFhQ42D4n0cffVTTp0/XqlWrjI6CWjaxX5D2Hj+ntbHJenBYR5lMJqMjAQAAoAmgnkNDMa5PK73y3x904FSmjqRdUGc/d6MjAQAANHrVuuMoJiZGXbt21dKlS/XGG2/o888/14oVK7R8+XLFx8fXckQMHz5c7u78OG6MbukVIBcHO/2Ukav9JzONjgMAAIAmoC7quSVLlqhdu3ZydnbWwIEDtXfv3gr3HT58uEwmU5nX6NGjS/axWq2aO3euAgIC5OLiooiICB05cqTk/S+++KLcNUwmk/bt21etzwDb5N3MScO7+kqS1u7nriMAAID6UK3G0Zw5c/TEE0/o4MGDcnZ21rp163Tq1CkNGzZMkyZNqtJa7dq1K/fH/syZM6963LUKk+quWxU7duzQmDFjFBgYKJPJpI0bN1YrK5quZk72iuzlL4nRCwAAAKgftVnPSdKaNWs0a9YsPfvss9q/f79CQkI0atQopaenl7v/+vXrdebMmZJXQkKC7OzsSp37tdde06JFi7Rs2TLt2bNHbm5uGjVqlC5fvixJuv7660utcebMGd13331q3769+vXrV70/DGxW8bi6DftPq7DIYnAaAACAxq9ajaNDhw5pypQpkiR7e3tdunRJzZo10/PPP69XX321Smvt27ev1I/96OhoSbpqwVKZwqSq6+7atUsFBQVlticmJiotLa3cY3JzcxUSEqIlS5bUKGtoaKh69uxZ5pWSklLhumg8iougTw6k6HJBkcFpAAAA0NjVZj0nXRltN2PGDE2bNk3BwcFatmyZXF1dtXz58nL3b9mypfz9/Ute0dHRcnV1LanVrFarFi5cqL/97W8aO3asevfurdWrVyslJaXkYj1HR8dSa3h5eemjjz7StGnTGP/cCIV381ULVwelX8jTV0fPGh0HAACg0atW48jNza1kDnZAQIB+/PHHkvfOnq3ajzgfH59SP/g/+eQTdezYUcOGDavwmMoUJlVZ12KxaObMmZo8ebKKiv73H+6TkpIUHh5e4bOFIiMj9eKLL2r8+PE1yhofH6+EhIQyr8DAwKv+7X5ryZIlCg4OVv/+/at0HIx1XXsvtWruogt5hfrs+1Sj4wAAAKCRq816Lj8/X7GxsYqIiCjZZjabFRERod27d1dqjaioKN15551yc3OTJB07dkypqaml1vT09NTAgQMrXHPTpk36+eefNW3atArPk5eXp+zs7FIvNAyO9maNDW0lSVrHpAYAAIA6V63G0XXXXaedO3dKkm655Rb9+c9/1ksvvaTp06fruuuuq3aY/Px8vffee5o+fXqFV4lVpzC51rpms1mbN29WXFycpkyZIovFoh9//FHh4eEaN26cZs+eXe3PU9MiqipmzpypxMREZno3MGazSRN+ueuIcXUAAACoa7VZz509e1ZFRUXy8/Mrtd3Pz0+pqde+KGrv3r1KSEjQfffdV7Kt+LiqrBkVFaVRo0YpKCiownO9/PLL8vT0LHm1bt36mvlgO4onNWxNTFPWxbLTQgAAAFB7qtU4WrBggQYOHChJeu655zRixAitWbNG7dq1U1RUVLXDbNy4UZmZmbrnnnsq3Kc6hUll1g0MDNT27du1c+dOTZ48WeHh4YqIiNDSpUur81GqnbU8ERERmjRpkjZv3qygoKA6aTrBWBP6Xrl6bufRszqTdcngNAAAAGjM6qqeq46oqCj16tVLAwYMqPYaycnJ+uyzz3Tvvfdedb85c+YoKyur5HXq1KlqnxP1r0egh7r5uyu/0KKPv2OsOwAAQF2yr+oBRUVFSk5OVu/evSVdGXOwbNmyWgkTFRWlyMjIKo9oq61127Rpo3fffVfDhg1Thw4dFBUVZRPzsbdt22Z0BNSxtl5uGtC+pfYeO6f1+09r5o2djI4EAACARqi26zlvb2/Z2dmVeS5sWlqa/P39r3psbm6u3n//fT3//POlthcfl5aWpoCAgFJrhoaGlllnxYoV8vLy0q233nrV8zk5OcnJyemq+8B2mUwmTQwL0oufHtLa2GTddV1boyMBAAA0WlW+48jOzk4jR47U+fPnazXIiRMntG3btlIjCspT1cKksusWr3H//fdrzJgxunjxoh5//PGqfYgaZkXTVjx6YV1ssqxWq8FpAAAA0BjVdj3n6OiosLAwxcTElGyzWCyKiYnRoEGDrnrshx9+qLy8PN11112ltrdv317+/v6l1szOztaePXvKrGm1WrVixQpNmTJFDg4OtfCJYMvGhraSndmk+FOZOpp+weg4AAAAjVa1RtX17NlTP/30U60GWbFihXx9fTV69Oir7lfVwqSy6549e1YjRoxQ9+7dtX79esXExGjNmjV64oknqveBqpEVTdstvQLk4mCnn87mav/JTKPjAAAAoJGq7Xpu1qxZeuedd7Rq1SodOnRIDz74oHJzczVt2jRJ0pQpUzRnzpwyx0VFRWncuHHy8vIqtd1kMumxxx7Tiy++qE2bNungwYOaMmWKAgMDNW7cuFL7bt++XceOHavUhYJo+HzcnXRjVx9J0trY0wanAQAAaLyq1Th68cUX9cQTT+iTTz7RmTNnlJ2dXepVVRaLRStWrNDUqVNlb196et7ixYs1YsSIUtuuVZhUZt3f7hcZGam2bdtqzZo1sre3V3BwsKKjo7VixQq9+eab5R6Xk5Oj+Ph4xcfHS5KOHTum+Ph4nTx5sspZgWZO9rql15VRHGtjkw1OAwAAgMaqtuu5O+64Q6+//rrmzp2r0NBQxcfHa8uWLSXPej158qTOnDlT6pikpCTt3LmzwucSzZ49W3/60590//33q3///srJydGWLVvk7Oxcar+oqChdf/316tatW5Vzo2EqntSwIS5ZRRYmNQAAANQFk7UaM7HM5v/1m379DCCr1SqTyaSioqIqrbd161aNGjVKSUlJ6tKlS6n35s2bp5UrV+r48eOlti9evFjz589XamqqQkNDtWjRopIHvFZm3d+Kjo7W0KFDyxQicXFx8vHxUVBQUJljvvjiC914441ltk+dOlUrV66sUtbalJ2dLU9PT2VlZcnDw6POzoPat/vHn/X7d76Ru5O99j4dIRdHO6MjAQAANAj8Bq682q7nGiq+Mw1TfqFFA/++TecvFmjltP4a3tXX6EgAAAANQlV+/1arcbRq1Sq1bt1adnal/6O2xWLRyZMnNXXq1KouiVpEAdRwWSxW3TD/cyWfv6SJYUF67tYecnOq+G45AAAAXMFv4MqjnruC70zDNW/T91r59XEN7+qjf93dT4721RqmAgAA0KTUeePIzs5OZ86cka9v6St7fv75Z/n6+jaZK9RsFQVQw/bBvlOave47SVKblq5acHuI+rVraXAqAAAA28Zv4MqjnruC70zDlZiSrdFvfyWrVeoR6KEFt4eqq7+70bEAAABsWlV+/1brspziEQa/lZOTU2bUG4Cqub1/a/3nvoEK9HTWyXMXNemfu/Xyfw8pr7BpFPAAAACoW9RzaOiCAz20ZHJfNXd10Pcp2Rrz9k7988sfeeYRAABALanSDKxZs2ZJujIH+5lnnpGrq2vJe0VFRdqzZ49CQ0NrNSDQFF3fyVtbHr9Bz21K1Lr9yfrnlz/py6QMLbg9VMGBXA0JAACAqqOeQ2NyS68A9WvbQk+tP6jtP6Tr5f/+oG2H0vTGpFC18XK99gIAAACoUJUaR3FxcZKuXKF28OBBOTo6lrzn6OiokJAQPfHEE7WbEGiiPJwd9MbtIRrZw09/XX9QP6Re0NglO/VYRBf98YYOsrdjjjcAAAAqj3oOjY2vh7OipvbTmn2n9MInidp3/LxufmuHnh7dXZMHtCn3zjoAAABcW7WecTRt2jS99dZbzIG2UczqbnzO5uRpzvqDik5MkyT1bdNcb9weqvbebgYnAwAAsA38Bq486rkr+M40LqfOXdSfPzygvcfOSZKGdfHRqxN6y9+T8YsAAABS1X7/VqtxBNtGAdQ4Wa1Wrdt/Ws9t+l4X8grl4mCnv97STXdd15Yr6QAAQJPHb2BUFd+ZxsdisWr5rmN67bMk5Rda5OnioBfG9dStIYFGRwMAADBcVX7/MusKaCBMJpMmhgVpy+M36PqOXrpUUKRnPvpeU5bvVWrWZaPjAQAAAIChzGaT7hvaQZ/+aYh6tfJU1qUCPfJ/cZr5n/06n5tvdDwAAIAGg8YR0MC0au6i9+4dqGfHBMvJ3qyvjpzVyDe/1Efxp8UNhAAAAACaus5+7lr/0PV6dERn2ZlN+vS7Mxq5cIe2/5BmdDQAAIAGgcYR0ACZzSZNG9xenz4yVL2DPJV9uVCPvh+vh/8Tp3NcSQcAAACgiXOwM+vxm7pow0PXq5NvM2VcyNP0ld/qL2u/04XLBUbHAwAAsGk0joAGrJNvM6178Ho9HtFF9maTPj14RqO4kg4AAAAAJEm9g5rrkz8N0b1D2stkktZ8e0qRb32lb3762ehoAAAANovGEdDAOdiZ9WhEZ63/zZV0c9Z/p5y8QqPjAQAAAIChnB3s9MzvgvV/M65TUAsXJZ+/pN+/841e/CRRlwuKjI4HAABgc2gcAY3Eb6+k+7+9pxT51g7t4Uo6AAAAANB1Hby05bEbdGf/1rJapX/vPKbfvb1T3yVnGh0NAADAptA4AhqR4ivp/nPfdWrV3EWnzl3Sne98o79vPsSVdAAAAACavGZO9nplQm9FTe0n72ZOOpqeo/H/+FpvRh9WQZHF6HgAAAA2gcYR0AgN6uilLY8N1e39gmS1Sv/a8ZNuXbxTCaezjI4GAAAAAIYb0d1PWx+/QaN7BajIYtVbMUd02z++1pG0C0ZHAwAAMByNI6CRcnd20GsTQ/TOlH7ybuaow2k5Grdkl96OOaJCrqQDAAAA0MS1dHPU4sl99NadofJ0cdDB01ka/fZO/furn2SxWI2OBwAAYBgaR0Ajd1Ownz577Abd3MNfhRar3og+rInLduunjByjowEAAACAoUwmk8aGttLWx2/QsC4+yi+06MVPD+n373yjU+cuGh0PAADAEDSOgCbAq5mTlt7VV2/eESJ3Z3vFn8rULYu+0qqvj3MlHQAAAIAmz8/DWSun9ddL43vK1dFOe46d080Ld2jNvpOyWqmZAABA00LjCGgiTCaTxvcJ0meP3aDBnbx0ucCiZzd9rynL9yol85LR8QAAAADAUCaTSX8Y2Fb/fXSo+rVtodz8Iv1l3UHdu+pbpWdfNjoeAABAvaFxBDQxgc1d9O70gXru1h5ydjBr59GzGrVwh9bvT+ZKOgAAAABNXlsvN6354yDNiewmRzuztv+QrpELd+iT71KMjgYAAFAvaBwBTZDZbNLU69tp8yNDFdq6uS5cLtSsDw7owff26+ecPKPjAQAAAICh7Mwm/XFYR338pyHqEeihzIsFevg/cfrT/8Up82K+0fEAAADqFI0joAnr4NNMax8YpCdGdpG92aQt36dq1MIdik5MMzoaAAAAABiuq7+7Njw0WH8K7yQ7s0kfH0jRyDd36IukdKOjAQAA1BkaR0ATZ29n1sPhnbVx5mB18Wumszn5mrH6W81ee0AXLhcYHQ8AAAAADOVob9afR3bVugevVwdvN6VfyNM9K/bprxsOKjev0Oh4AAAAtY7GEQBJUs9Wntr08BDdf0MHmUzSB98m6+aFX+mbn342OhoAAAAAGC60dXN9+shQ3XN9O0nSf/acVORbX2nf8XPGBgMAAKhlNI4AlHB2sNNfb+mu92dcp9YtXXQ685J+/843evGTRF0uKDI6HgAAAAAYysXRTvNu7aH/3DdQrZq76OS5i7r9n7v18uZD1EwAAKDRoHEEoIyBHbz030dv0O8HtJbVKv175zH97u2dOpicZXQ0AAAAADDc9Z289d/HhmpiWJCsVumfO37SrYt3KuE0NRMAAGj4aBwBKFczJ3u9fFtvLb+nn7ybOeloeo7G/2OX3tp2RAVFFqPjAQAAAIChPJwd9PqkEL0zpZ+8mznqcFqOxi3ZpbdjjqiQmgkAADRgNI4agPHjx6tFixaaOHGi0VHQBIV389PWx2/QLb38VWix6s1thzVx6dc6mp5jdDQAAAAAMNxNwX767LEbdHOPKzXTG9GHNWHZbv2YQc0EAAAaJhpHDcCjjz6q1atXGx0DTVhLN0ctmdxXb90ZKg9nex1IztLoRV9pxa5jslisRscDAAAAAEN5NXPS0rv66s07QuTubK8DpzJ1y1vUTAAAoGGicdQADB8+XO7u7kbHQBNnMpk0NrSVPnv8Bg3t7K28Qoue+zhRf/j3Hp3OvGR0PAAAABhkyZIlateunZydnTVw4EDt3bu3wn2HDx8uk8lU5jV69OiSfaxWq+bOnauAgAC5uLgoIiJCR44cKbPWp59+qoEDB8rFxUUtWrTQuHHj6uLjAZVmMpk0vk+QPnusbM2UfP6i0fEAAAAqzfDGUbt27cotHGbOnHnV4ypTnJw+fVp33XWXvLy85OLiol69eunbb7+ttew7duzQmDFjFBgYKJPJpI0bN1Y7K9BQBHi6aPX0AXphXE+5ONhp908/6+Y3d2htbLKsVq6kAwAAaErWrFmjWbNm6dlnn9X+/fsVEhKiUaNGKT09vdz9169frzNnzpS8EhISZGdnp0mTJpXs89prr2nRokVatmyZ9uzZIzc3N40aNUqXL18u2WfdunW6++67NW3aNB04cEC7du3S5MmT6/zzApUR2PyXmmlsj//VTAu/0offnqJmAgAADYLhjaN9+/aVKhyio6MlqVTh8FuVKU7Onz+vwYMHy8HBQf/973+VmJioN954Qy1atCh3zV27dqmgoKDM9sTERKWlpZV7TG5urkJCQrRkyZIaZQ0NDVXPnj3LvFJSUipcFzCSyWTS3de11eZHh6pvm+a6kFeoJz48oD++G6uzOXlGxwMAAEA9WbBggWbMmKFp06YpODhYy5Ytk6urq5YvX17u/i1btpS/v3/JKzo6Wq6uriX1n9Vq1cKFC/W3v/1NY8eOVe/evbV69WqlpKSUXKhXWFioRx99VPPnz9cDDzygLl26KDg4WLfffnt9fWzgmkwmk+4e1K6kZsrJK9STa7/TjNWxyrhAzQQAAGyb4Y0jHx+fUoXDJ598oo4dO2rYsGEVHlOZ4uTVV19V69attWLFCg0YMEDt27fXyJEj1bFjxzLrWSwWzZw5U5MnT1ZRUVHJ9qSkJIWHh2vVqlXl5oiMjNSLL76o8ePH1yhrfHy8EhISyrwCAwOv+rf7rSVLlig4OFj9+/ev0nFAdbX3dtMHfxykJ0d1lYOdSVsT0zTqzR367PtUo6MBAACgjuXn5ys2NlYREREl28xmsyIiIrR79+5KrREVFaU777xTbm5ukqRjx44pNTW11Jqenp4aOHBgyZr79+/X6dOnZTab1adPHwUEBCgyMlIJCQlXPVdeXp6ys7NLvYC61t7bTR8+cL1m33ylZtp2KE2jFu7Qfw+eMToaAABAhQxvHP1afn6+3nvvPU2fPl0mk6nCfSpTnGzatEn9+vXTpEmT5Ovrqz59+uidd94pd02z2azNmzcrLi5OU6ZMkcVi0Y8//qjw8HCNGzdOs2fPrvbnqWkhVRUzZ85UYmKi9u3bV+trAxWxtzNr5o2dtHHmYHX1c9fPufn647ux+vMHB5R9uexdfAAAAGgczp49q6KiIvn5+ZXa7ufnp9TUa19ItHfvXiUkJOi+++4r2VZ83NXW/OmnnyRJ8+bN09/+9jd98sknatGihYYPH65z585VeL6XX35Znp6eJa/WrVtX7oMCNWRnNumh4Z300cwh6ubvrnO5+Xrw/+3X42vilXWJmgkAANgem2ocbdy4UZmZmbrnnnsq3KeyxclPP/2kpUuXqnPnzvrss8/04IMP6pFHHqnw7qHAwEBt375dO3fu1OTJkxUeHq6IiAgtXbq02p+npoVUsYiICE2aNEmbN29WUFBQnTSdgJrqEeipTX8arAeGdZTJJK3bn6zIhV/p6x/PGh0NAAAANigqKkq9evXSgAEDqnScxWKRJD399NOaMGGCwsLCtGLFCplMJn344YcVHjdnzhxlZWWVvE6dOlWj/EBVBQd66KOHB+uh4R1lNkkb4k5r1Js7tONwhtHRAAAASrGpxlFUVJQiIyOrPKKtPBaLRX379tXf//539enTR/fff79mzJihZcuWVXhMmzZt9O6772rNmjWyt7dXVFRUhXc+1adt27YpIyNDFy9eVHJysgYNGmR0JKBcTvZ2eiqymz744yC1aemq05mXNPmdPXru4+91uaDo2gsAAACgwfD29padnV2ZZ8KmpaXJ39//qsfm5ubq/fff17333ltqe/FxV1szICBAkhQcHFzyvpOTkzp06KCTJ09WeE4nJyd5eHiUegH1zcneTrNv7qYPH7he7bxclZp9WVOW79UzGxN0Mb/Q6HgAAACSbKhxdOLECW3btq3UmILyVLY4CQgIKFVISFL37t2vWkikpaXp/vvv15gxY3Tx4kU9/vjj1fgkVc8KNDb927XUfx8dqskD20iSVuw6rtGLvtKBU5nGBgMAAECtcXR0VFhYmGJiYkq2WSwWxcTEXPNitw8//FB5eXm66667Sm1v3769/P39S62ZnZ2tPXv2lKwZFhYmJycnJSUllexTUFCg48ePq23btrXx0YA6F9a2hTY/OlRTBl35zr77zQnd8tZXij1R8bhFAACA+mIzjaMVK1bI19dXo0ePvup+lS1OBg8eXKqQkKTDhw9XWEicPXtWI0aMUPfu3bV+/XrFxMRozZo1euKJJ6r9mWpSSAENnZuTvf4+vpdWTOsvX3cn/ZiRq9uWfq03ow+roMhidDwAAADUglmzZumdd97RqlWrdOjQIT344IPKzc3VtGnTJElTpkzRnDlzyhwXFRWlcePGycvLq9R2k8mkxx57TC+++KI2bdqkgwcPasqUKQoMDNS4ceMkSR4eHnrggQf07LPPauvWrUpKStKDDz4oSZo0aVLdfmCgFrk62uv5sT317r0D5O/hrOM/X9SkZbv16pYflFfIxAYAAGAce6MDSFeaKStWrNDUqVNlb1860uLFi7Vhw4ZSzZdZs2Zp6tSp6tevnwYMGKCFCxeWKk4k6fHHH9f111+vv//977r99tu1d+9e/etf/9K//vWvcs8fGRmptm3bloypCw4OVnR0tMLDw9WqVaty7z7KycnR0aNHS/597NgxxcfHq2XLlmrTpk2lswKN2Y1dfbX18Rv0zEff6+MDKXor5oi2/5CuBbeHqLOfu9HxAAAAUAN33HGHMjIyNHfuXKWmpio0NFRbtmwpec7ryZMnZTaXvl4xKSlJO3fu1NatW8tdc/bs2crNzdX999+vzMxMDRkyRFu2bJGzs3PJPvPnz5e9vb3uvvtuXbp0SQMHDtT27dvVokWLuvuwQB0Z2tlHnz1+g57b9L3Wx53W0i9+1Oc/pGvB7aEKDmSkIgAAqH8mq9VqNTrE1q1bNWrUKCUlJalLly6l3ps3b55Wrlyp48ePl9q+ePFizZ8/v6Q4WbRokQYOHFhqn08++URz5szRkSNH1L59e82aNUszZswoN0N0dLSGDh1aqhiRpLi4OPn4+CgoKKjMMV988YVuvPHGMtunTp2qlStXVilrbcrOzpanp6eysrKY2w2bsulAip7ZmKCsSwVytDdr9qiumj64vcxm458lBgAAGjZ+A6Oq+M7AFm1JOKO/bkjQudx8OdiZ9FhEF/3xhg6yt7OZgTEAAKCBqsrvX5toHKF2UQDBlqVlX9bstd/py8MZkqTrOrTU/Ikhat3S1eBkAACgIeM3MKqK7wxsVcaFPP11w0FFJ155XnKfNs214PZQtfd2MzgZAABoyKry+5dLVgDUKz8PZ62c1l8vje8pV0c7ffPTOUW+9ZU++PaU6GMDAAAAaOp83J30r7vD9PqkELk72SvuZKZueesrrd59XBYLNRMAAKh7NI4A1DuTyaQ/DGyr/z46VP3atlBOXqFmr/1OM1Z/q4wLeUbHAwAAAABDmUwmTQwL0pbHb9D1Hb10qaBIcz/6XlOW71VK5iWj4wEAgEaOxhEAw7T1ctOaPw7SU5Hd5Ghn1rZD6Rq1cIe2JJwxOhoAAAAAGK5Vcxe9d+9AzRsTLCd7s3YePatRC3do/f5kJjYAAIA6Q+MIgKHszCY9MKyjPnp4sLr5u+tcbr4eeG+/Zq2JV9alAqPjAQAAAIChzGaT7hncXpsfHaqQ1s114XKhZn1wQA+8F6ufc5jYAAAAah+NIwA2oXuAhzY9PEQzb+wos0laH3daNy/coZ1HzhodDQAAAAAM19GnmdY9MEhPjOwie7NJn32fplELd2jr96lGRwMAAI0MjSMANsPR3qwnR3XThw9cr3ZerjqTdVl3Re3RvE3f61J+kdHxAAAAAMBQ9nZmPRzeWRtnDlZXP3edzcnX/e/G6s8fHFD2ZSY2AACA2kHjCIDNCWvbQpsfHaq7r2srSVr59XGNXvSV4k6eNzgZAAAAABivZytPbfrTYP1xWAeZTNK6/cm6+c0d+vooExsAAEDN0TgCYJNcHe31wrieWjV9gPw8nPTT2VxNWPq13tiapPxCi9HxAAAAAMBQTvZ2mhPZXR/8cZDatHRVStZlTf43ExsAAEDN0TgCYNOGdfHR1seGaWxooCxW6e3tRzX+H7t0OO2C0dEAAAAAwHD927XUfx8dqj8MbCOJiQ0AAKDmaBwBsHmerg56684+WjK5r5q7Ouj7lGz97u2demfHTyqyWI2OBwAAAACGcnOy10vje2nltP6lJja8/hkTGwAAQNXROALQYIzuHaCtj92g8G6+yi+06KXNh/T7f32jU+cuGh0NAAAAAAw3vKtvqYkNiz8/qnFLdikplYkNAACg8mgcAWhQfD2cFTW1n165rZfcHO209/g53bxwh97fe1JWK3cfAQAAAGjafj2xoYWrgxLPZGvM2zu17MsfmdgAAAAqhcYRgAbHZDLpzgFt9N9Hb9CAdi2Vm1+kp9Yf1L2rvlX6hctGxwMAAAAAw43uHaDPHr9BI7r5Kr/Iolf++4Pu+Odunfg51+hoAADAxtE4AtBgtfFy1f/df53+eks3OdqZtf2HdI16c4c+/e4Mdx8BAAAAaPJ83Z3176n99NqE3nJztNO3J84r8q2v9N43J6iZAABAhUxWfik0OtnZ2fL09FRWVpY8PDyMjgPUi6TUC5r1Qby+T8mWJPl5OGlwJ28N7eytwZ285evubHBCAABQl/gNjKriO4Om5tS5i3riwwPac+ycJKlHoIdu7OqrwZ281bdtcznZ2xmcEAAA1KWq/P6lcdQIUQChqcovtOjt7Uf0zlc/6XKBpdR73fzdNbiTt4Z09tbA9i3l6mhvUEoAAFAX+A2MquI7g6bIYrFqxdfH9dqWH5RX+L+aycXBTgPatyy58K6bv7tMJpOBSQEAQG2jcdTEUQChqbtcUKRvj5/XzqNntfNohr5Pydav/y+do51Zfds215BO3hrS2Ue9WnnKzkxRBABAQ8ZvYFQV3xk0ZenZl/XF4QztOnpWu46e1dmc/FLvezdz0uBOXr/UTN4K8HQxKCkAAKgtNI6aOAogoLRzufklBdFXR87qdOalUu97ujjo+o5eGtLZW0M6eautl5tBSQEAQHXxGxhVxXcGuMJisSop7UJJvbTn2M9lJjh09HErufDuug4t5e7sYFBaAABQXTSOmjgKIKBiVqtVx3++qJ1HMrTz6Fl9/ePPunC5sNQ+rVu6aEgnHw3p5K3BnbzU3NXRoLQAAKCy+A2MquI7A5Qvr7BI+09kXmkkHT2rg8mZsvzqvxzZmU0Kbd285Jmyoa2by8HObFxgAABQKTSOmjgKIKDyCoss+u50lnYeOaudR89q/4nzKvxVVWQySb1aeV65uq6Tt8LateChsQAA2CB+A6Oq+M4AlZN1sUC7f7pSL+08clbHf75Y6n03Rztd18GrpJHUybcZz0cCAMAG0Thq4iiAgOrLzSvUnmM/66sjV0bbHU7LKfW+s4NZA9p7aWinKw+N7R7AQ2MBALAF/AZGVfGdAarn1LmL2nX0bMkEh3O5pZ+P5OvuVPJspMGdvOXn4WxQUgAA8Gs0jpo4CiCg9qRlXy65G2nn0bPKuJBX6n3vZo4a/MvdSDw0FgAA4/AbGFXFdwaoOYvFqsQz2SWNpL3HzimvsPTzkbr4NSu5G2lAey81c7I3KC0AAE0bjaMmjgIIqBtWq1WH03L01S/PR9rz0zldKigqtU9HHzcN7Xzl+UjXdaQo+v/s3Xl8VPW9//H3zCQzk4QsBMjGlihRQCBRlghiUUlvQEqNci1Y/LFIoQsoEBHFCijaBlEUkVRcULTVglRLK1puAQUUYgggKosIiCBCwpqEJGSbmd8fScYMCZANJpN5PR+PeSQ553vO+Zxz59rz4fNdAAC4UngHRl3xnQEaX1GpTdsOnXFOa7fzaK6q/quTj9GgGzq0LO98F9tace2C5cP6SAAAXBEUjrwcCRBwZRSX2fTF4Rx9tq/mRWN9KhaN7R9b3rsurl0ISREAAJcJ78CoK74zwOV3pqBEmw+cqpjB4YR+OH3OZX+gxUc3Xt3KOYPDVa0DmAocAIDLhMKRlyMBAtyjctHYTyumtjt03qKxgRYfJVzVSjfHkhQBANDYeAdGXfGdAa68w6cKnUWkTftPKfdcqcv+qGCrczRSv6tbq02gxU2RAgDQ/FA48nIkQEDT8MPpQucUDZsOnFRO4YWTops6tVbrFiRFAADUF+/AqCu+M4B72ewO7Tqa68yZtn5/RiU21/WROkcE6uaKfCkhppX8zCY3RQsAgOejcNTM3HnnnVq/fr0GDhyof/zjH5dsTwIEND21SYq6Rgapf2xr9e/UWn1iQmX1JSkCAKC2eAdGXfGdAZqWcyU2ZX5/Wpv2l8/isPtYnst+s8moGzqG6ObYNrqpU2t1bxssk5EZHAAAqC0KR83M+vXrdfbsWb355psUjoBm4lyJTVuqJEV7zk+KfIzqHV2+aOzNndrouqggGUmKAAC4IN6B3SstLU3PPPOMsrKyFBcXpxdffFF9+vSpse0tt9yiDRs2VNt+++2368MPP5QkORwOzZ49W6+++qpycnJ000036aWXXlJsbKyzfXR0tA4dOuRyjtTUVD3yyCO1ipnvDNC0ncovLl8fqWIq8B9zXNdHCrL6qN/VrXVTbGvd3Km1OrbyZypwAAAugsJRM7R+/XotWrSIwhHQTJ04W6zNB046k6JjuUUu+1v6+6pfp/LRSP07tVb7UH83RQoAQNPEO7D7LF++XKNGjdLixYuVkJCgBQsWaMWKFdq7d6/CwsKqtT99+rRKSkqcf586dUpxcXF67bXXNGbMGEnS008/rdTUVL355puKiYnRzJkz9fXXX2v37t2yWq2SygtH48aN0/jx453nCgwMVEBAQK3i5jsDeA6Hw6HvK9dH2ndCmw+c0tmiMpc2bUP8nNPa3dSptUIDzG6KFgCApqku77/GKxTTBUVHR8tgMFT7TJw48aLHpaWlKTo6WlarVQkJCdqyZYvL/scff7zaOTt37tyosW/cuFFDhw5VVFSUDAaDVq5cWa9YAaBNoEV3xLfVM3fHafMjt2ltygA9PrSrEruEq4XFR2cKS/XhV8c04/2vdfO8T3TLM5/osZVfa/XOrGoLygIAAFxJzz33nMaPH6+xY8eqa9euWrx4sfz9/fX666/X2D40NFQRERHOz5o1a+Tv76+7775bUvk/EC9YsECPPfaY7rjjDvXo0UNvvfWWjh49Wi3nCgwMdDlXbYtGADyLwWBQTOsA/b8bO+rl/9dLX8z8uf75h36a9j/XKCEmVL4mg37MOadlmT/o/r9/oRueXKMhCz9V6n/26NN9J1RUanP3LQAA4FF83B1AZmambLaf/gd8586d+vnPf+5MGmqyfPlypaSkuPRoS0pKqtaj7brrrtPatWudf/v4XPh2N23apD59+sjX19dl++7du9WqVSuFh4dXO6agoEBxcXG67777dNddd9U71vj4eJWVlVU79r///a+ioqIuGDOA5slgMKhTWAt1CmuhMTfFqNRm15c/5OjTitFIO37I0fenCvX9qcP62+eHZTRIPdqFOHvX3dChpcw+bu8XAAAAvEBJSYm2bdumGTNmOLcZjUYlJiYqPT29VudYsmSJRowY4Sz6HDx4UFlZWUpMTHS2CQ4OVkJCgtLT0zVixAjn9rlz5+rJJ59Uhw4d9Otf/1pTp069aN4HoHnwMRl1fYeWur5DS026LVaFJWXKOHhamypypm+yzmrX0TztOpqnlzd855wKvH+nNurfqTVTgQMAcAluf6Nu06aNy99z587V1VdfrQEDBlzwmKo92iRp8eLF+vDDD/X666+7zGft4+OjiIiIS8Zgt9s1ceJExcbGatmyZTKZyhek37t3r2677TalpKRo+vTp1Y4bPHiwBg8efNFz1ybWHTt2XDJGAN7L12RUr+hQ9YoO1dSfX6OzRaX6/LvT+mzfCX26/6S+O1GgHT/kaMcPOXrx4/3yN5uUEBOq/rHlSdE14S2Y6xsAAFwWJ0+elM1mq9bRLjw8XN98880lj9+yZYt27typJUuWOLdlZWU5z3H+OSv3SdIDDzygG264QaGhodq8ebNmzJihY8eO6bnnnqvxWsXFxSouLnb+nZeXV2M7AJ7H3+yjW68N063XlnfQPX62SOkHTpV3vtt3Ull5Rdq0/5Q27T+lp1UxFfjVrdU/lqnAAQCoidsLR1WVlJTob3/7m1JSUi74j5x16dG2b98+RUVFyWq1qm/fvkpNTVWHDh2qndNoNOqjjz7Sz372M40aNUp//etfdfDgQd12221KTk6usWhU2/tpaO+7ukhLS1NaWprLCC4AzU+g1Vc/7xqun3ct/8eUoznnKub6PqlN+0/qVEGJPtl7Qp/sPSFJCgu0lK+NVJEUhQVZ3Rk+AACA05IlS9S9e3f16dOnzsempKQ4f+/Ro4fMZrN++9vfKjU1VRaLpVr71NRUPfHEEw2KF4BnCAu06o74trojvq0cDocOnCjQpv0n9em+k/r8u1PlU4F/fUwffn1MktSxlb9u6tRaN3dqrb5Xt1KIP+sjAQC8W5MqHK1cuVI5OTnOBVFrUtsebQkJCVq6dKmuvfZaHTt2TE888YRuvvlm7dy5U4GBgdXOGxUVpY8//lg333yzfv3rXys9PV2JiYl66aWX6n0/De19VykxMVFffvmlCgoK1K5dO61YsUJ9+/at1m7ixImaOHGic5ErAN4hKsRPv+rVXr/q1V52u0PfZJ3VZ/tP6NN9J7Xl4GkdP1us97/4Ue9/8aMk6ZrwFurfqY1ujm2tPjGhCrA0qf8pAAAAHqR169YymUzKzs522Z6dnX3J2R8KCgq0bNkyzZkzx2V75XHZ2dmKjIx0OWd8fPwFz5eQkKCysjJ9//33uvbaa6vtnzFjhkuxKS8vT+3bt79ojAA8X9WpwEf3i1aZza4vj+Tos32ntGn/SW0/fEaHThXq0KnDeifjsAwGqUfbYN1U0fmuZ8eWsviY3H0bAABcUU3qXwuXLFmiwYMHN8q6PlWnkOvRo4cSEhLUsWNHvfvuuxo3blyNx3To0EF//etfNWDAAF111VVasmRJk5jeqeo6TQBwMUajQV2jgtQ1KkgTfna1ikpt2n7ojD6tGJG082iuvs3O17fZ+Xp900H5mgy6vkNL3VyRFPVoFyITc30DAIBaMpvN6tmzp9atW6fk5GRJ5VOBr1u3TpMmTbrosStWrFBxcbHuvfdel+0xMTGKiIjQunXrnIWivLw8ZWRk6Pe///0Fz7djxw4ZjUaXdW+rslgsNY5EAuBdfExG9ewYqp4dQzU5MVb5xWXacrB8WrtN+0/q2+x8fXkkV18eydVf1h+Q1deo3tGhzjVlu0SwPhIAoPlrMoWjQ4cOae3atXr//fcv2q6+PdpCQkJ0zTXXaP/+/Rdsk52drQkTJmjo0KHKzMzU1KlT9eKLL9btRhohVgBoLFZfk/p1aq1+nVrr4UHSmYISbT5wyjki6ciZc9py8LS2HDyt+Wu+VZDVRwlXtVJ0K3+FBVoVFmRRm0CL8/dAi0+TKKgDAICmIyUlRaNHj1avXr3Up08fLViwQAUFBc51XkeNGqW2bdsqNTXV5bglS5YoOTlZrVq1ctluMBg0ZcoUPfXUU4qNjVVMTIxmzpypqKgoZ3EqPT1dGRkZuvXWWxUYGKj09HRNnTpV9957r1q2bHlF7htA89DC4qPbOofrts7ls8Vk5xVpU0XHu8/2n9Txs8X6dF/5NHeS1CrArH6dWiuuXbBLrhQWaFEL8iUAQDPRZApHb7zxhsLCwjRkyJCLtqtvj7b8/HwdOHBA/+///b8a9588eVIDBw5Uly5dtGLFCn377be65ZZbZLFY9Oyzz9brnhrS+w4ALoeWAWYN6RGpIT0i5XA4dOhUoXN9pM0HTiqvqExrdmdf8Hirr7E8MQq0VCRH1opkyaKwoIrtgRa19DfTCw8AAC8xfPhwnThxQrNmzVJWVpbi4+O1evVq55Tdhw8fltFodDlm7969+uyzz/Tf//63xnNOnz5dBQUFmjBhgnJyctS/f3+tXr1aVmv5Wo0Wi0XLli3T448/ruLiYsXExGjq1KkuU9EBQH2EB1l11w3tdNcN7eRwOLTveL6ziPT5d6d0qqBEH3x5VB98ebTasX6+JmcRqbKodH6+1CbQolDyJQBAE2dwOBwOdwdht9sVExOje+65R3PnznXZt2jRIv3zn//UunXrnNuWL1+u0aNH6+WXX3b2aHv33Xf1zTffOJOTadOmaejQoerYsaOOHj2q2bNna8eOHdq9e7fatGlT7foJCQkKCwvTP//5T5nN5Ysgfvnll7rtttv02GOPaerUqdXizs/Pd45guv766/Xcc8/p1ltvVWhoqDp06FDrWBtb5RpHubm5CgoKuizXAND82OwOfXUkR9sOnVFWbpGOny3W8bPlP0/kFetscVmtz+VjNDgTpDZVeuC5Jk4WtW5hka/JeOkTAgBwCbwDo674zgCoq5KyyvWRTuq7kwU60YB8qXULS5UiU5U8qUqRqXULi8w+5EsAgMZRl/ffJjHiaO3atTp8+LDuu+++avtOnjypAwcOuGy7VI82STpy5IjuuecenTp1Sm3atFH//v31+eefVysaSZLRaNSf//xn3Xzzzc6ikSTFxcVp7dq1NR4jSVu3btWtt97q/Luyd9vo0aO1dOnSWscKAE2ByVi+3tH1HWqe3uVcic1ZSDqeV1zt9xNni3X8bLFOF5SozO7QsdwiHcstkpR7wWsaDFKov7k8SaoyYsl1BFN54cnqy4K0AAAAANzH7FO+3lHv6NBq+87PlyqLSs5PXnnOdKoiX8rKK1JWXtElrxkaYFabiiKTc2q8io545dvL/w6wNIl/4gMANBNNYsQRGhc95wC4U0mZXSfzf0qOKhOlE2eLKopMxTpxtlgn8otls9f+f4ICrT4uhaSqv7MOEwCAd2DUFd8ZAO5QaivPl044O+EVVys4VeZLpbba50sBZpPCgspHLv00esl1mvGwQItC/H3JlwDAS3nciCMAQPNh9jEqKsRPUSF+F21ntzt0urDEZfTSifOKTccrik3FZXadLSrT2aIyHThRcNHzsg4TAAAAgKbK12RUZLCfIoMvnS/lnCt15kSV+VHlTA8nquRRhSU2FZTYdPBkgQ6evHi+5GsyqE0Li9q4zPjgOqV4WKBVrVuY5cO04gDgtSgcAQDcwlgxr3frFhZ11YV7OTgcDuUVlbmMWDo/eao6r3hRqV2HTxfq8OnCi17/YuswkTABAAAAcCej0aDQALNCA8zqHHHxtvnFZc6p8Kp2wjtxXsHpTGGpSm0OHc0t0tHci0+TZzBIrQLMFWsxVZ9WvOqoJj8z04oDQHND4QgA0KQZDAYF+/kq2M9XncICL9r2cq3D1CrAXH3BWtZhAgAAANAEtLD4qEWbFrqqTYuLtisus+lkfonrlOJ5RTqR7zpt3sn8EtnsDp3ML9HJ/BJ9k3X2oucNtPioTdCFRy9Vbg/yY1pxAPAUFI4AAM2Gn9mkjq0C1LFVwEXbVV2H6cR5I5hOVJ1fvGIdpsqEac+xi18/0Oqj8CCrIoOtalsxXV/5x6p2If6KCLbK7MPoJQAAAABXnsXHpLYhfmp7iWnFbXaHTheUuE6Nd7FpxYvLdPZEmb67xLTiZh+j2rQoLyhFBFmd+VLbkJ9+bxVgprgEAE0AhSMAgNe5vOsw5Wv/8fwaz2cwSG1aWCqSo/KC0k+/l/9ksVoAAAAA7mSqmNa7TaDlou0cDofOFpe5zvBw3mwPxyvyp7yiMpWU2fVjzjn9mHPugue0OHM1q6KC/Vzypcr8iZkeAODyo3AEAMAF1Gcdpuy8Yh3NOaejOUXlP3PLE6Mfz5xTcZndmTzt+CGnxnP5+ZpcCkpVRy61DfFj1BIAAACAJsFgMCjI6qsgq686hV18mryiUpvLbA9ZeUXOvOnHnHM6mnNOx8+Wd8g7eLJAB09eePRSqwCzSyHp/NkeWgdYZDTSGQ8AGoLCEQAADVSbdZgcjvLpHqomRs7C0plz+jGnSCfzi3Wu1KYDJwp04ALTPLiMWmpZkSQFW12KS4xaAgAAANCUWH1Nah/qr/ah/hdsU1xmU3ZucfV8qaJT3o9nzulcqU2nCkp0qqBEX/9Y81q1ZpNRkS4jlqxVCkvlxSV/M/8kCgAXw38lAQC4AgwGg1q1sKhVC4u6twuusU1RqU1ZuRVJUcWn6uilH3NqN2rJ32xynS88mFFLAAAAAJo2i49JHVr5q0OrmotLDodDuedKK/KkImdxqWrelH22SCU2uw6dKtShU4UXvFZLf1+XHCkqxLUzXpsWjFoC4N0oHAEA0ERYfU2Kbh2g6NYBNe53HbVU6Ox591PCVD5qqbDEpv3HL77WUligxTVRqhi1VDmKKdiPUUsAAAAAmg6DwaAQf7NC/M26LqrmznilNruzM97R3HPVZnz48cw5FZTYdKawVGcKS7XraF6N5/E1GRQRXN4J7/yp8Cr/DrDwz6oAmi/+CwcAgIeo7ailY1VGLR29wKil7LxiZecV64vDOTWep6ZRS21b/lRoCg9i1BIAAACApsXXZLzolHiV69Oe3wGv6t9ZeUUqtTn0w+lz+uH0uQteK9jPt8ratK7T4bUN8VObQItMjFoC4KEoHAEA0IxYfU2KaR2gmIuMWjpVUFJjklRZaDqZX1KnUUtta1iQllFLAAAAAJqaquvTdokMqrFNmc2u7LPFNU6FV/n32aIy5Z4rVe65Uu05VvOoJR9jxailC0yHFxlsVaDV93LeLgDUG4UjAAC8iMFgUOsWFrVuYVGPdiE1tqlp1NKPZ1yneiipxailgCqjls5flJZRSwAAAACaIh+T0dk57kLyikp1LKfmmR5+rBi1VGZ36MiZczpy5sKjloKsPlUKS9WnwwsLtMjHRM4E4MqjcAQAAFzUddTSkTNVFqfN/WnUUkGJTfuO52vfRUYthQdanT3vKpOj1i0sahngq9AAs0Ir5jCnwAQAAACgqQiy+ioowlfXRgTWuN9md+j42aIap8Kr/Dv3XKnyisqUl3VW32SdrfE8JqNBEUFWl9FKUSF+Cg+0KDTArJYVOVOwn6+MTIsHoBFROAIAAHVS21FL50/ncP4CtSVldmXlFSkrr0jbLzBqqVKgxUctnYmRrzNBahlgLk+Y/Mt/hgb4qmVFsYn5xAEAAAC4g8loUGSwnyKD/dSzY81t8ovLdMyZK503hXjuOR3LKR+19GPFNunMBa9nNEgh/ma19Pd1yY9C/H/KkaoWmloGmBVk9WFqcQAXROEIAAA0OquvSVe1aaGr2rSocb/dfv5aSz8lS6cLSnS6sERnCkp0prBEdod0trhMZ4vLdPh0Ya2ubzCUL1ZbmRS1rEyYqhacqhSeQv3NCrT60EsPAAAAwBXRwuKj2PBAxYZfeNTSyfzialPhHTlzTifyi5350tmiMtkdKs+jCkp04ERBra5vMhrUsqLY5Jof1VBo8jerZYCvWlgoNgHegsIRAAC44oxGg9oEWtQm0KK49iEXbGe3O5RXVKrTFUnR6YJSnalSWPppe4nOFJa3yz1XKodDyiksVU5hqXSyLomTb0VSdPHEqfL3ALOJxAkAAABAozMZDQoPsio8yKobOrS8YLuSMrtyzpXoTEGpa35UkTflFFbfXlBicxamTuYX1zomX5Php9zImRf5OqcYdx3VVD76yc+XnAnwRBSOAABAk2U0GhRSkYTUVpnNrpxzpecVlkqrJVA//SxVfnFZReJUopP5JbW+ltlkVMsLTP3gnFLPZSo9s6y+pvo8CgAAAACoxuxjVFigVWGB1lofU1Rqq1ZQyjk/b6qSP50qKFFxmV2lNoeOny3W8bO1LzZZfIzOnMgld7pAoamlPzkT0BRQOAIAAM2Kj8noXIOptorLqiROLiOaLp44ldjsys4rVnZe7RMnP1+Ts2fepZKmyp57Zh9jfR4FLsHhcMhmd8jmcMhul+wOh6y+JtbHAgAAQLNm9TUpItikiODaF5vOldhqzI1OF7rOCnGm8KdOfCU2u4rL7DqWW6RjuUW1vtalcqaW/r4uU4+H+PvK4kOx6XKrzJ+MBgPTvHsBCkcAAMDrWXxMCg8yKTyobolTjVPmVRnJ5DqVXolKbQ6dK7VVWeC2dgItPuUJUtWRTFUSpZ+SKV8ZjQbZK4ohNnt5QcT5u8Ph3Fe53W6vWjxxnNdWLtt/aqvzruGQ3XGhtlXP+9NxP8Wii8Zgqzi3/WLnqnKMw6Gaz3XefdvsjhqftcEgBVl91dLfV8EVc76H+PlWLDZcnpSGVExpWPkz2N9Xgcz3DgAAgGbMz2ySn9lPUSF+tWrvcDhUWGKrlhNVTj9+prBqDlXqzK3K7PXLmVpYfKpPm1fTWrcBZvmbTS55gcNx4fzJJZe4ZO6i83KuhudPrp3dLpw/XSi28/Mnu+P8/dXzJ2d85213VEmhgqzlOWplruTMjfzKc6mq20Iq/g60sK6wJ6FwBAAAUA9+ZpPamv3Utg6JU35xmUtSVD2Jck2azhSWyO6QzhaX6WxxmQ6fLrzMdwWHQ8o9V6rcc6XSqdo/bx+jQSH+vhWJ0k/JUbWk6bzEys9Mz0gAAAA0PwaDQQEWHwVYfNQ+1L9WxzgcDp0tLnPmStXWZ7pIzpRfXKb84jL9cLr2xSbUX15RmfKKynSoDscYDSrPhfx8nflSiL+vQvwq86YailCsLew2FI4AAACuAIPBoECrrwKtvurQqnaJk93uUF5RabXeeTUXnsqn1bPbHTIZDTIZDTIaXH+W/y7nNud+o0GmKturH6/z2lbdr2rXqtxeva3rcdVj+Gl7TffgjL3G86ra/RoNNW93+d1gkLFKLAUlZcqpWES48pnmVvzMOVeqnIrRZM7fC0tUVGpXmcsaWQW1/l5YfIyuPfH8yqfkCK5InipHNLWsKEIFV7Rh+kIAAAA0NwaDQUFWXwVZfdWxVUCtjrHbHTpbVKbTF1zTtsr0eRV/F5bYquQCNeQ8DcifjOdtryl/qpzqrdr2ypgM5+VHNeQ/RkOV9lX3VznOYKi+3WiUyzajocr2C5zPaJDL9lK7XXnnyvOlnAvkTJX5VG5h+fM/V2qT3SGdrshj68LXZFCwX2VB6adc6fxC0/md9Ky+RgpODUDhCAAAoIkyGg0VL75md4fiNfzMpjqtjyX9tLhwzrmKolJFwnSmImHKqUiWKpOpM4Wlyj1XPnVhcVnd18mSpACzqXxEU0B5Icl1Cr3ypKllgO9Pv/ubFeTny/pNAAAAaFaMRoOCKzpYxbSuXbEJDRcWWPtp3qXynCn33E+Fpso8qTJvynXZXpFbFZaqpMyuUptDJ/OLdTK/bjmT2cdYMfW4a74UfIFCU2Ub1ssqR+EIAAAAaID6LC7scDhUUGKr0huvSvJUWNl7r3oBKvdcqewOqaDEpoKSus37XtP6TT/NQ17z+k0h/r5qwfpNAAAAABrA6muS1bdu6wo7HA4VldprLDSdnzvlVhSaKreX2R0qqWcnPT9fU/WcqWK0009FKNdRT8F+vvI1Na9ZISgcAQAAAFeYwWBQC4uPWlh81K5l7Y+rnIqjcjHhmqbPcylEnStRTkGpzhaXNeL6TT9NE3H+1BChLczqHBFUjycCAAAAAD8xGAzyM5vkZ/ZTVC3XFpZ+6qR3pqC8412NnfTOuW6rzKXsDulcqU3ncm06mltUp3gDLT4/jWbyrzr7w09FqMrtV7duoWB/37o+kiuKwhEAAADgIapOxRGt2k/FUWqzV0wNUfv1m3Iq5iKvy/pN4UEWZTya2MC7BAAAAID6qdpJr30djrPbHTpbXObSGS/3XPn6WDnnfhrNdKbQNWfKPVcqSTpbXKazxWU6cubSs0K8MCJed8S3recdXhkUjgAAAIBmztdkVOsWlkZdv8llzaaK39sE1u38AAAAANAUGI0GBfuVz7TQsVXtj7PZHco759ohzzmFXg2FpjOFJWpTx7zMHSgceYA777xT69ev18CBA/WPf/zD3eEAAADAS9Rn/SYAAAAA8BYmo0EtA8xqGWB2dyiNqnmt2NRMTZ48WW+99Za7wwAAAACAGqWlpSk6OlpWq1UJCQnasmXLBdvecsstMhgM1T5DhgxxtnE4HJo1a5YiIyPl5+enxMRE7du3r8bzFRcXKz4+XgaDQTt27GjsWwMAAAC8DoUjD3DLLbcoMDDQ3WEAAAAAQDXLly9XSkqKZs+ere3btysuLk5JSUk6fvx4je3ff/99HTt2zPnZuXOnTCaT7r77bmebefPmaeHChVq8eLEyMjIUEBCgpKQkFRVVX6R4+vTpioqKumz3BwAAAHgbtxeOoqOja+xtNnHixIseV5cebXPnzpXBYNCUKVMaNfaNGzdq6NChioqKksFg0MqVKxscKwAAAAB4kueee07jx4/X2LFj1bVrVy1evFj+/v56/fXXa2wfGhqqiIgI52fNmjXy9/d3Fo4cDocWLFigxx57THfccYd69Oiht956S0ePHq2Wc/3nP//Rf//7Xz377LOX+zYBAAAAr+H2wlFmZqZLb7M1a9ZIkktvs/PVpUdbZmamXn75ZfXo0eOicWzatEmlpaXVtu/evVvZ2dk1HlNQUKC4uDilpaU1KNb4+Hh169at2ufo0aMXjRkAAAAA3KmkpETbtm1TYmKic5vRaFRiYqLS09NrdY4lS5ZoxIgRCggIkCQdPHhQWVlZLucMDg5WQkKCyzmzs7M1fvx4/fWvf5W/v38j3REAAAAAtxeO2rRp49LbbNWqVbr66qs1YMCACx5T2x5t+fn5GjlypF599VW1bNnyguez2+2aOHGifv3rX8tmszm37927V7fddpvefPPNGo8bPHiwnnrqKd15550NinXHjh3auXNntQ/TLQAAAABoyk6ePCmbzabw8HCX7eHh4crKyrrk8Vu2bNHOnTv1m9/8xrmt8riLndPhcGjMmDH63e9+p169etUq1uLiYuXl5bl8AAAAAFTn9sJRVSUlJfrb3/6m++67TwaD4YJtatujbeLEiRoyZIhL25oYjUZ99NFH+uKLLzRq1CjZ7XYdOHBAt912m5KTkzV9+vR6309De9/VRVpamrp27arevXs3+rkBAAAAoLEtWbJE3bt3V58+fep03IsvvqizZ89qxowZtT4mNTVVwcHBzk/79u3rGi4AAADgFZpU4WjlypXKycnRmDFjLtimtj3ali1bpu3btys1NbVW146KitLHH3+szz77TL/+9a912223KTExUS+99FK97qUusV5KYmKi7r77bn300Udq167dBYtOEydO1O7du5WZmVnvmAEAAACgtlq3bi2TyVRteu/s7GxFRERc9NiCggItW7ZM48aNc9leedzFzvnxxx8rPT1dFotFPj4+6tSpkySpV69eGj16dI3XmzFjhnJzc52fH374ofY3CgAAAHgRH3cHUNWSJUs0ePDgBk/R9sMPP2jy5Mlas2aNrFZrrY/r0KGD/vrXv2rAgAG66qqrtGTJkguOfLqS1q5d6+4QAAAAAKAas9msnj17at26dUpOTpZUPhX4unXrNGnSpIseu2LFChUXF+vee+912R4TE6OIiAitW7dO8fHxkqS8vDxlZGTo97//vSRp4cKFeuqpp5zHHD16VElJSVq+fLkSEhJqvJ7FYpHFYqnnnQIAAADeo8kUjg4dOqS1a9fq/fffv2i72vRo27Ztm44fP64bbrjBud9ms2njxo1atGiRiouLZTKZqp07OztbEyZM0NChQ5WZmampU6fqxRdfrPc9NaT3HQAAAAB4gpSUFI0ePVq9evVSnz59tGDBAhUUFGjs2LGSpFGjRqlt27bVZoNYsmSJkpOT1apVK5ftBoNBU6ZM0VNPPaXY2FjFxMRo5syZioqKchanOnTo4HJMixYtJElXX3212rVrd5nuFAAAAPAOTaZw9MYbbygsLExDhgy5aLva9GgbOHCgvv76a5fjxo4dq86dO+vhhx+usWh08uRJDRw4UF26dNGKFSv07bff6pZbbpHFYtGzzz5br3tqSO87AAAAAPAEw4cP14kTJzRr1ixlZWUpPj5eq1evdk7ZffjwYRmNrrOk7927V5999pn++9//1njO6dOnq6CgQBMmTFBOTo769++v1atX12lGCQAAAAD10yQKR3a7XW+88YZGjx4tHx/XkBYtWqR//vOfWrdunXPbpXq0BQYGqlu3bi7nCQgIUKtWraptr7z+4MGD1bFjRy1fvlw+Pj7q2rWr1qxZo9tuu01t27bV1KlTqx2Xn5+v/fv3O/8+ePCgduzYodDQUGcPuEvFCgAAAACebtKkSRfsHLd+/fpq26699lo5HI4Lns9gMGjOnDmaM2dOra4fHR190fMBAAAAqL0mUThau3atDh8+rPvuu6/avpMnT+rAgQMu2y7Vo62ujEaj/vznP+vmm2+W2Wx2bo+Li9PatWvVpk2bGo/bunWrbr31VuffKSkpkqTRo0dr6dKllyVWAAAAAAAAAACAy8XgoFtWs5OXl6fg4GDl5uYqKCjI3eEAAAAAlx3vwKgrvjMAAADwJnV5/20SI47QuCprgXl5eW6OBAAAALgyKt996ReH2iJvAgAAgDepS85E4agZOnv2rCSpffv2bo4EAAAAuLLOnj2r4OBgd4cBD0DeBAAAAG9Um5yJqeqaIbvdrqNHjyowMFAGg+GKXz8vL0/t27fXDz/8wJQP9cDzaxieX8PxDBuG59cwPL+G4fk1DM+vYdz9/BwOh86ePauoqCgZjcYrfn14HvImz8bzaxieX8Pw/BqG59cwPL+G4fk1DM+vYdz9/OqSMzHiqBkyGo1q166du8NQUFAQ/wFpAJ5fw/D8Go5n2DA8v4bh+TUMz69heH4N487nx0gj1AV5U/PA82sYnl/D8PwahufXMDy/huH5NQzPr2E8IWeiKx4AAAAAAAAAAAAkUTgCAAAAAAAAAABABQpHaHQWi0WzZ8+WxWJxdygeiefXMDy/huMZNgzPr2F4fg3D82sYnl/D8PyAuuH/ZxqG59cwPL+G4fk1DM+vYXh+DcPzaxieX8N40vMzOBwOh7uDAAAAAAAAAAAAgPsx4ggAAAAAAAAAAACSKBwBAAAAAAAAAACgAoUjAAAAAAAAAAAASKJwBAAAAAAAAAAAgAoUjtDo0tLSFB0dLavVqoSEBG3ZssXdIXmMjRs3aujQoYqKipLBYNDKlSvdHZLHSE1NVe/evRUYGKiwsDAlJydr79697g7LY7z00kvq0aOHgoKCFBQUpL59++o///mPu8PyWHPnzpXBYNCUKVPcHYpHePzxx2UwGFw+nTt3dndYHuXHH3/Uvffeq1atWsnPz0/du3fX1q1b3R2Wx4iOjq72HTQYDJo4caK7Q2vybDabZs6cqZiYGPn5+enqq6/Wk08+KYfD4e7QgCaNnKn+yJkahrypYcibGg85U92RNzUceVP9kTM1jCfmTRSO0KiWL1+ulJQUzZ49W9u3b1dcXJySkpJ0/Phxd4fmEQoKChQXF6e0tDR3h+JxNmzYoIkTJ+rzzz/XmjVrVFpaqv/5n/9RQUGBu0PzCO3atdPcuXO1bds2bd26VbfddpvuuOMO7dq1y92heZzMzEy9/PLL6tGjh7tD8SjXXXedjh075vx89tln7g7JY5w5c0Y33XSTfH199Z///Ee7d+/W/Pnz1bJlS3eH5jEyMzNdvn9r1qyRJN19991ujqzpe/rpp/XSSy9p0aJF2rNnj55++mnNmzdPL774ortDA5oscqaGIWdqGPKmhiFvahzkTPVH3lR/5E0NQ87UMJ6YNxkcTbmsBY+TkJCg3r17a9GiRZIku92u9u3b6/7779cjjzzi5ug8i8Fg0D//+U8lJye7OxSPdOLECYWFhWnDhg362c9+5u5wPFJoaKieeeYZjRs3zt2heIz8/HzdcMMN+stf/qKnnnpK8fHxWrBggbvDavIef/xxrVy5Ujt27HB3KB7pkUce0aZNm/Tpp5+6O5RmY8qUKVq1apX27dsng8Hg7nCatF/84hcKDw/XkiVLnNuGDRsmPz8//e1vf3NjZEDTRc7UeMiZGo68qeHIm+qGnKn+yJsahrypcZEz1Y0n5k2MOEKjKSkp0bZt25SYmOjcZjQalZiYqPT0dDdGBm+Um5srqfwlHnVjs9m0bNkyFRQUqG/fvu4Ox6NMnDhRQ4YMcfnvIGpn3759ioqK0lVXXaWRI0fq8OHD7g7JY/z73/9Wr169dPfddyssLEzXX3+9Xn31VXeH5bFKSkr0t7/9Tffddx8JUC3069dP69at07fffitJ+vLLL/XZZ59p8ODBbo4MaJrImdDUkDfVH3lT/ZAzNQx5U/2RNzUecqa688S8ycfdAaD5OHnypGw2m8LDw122h4eH65tvvnFTVPBGdrtdU6ZM0U033aRu3bq5OxyP8fXXX6tv374qKipSixYt9M9//lNdu3Z1d1geY9myZdq+fbsyMzPdHYrHSUhI0NKlS3Xttdfq2LFjeuKJJ3TzzTdr586dCgwMdHd4Td53332nl156SSkpKXr00UeVmZmpBx54QGazWaNHj3Z3eB5n5cqVysnJ0ZgxY9wdikd45JFHlJeXp86dO8tkMslms+lPf/qTRo4c6e7QgCaJnAlNCXlT/ZA31R85U8OQNzUMeVPjIWeqO0/MmygcAWh2Jk6cqJ07dzLXbx1de+212rFjh3Jzc/WPf/xDo0eP1oYNG0iCauGHH37Q5MmTtWbNGlmtVneH43Gq9rDp0aOHEhIS1LFjR7377rtM+VELdrtdvXr10p///GdJ0vXXX6+dO3dq8eLFJED1sGTJEg0ePFhRUVHuDsUjvPvuu3r77bf1zjvv6LrrrtOOHTs0ZcoURUVF8f0DgCaOvKl+yJvqh5yp4cibGoa8qfGQM9WdJ+ZNFI7QaFq3bi2TyaTs7GyX7dnZ2YqIiHBTVPA2kyZN0qpVq7Rx40a1a9fO3eF4FLPZrE6dOkmSevbsqczMTL3wwgt6+eWX3RxZ07dt2zYdP35cN9xwg3ObzWbTxo0btWjRIhUXF8tkMrkxQs8SEhKia665Rvv373d3KB4hMjKy2j9UdOnSRe+9956bIvJchw4d0tq1a/X++++7OxSP8dBDD+mRRx7RiBEjJEndu3fXoUOHlJqa2mQTIMCdyJnQVJA31R95U/2QMzU+8qa6IW9qHORM9eOJeRNrHKHRmM1m9ezZU+vWrXNus9vtWrduHfP94rJzOByaNGmS/vnPf+rjjz9WTEyMu0PyeHa7XcXFxe4OwyMMHDhQX3/9tXbs2OH89OrVSyNHjtSOHTtIgOooPz9fBw4cUGRkpLtD8Qg33XST9u7d67Lt22+/VceOHd0Uked64403FBYWpiFDhrg7FI9RWFgoo9E1pTCZTLLb7W6KCGjayJngbuRNjY+8qXbImRofeVPdkDc1DnKm+vHEvIkRR2hUKSkpGj16tHr16qU+ffpowYIFKigo0NixY90dmkfIz8936Sly8OBB7dixQ6GhoerQoYMbI2v6Jk6cqHfeeUf/+te/FBgYqKysLElScHCw/Pz83Bxd0zdjxgwNHjxYHTp00NmzZ/XOO+9o/fr1+r//+z93h+YRAgMDq80LHxAQoFatWjFffC1MmzZNQ4cOVceOHXX06FHNnj1bJpNJ99xzj7tD8whTp05Vv3799Oc//1m/+tWvtGXLFr3yyit65ZVX3B2aR7Hb7XrjjTc0evRo+fjwilxbQ4cO1Z/+9Cd16NBB1113nb744gs999xzuu+++9wdGtBkkTM1DDlTw5A3NQx5U/2RMzUceVPDkDc1HDlT/Xlk3uQAGtmLL77o6NChg8NsNjv69Onj+Pzzz90dksf45JNPHJKqfUaPHu3u0Jq8mp6bJMcbb7zh7tA8wn333efo2LGjw2w2O9q0aeMYOHCg47///a+7w/JoAwYMcEyePNndYXiE4cOHOyIjIx1ms9nRtm1bx/Dhwx379+93d1ge5YMPPnB069bNYbFYHJ07d3a88sor7g7J4/zf//2fQ5Jj79697g7Fo+Tl5TkmT57s6NChg8NqtTquuuoqxx//+EdHcXGxu0MDmjRypvojZ2oY8qaGIW9qXORMdUPe1HDkTQ1DzlR/npg3GRwOh+PKlakAAAAAAAAAAADQVLHGEQAAAAAAAAAAACRROAIAAAAAAAAAAEAFCkcAAAAAAAAAAACQROEIAAAAAAAAAAAAFSgcAQAAAAAAAAAAQBKFIwAAAAAAAAAAAFSgcAQAAAAAAAAAAABJFI4AAHC79evXy2AwKCcnx92hAAAAAECTRN4EAFcOhSMAAAAAAAAAAABIonAEAAAAAAAAAACAChSOAABez263KzU1VTExMfLz81NcXJz+8Y9/SPppOoQPP/xQPXr0kNVq1Y033qidO3e6nOO9997TddddJ4vFoujoaM2fP99lf3FxsR5++GG1b99eFotFnTp10pIlS1zabNu2Tb169ZK/v7/69eunvXv3Xt4bBwAAAIBaIm8CAO9B4QgA4PVSU1P11ltvafHixdq1a5emTp2qe++9Vxs2bHC2eeihhzR//nxlZmaqTZs2Gjp0qEpLSyWVJy6/+tWvNGLECH399dd6/PHHNXPmTC1dutR5/KhRo/T3v/9dCxcu1J49e/Tyyy+rRYsWLnH88Y9/1Pz587V161b5+PjovvvuuyL3DwAAAACXQt4EAN7D4HA4HO4OAgAAdykuLlZoaKjWrl2rvn37Orf/5je/UWFhoSZMmKBbb71Vy5Yt0/DhwyVJp0+fVrt27bR06VL96le/0siRI3XixAn997//dR4/ffp0ffjhh9q1a5e+/fZbXXvttVqzZo0SExOrxbB+/XrdeuutWrt2rQYOHChJ+uijjzRkyBCdO3dOVqv1Mj8FAAAAALgw8iYA8C6MOAIAeLX9+/ersLBQP//5z9WiRQvn56233tKBAwec7aomR6Ghobr22mu1Z88eSdKePXt00003uZz3pptu0r59+2Sz2bRjxw6ZTCYNGDDgorH06NHD+XtkZKQk6fjx4w2+RwAAAABoCPImAPAuPu4OAAAAd8rPz5ckffjhh2rbtq3LPovF4pIE1Zefn1+t2vn6+jp/NxgMksrnEQcAAAAAdyJvAgDvwogjAIBX69q1qywWiw4fPqxOnTq5fNq3b+9s9/nnnzt/P3PmjL799lt16dJFktSlSxdt2rTJ5bybNm3SNddcI5PJpO7du8tut7vM/Q0AAAAAnoK8CQC8CyOOAABeLTAwUNOmTdPUqVNlt9vVv39/5ebmatOmTQoKClLHjh0lSXPmzFGrVq0UHh6uP/7xj2rdurWSk5MlSQ8++KB69+6tJ598UsOHD1d6eroWLVqkv/zlL5Kk6OhojR49Wvfdd58WLlyouLg4HTp0SMePH9evfvUrd906AAAAANQKeRMAeBcKRwAAr/fkk0+qTZs2Sk1N1XfffaeQkBDdcMMNevTRR51THsydO1eTJ0/Wvn37FB8frw8++EBms1mSdMMNN+jdd9/VrFmz9OSTTyoyMlJz5szRmDFjnNd46aWX9Oijj+oPf/iDTp06pQ4dOujRRx91x+0CAAAAQJ2RNwGA9zA4HA6Hu4MAAKCpWr9+vW699VadOXNGISEh7g4HAAAAAJoc8iYAaF5Y4wgAAAAAAAAAAACSKBwBAAAAAAAAAACgAlPVAQAAAAAAAAAAQBIjjgAAAAAAAAAAAFCBwhEAAAAAAAAAAAAkUTgCAAAAAAAAAABABQpHAAAAAAAAAAAAkEThCAAAAAAAAAAAABUoHAEAAAAAAAAAAEAShSMAAAAAAAAAAABUoHAEAAAAAAAAAAAASRSOAAAAAAAAAAAAUIHCEQAAAAAAAAAAACRROAIAAAAAAAAAAEAFCkcAAAAAAAAAAACQROEIAAAAAAAAAAAAFSgcAQAAAAAAAAAAQBKFIwAAAAAAAAAAAFSgcAQAAAAAAAAAAABJFI4AAAAAAAAAAABQgcIRAAAAAAAAAAAAJFE4AgAAAAAAAAAAQAUKRwAAAAAAAAAAAJBE4QgAAAAAAAAAAAAVKBwBAAAAAAAAAABAEoUjAAAAAAAAAAAAVKBwBAAAAAAAAAAAAEkUjgAAAAAAAAAAAFDBx90BoPHZ7XYdPXpUgYGBMhgM7g4HAAAAuOwcDofOnj2rqKgoGY30j8OlkTcBAADAm9QlZ6Jw1AwdPXpU7du3d3cYAAAAwBX3ww8/qF27du4OAx6AvAkAAADeqDY5E4WjZigwMFBS+RcgKCjIzdEAAAAAl19eXp7at2/vfBcGLoW8CQAAAN6kLjkThaNmqHKahaCgIBIgAAAAeBWmHENtkTcBAADAG9UmZ2LybwAAAAAAAAAAAEiicAQAAAAAAAAAAIAKFI4AAAAAAAAAAAAgiTWOAAAAcAXYbDaVlpa6Owx4MJPJJB8fH9YwAgAAQLPkcDhUVlYmm83m7lDgwXx9fWUymRp8HgpHAAAAuKzy8/N15MgRORwOd4cCD+fv76/IyEiZzWZ3hwIAAAA0mpKSEh07dkyFhYXuDgUezmAwqF27dmrRokWDzkPhCAAAAJeNzWbTkSNH5O/vrzZt2jBaBPXicDhUUlKiEydO6ODBg4qNjZXRyKzbAAAA8Hx2u10HDx6UyWRSVFSUzGYzeRPqxeFw6MSJEzpy5IhiY2MbNPKIwhEAAAAum9LSUjkcDrVp00Z+fn7uDgcezM/PT76+vjp06JBKSkpktVrdHRIAAADQYCUlJbLb7Wrfvr38/f3dHQ48XJs2bfT999+rtLS0QYUjuuk1QTk5OerVq5fi4+PVrVs3vfrqq+4OCQAAoEHoMYfGwCgjAAAANFe866IxNFbuzbexCQoMDNTGjRu1Y8cOZWRk6M9//rNOnTrl7rAAAAAANBFpaWmKjo6W1WpVQkKCtmzZctH2K1asUOfOnWW1WtW9e3d99NFHLvsdDodmzZqlyMhI+fn5KTExUfv27XNpc/r0aY0cOVJBQUEKCQnRuHHjlJ+f79y/fv163XHHHYqMjFRAQIDi4+P19ttvu5xj165dGjZsmKKjo2UwGLRgwYJ63V9RUZEmTpyoVq1aqUWLFho2bJiys7Mv9dgAAAAA1AKFoybIZDI5hyUWFxfL4XCwmDQAAAAASdLy5cuVkpKi2bNna/v27YqLi1NSUpKOHz9eY/vNmzfrnnvu0bhx4/TFF18oOTlZycnJ2rlzp7PNvHnztHDhQi1evFgZGRkKCAhQUlKSioqKnG1GjhypXbt2ac2aNVq1apU2btyoCRMmuFynR48eeu+99/TVV19p7NixGjVqlFatWuVsU1hYqKuuukpz585VREREve9v6tSp+uCDD7RixQpt2LBBR48e1V133VXvZwoAAADgJxSO6mHjxo0aOnSooqKiZDAYtHLlympt6toD8Hw5OTmKi4tTu3bt9NBDD6l169aNFD0AAACupOjo6AuOqqir9evXy2AwKCcnp1HO5y7ff/+9DAaDduzY4e5QPNJzzz2n8ePHa+zYseratasWL14sf39/vf766zW2f+GFFzRo0CA99NBD6tKli5588kndcMMNWrRokaTy0UYLFizQY489pjvuuEM9evTQW2+9paNHjzpznT179mj16tV67bXXlJCQoP79++vFF1/UsmXLdPToUUnSo48+qieffFL9+vXT1VdfrcmTJ2vQoEF6//33nbH07t1bzzzzjEaMGCGLxVKv+8vNzdWSJUv03HPP6bbbblPPnj31xhtvaPPmzfr8888b6zEDAADgCiJvqs6deROFo3ooKChQXFyc0tLSatxfmx5ylesXnf+pTLpCQkL05Zdf6uDBg3rnnXeYdgEAAOAKuuWWWzRlypRGOVdmZqbLqAygIUpKSrRt2zYlJiY6txmNRiUmJio9Pb3GY9LT013aS1JSUpKz/cGDB5WVleXSJjg4WAkJCc426enpCgkJUa9evZxtEhMTZTQalZGRccF4c3NzFRoa2qj3t23bNpWWlrq06dy5szp06HDBZwAAAIDGR97UfPm4OwBPNHjwYA0ePPiC+6v2kJOkxYsX68MPP9Trr7+uRx55RJJqXSUMDw9XXFycPv30U/3v//5vjW2Ki4tVXFzs/DsvL6+WdwIAAID6cDgcstls8vG59Ot0mzZtrkBE5Ww2mwwGAwvrNmMnT56UzWZTeHi4y/bw8HB98803NR6TlZVVY/usrCzn/sptF2sTFhbmst/Hx0ehoaHONud79913lZmZqZdffrmWd1e7+8vKypLZbFZISMgF460JeRMAAMCVRd7kuXgyjaw+PQDPl52drbNnz0oq76G3ceNGXXvttRdsn5qaquDgYOenffv2DbsJAACAy8ThcKiwpMwtn9quGTlmzBht2LBBL7zwggwGgwwGg5YuXSqDwaD//Oc/6tmzpywWiz777DMdOHBAd9xxh8LDw9WiRQv17t1ba9eudTnf+VMuGAwGvfbaa7rzzjvl7++v2NhY/fvf/67X81y6dKlCQkL073//W127dpXFYtHhw4cvedxrr72mLl26yGq1qnPnzvrLX/7i3Fc5HcKyZcvUr18/Wa1WdevWTRs2bHA5x4YNG9SnTx9ZLBZFRkbqkUceUVlZmXO/3W7XvHnz1KlTJ1ksFnXo0EF/+tOfXM7x3Xff6dZbb5W/v7/i4uIYLdKMfPLJJxo7dqxeffVVXXfdde4ORxJ5EwAA8BzuyptqmzNJ5E3NPW9ixFEjq08PwPMdOnRIEyZMkMPhkMPh0P3336/u3btfsP2MGTOUkpLi/DsvL48kCAAANEnnSm3qOuv/3HLt3XOS5G++9OvvCy+8oG+//VbdunXTnDlzJEm7du2SJD3yyCN69tlnddVVV6lly5b64YcfdPvtt+tPf/qTLBaL3nrrLQ0dOlR79+5Vhw4dLniNJ554QvPmzdMzzzyjF198USNHjtShQ4fqNKVXpcLCQj399NN67bXX1KpVq2qjQs739ttva9asWVq0aJGuv/56ffHFFxo/frwCAgI0evRoZ7uHHnpICxYsUNeuXfXcc89p6NChOnjwoFq1aqUff/xRt99+u8aMGaO33npL33zzjcaPHy+r1arHH39cUvk76quvvqrnn39e/fv317Fjx6q9D//xj3/Us88+q9jYWP3xj3/UPffco/3799eqR6K3at26tUwmU7WprLOzsxUREVHjMRERERdtX/kzOztbkZGRLm3i4+OdbapOvS1JZWVlOn36dLXrbtiwQUOHDtXzzz+vUaNGNfr9RUREqKSkRDk5OS6jji72DCTyJgAA4DnclTfVNmeSyJsqNde8iRFHTVCfPn20Y8cOffnll/rqq6/029/+9qLtLRaLgoKCXD4AAACon+DgYJnNZvn7+ysiIkIREREymUySpDlz5ujnP/+5rr76aoWGhiouLk6//e1v1a1bN8XGxurJJ5/U1VdffcmecGPGjNE999yjTp066c9//rPy8/O1ZcuWesVbWlqqv/zlL+rXr5+uvfZa+fv7X7T97NmzNX/+fN11112KiYnRXXfdpalTp1abTmzSpEkaNmyYunTpopdeeknBwcFasmSJJOkvf/mL2rdvr0WLFqlz585KTk7WE088ofnz58tut+vs2bN64YUXNG/ePI0ePVpXX321+vfvr9/85jcu15g2bZqGDBmia665Rk888YQOHTqk/fv31+s5eAuz2ayePXtq3bp1zm12u13r1q1T3759azymb9++Lu0lac2aNc72MTExioiIcGmTl5enjIwMZ5u+ffsqJydH27Ztc7b5+OOPZbfblZCQ4Ny2fv16DRkyRE8//XS95qivzf317NlTvr6+Lm327t2rw4cPX/AZSORNAAAAjYm8qVxzzZvoytfI6tMDEAAAwFv4+Zq0e06S267dUL169XL5Oz8/X48//rg+/PBDHTt2TGVlZTp37twlpz3o0aOH8/eAgAAFBQVVG81RW2az2eV8F1NQUKADBw5o3LhxGj9+vHN7WVmZgoODXdpW/Qd4Hx8f9erVS3v27JEk7dmzR3379pXBYHC2uemmm5Sfn68jR44oKytLxcXFGjhw4EXjqRp35UiX48ePq3PnzrW6H2+VkpKi0aNHq1evXurTp48WLFiggoIC5xqro0aNUtu2bZWamipJmjx5sgYMGKD58+dryJAhWrZsmbZu3apXXnlFUvk0IFOmTNFTTz2l2NhYxcTEaObMmYqKilJycrIkqUuXLho0aJDGjx+vxYsXq7S0VJMmTdKIESMUFRUlqXx6ul/84heaPHmyhg0b5lxvyGw2O3uFlpSUaPfu3c7ff/zxR+3YsUMtWrRQp06danV/wcHBGjdunFJSUhQaGqqgoCDdf//96tu3r2688cYr8H8BAACAy8tdeVNj5EwSeVNzyJsoHDWyqj3kKpOsyh5ykyZNcm9wAAAAbmYwGGo99UFTFBAQ4PL3tGnTtGbNGj377LPq1KmT/Pz89L//+78qKSm56Hl8fX1d/jYYDLLb7fWKyc/PzyURuZj8/HxJ0quvvuoySkSSs3dgY/Dz86tVu6rPofIe6vscvMnw4cN14sQJzZo1S1lZWYqPj9fq1aud02UfPnzYZaHffv366Z133tFjjz2mRx99VLGxsVq5cqW6devmbDN9+nQVFBRowoQJysnJUf/+/bV69WpZrVZnm7fffluTJk3SwIEDZTQaNWzYMC1cuNC5/80331RhYaFSU1OdRStJGjBggNavXy9JOnr0qK6//nrnvmeffVbPPvusS5tL3Z8kPf/8884YiouLlZSU5DLnPAAAgCcjbypH3lTOHXmT53773Cg/P99lKNjBgwe1Y8cOhYaGqkOHDpfsIQcAAICmzWw2y2azXbLdpk2bNGbMGN15552Syt8Tv//++8scXf2Fh4crKipK3333nUaOHHnRtp9//rl+9rOfSSrvWbdt2zZnR6guXbrovffek8PhcCYumzZtUmBgoNq1a6ewsDD5+flp3bp11aZZQOOYNGnSBTumVRZgqrr77rt19913X/B8BoNBc+bMcc5PX5PQ0FC98847F9y/dOlSLV269IL7pfJFj2uz6PLF7k+SrFar0tLSlJaWdslzAQAA4PIgb2q+eROFo3rYunWrbr31VufflQusjh49WkuXLq1VDzkAAAA0XdHR0crIyND333+vFi1aXLA3V2xsrN5//30NHTpUBoNBM2fObPIjZp544gk98MADCg4O1qBBg1RcXKytW7fqzJkzzvdaSUpLS1NsbKy6dOmi559/XmfOnNF9990nSfrDH/6gBQsW6P7779ekSZO0d+9ezZ49WykpKTIajbJarXr44Yc1ffp0mc1m3XTTTTpx4oR27dqlcePGuevWAQAAADQi8qbmmzdROKqHW2655ZK95C7VQw4AAABN17Rp0zR69Gh17dpV586d0xtvvFFju+eee0733Xef+vXrp9atW+vhhx9WXl7eFY62bn7zm9/I399fzzzzjB566CEFBASoe/fumjJliku7uXPnau7cudqxY4c6deqkf//732rdurUkqW3btvroo4/00EMPKS4uTqGhoRo3bpwee+wx5/EzZ86Uj4+PZs2apaNHjyoyMlK/+93vruStAgAAALiMyJuab95kcNRmngB4lLy8PAUHBys3N1dBQUHuDgcAAHixoqIiHTx4UDExMS5rpaDp+v777xUTE6MvvvhC8fHx7g7HxcW+T7wDo674zgAAgKaAnMkzNdW8qbFyJuNF9wIAAAAAAAAAAMBrUDgCAAAAmojf/e53atGiRY2f2k5XcKHjW7RooU8//fQy3wEAAAAAXF7kTZcfaxwBAAAATcScOXM0bdq0GvfVdiqtHTt2XHBf27ZtL3l8dHT0JdfzBAAAAAB3IW+6/CgcAQAAAE1EWFiYwsLCGnSOTp06NVI0AAAAAND0kDddfkxVBwAAgMuuOffEwpXD9wgAAADNFe+6aAyN9T2icNSMpKWlqWvXrurdu7e7QwEAAJAkmUwmSVJJSYmbI0FzUFhYKEny9fV1cyQAAABA46h8t6181wUaojL3rszF64up6pqRiRMnauLEicrLy1NwcLC7wwEAAJCPj4/8/f114sQJ+fr6ymik3xLqzuFwqLCwUMePH1dISEiDkyAAAACgqTCZTAoJCdHx48clSf7+/jIYDG6OCp7IbrfrxIkT8vf3l49Pw0o/FI4AAABw2RgMBkVGRurgwYM6dOiQu8OBhwsJCVFERIS7wwAAAAAaVeU7bmXxCKgvo9GoDh06NLj4SOEIAAAAl5XZbFZsbCzT1aFBfH19GWkEAACAZqmyw11YWJhKS0vdHQ48mNlsbpSZPigcAQAA4LIzGo2yWq3uDgMAAAAAmiyTyURnKTQJTDIPAAAAAAAAAAAASRSOAAAAAAAAAAAAUIHCEQAAAAAAAAAAACRROAIAAAAAAAAAAEAFCkcAAAAAAAAAAACQROEIAAAAAAAAAAAAFSgcAQAAAAAAAAAAQBKFIwAAAAAAAAAAAFSgcAQAAAAAAAAAAABJFI4AAAAAAAAAAABQgcIRAAAAAAAAAAAAJFE4albS0tLUtWtX9e7d292hAAAAAAAAAAAAD0ThqBmZOHGidu/erczMTHeHAgAAAAAAAAAAPBCFIwAAAAAAAAAAAEiicAQAAAAAAAAAAIAKFI4AAAAAAAAAAAAgicIRAAAAAHiktLQ0RUdHy2q1KiEhQVu2bLlo+xUrVqhz586yWq3q3r27PvroI5f9DodDs2bNUmRkpPz8/JSYmKh9+/a5tDl9+rRGjhypoKAghYSEaNy4ccrPz3fuX79+ve644w5FRkYqICBA8fHxevvtt+sci8FgqPHzzDPPONtER0dX2z937txaPz8AAAAANaNwBAAAAAAeZvny5UpJSdHs2bO1fft2xcXFKSkpScePH6+x/ebNm3XPPfdo3Lhx+uKLL5ScnKzk5GTt3LnT2WbevHlauHChFi9erIyMDAUEBCgpKUlFRUXONiNHjtSuXbu0Zs0arVq1Shs3btSECRNcrtOjRw+99957+uqrrzR27FiNGjVKq1atqlMsx44dc/m8/vrrMhgMGjZsmMt9zZkzx6Xd/fff3+BnCwAAAHg7g8PhcLg7CDSuvLw8BQcHKzc3V0FBQe4OBwAAALjsvO0dOCEhQb1799aiRYskSXa7Xe3bt9f999+vRx55pFr74cOHq6CgwKWAc+ONNyo+Pl6LFy+Ww+FQVFSUHnzwQU2bNk2SlJubq/DwcC1dulQjRozQnj171LVrV2VmZqpXr16SpNWrV+v222/XkSNHFBUVVWOsQ4YMUXh4uF5//fVaxVKT5ORknT17VuvWrXNui46O1pQpUzRlypQ6PLmfeNt3BgAAAN6tLu+/jDgCAAAAAA9SUlKibdu2KTEx0bnNaDQqMTFR6enpNR6Tnp7u0l6SkpKSnO0PHjyorKwslzbBwcFKSEhwtklPT1dISIizaCRJiYmJMhqNysjIuGC8ubm5Cg0NrXUs58vOztaHH36ocePGVds3d+5ctWrVStdff72eeeYZlZWVXTCO4uJi5eXluXwAAAAAVOfj7gAAAAAAALV38uRJ2Ww2hYeHu2wPDw/XN998U+MxWVlZNbbPyspy7q/cdrE2YWFhLvt9fHwUGhrqbHO+d999V5mZmXr55ZdrHcv53nzzTQUGBuquu+5y2f7AAw/ohhtuUGhoqDZv3qwZM2bo2LFjeu6552o8T2pqqp544oka9wEAAAD4CYUjAAAAAECj++STTzR27Fi9+uqruu666+p9ntdff10jR46U1Wp12Z6SkuL8vUePHjKbzfrtb3+r1NRUWSyWaueZMWOGyzF5eXlq3759veMCAAAAmiumqgMAAAAAD9K6dWuZTCZlZ2e7bM/OzlZERESNx0RERFy0feXPS7U5fvy4y/6ysjKdPn262nU3bNigoUOH6vnnn9eoUaPqFEtVn376qfbu3avf/OY3Nd5XVQkJCSorK9P3339f436LxaKgoCCXDwAAAIDqKBwBAAAAgAcxm83q2bOn1q1b59xmt9u1bt069e3bt8Zj+vbt69JektasWeNsHxMTo4iICJc2eXl5ysjIcLbp27evcnJytG3bNmebjz/+WHa7XQkJCc5t69ev15AhQ/T0009rwoQJdY6lqiVLlqhnz56Ki4u74POotGPHDhmNxmrT6QEAAACoG6aqAwAAAAAPk5KSotGjR6tXr17q06ePFixYoIKCAo0dO1aSNGrUKLVt21apqamSpMmTJ2vAgAGaP3++hgwZomXLlmnr1q165ZVXJEkGg0FTpkzRU089pdjYWMXExGjmzJmKiopScnKyJKlLly4aNGiQxo8fr8WLF6u0tFSTJk3SiBEjFBUVJal8erpf/OIXmjx5soYNG+Zct8hsNis0NLRWsVTKy8vTihUrNH/+/Gr3n56eroyMDN16660KDAxUenq6pk6dqnvvvVctW7Zs/AcOAAAAeBEKRwAAAADgYYYPH64TJ05o1qxZysrKUnx8vFavXq3w8HBJ0uHDh2U0/jTBRL9+/fTOO+/oscce06OPPqrY2FitXLlS3bp1c7aZPn26CgoKNGHCBOXk5Kh///5avXq1y9pCb7/9tiZNmqSBAwfKaDRq2LBhWrhwoXP/m2++qcLCQqWmpjqLVpI0YMAArV+/vtaxSNKyZcvkcDh0zz33VLt/i8WiZcuW6fHHH1dxcbFiYmI0depUlzWMAAAAANSPweFwONwdBBpXXl6egoODlZuby7zdAAAA8Aq8A6Ou+M4AAADAm9Tl/Zc1jgAAAAAAAAAAACCJwhEAAAAAAAAAAAAqUDgCAAAAAAAAAACAJApHzUpaWpq6du2q3r17uzsUAAAAAAAAAADggSgcNSMTJ07U7t27lZmZ6e5QAAAAAAAAAACAB6JwBAAAAAAAAAAAAEkUjgAAAAAAAAAAAFCBwhEAAAAAAAAAAAAkUTgCAAAAAAAAAABABQpHAAAAAAAAAAAAkEThCAAAAAAAAAAAABUoHAEAAAAAAAAAAEAShSMAAAAAAAAAAABUoHAEAAAAAAAAAAAASRSOAAAAAAAAAAAAUIHCEQAAAAAAAAAAACRROAIAAAAAAAAAAEAFCkcAAAAAAAAAAACQROEIAAAAAAAAAAAAFSgcAQAAAAAAAAAAQBKFIwAAAAAAAAAAAFSgcAQAAAAAAAAAAABJFI4AAAAAAAAAAABQgcIRAAAAAAAAAAAAJFE4albS0tLUtWtX9e7d292hAAAAAAAAAAAAD0ThqBmZOHGidu/erczMTHeHAgAAAAAAAAAAPBCFIwAAAAAAAAAAAEiicAQAAAAAAAAAAIAKFI4AAAAAAAAAAAAgicIRAAAAAHiktLQ0RUdHy2q1KiEhQVu2bLlo+xUrVqhz586yWq3q3r27PvroI5f9DodDs2bNUmRkpPz8/JSYmKh9+/a5tDl9+rRGjhypoKAghYSEaNy4ccrPz3fuX79+ve644w5FRkYqICBA8fHxevvtt+scy5gxY2QwGFw+gwYNqlMsAAAAAOqHwhEAAAAAeJjly5crJSVFs2fP1vbt2xUXF6ekpCQdP368xvabN2/WPffco3HjxumLL75QcnKykpOTtXPnTmebefPmaeHChVq8eLEyMjIUEBCgpKQkFRUVOduMHDlSu3bt0po1a7Rq1Spt3LhREyZMcLlOjx499N577+mrr77S2LFjNWrUKK1atapOsUjSoEGDdOzYMefn73//u8v+S8UCAAAAoH4MDofD4e4g0Ljy8vIUHBys3NxcBQUFuTscAAAA4LLztnfghIQE9e7dW4sWLZIk2e12tW/fXvfff78eeeSRau2HDx+ugoIClwLOjTfeqPj4eC1evFgOh0NRUVF68MEHNW3aNElSbm6uwsPDtXTpUo0YMUJ79uxR165dlZmZqV69ekmSVq9erdtvv11HjhxRVFRUjbEOGTJE4eHhev3112sVi1Q+4ignJ0crV66s8Zz1jaUqb/vOAAAAwLvV5f2XEUcAAAAA4EFKSkq0bds2JSYmOrcZjUYlJiYqPT29xmPS09Nd2ktSUlKSs/3BgweVlZXl0iY4OFgJCQnONunp6QoJCXEWaiQpMTFRRqNRGRkZF4w3NzdXoaGhtY6l0vr16xUWFqZrr71Wv//973Xq1CmXc9Q1luLiYuXl5bl8AAAAAFRH4QgAAAAAPMjJkydls9kUHh7usj08PFxZWVk1HpOVlXXR9pU/L9UmLCzMZb+Pj49CQ0MveN13331XmZmZGjt2bK1jkcqnqXvrrbe0bt06Pf3009qwYYMGDx4sm81W71hSU1MVHBzs/LRv377GdgAAAIC383F3AAAAAACA5ueTTz7R2LFj9eqrr+q6666r07EjRoxw/t69e3f16NFDV199tdavX6+BAwfWK54ZM2YoJSXF+XdeXh7FIwAAAKAGjDgCAAAAAA/SunVrmUwmZWdnu2zPzs5WREREjcdERERctH3lz0u1OX78uMv+srIynT59utp1N2zYoKFDh+r555/XqFGj6hRLTa666iq1bt1a+/fvr3MslSwWi4KCglw+AAAAAKqjcAQAAAAAHsRsNqtnz55at26dc5vdbte6devUt2/fGo/p27evS3tJWrNmjbN9TEyMIiIiXNrk5eUpIyPD2aZv377KycnRtm3bnG0+/vhj2e12JSQkOLetX79eQ4YM0dNPP60JEybUOZaaHDlyRKdOnVJkZGSdYgEAAABQd0xVBwAAAAAeJiUlRaNHj1avXr3Up08fLViwQAUFBc61hEaNGqW2bdsqNTVVkjR58mQNGDBA8+fP15AhQ7Rs2TJt3bpVr7zyiiTJYDBoypQpeuqppxQbG6uYmBjNnDlTUVFRSk5OliR16dJFgwYN0vjx47V48WKVlpZq0qRJGjFihKKioiSVT0/3i1/8QpMnT9awYcOc6w2ZzWaFhobWKpb8/Hw98cQTGjZsmCIiInTgwAFNnz5dnTp1UlJSUq1jAQAAAFA/jDgCAAAAAA8zfPhwPfvss5o1a5bi4+O1Y8cOrV69WuHh4ZKkw4cP69ixY872/fr10zvvvKNXXnlFcXFx+sc//qGVK1eqW7duzjbTp0/X/fffrwkTJqh3797Kz8/X6tWrZbVanW3efvttde7cWQMHDtTtt9+u/v37Ows+kvTmm2+qsLBQqampioyMdH7uuuuuWsdiMpn01Vdf6Ze//KWuueYajRs3Tj179tSnn34qi8VS61gAAAAA1I/B4XA43B0EGldeXp6Cg4OVm5vLvN0AAADwCrwDo674zgAAAMCb1OX9lxFHAAAAAAAAAAAAkEThCAAAAAAAAAAAABUoHAEAAAAAAAAAAEAShSMAAAAAAAAAAABUoHAEAAAAAAAAAAAASRSOAAAAAAAAAAAAUIHCEQAAAAAAAAAAACRROAIAAAAAAAAAAEAFCkcAAAAAAAAAAACQROGoWUlLS1PXrl3Vu3dvd4cCAAAAAAAAAAA8EIWjZmTixInavXu3MjMz3R0KAAAAAAAAAADwQBSOAAAAAAAAAAAAIInCEQAAAAAAAAAAACpQOAIAAAAAAAAAAIAkCkcAAAAAAAAAAACoQOEIAAAAAAAAAAAAkigcAQAAAAAAAAAAoAKFIwAAAAAAAAAAAEiicAQAAAAAAAAAAIAKFI4AAAAAAAAAAAAgicIRAAAAAAAAAAAAKlA4AgAAAAAAAAAAgCQKRwAAAAAAAAAAAKhA4QgAAAAAAAAAAACSKBwBAAAAAAAAAACgAoUjAAAAAAAAAAAASJJ83B3AlWS327V//34dP35cdrvdZd/PfvYzN0UFAAAAwBuQjwAAAADwBF5TOPr888/161//WocOHZLD4XDZZzAYZLPZ3BQZAAAAgOaOfAQAAACAp/CawtHvfvc79erVSx9++KEiIyNlMBjcHRIAAAAAL0E+AgAAAMBTeM0aR/v27dOf//xndenSRSEhIQoODnb5AAAAAMDlcjnykbS0NEVHR8tqtSohIUFbtmy5aPsVK1aoc+fOslqt6t69uz766COX/Q6HQ7NmzVJkZKT8/PyUmJioffv2ubQ5ffq0Ro4cqaCgIIWEhGjcuHHKz8937l+/fr3uuOMORUZGKiAgQPHx8Xr77bfrFEtpaakefvhhde/eXQEBAYqKitKoUaN09OhRl3NER0fLYDC4fObOnVvr5wcAAACgZl5TOEpISND+/fvdHQYAAAAAL9TY+cjy5cuVkpKi2bNna/v27YqLi1NSUpKOHz9eY/vNmzfrnnvu0bhx4/TFF18oOTlZycnJ2rlzp7PNvHnztHDhQi1evFgZGRkKCAhQUlKSioqKnG1GjhypXbt2ac2aNVq1apU2btyoCRMmuFynR48eeu+99/TVV19p7NixGjVqlFatWlXrWAoLC7V9+3bNnDlT27dv1/vvv6+9e/fql7/8ZbX7mjNnjo4dO+b83H///Q1+tgAAAIC3MzjOn2C7Gfnqq6+cvx84cECPPfaYHnroIXXv3l2+vr4ubXv06HGlw7ts8vLyFBwcrNzcXAUFBbk7HAAAAOCya4rvwJczH0lISFDv3r21aNEiSZLdblf79u11//3365FHHqnWfvjw4SooKHAp4Nx4442Kj4/X4sWL5XA4FBUVpQcffFDTpk2TJOXm5io8PFxLly7ViBEjtGfPHnXt2lWZmZnq1auXJGn16tW6/fbbdeTIEUVFRdUY65AhQxQeHq7XX3+9VrHUJDMzU3369NGhQ4fUoUMHSeUjjqZMmaIpU6bU6dlVaorfGQAAAOByqcv7b7Ne4yg+Pl4Gg8Fl8dn77rvP+XvlPhajBQAAANDYLlc+UlJSom3btmnGjBnObUajUYmJiUpPT6/xmPT0dKWkpLhsS0pK0sqVKyVJBw8eVFZWlhITE537g4ODlZCQoPT0dI0YMULp6ekKCQlxFo0kKTExUUajURkZGbrzzjtrvHZubq66dOlS61gudA6DwaCQkBCX7XPnztWTTz6pDh066Ne//rWmTp0qH5+a09zi4mIVFxc7/87Ly7vg9QAAAABv1qwLRwcPHnR3CAAAAAC81OXKR06ePCmbzabw8HCX7eHh4frmm29qPCYrK6vG9llZWc79ldsu1iYsLMxlv4+Pj0JDQ51tzvfuu+8qMzNTL7/8cq1jOV9RUZEefvhh3XPPPS49Ix944AHdcMMNCg0N1ebNmzVjxgwdO3ZMzz33XI3nSU1N1RNPPFHjPgAAAAA/adaFo44dO7o7BAAAAABeytvzkU8++URjx47Vq6++quuuu65e5ygtLdWvfvUrORwOvfTSSy77qo5a6tGjh8xms377298qNTVVFoul2rlmzJjhckxeXp7at29fr7gAAACA5szo7gCulNTUVOec2lW9/vrrevrpp90QEQAAAABv0Zj5SOvWrWUymZSdne2yPTs7WxERETUeExERcdH2lT8v1eb48eMu+8vKynT69Olq192wYYOGDh2q559/XqNGjapTLJUqi0aHDh3SmjVrLjkPe0JCgsrKyvT999/XuN9isSgoKMjlAwAAAKA6rykcvfzyy+rcuXO17dddd90FF2AFAAAAgMbQmPmI2WxWz549tW7dOuc2u92udevWqW/fvjUe07dvX5f2krRmzRpn+5iYGEVERLi0ycvLU0ZGhrNN3759lZOTo23btjnbfPzxx7Lb7UpISHBuW79+vYYMGaKnn35aEyZMqHMs0k9Fo3379mnt2rVq1arVJZ/Ljh07ZDQaq02nBwAAAKBumvVUdVVlZWUpMjKy2vY2bdro2LFjbogIAAAAgLdo7HwkJSVFo0ePVq9evdSnTx8tWLBABQUFGjt2rCRp1KhRatu2rVJTUyVJkydP1oABAzR//nwNGTJEy5Yt09atW/XKK69IkgwGg6ZMmaKnnnpKsbGxiomJ0cyZMxUVFaXk5GRJUpcuXTRo0CCNHz9eixcvVmlpqSZNmqQRI0YoKipKUvn0dL/4xS80efJkDRs2zLlukdlsVmhoaK1iKS0t1f/+7/9q+/btWrVqlWw2m/M8oaGhMpvNSk9PV0ZGhm699VYFBgYqPT1dU6dO1b333quWLVvW+XkCAAAA+InXFI7at2+vTZs2KSYmxmX7pk2bnEkOAAAAAFwOjZ2PDB8+XCdOnNCsWbOUlZWl+Ph4rV69WuHh4ZKkw4cPy2j8aYKJfv366Z133tFjjz2mRx99VLGxsVq5cqW6devmbDN9+nQVFBRowoQJysnJUf/+/bV69WpZrVZnm7fffluTJk3SwIEDZTQaNWzYMC1cuNC5/80331RhYaFSU1OdRStJGjBggNavX1+rWH788Uf9+9//liTFx8e73Pcnn3yiW265RRaLRcuWLdPjjz+u4uJixcTEaOrUqS5rGAEAAACoH4PD4XC4O4grYd68eZo3b56eeeYZ3XbbbZKkdevWafr06XrwwQc1Y8YMN0fYePLy8hQcHKzc3Fzm7QYAAIBXaOrvwN6Uj3iKpv6dAQAAABpTXd5/vWbE0UMPPaRTp07pD3/4g0pKSiRJVqtVDz/8cLNJ0tLS0pSWliabzebuUAAAAABU4Q35CAAAAIDmwWtGHFXKz8/Xnj175Ofnp9jYWFksFneH1OjoOQcAAABv4ynvwN6Qj3gKT/nOAAAAAI2BEUcX0aJFC+eitCRpAAAAAK4k8hEAAAAATZ3x0k2aB7vdrjlz5ig4OFgdO3ZUx44dFRISoieffFJ2u93d4QEAAABoxshHAAAAAHgKrxlx9Mc//lFLlizR3LlzddNNN0mSPvvsMz3++OMqKirSn/70JzdHCAAAAKC5Ih8BAAAA4Cm8Zo2jqKgoLV68WL/85S9dtv/rX//SH/7wB/34449uiqzxMVc3AAAAvE1Tfwf2pnzEUzT17wwAAADQmOry/us1U9WdPn1anTt3rra9c+fOOn36tBsiAgAAAOAtyEcAAAAAeAqvKRzFxcVp0aJF1bYvWrRIcXFxbogIAAAAgLcgHwEAAADgKbxmjaN58+ZpyJAhWrt2rfr27StJSk9P1w8//KCPPvrIzdEBAAAAaM7IRwAAAAB4Cq8ZcTRgwAB9++23uvPOO5WTk6OcnBzddddd2rt3r26++WZ3hwcAAACgGSMfAQAAAOApDA6Hw+HuINC4WOQVAAAA3oZ3YNQV3xkAAAB4k7q8/3rNVHWSdObMGS1ZskR79uyRJHXt2lVjx45VaGiomyMDAAAA0NyRjwAAAADwBF4zVd3GjRsVHR2thQsX6syZMzpz5owWLlyomJgYbdy40d3hAQAAAGjGyEcAAAAAeAqvmaque/fu6tu3r1566SWZTCZJks1m0x/+8Adt3rxZX3/9tZsjbDxMuQAAAABv09Tfgb0pH/EUTf07AwAAADSmurz/es2Io/379+vBBx90JmmSZDKZlJKSov3797sxMgAAAADNHfkIAAAAAE/hNYWjG264wTmXeFV79uxRXFycGyICAAAA4C3IRwAAAAB4Ch93B3ClPPDAA5o8ebL279+vG2+8UZL0+eefKy0tTXPnztVXX33lbNujRw93hQkAAACgGSIfAQAAAOApvGaNI6Px4oOrDAaDHA6HDAaDbDbbFYrq8mCubgAAAHibpv4O7E35iKdo6t8ZAAAAoDHV5f3Xa0YcHTx40N0hAAAAAPBS5CMAAAAAPIXXFI46duzo7hAAAAAAeCnyEQAAAACe4uLzJTQzf/3rX3XTTTcpKipKhw4dkiQtWLBA//rXv9wcGQAAAIDmjnwEAAAAgCfwmsLRSy+9pJSUFN1+++3KyclxzhseEhKiBQsWuDc4AAAAAM0a+QgAAAAAT+E1haMXX3xRr776qv74xz/KZDI5t/fq1Utff/21GyMDAAAA0NyRjwAAAADwFF5TODp48KCuv/76atstFosKCgrcEBEAAAAAb0E+AgAAAMBTeE3hKCYmRjt27Ki2ffXq1erSpcuVDwgAAACA1yAfAQAAAOApfNwdwJWSkpKiiRMnqqioSA6HQ1u2bNHf//53paam6rXXXnN3eAAAAACaMfIRAAAAAJ7CawpHv/nNb+Tn56fHHntMhYWF+vWvf62oqCi98MILGjFihLvDAwAAANCMkY8AAAAA8BQGh8PhcHcQV1phYaHy8/MVFhZWbd+mTZvUq1cvWSwWN0TWOPLy8hQcHKzc3FwFBQW5OxwAAADgsvOkd+Dmno94Ck/6zgAAAAANVZf3X69Z46gqf3//GpM0SRo8eLB+/PHHKxwRAAAAAG9BPgIAAACgKfPKwtHFeOEALAAAAABNRF3ykbS0NEVHR8tqtSohIUFbtmy5aPsVK1aoc+fOslqt6t69uz766KNq1541a5YiIyPl5+enxMRE7du3z6XN6dOnNXLkSAUFBSkkJETjxo1Tfn6+c//69et1xx13KDIyUgEBAYqPj9fbb7/tllgAAAAA1A+FIwAAAADwMMuXL1dKSopmz56t7du3Ky4uTklJSTp+/HiN7Tdv3qx77rlH48aN0xdffKHk5GQlJydr586dzjbz5s3TwoULtXjxYmVkZCggIEBJSUkqKipythk5cqR27dqlNWvWaNWqVdq4caMmTJjgcp0ePXrovffe01dffaWxY8dq1KhRWrVq1RWPBQAAAED9eOUaRxcTGBioL7/8UldddZW7Q6k35uoGAACAt2ku78C1zUcSEhLUu3dvLVq0SJJkt9vVvn173X///XrkkUeqtR8+fLgKCgpcCjg33nij4uPjtXjxYjkcDkVFRenBBx/UtGnTJEm5ubkKDw/X0qVLNWLECO3Zs0ddu3ZVZmamevXqJUlavXq1br/9dh05ckRRUVE1xjpkyBCFh4fr9ddfd3ssVbnzO+NwOHSu1HZFrwkAAICmwc/XJIPBcMWvW5f3X58rFBMAAAAAoBGUlJRo27ZtmjFjhnOb0WhUYmKi0tPTazwmPT1dKSkpLtuSkpK0cuVKSdLBgweVlZWlxMRE5/7g4GAlJCQoPT1dI0aMUHp6ukJCQpyFGklKTEyU0WhURkaG7rzzzhqvnZubqy5durg9luLiYhUXFzv/zsvLqzHeK+FcqU1dZ/2f264PAAAA99k9J0n+5qZdmmGquvO4o9IHAAAAAFLt8pGTJ0/KZrMpPDzcZXt4eLiysrJqPCYrK+ui7St/XqpNWFiYy34fHx+FhoZe8LrvvvuuMjMzNXbsWLfHkpqaquDgYOenffv2NbYDAAAAvF3TLms1EofDoR9++EFhYWGyWq2XbAsAAAAAjcVb85FPPvlEY8eO1auvvqrrrrvO3eFoxowZLiOd8vLy3FY88vM1afecJLdcGwAAAO7l52tydwiX5DWFo06dOmnXrl2KjY29aNuzZ89eoagAAAAAeIPGzkdat24tk8mk7Oxsl+3Z2dmKiIio8ZiIiIiLtq/8mZ2drcjISJc28fHxzjbHjx93OUdZWZlOnz5d7bobNmzQ0KFD9fzzz2vUqFFujaWSxWKRxWKpcd+VZjAYmvz0JAAAAPBeXjFVndFoVGxsrE6dOuXuUAAAAAB4mcbOR8xms3r27Kl169Y5t9ntdq1bt059+/at8Zi+ffu6tJekNWvWONvHxMQoIiLCpU1eXp4yMjKcbfr27aucnBxt27bN2ebjjz+W3W5XQkKCc9v69es1ZMgQPf3005owYYJbYwEAAABQd15ROJKkuXPn6qGHHtLOnTvdHQoAAAAAL9PY+UhKSopeffVVvfnmm9qzZ49+//vfq6CgwLmW0KhRozRjxgxn+8mTJ2v16tWaP3++vvnmGz3++OPaunWrJk2aJKl8BMyUKVP01FNP6d///re+/vprjRo1SlFRUUpOTpYkdenSRYMGDdL48eO1ZcsWbdq0SZMmTdKIESMUFRUlqXx6uiFDhuiBBx7QsGHDlJWVpaysLJ0+ffqKxwIAAACgfgyO5jSJ9kW0bNlShYWFKisrk9lslp+fn8v+qomMp8vLy1NwcLByc3MVFBTk7nAAAACAy66pvwNfjnxk0aJFeuaZZ5SVlaX4+HgtXLjQOdrmlltuUXR0tJYuXepsv2LFCj322GP6/vvvFRsbq3nz5un222937nc4HJo9e7ZeeeUV5eTkqH///vrLX/6ia665xiXOSZMm6YMPPpDRaNSwYcO0cOFCtWjRQpI0ZswYvfnmm9ViHTBggNavX39FY7mUpv6dAQAAABpTXd5/vaZwVFPyUtXo0aOvUCSXHwkQAAAAvE1Tfwf2pnzEUzT17wwAAADQmOry/us1q3F6QyKWlpamtLQ02Ww2d4cCAAAAoApvyEcAAAAANA/NesRRXl5erds2px5m9JwDAACAt2mK78Demo94iqb4nQEAAAAuF0YcVQgJCZHBYLhoG4fDIYPBwCgdAAAAAI2KfAQAAACAJ2rWhaNPPvnE3SEAAAAA8FLkIwAAAAA8UbMuHA0YMKDOx/zhD3/QnDlz1Lp168sQEQAAAABvQT4CAAAAwBMZ3R1AU/O3v/2tTnORAwAAAEBjIR8BAAAA4G4Ujs7jcDjcHQIAAAAAL0U+AgAAAMDdKBwBAAAAAAAAAABAEoUjAAAAAAAAAAAAVKBwBAAAAAAAAAAAAEkUjgAAAAAAAAAAAFCBwtF57r33XgUFBbk7DAAAAABeiHwEAAAAgLv5uDuAKyknJ0dbtmzR8ePHZbfbXfaNGjVKkvTSSy+5IzQAAAAAzRz5CAAAAABP4DWFow8++EAjR45Ufn6+goKCZDAYnPsMBoMzUQMAAACAxkY+AgAAAMBTeM1UdQ8++KDuu+8+5efnKycnR2fOnHF+Tp8+7e7wAAAAADRj5CMAAAAAPIXXFI5+/PFHPfDAA/L393d3KAAAAAC8DPkIAAAAAE/hNYWjpKQkbd261d1hAAAAAPBC5CMAAAAAPIXXrHE0ZMgQPfTQQ9q9e7e6d+8uX19fl/2//OUv3RQZAAAAgOaOfAQAAACApzA4HA6Hu4O4EozGCw+uMhgMstlsVzCayysvL0/BwcHKzc1VUFCQu8MBAAAALrum/g7sTfmIp2jq3xkAAACgMdXl/ddrRhzZ7XZ3hwAAAADAS5GPAAAAAPAUXrPGEQAAAAAAAAAAAC6uWY84WrhwoSZMmCCr1aqFCxdetO0DDzxwhaICAAAA4A3IRwAAAAB4oma9xlFMTIy2bt2qVq1aKSYm5oLtDAaDvvvuuysY2eXFXN0AAADwNk3xHdhb8xFP0RS/MwAAAMDlwhpHFQ4ePFjj7wAAAABwuZGPAAAAAPBErHEEAAAAAAAAAAAASc18xNH5jhw5on//+986fPiwSkpKXPY999xzbooKAAAAgDcgHwEAAADgCbymcLRu3Tr98pe/1FVXXaVvvvlG3bp10/fffy+Hw6EbbrjB3eEBAAAAaMbIRwAAAAB4Cq+Zqm7GjBmaNm2avv76a1mtVr333nv64YcfNGDAAN19993uDg8AAABAM0Y+AgAAAMBTeE3haM+ePRo1apQkycfHR+fOnVOLFi00Z84cPf30026ODgAAAEBz1tj5SFpamqKjo2W1WpWQkKAtW7ZctP2KFSvUuXNnWa1Wde/eXR999JHLfofDoVmzZikyMlJ+fn5KTEzUvn37XNqcPn1aI0eOVFBQkEJCQjRu3Djl5+c79xcVFWnMmDHq3r27fHx8lJycfMHYu3TpIj8/P1177bV66623XPbfcsstMhgM1T5DhgxxthkzZky1/YMGDarNowMAAABwCV5TOAoICHDOIx4ZGakDBw449508edJdYQEAAADwAo2ZjyxfvlwpKSmaPXu2tm/frri4OCUlJen48eM1tt+8ebPuuecejRs3Tl988YWSk5OVnJysnTt3OtvMmzdPCxcu1OLFi5WRkaGAgAAlJSWpqKjI2WbkyJHatWuX1qxZo1WrVmnjxo2aMGGCc7/NZpOfn58eeOABJSYm1hjLSy+9pBkzZujxxx/Xrl279MQTT2jixIn64IMPnG3ef/99HTt2zPnZuXOnTCZTtZFZgwYNcmn397//vU7PEQAAAEDNDA6Hw+HuIK6E5ORkDRkyROPHj9e0adP0r3/9S2PGjNH777+vli1bau3ate4OsdHk5eUpODhYubm5CgoKcnc4AAAAwGXX1N+BGzMfSUhIUO/evbVo0SJJkt1uV/v27XX//ffrkUceqdZ++PDhKigo0KpVq5zbbrzxRsXHx2vx4sVyOByKiorSgw8+qGnTpkmScnNzFR4erqVLl2rEiBHas2ePunbtqszMTPXq1UuStHr1at1+++06cuSIoqKiXK45ZswY5eTkaOXKlS7b+/Xrp5tuuknPPPOMc9uDDz6ojIwMffbZZzXe74IFCzRr1iwdO3ZMAQEBFz1/XTT17wwAAADQmOry/us1I46ee+45JSQkSJKeeOIJDRw4UMuXL1d0dLSWLFni5ugAAAAANGeNlY+UlJRo27ZtLiN6jEajEhMTlZ6eXuMx6enp1UYAJSUlOdsfPHhQWVlZLm2Cg4OVkJDgbJOenq6QkBBn0UiSEhMTZTQalZGRUev4i4uLZbVaXbb5+flpy5YtKi0trfGYJUuWaMSIEc6iUaX169crLCxM1157rX7/+9/r1KlTtY4DAAAAwIX5uDuAK8Fms+nIkSPq0aOHpPJpIhYvXuzmqAAAAAB4g8bMR06ePCmbzabw8HCX7eHh4frmm29qPCYrK6vG9llZWc79ldsu1iYsLMxlv4+Pj0JDQ51taiMpKUmvvfaakpOTdcMNN2jbtm167bXXVFpaqpMnTyoyMtKl/ZYtW7Rz585qxbVBgwbprrvuUkxMjA4cOKBHH31UgwcPVnp6ukwmU43XLi4uVnFxsfPvvLy8WscNAAAAeBOvGHFkMpn0P//zPzpz5oy7QwEAAADgZchHfjJz5kwNHjxYN954o3x9fXXHHXdo9OjRkspHTp1vyZIl6t69u/r06eOyfcSIEfrlL3+p7t27Kzk5WatWrVJmZqbWr19/wWunpqYqODjY+Wnfvn2j3hsAAADQXHhF4UiSunXrpu+++87dYQAAAADwQo2Vj7Ru3Vomk0nZ2dku27OzsxUREVHjMRERERdtX/nzUm2OHz/usr+srEynT5++4HVr4ufnp9dff12FhYX6/vvvdfjwYUVHRyswMFBt2rRxaVtQUKBly5Zp3LhxlzzvVVddpdatW2v//v0XbDNjxgzl5uY6Pz/88EOt4wYAAAC8idcUjp566ilNmzZNq1at0rFjx5SXl+fyAQAAAIDLpbHyEbPZrJ49e2rdunXObXa7XevWrVPfvn1rPKZv374u7SVpzZo1zvYxMTGKiIhwaZOXl6eMjAxnm759+yonJ0fbtm1ztvn4449lt9udazfVha+vr9q1ayeTyaRly5bpF7/4RbURRytWrFBxcbHuvffeS57vyJEjOnXqVLWp7qqyWCwKCgpy+QAAAACozivWOJKk22+/XZL0y1/+UgaDwbnd4XDIYDDIZrO5KzQAAAAAzVxj5iMpKSkaPXq0evXqpT59+mjBggUqKCjQ2LFjJUmjRo1S27ZtlZqaKkmaPHmyBgwYoPnz52vIkCFatmyZtm7dqldeeUWSZDAYNGXKFD311FOKjY1VTEyMZs6cqaioKCUnJ0uSunTpokGDBmn8+PFavHixSktLNWnSJI0YMUJRUVHO2Hbv3q2SkhKdPn1aZ8+e1Y4dOyRJ8fHxkqRvv/1WW7ZsUUJCgs6cOaPnnntOO3fu1JtvvlntPpcsWaLk5GS1atXKZXt+fr6eeOIJDRs2TBERETpw4ICmT5+uTp06KSkpqdbPEQAAAEDNvKZw9MYbb6h9+/bVFkq12+06fPiwm6ICAAAA4A0aMx8ZPny4Tpw4oVmzZikrK0vx8fFavXq1wsPDJUmHDx92Gb3Tr18/vfPOO3rsscf06KOPKjY2VitXrlS3bt2cbaZPn66CggJNmDBBOTk56t+/v1avXi2r1eps8/bbb2vSpEkaOHCgjEajhg0bpoULF7rEdvvtt+vQoUPOv6+//npJ5QUySbLZbJo/f7727t0rX19f3Xrrrdq8ebOio6NdzrN371599tln+u9//1vt/k0mk7766iu9+eabysnJUVRUlP7nf/5HTz75pCwWS52eJQAAAIDqDI7KN/hmzmQy6dixYwoLC3PZfurUKYWFhTWrEUd5eXkKDg5Wbm4u0y8AAADAKzT1d2Bvykc8RVP/zgAAAACNqS7vv16zxlHlFBDny8/Pd+lFBwAAAACNjXwEAAAAgKdo9lPVpaSkSCqft3vmzJny9/d37rPZbMrIyHDOtw0AAAAAjYl8BAAAAICnafaFoy+++EJSeQ+/r7/+Wmaz2bnPbDYrLi5O06ZNc1d4AAAAAJox8hEAAAAAnqbZF44++eQTSdLYsWP1wgsvMHc1AAAAgCuGfAQAAACAp2n2haNKb7zxhrtDAAAAAOClyEcAAAAAeAqjuwMAAAAAAAAAAABA00DhCAAAAAAAAAAAAJIoHAEAAAAAAAAAAKAChSMAAAAAAAAAAABIonAEAAAAAAAAAACAChSOAAAAAAAAAAAAIInCEQAAAAAAAAAAACpQOAIAAAAAAAAAAIAkCkcAAAAAAAAAAACoQOEIAAAAAAAAAAAAkiQfdweA5sXhcOhcqc3dYQAAAMBN/HxNMhgM7g4DAAAAAFBPFI7QqM6V2tR11v+5OwwAAAC4ye45SfI3k2YAAAAAgKdiqrpmJC0tTV27dlXv3r3dHQoAAAAAAAAAAPBABofD4XB3EGhceXl5Cg4OVm5uroKCgq7otZmqDgAAwLu5a6o6d74DwzPxnQEAAIA3qcv7L3NIoFEZDAamJgEAAAAAAAAAwEMxVR0AAAAAAAAAAAAkUTgCAAAAAAAAAABABQpHAAAAAAAAAAAAkEThCAAAAAAAAAAAABUoHAEAAAAAAAAAAEAShSMAAAAAAAAAAABUoHAEAAAAAAAAAAAASRSOAAAAAAAAAAAAUIHCEQAAAAAAAAAAACRROAIAAAAAj5OWlqbo6GhZrVYlJCRoy5YtF22/YsUKde7cWVarVd27d9dHH33kst/hcGjWrFmKjIyUn5+fEhMTtW/fPpc2p0+f1siRIxUUFKSQkBCNGzdO+fn5zv1FRUUaM2aMunfvLh8fHyUnJ18w9i5dusjPz0/XXnut3nrrLZf9S5culcFgcPlYrdY6xwsAAACgfigcAQAAAIAHWb58uVJSUjR79mxt375dcXFxSkpK0vHjx2tsv3nzZt1zzz0aN26cvvjiCyUnJys5OVk7d+50tpk3b54WLlyoxYsXKyMjQwEBAUpKSlJRUZGzzciRI7Vr1y6tWbNGq1at0saNGzVhwgTnfpvNJj8/Pz3wwANKTEysMZaXXnpJM2bM0OOPP65du3bpiSee0MSJE/XBBx+4tAsKCtKxY8ecn0OHDrnsr028AADg/7d391FV1fkexz+APJxJHiQVOIpCo+NDPmCiB7C5Lq/c8CFX3OudoOUsQR1d614pDR1HLR9KG0zD5XVwJDMzVzlUM5Nzs2IiGvSqxFNxb5jjQ2M+zIRoCAhegTj7/hGde88VDTjU5sj7tdZewN6/ffZn/9bJtb99z94HADrHwzAMw+wQ6Fp1dXUKDAxUbW2tAgICzI4DAAAAfOd60jWwzWbThAkTlJWVJUmy2+0KDw/Xo48+qpUrV940PikpSQ0NDTp48KBjXUxMjKKiopSdnS3DMGS1WrVs2TItX75cklRbW6uQkBDt3btXycnJOnHihEaOHKmSkhJFR0dLknJzczVjxgxdvHhRVqvV6ZipqamqqanRgQMHnNbHxcVp0qRJ2rJli2PdsmXLVFRUpCNHjkj6+o6jpUuXqqamps3zb0/e9uhJ7xkAAACgI9e/3HEEAAAAAG6iqalJZWVlTnf0eHp6Kj4+XoWFhW3uU1hYeNMdQAkJCY7xZ8+eVWVlpdOYwMBA2Ww2x5jCwkIFBQU5mkaSFB8fL09PTxUVFbU7f2Nj402PnbNYLCouLlZzc7NjXX19vQYPHqzw8HA99NBDOn78uGNbe/Le6th1dXVOCwAAAICb0TgCAAAAADdx5coVtbS0KCQkxGl9SEiIKisr29ynsrLytuO/+fltY/r37++0vVevXgoODr7lcduSkJCg3bt3q6ysTIZhqLS0VLt371Zzc7OuXLkiSRo2bJj27NmjP/zhD3rllVdkt9sVFxenixcvtjtvWzIyMhQYGOhYwsPD250bAAAA6EloHAEAAAAAvhdr1qzR9OnTFRMTI29vbz300ENKSUmR9PWdU5IUGxuruXPnKioqSpMnT9bvf/979evXT88//7xLx161apVqa2sdy4ULF1w+HwAAAOBOROMIAAAAANxE37595eXlpUuXLjmtv3TpkkJDQ9vcJzQ09Lbjv/n5bWOqqqqctn/11Veqrq6+5XHbYrFYtGfPHl2/fl2ff/65zp8/r4iICPn7+6tfv35t7uPt7a1x48bpzJkz7c7bFl9fXwUEBDgtAAAAAG5G4wgAAAAA3ISPj4/Gjx+v/Px8xzq73a78/HzFxsa2uU9sbKzTeEnKy8tzjI+MjFRoaKjTmLq6OhUVFTnGxMbGqqamRmVlZY4xH3zwgex2u2w2W4fPw9vbWwMHDpSXl5dycnL04IMPOu44+v9aWlr0ySefKCwsrN15AQAAAHReL7MDAAAAAADaLz09XSkpKYqOjtbEiRO1bds2NTQ0aN68eZKkuXPnasCAAcrIyJAkLVmyRJMnT1ZmZqZmzpypnJwclZaWateuXZIkDw8PLV26VBs3btTQoUMVGRmpNWvWyGq1KjExUZI0YsQITZs2TQsXLlR2draam5uVlpam5ORkWa1WR7ZPP/1UTU1Nqq6u1rVr11ReXi5JioqKkiSdOnVKxcXFstlsunr1qrZu3aqKigq9/PLLjtd4+umnFRMToyFDhqimpkZbtmzRuXPn9LOf/azdeQEAAAB0Ho0jAAAAAHAjSUlJunz5stauXavKykpFRUUpNzdXISEhkqTz58873b0TFxen/fv368knn9Tq1as1dOhQHThwQKNGjXKMWbFihRoaGrRo0SLV1NTo/vvvV25urvz8/BxjXn31VaWlpWnq1Kny9PTU7NmztX37dqdsM2bM0Llz5xx/jxs3TpJkGIakr+8eyszM1MmTJ+Xt7a0pU6bo2LFjioiIcOxz9epVLVy4UJWVlerTp4/Gjx+vY8eOaeTIkR3KCwAAAKBzPIxvruBxx6irq1NgYKBqa2t5bjcAAAB6BK6B0VG8ZwAAANCTdOT6l+84AgAAAAAAAAAAgCQaRwAAAAAAAAAAAGhF4wgAAAAAAAAAAACSaBwBAAAAAAAAAACgFY0jAAAAAAAAAAAASKJxBAAAAAAAAAAAgFY0jgAAAAAAAAAAACCJxhEAAAAAAAAAAABa0TgCAAAAAAAAAACAJBpHAAAAAAAAAAAAaEXjCAAAAAAAAAAAAJJoHAEAAAAAAAAAAKAVjSMAAAAAAAAAAABIonEEAAAAAAAAAACAVjSOAAAAAAAAAAAAIInGEQAAAAAAAAAAAFrROAIAAAAAAAAAAIAkGkcAAAAAAAAAAABoReMIAAAAAAAAAAAAkmgcAQAAAAAAAAAAoBWNIwAAAAAAAAAAAEiicQQAAAAAAAAAAIBWNI4AAAAAAAAAAAAgicYRAAAAAAAAAAAAWtE4AgAAAAAAAAAAgCQaRwAAAAAAAAAAAGhF4wgAAAAAAAAAAACSaBwBAAAAAAAAAACgFY0jAAAAAAAAAAAASKJxBAAAAABuZ8eOHYqIiJCfn59sNpuKi4tvO/6NN97Q8OHD5efnp9GjR+udd95x2m4YhtauXauwsDBZLBbFx8fr9OnTTmOqq6s1Z84cBQQEKCgoSAsWLFB9fb1j+40bN5SamqrRo0erV69eSkxMvGX2ESNGyGKxaNiwYdq3b5/T9hdeeEE//vGP1adPH/Xp00fx8fE3nV9qaqo8PDyclmnTpn3btAEAAABoBxpHAAAAAOBGXnvtNaWnp2vdunX66KOPNHbsWCUkJKiqqqrN8ceOHdMjjzyiBQsW6OOPP1ZiYqISExNVUVHhGLN582Zt375d2dnZKioq0l133aWEhATduHHDMWbOnDk6fvy48vLydPDgQR0+fFiLFi1ybG9paZHFYtFjjz2m+Pj4NrPs3LlTq1at0vr163X8+HE99dRTWrx4sd566y3HmIKCAj3yyCP605/+pMLCQoWHh+uBBx7QX//6V6fXmjZtmr744gvH8pvf/KZT8wkAhWTqFAAAHapJREFUAADAmYdhGIbZIdC16urqFBgYqNraWgUEBJgdBwAAAPjO9aRrYJvNpgkTJigrK0uSZLfbFR4erkcffVQrV668aXxSUpIaGhp08OBBx7qYmBhFRUUpOztbhmHIarVq2bJlWr58uSSptrZWISEh2rt3r5KTk3XixAmNHDlSJSUlio6OliTl5uZqxowZunjxoqxWq9MxU1NTVVNTowMHDjitj4uL06RJk7RlyxbHumXLlqmoqEhHjhxp83xbWlrUp08fZWVlae7cubd9/Y7oSe8ZAAAAoCPXv9xxBAAAAABuoqmpSWVlZU539Hh6eio+Pl6FhYVt7lNYWHjTHUAJCQmO8WfPnlVlZaXTmMDAQNlsNseYwsJCBQUFOZpGkhQfHy9PT08VFRW1O39jY6P8/Pyc1lksFhUXF6u5ubnNfa5fv67m5mYFBwc7rS8oKFD//v01bNgw/cu//Iu+/PLLbz12XV2d0wIAAADgZjSOAAAAAMBNXLlyRS0tLQoJCXFaHxISosrKyjb3qaysvO34b35+25j+/fs7be/Vq5eCg4Nvedy2JCQkaPfu3SorK5NhGCotLdXu3bvV3NysK1eutLnPL37xC1mtVqfG1rRp07Rv3z7l5+fr2Wef1aFDhzR9+nS1tLTc8tgZGRkKDAx0LOHh4e3ODQAAAPQkvcwOAAAAAADoGdasWaPKykrFxMTIMAyFhIQoJSVFmzdvlqfnzZ9r3LRpk3JyclRQUOB0p1JycrLj99GjR2vMmDH64Q9/qIKCAk2dOrXNY69atUrp6emOv+vq6mgeAQAAAG3gjiMAAAAAcBN9+/aVl5eXLl265LT+0qVLCg0NbXOf0NDQ247/5ue3jamqqnLa/tVXX6m6uvqWx22LxWLRnj17dP36dX3++ec6f/68IiIi5O/vr379+jmNfe6557Rp0ya99957GjNmzG1f95577lHfvn115syZW47x9fVVQECA0wIAAADgZjSOAAAAAMBN+Pj4aPz48crPz3ess9vtys/PV2xsbJv7xMbGOo2XpLy8PMf4yMhIhYaGOo2pq6tTUVGRY0xsbKxqampUVlbmGPPBBx/IbrfLZrN1+Dy8vb01cOBAeXl5KScnRw8++KDTHUebN2/Whg0blJub6/S9Srdy8eJFffnllwoLC+twFgAAAADOeFQdAAAAALiR9PR0paSkKDo6WhMnTtS2bdvU0NCgefPmSZLmzp2rAQMGKCMjQ5K0ZMkSTZ48WZmZmZo5c6ZycnJUWlqqXbt2SZI8PDy0dOlSbdy4UUOHDlVkZKTWrFkjq9WqxMRESdKIESM0bdo0LVy4UNnZ2WpublZaWpqSk5NltVod2T799FM1NTWpurpa165dU3l5uSQpKipKknTq1CkVFxfLZrPp6tWr2rp1qyoqKvTyyy87XuPZZ5/V2rVrtX//fkVERDi+Q6l3797q3bu36uvr9dRTT2n27NkKDQ3VZ599phUrVmjIkCFKSEj4LqceAAAA6BFoHAEAAACAG0lKStLly5e1du1aVVZWKioqSrm5uQoJCZEknT9/3ununbi4OO3fv19PPvmkVq9eraFDh+rAgQMaNWqUY8yKFSvU0NCgRYsWqaamRvfff79yc3Odvlfo1VdfVVpamqZOnSpPT0/Nnj1b27dvd8o2Y8YMnTt3zvH3uHHjJEmGYUiSWlpalJmZqZMnT8rb21tTpkzRsWPHFBER4dhn586dampq0j//8z87vfa6deu0fv16eXl56b/+67/08ssvq6amRlarVQ888IA2bNggX19fF2cXAAAAgIfxzRU87hh1dXUKDAxUbW0tz+0GAABAj8A1MDqK9wwAAAB6ko5c//IdRwAAAAAAAAAAAJBE4wgAAAAAAAAAAACtaBwBAAAAAAAAAABAEo0jAAAAAAAAAAAAtKJxBAAAAAAAAAAAAEk0jgAAAAAAAAAAANCKxhEAAAAAAAAAAAAk0TgCAAAAAAAAAABAKxpHAAAAAAAAAAAAkETjCAAAAAAAAAAAAK1oHAEAAAAAAAAAAEASjSMAAAAAAAAAAAC0onEEAAAAAAAAAAAASTSOAAAAAAAAAAAA0IrGEQAAAAAAAAAAACTROAIAAAAAAAAAAEArGkcAAAAAAAAAAACQROMIAAAAAAAAAAAArWgcAQAAAAAAAAAAQBKNIwAAAAAAAAAAALSicQQAAAAAAAAAAABJNI4AAAAAAAAAAADQisYRAAAAAAAAAAAAJNE4AgAAAAAAAAAAQCsaRwAAAAAAAAAAAJBE4wgAAAAAAAAAAACtaBwBAAAAAAAAAABAEo2jbu369esaPHiwli9fbnYUAAAAAAAAAADQA9A46saeeeYZxcTEmB0DAAAAAAAAAAD0EDSOuqnTp0/rz3/+s6ZPn252FAAAAADdzI4dOxQRESE/Pz/ZbDYVFxffdvwbb7yh4cOHy8/PT6NHj9Y777zjtN0wDK1du1ZhYWGyWCyKj4/X6dOnncZUV1drzpw5CggIUFBQkBYsWKD6+nrH9hs3big1NVWjR49Wr169lJiYeMvsI0aMkMVi0bBhw7Rv377vJC8AAACAzqFx1AmHDx/WrFmzZLVa5eHhoQMHDtw0pqOF3P+3fPlyZWRkdFFiAAAAAHeK1157Tenp6Vq3bp0++ugjjR07VgkJCaqqqmpz/LFjx/TII49owYIF+vjjj5WYmKjExERVVFQ4xmzevFnbt29Xdna2ioqKdNdddykhIUE3btxwjJkzZ46OHz+uvLw8HTx4UIcPH9aiRYsc21taWmSxWPTYY48pPj6+zSw7d+7UqlWrtH79eh0/flxPPfWUFi9erLfeeqvL8wIAAADoHA/DMAyzQ7ibd999V0ePHtX48eP1T//0T3rzzTedPk332muvae7cucrOzpbNZtO2bdv0xhtv6OTJk+rfv78kKSoqSl999dVNr/3ee++ppKRER44c0ZYtW7R3715VVFToueeea3e+uro6BQYGqra2VgEBAS6fLwAAANDd9aRrYJvNpgkTJigrK0uSZLfbFR4erkcffVQrV668aXxSUpIaGhp08OBBx7qYmBhFRUUpOztbhmHIarVq2bJlju9Xra2tVUhIiPbu3avk5GSdOHFCI0eOVElJiaKjoyVJubm5mjFjhi5evCir1ep0zNTUVNXU1Nz0Ibu4uDhNmjRJW7ZscaxbtmyZioqKdOTIkS7L2x496T0DAAAAdOT6lzuOOmH69OnauHGj/vEf/7HN7Vu3btXChQs1b948jRw5UtnZ2frBD36gPXv2OMaUl5eroqLipsVqterDDz9UTk6OIiIitHz5cr3wwgt6+umnb5mnsbFRdXV1TgsAAACAO09TU5PKysqc7ujx9PRUfHy8CgsL29ynsLDwpjuAEhISHOPPnj2ryspKpzGBgYGy2WyOMYWFhQoKCnI0jSQpPj5enp6eKioqanf+xsZG+fn5Oa2zWCwqLi5Wc3Nzl+W91bGpmwAAAIBvR+Ooi3WmkPv/MjIydOHCBX3++ed67rnntHDhQq1du/a24wMDAx1LeHi4y+cBAAAAoPu5cuWKWlpaFBIS4rQ+JCRElZWVbe5TWVl52/Hf/Py2Md88PeEbvXr1UnBw8C2P25aEhATt3r1bZWVlMgxDpaWl2r17t5qbm3XlypUuy9sW6iYAAACgfWgcdbHOFHKuWrVqlWprax3LhQsXvpPjAAAAAIAr1qxZo+nTpysmJkbe3t566KGHlJKSIunrD9x9l6ibAAAAgPahcdTNpaamfuv3G/n6+iogIMBpAQAAAHDn6du3r7y8vHTp0iWn9ZcuXVJoaGib+4SGht52/Dc/v21MVVWV0/avvvpK1dXVtzxuWywWi/bs2aPr16/r888/1/nz5xURESF/f3/169evy/K2hboJAAAAaB8aR12sM4UcAAAAALSHj4+Pxo8fr/z8fMc6u92u/Px8xcbGtrlPbGys03hJysvLc4yPjIxUaGio05i6ujoVFRU5xsTGxqqmpkZlZWWOMR988IHsdrtsNluHz8Pb21sDBw6Ul5eXcnJy9OCDDzruOOqKvAAAAAA6r5fZAe40/7eQS0xMlPS/hVxaWpq54QAAAAC4vfT0dKWkpCg6OloTJ07Utm3b1NDQoHnz5kmS5s6dqwEDBigjI0OStGTJEk2ePFmZmZmaOXOmcnJyVFpaql27dkmSPDw8tHTpUm3cuFFDhw5VZGSk1qxZI6vV6qhpRowYoWnTpmnhwoXKzs5Wc3Oz0tLSlJycLKvV6sj26aefqqmpSdXV1bp27ZrKy8slSVFRUZKkU6dOqbi4WDabTVevXtXWrVtVUVGhl19+2fEaXZEXAAAAQOfROOqE+vp6nTlzxvH32bNnVV5eruDgYA0aNOhbCzkAAAAA6KykpCRdvnxZa9euVWVlpaKiopSbm+v4ntXz5887fV9QXFyc9u/fryeffFKrV6/W0KFDdeDAAY0aNcoxZsWKFWpoaNCiRYtUU1Oj+++/X7m5ufLz83OMefXVV5WWlqapU6fK09NTs2fP1vbt252yzZgxQ+fOnXP8PW7cOEmSYRiSpJaWFmVmZurkyZPy9vbWlClTdOzYMUVERHR5XgAAAACd42F8cwWPdisoKNCUKVNuWp+SkqK9e/dKkrKysrRlyxZHIbd9+/ZOPcKhM+rq6hQYGKja2lqe2w0AAIAegWtgdBTvGQAAAPQkHbn+pXF0B6IAAgAAQE/DNTA6ivcMAAAAepKOXP963nYrAAAAAAAAAAAAegwaRwAAAAAAAAAAAJBE4wgAAAAAAAAAAACtaBwBAAAAAAAAAABAEo0jAAAAAAAAAAAAtKJxBAAAAAAAAAAAAEk0ju4oO3bs0MiRIzVhwgSzowAAAAAAAAAAADfkYRiGYXYIdK3a2loFBQXpwoULCggIMDsOAAAA8J2rq6tTeHi4ampqFBgYaHYcuAHqJgAAAPQkHamZen1PmfA9unbtmiQpPDzc5CQAAADA9+vatWs0jtAu1E0AAADoidpTM3HH0R3Ibrfrb3/7m/z9/eXh4fG9H/+bziWf3Osc5s81zJ/rmEPXMH+uYf5cw/y5hvlzjdnzZxiGrl27JqvVKk9PnsiNb0fd5N6YP9cwf65h/lzD/LmG+XMN8+ca5s81Zs9fR2om7ji6A3l6emrgwIFmx1BAQAD/gLiA+XMN8+c65tA1zJ9rmD/XMH+uYf5cY+b8cacROoK66c7A/LmG+XMN8+ca5s81zJ9rmD/XMH+ucYeaiY/iAQAAAAAAAAAAQBKNIwAAAAAAAAAAALSicYQu5+vrq3Xr1snX19fsKG6J+XMN8+c65tA1zJ9rmD/XMH+uYf5cw/wBHcN/M65h/lzD/LmG+XMN8+ca5s81zJ9rmD/XuNP8eRiGYZgdAgAAAAAAAAAAAObjjiMAAAAAAAAAAABIonEEAAAAAAAAAACAVjSOAAAAAAAAAAAAIInGEQAAAAAAAAAAAFrROEKX27FjhyIiIuTn5yebzabi4mKzI7mNw4cPa9asWbJarfLw8NCBAwfMjuQ2MjIyNGHCBPn7+6t///5KTEzUyZMnzY7lNnbu3KkxY8YoICBAAQEBio2N1bvvvmt2LLe1adMmeXh4aOnSpWZHcQvr16+Xh4eH0zJ8+HCzY7mVv/71r/rpT3+qu+++WxaLRaNHj1ZpaanZsdxGRETETe9BDw8PLV682Oxo3V5LS4vWrFmjyMhIWSwW/fCHP9SGDRtkGIbZ0YBujZqp86iZXEPd5Brqpq5DzdRx1E2uo27qPGom17hj3UTjCF3qtddeU3p6utatW6ePPvpIY8eOVUJCgqqqqsyO5hYaGho0duxY7dixw+wobufQoUNavHixPvzwQ+Xl5am5uVkPPPCAGhoazI7mFgYOHKhNmzaprKxMpaWl+vu//3s99NBDOn78uNnR3E5JSYmef/55jRkzxuwobuXee+/VF1984ViOHDlidiS3cfXqVU2aNEne3t5699139emnnyozM1N9+vQxO5rbKCkpcXr/5eXlSZJ+8pOfmJys+3v22We1c+dOZWVl6cSJE3r22We1efNm/epXvzI7GtBtUTO5hprJNdRNrqFu6hrUTJ1H3dR51E2uoWZyjTvWTR5Gd25rwe3YbDZNmDBBWVlZkiS73a7w8HA9+uijWrlypcnp3IuHh4fefPNNJSYmmh3FLV2+fFn9+/fXoUOH9Hd/93dmx3FLwcHB2rJlixYsWGB2FLdRX1+v++67T7/+9a+1ceNGRUVFadu2bWbH6vbWr1+vAwcOqLy83OwobmnlypU6evSo/uM//sPsKHeMpUuX6uDBgzp9+rQ8PDzMjtOtPfjggwoJCdGLL77oWDd79mxZLBa98sorJiYDui9qpq5DzeQ66ibXUTd1DDVT51E3uYa6qWtRM3WMO9ZN3HGELtPU1KSysjLFx8c71nl6eio+Pl6FhYUmJkNPVFtbK+nri3h0TEtLi3JyctTQ0KDY2Fiz47iVxYsXa+bMmU7/DqJ9Tp8+LavVqnvuuUdz5szR+fPnzY7kNv793/9d0dHR+slPfqL+/ftr3LhxeuGFF8yO5baampr0yiuvaP78+RRA7RAXF6f8/HydOnVKkvSf//mfOnLkiKZPn25yMqB7omZCd0Pd1HnUTZ1DzeQa6qbOo27qOtRMHeeOdVMvswPgznHlyhW1tLQoJCTEaX1ISIj+/Oc/m5QKPZHdbtfSpUs1adIkjRo1yuw4buOTTz5RbGysbty4od69e+vNN9/UyJEjzY7lNnJycvTRRx+ppKTE7Chux2azae/evRo2bJi++OILPfXUU/rxj3+siooK+fv7mx2v2/vLX/6inTt3Kj09XatXr1ZJSYkee+wx+fj4KCUlxex4bufAgQOqqalRamqq2VHcwsqVK1VXV6fhw4fLy8tLLS0teuaZZzRnzhyzowHdEjUTuhPqps6hbuo8aibXUDe5hrqp61AzdZw71k00jgDccRYvXqyKigqe9dtBw4YNU3l5uWpra/Xb3/5WKSkpOnToEEVQO1y4cEFLlixRXl6e/Pz8zI7jdv7vJ2zGjBkjm82mwYMH6/XXX+eRH+1gt9sVHR2tX/7yl5KkcePGqaKiQtnZ2RRAnfDiiy9q+vTpslqtZkdxC6+//rpeffVV7d+/X/fee6/Ky8u1dOlSWa1W3n8A0M1RN3UOdVPnUDO5jrrJNdRNXYeaqePcsW6icYQu07dvX3l5eenSpUtO6y9duqTQ0FCTUqGnSUtL08GDB3X48GENHDjQ7DhuxcfHR0OGDJEkjR8/XiUlJfq3f/s3Pf/88yYn6/7KyspUVVWl++67z7GupaVFhw8fVlZWlhobG+Xl5WViQvcSFBSkH/3oRzpz5ozZUdxCWFjYTf+jYsSIEfrd735nUiL3de7cOb3//vv6/e9/b3YUt/Hzn/9cK1euVHJysiRp9OjROnfunDIyMrptAQSYiZoJ3QV1U+dRN3UONVPXo27qGOqmrkHN1DnuWDfxHUfoMj4+Pho/frzy8/Md6+x2u/Lz83neL75zhmEoLS1Nb775pj744ANFRkaaHcnt2e12NTY2mh3DLUydOlWffPKJysvLHUt0dLTmzJmj8vJyCqAOqq+v12effaawsDCzo7iFSZMm6eTJk07rTp06pcGDB5uUyH299NJL6t+/v2bOnGl2FLdx/fp1eXo6lxReXl6y2+0mJQK6N2ommI26qetRN7UPNVPXo27qGOqmrkHN1DnuWDdxxxG6VHp6ulJSUhQdHa2JEydq27Ztamho0Lx588yO5hbq6+udPily9uxZlZeXKzg4WIMGDTIxWfe3ePFi7d+/X3/4wx/k7++vyspKSVJgYKAsFovJ6bq/VatWafr06Ro0aJCuXbum/fv3q6CgQH/84x/NjuYW/P39b3ou/F133aW7776b58W3w/LlyzVr1iwNHjxYf/vb37Ru3Tp5eXnpkUceMTuaW3j88ccVFxenX/7yl3r44YdVXFysXbt2adeuXWZHcyt2u10vvfSSUlJS1KsXl8jtNWvWLD3zzDMaNGiQ7r33Xn388cfaunWr5s+fb3Y0oNuiZnINNZNrqJtcQ93UedRMrqNucg11k+uomTrPLesmA+hiv/rVr4xBgwYZPj4+xsSJE40PP/zQ7Ehu409/+pMh6aYlJSXF7GjdXlvzJsl46aWXzI7mFubPn28MHjzY8PHxMfr162dMnTrVeO+998yO5dYmT55sLFmyxOwYbiEpKckICwszfHx8jAEDBhhJSUnGmTNnzI7lVt566y1j1KhRhq+vrzF8+HBj165dZkdyO3/84x8NScbJkyfNjuJW6urqjCVLlhiDBg0y/Pz8jHvuucd44oknjMbGRrOjAd0aNVPnUTO5hrrJNdRNXYuaqWOom1xH3eQaaqbOc8e6ycMwDOP7a1MBAAAAAAAAAACgu+I7jgAAAAAAAAAAACCJxhEAAAAAAAAAAABa0TgCAAAAAAAAAACAJBpHAAAAAAAAAAAAaEXjCAAAAAAAAAAAAJJoHAEAAAAAAAAAAKAVjSMAAAAAAAAAAABIonEEAIDpCgoK5OHhoZqaGrOjAAAAAEC3RN0EAN8fGkcAAAAAAAAAAACQROMIAAAAAAAAAAAArWgcAQB6PLvdroyMDEVGRspisWjs2LH67W9/K+l/H4fw9ttva8yYMfLz81NMTIwqKiqcXuN3v/ud7r33Xvn6+ioiIkKZmZlO2xsbG/WLX/xC4eHh8vX11ZAhQ/Tiiy86jSkrK1N0dLR+8IMfKC4uTidPnvxuTxwAAAAA2om6CQB6DhpHAIAeLyMjQ/v27VN2draOHz+uxx9/XD/96U916NAhx5if//znyszMVElJifr166dZs2apublZ0teFy8MPP6zk5GR98sknWr9+vdasWaO9e/c69p87d65+85vfaPv27Tpx4oSef/559e7d2ynHE088oczMTJWWlqpXr16aP3/+93L+AAAAAPBtqJsAoOfwMAzDMDsEAABmaWxsVHBwsN5//33FxsY61v/sZz/T9evXtWjRIk2ZMkU5OTlKSkqSJFVXV2vgwIHau3evHn74Yc2ZM0eXL1/We++959h/xYoVevvtt3X8+HGdOnVKw4YNU15enuLj42/KUFBQoClTpuj999/X1KlTJUnvvPOOZs6cqf/+7/+Wn5/fdzwLAAAAAHBr1E0A0LNwxxEAoEc7c+aMrl+/rn/4h39Q7969Hcu+ffv02WefOcb93+IoODhYw4YN04kTJyRJJ06c0KRJk5xed9KkSTp9+rRaWlpUXl4uLy8vTZ48+bZZxowZ4/g9LCxMklRVVeXyOQIAAACAK6ibAKBn6WV2AAAAzFRfXy9JevvttzVgwACnbb6+vk5FUGdZLJZ2jfP29nb87uHhIenr54gDAAAAgJmomwCgZ+GOIwBAjzZy5Ej5+vrq/PnzGjJkiNMSHh7uGPfhhx86fr969apOnTqlESNGSJJGjBiho0ePOr3u0aNH9aMf/UheXl4aPXq07Ha707O/AQAAAMBdUDcBQM/CHUcAgB7N399fy5cv1+OPPy673a77779ftbW1Onr0qAICAjR48GBJ0tNPP627775bISEheuKJJ9S3b18lJiZKkpYtW6YJEyZow4YNSkpKUmFhobKysvTrX/9akhQREaGUlBTNnz9f27dv19ixY3Xu3DlVVVXp4YcfNuvUAQAAAKBdqJsAoGehcQQA6PE2bNigfv36KSMjQ3/5y18UFBSk++67T6tXr3Y88mDTpk1asmSJTp8+raioKL311lvy8fGRJN133316/fXXtXbtWm3YsEFhYWF6+umnlZqa6jjGzp07tXr1av3rv/6rvvzySw0aNEirV68243QBAAAAoMOomwCg5/AwDMMwOwQAAN1VQUGBpkyZoqtXryooKMjsOAAAAADQ7VA3AcCdhe84AgAAAAAAAAAAgCQaRwAAAAAAAAAAAGjFo+oAAAAAAAAAAAAgiTuOAAAAAAAAAAAA0IrGEQAAAAAAAAAAACTROAIAAAAAAAAAAEArGkcAAAAAAAAAAACQROMIAAAAAAAAAAAArWgcAQAAAAAAAAAAQBKNIwAAAAAAAAAAALSicQQAAAAAAAAAAABJNI4AAAAAAAAAAADQ6n8Aw3YADsAagq8AAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -51,25 +51,108 @@ "\n", "from matplotlib import pyplot as plt\n", "\n", - "metrics = [\"loss\", \"accuracy_on_block_map\", \"accuracy_on_loss_map\"]\n", + "metrics = [\"loss\", \"lr\"]\n", "fig, ax = plt.subplots(2, len(metrics), figsize=(20, 10))\n", "\n", "if os.path.exists(PATH_TO_CSV):\n", " df = pd.read_csv(PATH_TO_CSV)\n", " for i, metric in enumerate(metrics):\n", - " lineplot(data=df, x=\"epoch\", y=f\"train_{metric}_epoch\", ax=ax[0, i], label=f\"train_{metric}_epoch\")\n", - " lineplot(data=df, x=\"epoch\", y=f\"val_{metric}_epoch\", ax=ax[0, i], label=f\"val_{metric}_epoch\")\n", - " lineplot(data=df, x=\"epoch\", y=f\"train_{metric}_epoch\", ax=ax[1, i], label=f\"train_{metric}_epoch\")\n", - " lineplot(data=df, x=\"epoch\", y=f\"val_{metric}_epoch\", ax=ax[1, i], label=f\"val_{metric}_epoch\")\n", - " ax[0, i].set(yscale=\"log\")\n", - " ax[1, i].set(yscale=\"linear\")\n", + " lineplot(data=df, x=\"epoch\", y=f\"train_{metric}_epoch\", ax=ax[i, 0], label=f\"train_{metric}_epoch\")\n", + " # lineplot(data=df, x=\"epoch\", y=f\"val_{metric}_epoch\", ax=ax[i, 0], label=f\"val_{metric}_epoch\")\n", + " lineplot(data=df, x=\"epoch\", y=f\"train_{metric}_epoch\", ax=ax[i, 1], label=f\"train_{metric}_epoch\")\n", + " # lineplot(data=df, x=\"epoch\", y=f\"val_{metric}_epoch\", ax=ax[i, 1], label=f\"val_{metric}_epoch\")\n", + " ax[i, 0].set(yscale=\"log\")\n", + " ax[i, 1].set(yscale=\"linear\")\n", "else:\n", " print(f\"File {PATH_TO_CSV} not found\")" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABmAAAANBCAYAAAD3NXF1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wT9f8H8NclaZvuvSmUUlpWocwypUClDNkICspSEISvo+JA2aCo3y+Io19wIeLEnyBfBUEUQaZMQZEls+yWUbpXkt8fhdDQlXHJXZLX8/HoA3K5+9w7l7tL8nl/hqDT6XQgIiIiIiIiIiIiIiIi0SikDoCIiIiIiIiIiIiIiMjRMAFDREREREREREREREQkMiZgiIiIiIiIiIiIiIiIRMYEDBERERERERERERERkciYgCEiIiIiIiIiIiIiIhIZEzBEREREREREREREREQiYwKGiIiIiIiIiIiIiIhIZEzAEBERERERERERERERiUwldQByp9VqcenSJXh7e0MQBKnDISIiIiKyKp1Oh9zcXEREREChYHstqh1/MxERERGRszH2dxMTMLW4dOkSoqKipA6DiIiIiMimzp8/jzp16kgdBtkB/mYiIiIiImdV2+8mJmBq4e3tDaD8QPr4+EgcDRERERGRdeXk5CAqKkr/PZioNvzNRERERETOxtjfTUzA1OJOF3ofHx/+mCAiIiIip8GhpMhY/M1ERERERM6qtt9NHNSZiIiIiIiIiIiIiIhIZEzAEBERERERERERERERiYwJGCIiIiIiIiIiIiIiIpFxDhgiIiIiIiIiIiIisks6nQ5lZWXQaDRSh0IORKlUQqVSWTw3JhMwRERERERERERERGR3SkpKcPnyZRQUFEgdCjkgDw8PhIeHw9XV1ewymIAhIiIiIiIiIiIiIrui1Wpx5swZKJVKREREwNXV1eLeCkRAea+qkpISZGVl4cyZM2jYsCEUCvNmc2EChoiIiIiIiIiIiIjsSklJCbRaLaKiouDh4SF1OORg3N3d4eLignPnzqGkpARqtdqscsxL29iZtWvXIj4+Hg0bNsRHH30kdThEREREREREREREJAJzeyYQ1UaMc8vhe8CUlZUhLS0Nmzdvhq+vL1q3bo1BgwYhMDBQ6tCIiIiIiIiIiIiIiMhBOXx6cM+ePWjatCkiIyPh5eWF3r17Y+PGjVKHRUREREREREREREREDkz2CZitW7eiX79+iIiIgCAIWLNmTaV10tPTER0dDbVajaSkJOzZs0f/3KVLlxAZGal/HBkZiYsXL9oidCIiIiIiIiIiIiIiq4mOjsbixYtFKWvLli0QBAHZ2dmilEd2kIDJz89HixYtkJ6eXuXzK1euRFpaGmbNmoUDBw6gRYsWSE1NRWZmpo0jtY7dp6/jo22npQ6DiIiIiIhkoqYGaPcqLS3F3Llz0aBBA6jVarRo0QIbNmywqEy5KSrVYOPfV5BXXCZ1KERERERGSU5OxjPPPCNKWXv37sWECRNEKcsezJ49G4mJiVKHYTTZJ2B69+6N+fPnY9CgQVU+v2jRIowfPx5jx45FkyZNsHTpUnh4eGDZsmUAgIiICIMeLxcvXkRERES1+ysuLkZOTo7Bn5SGf/A75q87iuiX1uHhD37Haz8eRa/FW/HB1lMG6x27koP0zSdx4WZBpTI0Wp1J+ywq1VRZjiV0OtNisGWZWq0OWhOPkRx8tScDm49Xn2gs1WhtGA0RORN7vGcS3XH0cg6u5hRJHQaR2UxtgDZ9+nS8//77ePfdd3HkyBFMnDgRgwYNwh9//GF2mXIz639/Y8Jn+/GvLw9IHQoRERGRKHQ6HcrKjGtcEhwcDA8PDytHROaSfQKmJiUlJdi/fz9SUlL0yxQKBVJSUrBr1y4AQLt27XD48GFcvHgReXl5WL9+PVJTU6stc8GCBfD19dX/RUVFWf11GGvX6ev4YOtpHLuSi9d+PIbol9bp/3ot3oZ//3Qcnd/YrF//4PlsHMi4icQ5GxH90jq0nLsRX+3JqLZiXqPVobhMgz5vb0PnNzZjzg9/IzOnCE9+sR+PLd+L3KJS/HLkKi5mFyL1ra2Y/f3f0Gh1+Pz3c3hjwzHodDqUlGlx+OItg+TIS6v+RPeFv6GgpAw6nQ57z97Atbxis47BpexCfLH7HJ7++g/c/9ZW3MgvMboisKyK1/2/gxcR8/KPiHn5Ryz+5US12xaVanD8Si5+PXYVE1bsw9u//IM3NxyrtN7s7/9G+uaTAICz1/KRXVACQPxkyImruZi2+i+M/WSvwfItxzPx9Nd/4N8/HUPDV9Zj87FMvP/bKTz+6T7sOnUdl7IL8X/7zuP7Q5dwM7+kUrnFZRqcu55vdBx3kns38ktwMbuw2vWKyzRI++Ygfjh0qdp1dDodPt15FgfPZ+NSdiEe/3Qvdp68Vmk9S47lgYybGPnR7zh6OQeHL97Ctn+yql334PlsrP2z+nirotPpcPlW9cdBLDqdDmkrD+KhD3Zh09GrRm/396Vb6P6fLVj/12X9sjc2HMPjn+4zuI5KNVrcKigVLV6tVofHlu9FxwWbkJVb+dp/d9M/6LV4K24VirdPc5iT1D16OUe0uLNyi/HrsauiJzfyi8vQY+EWjFq2B9fNvPdWdCDjJlrM2Ygvd2eIEF1lWq0OuUXSngum0OksT+LvOHkNp7LyRIqoZtkFJWj76i/osXALiko1Vt/frcJSUc47sZy/UYDeb29D0mubcCorr9r3bv1fl/HM13+gsMT0Y6TV6pB5O8HDZCVZQ20N0O712Wef4eWXX0afPn0QExODSZMmoU+fPli4cKHZZcrNyn3nAQCbj1f/3Y6IiIgcn06nQ0FJmSR/ptQpjBkzBr/99hvefvttCIIAQRCwfPlyCIKA9evXo3Xr1nBzc8P27dtx6tQpDBgwAKGhofDy8kLbtm3xyy+/GJR37xBkgiDgo48+wqBBg+Dh4YGGDRvi+++/N/u4rlq1Ck2bNoWbmxuio6MNvkcCwH//+180bNgQarUaoaGhGDp0qP65b7/9FgkJCXB3d0dgYCBSUlKQn1973eOWLVvQrl07eHp6ws/PD506dcK5c+ewfPlyzJkzB4cOHTI4dgCQnZ2Nxx9/HMHBwfDx8UH37t1x6NAhfZl3es68//77iIqKgoeHB4YNG4Zbt26ZfWyMobJq6VZ27do1aDQahIaGGiwPDQ3FsWPlleMqlQoLFy5Et27doNVq8cILLyAwMLDaMqdNm4a0tDT945ycHFklYYwR/dK6KpffLCjFtNV/Ydrqv4wq55MdZ/HJjrP6xwmzNxo8f/xqLpbvvPv8ki2GvXLu1WTmT0bt1xSt5v1c4/N9E8KRcaMAf128eyG1jwnA7jM3sGhYCzy78u5FuPiXf/DZrnMAgPgw7/Lkjk6HSckNDNYDgI1Hyiu9r9wqwu4zN3AxuxD+Hi64ebvSult8CPq8sw0AMCAxAv87eAnxod44kZmLtJQ4DGoViZv5pRAEQBCAmCAvLP3tFN7e9A+eT43H8LZRCPR0RWGpBiVlWpSUaeGlVqG0TAdXlcIgkfHit39iRr8m0Op0GHNPQmbs8ruPf7mnot7PwwX/HdkK0YGeKNVoEeXvgV6Lt+HMtXz0SQjDgsHNAQDf7D0PlVJAhwaBCPdxR2GpBr3e3ors26/1lT6N8eqPRwEA7z7cEn0TwvFPZh681SqE+6pxs6AUy3ecweoDF7H6wEUEebmhbbQ/BEFAmVYLpSAAANb9dRmzvv8bAODlpkJecRl+OZqJMwv6AAC+P3QJRy7l4P2tp/Fir0bo1igY4T7uKNFo4efhgrPX8jHyo93IzC3G/ukpCPRyw438EqzafwE7T13DwmGJGPzfnQCA3m9v0x+HzVOTsfv0daw6cAEfPNoGfh4uEAQBA9N3AACCvdyQUMcXKoUCX+4+h3b1AxEX6oWjl3MRH+YNF6WgL+vVdUfx0fYzmDewGR5sXQdKhYAlW05h0c8nsO6pzogN8YJCEKDR6qBSCMjKK8b6v65g7tojeGNIAoa1iULZ7eeE28flTgVpQYkGhaUaRPiqkXGjAKv/KO/Z9/vpGwCASckN8EJqPARBQHGZBm4qJQDDpMJDH/yO3KIyTPriAL55ogOe/voPXL5VXkm46/R1dGxQfm/svnALzt8oxIEZ9yPA0xVarQ4KhYCM6wW4klOEttH++GjbGew6fR1LHmkFN5USOp0ORy/nYtmOM3ghNR5BXm63z28Bvxy9ik3HylvQDkzfgaYRPhiRVBdd44Jx+VYRFv5cnvxctv0MJneLxYGMm2hV1x9KhQABQEGpBq5KBZQKAd/uP4//HbyEKzlF+PLx9jiVlYfmdXzh5abSHzOtVodSrRZuKiXKNFooFeXHfMPfV5BfXIbhbetCq9XhWn4xfNQuyC0qw8D0HXB3VeKHKZ3hohTK9y0I+td+p9wVu86iTKvD2E718UfGTQxdugu+7i44MON+KBV3z4ULNwugVAg4lZmPNtH+ULuUvx+lGi1UCgGlmvJrWafT6eNuv2CTPqn595xUuLsoUVymRUFJGQI8XW+/n+X3jDu0uvIK5eggT4OydDodrueXINDTFasPXMCprHycyspH6/m/4NRrfbD6wAU8/+2fWDWpA1rXC0BJmVYfDwB9OWUaLW4WlMLfwwUqpQJFpRr9dfTyd39hRFJd7Dh5DRF+7gj3Vetfp1argyCUx/vL0av46e+rmDewKdxvPy9UfBG3471z7se8/CMA4LfnkxHp5w5BEKAQyhO+Zbffg+T4EMSFeqNMo4VKWR53xWNzp/xSjRY6HXA9vxhhPmqDcwSA/r2993Xf686x1el02HPmBppE+MBNpYSrSoEpX/6BdX9dxtp/dUbTCB+DMjRancF5UVSqgSAArkoFisvKz81TWXkY+dFuAMCZBX2w/9xNfLTtDGb0a4IIX7VBeW9uOIYIP3d4uamw/9xNzO7fFEqFYPB6yjRalGi0UN++BygU5feEn/6+ik4NAjHlyz+QlVuMrNxiLN95Fl0aBqFRmA+KSjXwdFMhp6gUN/JKEB3kWek4/H76OkJ91Khf4TmdTgetrvxY33n/Kz7XYk75d4e/56TCw7Xq9//OdVbxHAagPy8B6N/rO8fRTWXYhqjidvdeCxWfO1zh+0CPhb9hbKdozOrX1KCsnKJSTPqivBV9g2Av/KtHQ4PXqrx9nAWh/F5R8fwAgImf78fGI1fx2qAE/PunY3i8SwzGd4kxuOZvFZbC190Fv5++jgBPV4T6qOHr7qKP4d5zh+iOOw3Qpk2bpl92bwO0exUXF0OtVhssc3d3x/bt280uk4iIiEiOCks1Vql/NMaRuanwcDWuqv3tt9/GiRMn0KxZM8ydOxcA8Pff5XViL730Ev7zn/8gJiYG/v7+OH/+PPr06YNXX30Vbm5uWLFiBfr164fjx4+jbt261e5jzpw5ePPNN/Hvf/8b7777LkaOHIlz584hICDApNe1f/9+DBs2DLNnz8bw4cOxc+dOPPnkkwgMDMSYMWOwb98+PPXUU/jss8/QsWNH3LhxA9u2lde7Xb58GQ8//DDefPNNDBo0CLm5udi2bVutyaqysjIMHDgQ48ePx1dffYWSkhLs2bMHgiBg+PDhOHz4MDZs2KBPRPn6+gIAHnzwQbi7u2P9+vXw9fXF+++/jx49euDEiRP6133y5El88803+OGHH5CTk4PHHnsMTz75JL744guTjospBJ01xoayEkEQ8N1332HgwIEAgEuXLiEyMhI7d+5Ehw4d9Ou98MIL+O2337B7926L95mTkwNfX1/cunULPj4+FpdnquqSKURERETk2Nb+qzOaRfrafL9Sf/+l6pnz+2fEiBE4dOgQ1qxZgwYNGmDTpk0YMGAANBoNiouLzSqzuLgYxcV3e7fdabQmh99MZ1/va/P9ExERkTSKiopw5swZ1K9fH2q1GgUlZXaRgAHK54BJTEzU91zZsmULunXrhjVr1mDAgAE1btusWTNMnDgRU6ZMAVDeA+aZZ57RzykjCAKmT5+OefPmASifY93Lywvr169Hr169aiz7Thw3b96En58fRo4ciaysLGzceLdh/gsvvIB169bh77//xurVqzF27FhcuHAB3t7eBmUdOHAArVu3xtmzZ1GvXj2jj82NGzcQGBiILVu2oGvXrpWenz17NtasWYODBw/ql23fvh19+/ZFZmYm3Nzc9MtjY2PxwgsvYMKECZg9ezbmz5+Pc+fOITIyEgCwYcMG9O3bFxcvXkRYWFilfd17jlVk7O8mu+4BExQUBKVSiatXDVv2X716tcoDRkRERERkLx54dzsrk8lib7/9NsaPH49GjRpBEAQ0aNAAY8eOtWh4sQULFmDOnDkiRmmZO70uiYiIyLm5uyhxZG71U09Ye99iaNOmjcHjvLw8zJ49G+vWrcPly5dRVlaGwsJCZGTUPCx48+bN9f/39PSEj4+PWfP7HT16tFJCqFOnTli8eDE0Gg3uv/9+1KtXDzExMejVqxd69eqlH/qsRYsW6NGjBxISEpCamoqePXti6NCh8Pf3r3GfAQEBGDNmDFJTU3H//fcjJSUFw4YNQ3h4eLXbHDp0CHl5eZVGviosLMSpU3dHbapbt64++QIAHTp0gFarxfHjx62WT7DrOWBcXV3RunVrbNq0Sb9Mq9Vi06ZNBq23iIiIiIjszcik6ocUIOdkTgO04OBgrFmzBvn5+Th37hyOHTsGLy8vxMTEmF3mtGnTcOvWLf3f+fPnRXh15uOAfURERASU9/zwcFVJ8lfdkNam8vQ0HA566tSp+O677/Daa69h27ZtOHjwIBISElBSUnlu54pcXFwMHpcPsy7uHNUA4O3tjQMHDuCrr75CeHg4Zs6ciRYtWiA7OxtKpRI///wz1q9fjyZNmuDdd99FfHw8zpw5U2u5n3zyCXbt2oWOHTti5cqViIuLw++//17t+nl5eQgPD8fBgwcN/o4fP47nn39ezJdsMtknYPLy8vQHDADOnDmDgwcP6rN8aWlp+PDDD/Hpp5/i6NGjmDRpEvLz8zF27FgJoyYiIiIisoyLUvZf1cnGLGmAplarERkZibKyMqxatUrfktGcMt3c3ODj42PwJyWFSBUeRERERLbi6uoKjUZT63o7duzAmDFjMGjQICQkJCAsLAxnz561foC3NW7cGDt27KgUU1xcHJTK8l4/KpUKKSkpePPNN/Hnn3/i7Nmz+PXXXwGUJ346deqEOXPm4I8//oCrqyu+++47o/bdsmVLTJs2DTt37kSzZs3w5ZdfAqj62LVq1QpXrlyBSqVCbGyswV9QUJB+vYyMDFy6dHdu7d9//x0KhQLx8fGmHxwjyX4Isn379qFbt276x2lpaQCA0aNHY/ny5Rg+fDiysrIwc+ZMXLlyBYmJidiwYQNCQ0OlCpmIiIiIyGIqBSuVqbK0tDSMHj0abdq0Qbt27bB48WKDBmijRo1CZGQkFixYAADYvXs3Ll68iMTERFy8eBGzZ8+GVqvFCy+8YHSZcsf8CxEREdmb6Oho7N69G2fPnoWXl1e1vVMaNmyI1atXo1+/fhAEATNmzLBKT5bqPPfcc2jbti3mzZuH4cOHY9euXXjvvffw3//+FwCwdu1anD59Gvfddx/8/f3x448/QqvVIj4+Hrt378amTZvQs2dPhISEYPfu3cjKykLjxo1r3OeZM2fwwQcfoH///oiIiMDx48fxzz//YNSoUQDKj92dThp16tSBt7c3UlJS0KFDBwwcOBBvvvkm4uLicOnSJaxbtw6DBg3SD+2mVqsxevRo/Oc//0FOTg6eeuopDBs2zKrTmcg+AZOcnAxdLQP6TpkyRT/pEBERERGRI2ClMlWltgZoGRkZUCju9p4qKirC9OnTcfr0aXh5eaFPnz747LPP4OfnZ3SZRERERCSuqVOnYvTo0WjSpAkKCwvxySefVLneokWLMG7cOHTs2BFBQUF48cUXkZOTY7M4W7VqhW+++QYzZ87EvHnzEB4ejrlz52LMmDEAAD8/P6xevRqzZ89GUVERGjZsiK+++gpNmzbF0aNHsXXrVixevBg5OTmoV68eFi5ciN69e9e4Tw8PDxw7dgyffvoprl+/jvDwcEyePBlPPPEEAGDIkCFYvXo1unXrhuzsbHzyyScYM2YMfvzxR7zyyisYO3YssrKyEBYWhvvuu8/gO21sbCwGDx6MPn364MaNG3jggQf0ySRrEXS1ZTecVHp6OtLT06HRaHDixAncunXL5l3rdTod6k/70ab7JCIiIiJ5GN+lPl7p28Tm+83JyYGvr68k33/JPkl9zsS+/CPKtOU/a8++3tfm+yciIiJpFBUV4cyZM6hfvz7UarXU4ZDMzZ49G2vWrNFPdWKMms4xY78Dc2DpakyePBlHjhzB3r17JYuBqTEiIiIi5yXWRJ5EREREREQkDSZgZEzLDAwRERGR02L6hYiIiIiIxDRx4kR4eXlV+Tdx4kSbxVFdDF5eXti2bZvN4rAF2c8B48yYfiEiIiIiIiIiIiIiMcydOxdTp06t8jlbDiVb0zBgkZGRVtnn7NmzMXv2bKuUXRMmYGSMHWCIiIiInFdxmVbqEIiIiIiIyIGEhIQgJCRE6jAQGxsrdQg2wyHIZEzHPjBERERETmvFrrNSh0BkFzhdEhERkXPTsRU7WYkY5xYTMDLGewcRERGR89LyuyARERERUbVcXFwAAAUFBRJHQo7qzrl151wzB4cgIyIiIiIiIiIiIiK7olQq4efnh8zMTACAh4cHBHaNJRHodDoUFBQgMzMTfn5+UCqVZpfFBIyMsQcMERERERFRzfi7iYiIyHmFhYUBgD4JQyQmPz8//TlmLiZgqpGeno709HRoNBrJYtDylwQRERERERERERFRlQRBQHh4OEJCQlBaWip1OORAXFxcLOr5cgcTMNWYPHkyJk+ejJycHPj6+koSA9MvRERERERERERERDVTKpWiVJYTiU0hdQBUPR17wBARERERERERERER2SUmYGSM6RciIiIiIqKaca5dIiIiIpIrJmBkjB1giIiIiIiIiIiIiIjsExMwcsYEDBERERERERERERGRXWICRsa07AJDRERERERERERERGSXmICRMaZfiIiIiIiIiIiIiIjsExMwMqZjDxgiIiIiIqIa8WcTEREREckVEzAyxt8RRERERERERERERET2iQmYaqSnp6NJkyZo27atZDGwJRcREREREVHNBEHqCIiIiIiIqsYETDUmT56MI0eOYO/evZLFoGMfGCIiIiIiIiIiIiIiu8QEjIyxBwwRERERERERERERkX1iAkbGmIAhIiIiIiIiIiIiIrJPTMDImIebUuoQiIiIiIiIiIiIiIjIDEzAyJiP2kXqEIiIiIiIiIiIiIiIyAxMwBAREREREREREREREYmMCRgiIiIiIiIiIiIiIiKRMQFDREREREREREREREQkMiZgiIiIiIiIiIiIiIiIRMYEDBERERERERERERERkciYgKlGeno6mjRpgrZt20odChERERERERERERER2RkmYKoxefJkHDlyBHv37pU6FCIiIiIiIiIiIiIisjNMwBAREREREZHdEiBIHQIRERERUZWYgCEiIiIiIiIiIiIiIhIZEzBERERERERkt3TQSR0CEREREVGVmIAhIiIiIiIiIiIiIiISGRMwREREREREREREREREImMChoiIiIiIiIiIiIiISGRMwBAREREREREREREREYmMCRgiIiIiIiKyWwIEqUMgIiIiIqoSEzBEREREREREREREREQiYwKGiIiIiEiGXJX8qk5ERERERGTP+KuOiIiIiEiGnusZJ3UIREREREREZAEmYGQuzEctdQhEREREJIFALzepQyCyCzropA6BiIiIiKhKTMBUIz09HU2aNEHbtm0ljSPYmz+8iYiIiIiIiIiIiIjsDRMw1Zg8eTKOHDmCvXv3ShoHW3MREREREREREREREdkfJmCIiIiIiGRIkDoAIjsh8GohIiIiIpliAkbmdOwAQ0REROSU+DWQiIiIiIjIvjEBI3NMwBARERERERERERER2R8mYIiIiIiIiIiIiIiIiETGBIzMCRzOmIiIiIiIiIiIiIjI7jABI3McgoyIiIiIiIiIiIiIyP4wAUNERERERERERERERCQyJmCIiIiIiGSII9ESERERERHZNyZgZI4jkBERERERERERERER2R8mYGROx0lgiIiIiIiIiIiIiIjsDhMwREREREREREREREREImMChoiIiIiIyI6kp6cjOjoaarUaSUlJ2LNnT43rL168GPHx8XB3d0dUVBSeffZZFBUV6Z+fPXs2BEEw+GvUqJG1XwYRERERkcNTSR0A1axBiBeOXcmVOgwiIiIisjEOREtVWblyJdLS0rB06VIkJSVh8eLFSE1NxfHjxxESElJp/S+//BIvvfQSli1bho4dO+LEiRMYM2YMBEHAokWL9Os1bdoUv/zyi/6xSsWfikRERERElmIPGJnzdFVKHQIREREREcnEokWLMH78eIwdOxZNmjTB0qVL4eHhgWXLllW5/s6dO9GpUyeMGDEC0dHR6NmzJx5++OFKvWZUKhXCwsL0f0FBQbZ4OUREREREDo0JGCIiIiIiGRKkDoBkp6SkBPv370dKSop+mUKhQEpKCnbt2lXlNh07dsT+/fv1CZfTp0/jxx9/RJ8+fQzW++effxAREYGYmBiMHDkSGRkZ1nshREREREROgv3Kq5Geno709HRoNBqpQyEiIiIiIsK1a9eg0WgQGhpqsDw0NBTHjh2rcpsRI0bg2rVr6Ny5M3Q6HcrKyjBx4kS8/PLL+nWSkpKwfPlyxMfH4/Lly5gzZw66dOmCw4cPw9vbu1KZxcXFKC4u1j/OyckR6RUSERERETkW9oCpxuTJk3HkyBHs3btX6lCIiIiIiIjMsmXLFrz22mv473//iwMHDmD16tVYt24d5s2bp1+nd+/eePDBB9G8eXOkpqbixx9/RHZ2Nr755psqy1ywYAF8fX31f1FRUbZ6OVUq0Wgl3T8RERERUXXYA4aIiIiIiMgOBAUFQalU4urVqwbLr169irCwsCq3mTFjBh599FE8/vjjAICEhATk5+djwoQJeOWVV6BQVG6T5+fnh7i4OJw8ebLKMqdNm4a0tDT945ycHMmTMEREREREcsQeMERERERERHbA1dUVrVu3xqZNm/TLtFotNm3ahA4dOlS5TUFBQaUki1KpBADodLoqt8nLy8OpU6cQHh5e5fNubm7w8fEx+CMiIiIiosrYA0bmqvlNRERERERETigtLQ2jR49GmzZt0K5dOyxevBj5+fkYO3YsAGDUqFGIjIzEggULAAD9+vXDokWL0LJlSyQlJeHkyZOYMWMG+vXrp0/ETJ06Ff369UO9evVw6dIlzJo1C0qlEg8//LBkr5OIiIiIyBEwAUNERERERGQnhg8fjqysLMycORNXrlxBYmIiNmzYgNDQUABARkaGQY+X6dOnQxAETJ8+HRcvXkRwcDD69euHV199Vb/OhQsX8PDDD+P69esIDg5G586d8fvvvyM4ONjmr4+IiIiIyJEwAUNEREREJEOCIHUEJFdTpkzBlClTqnxuy5YtBo9VKhVmzZqFWbNmVVve119/LWZ4RERERER0G+eAISIiIiIiIiIiIiIiEhl7wMiclFPAxId64/jVXAkjICIiIiJyHJmZmcjMzIRWqzVY3rx5c4kiIiIiIiIia2IChqrFYS+IiIiIpMPvYo5j//79GD16NI4ePQqdrryJlSAI0Ol0EAQBGo1G4giJiIiIiMgamIAhIiIiIiKyonHjxiEuLg4ff/wxQkNDITC7RkRERETkFJiAISIiIiKSIQGspHcUp0+fxqpVqxAbGyt1KEREREREZEMKqQMgIiIiIiJyZD169MChQ4ekDoOIiIiIiGyMPWCIiIiIiGSIo1Q5jo8++gijR4/G4cOH0axZM7i4uBg8379/f4kiIyIiIiIia2IChqp1e35QIiIiIiKywK5du7Bjxw6sX7++0nOCIECj0UgQFRERERERWRuHIJM5JkGIiIiIiOzbv/71LzzyyCO4fPkytFqtwR+TL0REREREjosJGKoWh70gIiIiIrLc9evX8eyzzyI0NFTqUIiIiIiIyIaYgCEiui0qwF3qEIiIiPQEtoZxGIMHD8bmzZulDoOIiIiIiGyMc8AQERERERFZUVxcHKZNm4bt27cjISEBLi4uBs8/9dRTEkVGRERERETWxASMzOkg3SQwnH+GiIiIiMhyH330Eby8vPDbb7/ht99+M3hOEAQmYIiIiIiIHBQTMERkt3o0CsGmY5lSh0FERERUozNnzkgdAhERERERSYBzwBBJoF10gNQhEBERkcxxBhgiIiIiIiL7xh4w1UhPT0d6ejo0Go3UoZDMtY32x96zN03aZkynaOw5e8NKERERERGRnIwbN67G55ctW2ajSIiIiIiIyJbYA6YakydPxpEjR7B3716pQ7ELJ1/tLXUIkokO9JQ6BCIiInJAArvAOIybN28a/GVmZuLXX3/F6tWrkZ2dLXV4RERERERkJewBQ6JQKRUY0zEay3eelToUIiIiIiJZ+e677yot02q1mDRpEho0aCBBREREREREZAvsAUPV0kFn0vr+Hq5WioSIiIjI+QicBcahKRQKpKWl4a233pI6FCIiIiIishImYEg0piZsHIWLyvTLSOech4qIiIiIKjh16hTKysqkDoOIiIiIiKyEQ5DJHSvqZS/Sz13qEGStXXQA9py9IXUYREREdodzwDiOtLQ0g8c6nQ6XL1/GunXrMHr0aImiIiIiIiIia2MChoisyll7RhERERHd8ccffxg8VigUCA4OxsKFCzFu3DiJoiIiIiIiImtjAobIQjozxhNji1Yi483q1wRzfjgidRhERDbHrwuOY/PmzVKHQEREREREEuAcMDLHvgOOiXPAEBlP7aKUOgQipzS4VSQOz0mFglkAIosVFhaioKBA//jcuXNYvHgxNm7cKGFURERERERkbUzAEBEREVGVvNzYWZpIDAMGDMCKFSsAANnZ2WjXrh0WLlyIAQMGYMmSJRJHR0RERERE1sIEDIlG6l4d0YEekuxX6tdNREREjolDljqOAwcOoEuXLgCAb7/9FmFhYTh37hxWrFiBd955R+LoiIiIiIjIWpiAIYexbExbqUMgG4v0dxe1PCbTiCxzf5NQqUMgKxCYBSCyWEFBAby9vQEAGzduxODBg6FQKNC+fXucO3dO4uiIiIiIiMhamICRuUZh3lKHYDdigr3w1vAWUodhFB1n9xHFcz3jpQ6BiCoI9XGTOgQiB8Pkl6OIjY3FmjVrcP78efz000/o2bMnACAzMxM+Pj4SR0dERERERNbCBIzMje1UX7J9szcAyZ2vu4vUIZAN8F5EJA2Blf9Eopk5cyamTp2K6OhoJCUloUOHDgDKe8O0bNlS4uiIiIiIiMhamICROVeVAolRflKHofdE15hqn2MdqfGcqVKLledEZG9eH5wgdQhEADgHjCMZOnQoMjIysG/fPmzYsEG/vEePHnjrrbckjIyIiIiIiKyJCRgyiZI1AUREVA1HSbj2aR4udQiyonOUN5ZIYmFhYWjZsiUUirs/wdq1a4dGjRpJGBUREREREVmTSuoAiMQkRc8Sc6qlnGkOGOd5pUREROJisxfHUVRUhHfffRebN29GZmYmtFqtwfMHDhyQKDIiIiIiIrImJmDsgJwqsGuMRQYtZJ0psUFERESOLcjbTeoQSCSPPfYYNm7ciKFDh6Jdu3YQ2KuciIiIiMgpMAFD1aoqlSGDHEuN5B6fM1IqWMFA5CxYn0gkrlZ1/aUOgUSydu1a/Pjjj+jUqZPUoRARERERkQ1ZlIDJzMzE8ePHAQDx8fEICQkRJSgie8KkT81Gd4jGnjM3pA6DTKRSCCjT8uQm57NoWAsO+0Sy0CEmUOoQSESRkZHw9vaWOgwiIiIiIrIxRe2rVJabm4tHH30UkZGR6Nq1K7p27YrIyEg88sgjuHXrltgxOj1WBDkeZ0raeKvtp6OdM70vtYn0d5c6BCJJDG5VR+oQZIdDJUmDh92xLFy4EC+++CLOnTsndShERERERGRDZiVgHn/8cezevRtr165FdnY2srOzsXbtWuzbtw9PPPGE2DGSROzxd7+plRUhHFudJNK9kbx7DDIZRebgeUNEVLU2bdqgqKgIMTEx8Pb2RkBAgMEfERERERE5JrOapq9duxY//fQTOnfurF+WmpqKDz/8EL169RItOCJra13PH+sPX6n2eR+1CjlFZTWWoatytpyasVWrc6sX6IE5/Zvi12OZUodCJDvPp8bj3z8dr3GdN4Yk4MVVf9koItIxs0ZksYcffhgXL17Ea6+9htDQUPYsIyIiIiJyEmYlYAIDA+Hr61tpua+vL/z9OVmoozC1ukUO1TOsIyJL2KouRKWQf6UL64VIKj0ah9SagCHb4kcrkeV27tyJXbt2oUWLFlKHQkRERERENmTWEGTTp09HWloarly523PgypUreP755zFjxgzRgiP5Mae3B1XGRJFt/ZJ2n9QhiKpphI/UIdgU7ztVmzewWY3P90kIs1EkdzFxR0RUtUaNGqGwsFDqMIiIiIiIyMbM6gGzZMkSnDx5EnXr1kXdunUBABkZGXBzc0NWVhbef/99/boHDhwQJ1Iiolp8Nb49Hv7w90rLY0O8jdreXhJjDYK98PelHKnDIIm1rltzj1M/D1cbRUJERLV5/fXX8dxzz+HVV19FQkICXFxcDJ738XGuxhVERERERM7CrATMwIEDRQ6D7IWA6ps320vltdhGdYjG4l/+kToMAtChQaDUIRDZDHubkLXxHCMSz515Mnv06GGwXKfTQRAEaDQaKcIiIiIiIiIrMysBM2vWLLHjIDvBoYAqC/BkK/PqRPq5I9LfXeowiIiI7A4TYI5l8+bNUodAREREREQSMCsBAwDZ2dn49ttvcerUKTz//PMICAjAgQMHEBoaisjISDFjdHr8AW49Uh1bTzelNDu2oZf7NMK4TvVxMZvjnVfFknPP1udtwxAv/JOZZ9udksWkuL05Sk9IgR+8BgSAzS+ILNS1a1epQyAiIiIiIgmYlYD5888/kZKSAl9fX5w9exbjx49HQEAAVq9ejYyMDKxYsULsOJ2aVBVaOkepSauBFC9xUMtIJMeF2H7HNqYQBKiUCqnDkCVW7pqmpqEPqXqOfAfnOWFbjnwuEdnK1q1ba3z+vvvus1EkRERERERkS2YlYNLS0jBmzBi8+eab8Pa+O7l1nz59MGLECNGCk1J6ejrS09OdbjxmhQBoa6ppqeE5Dk9mnLeGJ0odAknMGZKbZH3M4xER2Y/k5ORKyyo2yHC23xxERERERM7CrObpe/fuxRNPPFFpeWRkJK5cuWJxUHIwefJkHDlyBHv37pU6FJuaPzABAPBU91iJI5EHVpOTs2KOSP5qe4/sNT/D3i3yw3eEyHI3b940+MvMzMSGDRvQtm1bbNy4UerwiIiIiIjISszqAePm5oacnJxKy0+cOIHg4GCLgyLpjEiqi9SmoQj0csO6vy5LHQ4RSYQ92mzLValAiUYrapl8B8lS0YEeUofg1JgIdyy+vr6Vlt1///1wdXVFWloa9u/fL0FURERERERkbWb1gOnfvz/mzp2L0tJSAOXd5zMyMvDiiy9iyJAhogZIthfo5WbWdr2bhYscielYWUHOqH6Qp1XL51BXNsBjTFZQz4IEyvgu9fF4lxgRoyGiqoSGhuL48eNSh0FERERERFZiVgJm4cKFyMvLQ0hICAoLC9G1a1fExsbC29sbr776qtgxkkQGJEaatH6zSF9se6EbnujKChuimliaJ7w30fhUDw4ZaO/Myb/Ulhiz15wOe1/Jwyt9m0DtopQ6DKfG5Ldj+fPPPw3+Dh06hA0bNmDixIlITEyUOjwiIiIiIrISs4Yg8/X1xc8//4wdO3bg0KFDyMvLQ6tWrZCSkiJ2fATpfoBPSm6AphE+eOzTfUZvExXgATcVK2zIfr3cpxFe+/GY1GGYxEVpVi7dbrBC3jxSHDVWGBMRVS0xMRGCIEB3TyuK9u3bY9myZRJFRURERERE1mZWAmbFihUYPnw4OnXqhE6dOumXl5SU4Ouvv8aoUaNEC5Ck46JUoEfjUINlcq8GZeWf/NjbsHBNwiuP0U5kbbx3yYujvB1ivQ47u40TydKZM2cMHisUCgQHB0OtVksUERERERER2YJZzabHjh2LW7duVVqem5uLsWPHWhwUyde9rfbkRubhEVmFYIXq4tcGJYheJtmWoyQRiIgcQb169Qz+oqKimHwhIiIiInICZiVgdDodhCqa6164cAG+vmw9TkSOTaVw/KrtZhG8l9uSOUm02raRZAgypn1kRcGuVUSy8dRTT+Gdd96ptPy9997DM888Y/uAHEyYD5NZRERERCRPJiVgWrZsiVatWkEQBPTo0QOtWrXS/7Vo0QJdunThPDAOrqrEmz2rrceMY71aMsa9p3jjcJ9K6+yc1t2yndhZTy32LLM+c26tFefG+Xh0GxGjMR/n6yFb69ggUOoQiIyyatUqg6Gb7+jYsSO+/fZbCSJyLK3r+UsdAhERERFRlUyaA2bgwIEAgIMHDyI1NRVeXl7651xdXREdHY0hQ4aIGiDJi1F1hKytJQfyfGocxi3fZ7AsxNs2rSwfbV8Pn/1+zib7IvuWHB9SaRkTyOQMvhzfHtEvrZM6DKJaXb9+vcqRAnx8fHDt2jUJInIwFT70nl15EI91ro9mkezNS0RERETSMykBM2vWLABAdHQ0HnroIbi5uVklKDIU6OkqdQhOi6kksgoja8aDvau+x5rbEW352LYY88lek7dzsI5vJHMcxoyoHK8FxxIbG4sNGzZgypQpBsvXr1+PmJgYiaJyTN/9cRHf/XERZ1/vK3UoRERERETmzQHTvXt3ZGVl6R/v2bMHzzzzDD744APRAqO75g1sJnUIVUqOD5Y6hErULkqpQ3Aa+6ZzuEGz6aTpKBbK8dEdSm2Vs6M7RtsmkArYAVJexHo7mAYgslxaWhpeeOEFzJo1C7/99ht+++03zJw5Ey+99BKeffZZk8tLT09HdHQ01Go1kpKSsGfPnhrXX7x4MeLj4+Hu7o6oqCg8++yzKCoqsqhMOeF9ioiIiIjkyqwEzIgRI7B582YAwJUrV5CSkoI9e/bglVdewdy5c0UNkIBwX3fIZc5vudetubuadUpLrn6Qp9QhmCzIiz3gHBl7vdi/uFBvo9bzcGXimmom989+Inswbtw4LFy4EB9//DG6deuGbt264fPPP8eSJUswfvx4k8pauXIl0tLSMGvWLBw4cAAtWrRAamoqMjMzq1z/yy+/xEsvvYRZs2bh6NGj+Pjjj7Fy5Uq8/PLLZpdJRERERETGMau2+vDhw2jXrh0A4JtvvkFCQgJ27tyJL774AsuXLxczPiKn8GRyA6lDIAA6O2m+f2+YnPicpNQ22vEmPmYCkoisYdKkSbhw4QKuXr2KnJwcnD59GqNGjTJYZ8eOHSguLq6xnEWLFmH8+PEYO3YsmjRpgqVLl8LDwwPLli2rcv2dO3eiU6dOGDFiBKKjo9GzZ088/PDDBj1cTC1TbgTeuImIiIhIpsxKwJSWlurnf/nll1/Qv39/AECjRo1w+fJl8aIj2TGqgpo/gAjy/yE8Mqmu1CGQneoUGyh6mVJeLSHVzDVkrCWPtBYpEhPI+/ZiluhAjxqfbxbpY6NIHM+j7eshOtADDzQPlzoUIgBAcHAwvLy8qnyud+/euHjxYrXblpSUYP/+/UhJuTsUrEKhQEpKCnbt2lXlNh07dsT+/fv1CZfTp0/jxx9/RJ8+fcwus7i4GDk5OQZ/RERERERUmVkJmKZNm2Lp0qXYtm0bfv75Z/Tq1QsAcOnSJQQGil8xRXbGTnoRkPQGtYxEhK8085LMH9gM3z3ZUZJ9k2nkdkvxclNJHQIA8XLdbaIDLNqewxGKI9LfvcbnP3i0jcll1naKvP+oBMkzCTSL9MGW57uhdzMmYEj+amvsdO3aNWg0GoSGhhosDw0NxZUrV6rcZsSIEZg7dy46d+4MFxcXNGjQAMnJyfohyMwpc8GCBfD19dX/RUVFGfsSiYiIiIicilkJmDfeeAPvv/8+kpOT8fDDD6NFixYAgO+//14/NBlZV98EViKIQeadNBxCTdUIHq5KqF2kmX9CEASLJqX//LEkEaOpmtwSDwRM7mad4QKl7DFmyZ69ZZKMoqrVdgvp0ICNZuTsxV6NpA6BHMSWLVvw2muv4b///S8OHDiA1atXY926dZg3b57ZZU6bNg23bt3S/50/f17EiImIiIiIHIdZNSfJycm4du0acnJy4O9/d+z3CRMmwMPj7hAaO3bsQJs2bfTDlZF43hjaHOv+4nBvjkLuw3U5mvubhNa+Ui3a1bes14AUzE3oCI443lMtnk+Nx79/Ol5puZySYmLFIqOX5NTs5Trr3SwM6w9X3SI+NsQLJzPzbByR40qo4yt1CCRDQUFBUCqVuHr1qsHyq1evIiwsrMptZsyYgUcffRSPP/44ACAhIQH5+fmYMGECXnnlFbPKdHNzk9VvPPu4gxIRERGRMzKrBwwAKJVKg+QLAERHRyMkJET/uLYxjMl8cviRIYcYSP5qOk+kyjs1CvOWZsd2RE6JBin0ax5h0/1Zeinwfixv3ura27vYSx4+fUQrqUMgcmqurq5o3bo1Nm3apF+m1WqxadMmdOjQocptCgoKoFAY/uxTKst7IOt0OrPKJCIiIiIi45idgDGGURO2k11xtLfU0V4PmcaYt98q54idVLSSvNlLhb2pLHldg1pGiheIjcn586hibAqF/Z54Ojvo7/VQW86j4eyM6RWdlpaGDz/8EJ9++imOHj2KSZMmIT8/H2PHjgUAjBo1CtOmTdOv369fPyxZsgRff/01zpw5g59//hkzZsxAv3799ImY2sqUO0f9TCQiIiIi+8fB20lvVId6Jq3PYbOoJjw7aiD/OkCnZ/Pbm4NcMFJ/LMSHeSPMR40rOUXSBkIO6aNRbTD120PILii12j48XPnV3NkZ04Bt+PDhyMrKwsyZM3HlyhUkJiZiw4YNCA0tH2I1IyPDoMfL9OnTIQgCpk+fjosXLyI4OBj9+vXDq6++anSZcucgH6NERERE5ID4K89OiV3J5apUYO6AZqKU5VB1yw71YuTJGQ+xM75mS9iqUn98l/r4cNsZALbvjaC0414FFdlqHpPEKL8ql+t04pwvUszHYo3eGbVV5Bp7nguCPHvo7H0lxaj15Bh7deyhlw5ZJjMzE8ePl88xFh8fbzB8MwDk5uYaVc6UKVMwZcqUKp/bsmWLwWOVSoVZs2Zh1qxZZpdJRERERETmseoQZERkHHsbrs/Pw0XqEKzCXt4Fe4lTrvomhFe5vGlE7RNeWyMZtGhYC7goTfs49nfQa9BYcaF2No+TCBet1L2L5CjYWz4TgBPVJjc3F48++igiIyPRtWtXdO3aFZGRkXjkkUdw69YtqcOze+yZT0RERERyZdUEDL8IOx6+pQQAYT5qUcqxs7yTaMS+jKx9HMW+7vu3sO0E9/eqH+RZ5XJjXqc1jvXgVnVMWn/Pyz2wa1oPs86j5WPbmrGV/ZBrTw1jNIusPQFIlrG0ZxO/A5ElHn/8cezevRtr165FdnY2srOzsXbtWuzbtw9PPPGE1OEREREREZGVWDUBY2+t+p2akZUKfEvJ2Vijws3Yy6i6fculDvCJrjFY/3QXqcMwmaXvqdT3wRAfNdQuSrO2TY4PQZeGQQbLxDyfxBg+SerjK5UGwV5Sh2Axfu8jqt7atWuxbNkypKamwsfHBz4+PkhNTcWHH36IH374QerwiIiIiIjISsxKwBQWFqKgoED/+Ny5c1i8eDE2btxosF5ubi5iYmIsi5BkhVUrZCyeK5aTe11mgIcr6vi7W30/cj8OUjH3sKSPbCVqHHJiz+dKbYkwsV/bc/fHiVugE7Dn84ukFxgYCF/fyj3dfH194e/vL0FERERERERkC2YlYAYMGIAVK1YAALKzs5GUlISFCxdiwIABWLJkiagBEpF9s6f6Klv2LHGUoWzMeX8d5bXLiSnH1Eft3PPHUDlT5k9h4oHIctOnT0daWhquXLmiX3blyhU8//zzmDFjhoSROQZ+tSAiIiIiuTIrAXPgwAF06VI+7My3336L0NBQnDt3DitWrMA777wjaoBEkuKvObPZ46FjHSPZEzleY3KoqK84DNqXjydJGIm8MREqT3K4hsg6lixZgt9//x1169ZFbGwsYmNjUbduXezcuRPvv/8+WrVqpf8jIiIiIiLHoTJno4KCAnh7ewMANm7ciMGDB0OhUKB9+/Y4d+6cqAFS1SydSLYSM37wVzfWe2rTMLz760kLA3JMPmqzLjkSmS0quNxUChSXaa2/IyIHI2ZioGNsUI3Pt4jyw6Hz2eLtkIioGgMHDpQ6BMfGpDIRERERyZRZtcGxsbFYs2YNBg0ahJ9++gnPPvssACAzMxM+Pj6iBkj2p1mkL+oGeCDjRkHtKzuZrya0lzoEqsCaE0b/ktYVXd7cbLXyzSHGBOnOjkfQsbSM8sPTPWIxbvk+m+2zRR1fHLpwy2b7I9M0i/TB4Ys5opc7rE0dfLPvgujlkv2YNWuW1CEQEREREZEEzBqCbObMmZg6dSqio6ORlJSEDh06ACjvDdOyZUtRAyT5EmpoptwwxMuGkZjP1hXSTSMqT75K8iJWTsbDVVnDPmrfydp/dRYnEBliI1WyJlN7iEb4uVcugycpVcHc8+LxzvUxvkuMVfdB9iE7OxsfffQRpk2bhhs3bgAoH9r54sWLEkdm/0QfHYCIiIiISCRmJWCGDh2KjIwM7Nu3Dxs2bNAv79GjB9566y3RgiMbMvI3i7GV07P7NzU/FgskRPqJWyCbu1tVkJfxk0DbG0tPnWaRxifrWGEnPns4pvYQoxQsSayPSKorYiTSq+1IGHsO8Vy76+keDU3ehsePAODPP/9EXFwc3njjDfznP/9BdnY2AGD16tWYNm2atMEREREREZHVmJWAAYCwsDC0bNkSCoUCOTk5WLNmDby9vdGoUSMx46PbpnSLlTqESmqqT4gK8LBZHBUFe7vh92k9JNm3JZwxz9OvRQSe6Gpci2CxVVcZZqvJj2vqPWYMW4RpTIjOWqnYMNT8Hn7xod4iRlK776d0qnUdZ7z/VCfQ09Xq++Dxtl86HTCmYzRa1fUzeTuitLQ0jBkzBv/88w/UarV+eZ8+fbB161YJI3MMzvqdhIiIiIjkz6wEzLBhw/Dee+8BAAoLC9GmTRsMGzYMzZs3x6pVq0QNkMo9kxKH90bY1/Buz6bESbLfMF917SvZkSAv61cIWkNtP4TffbglPFzNmobK7hk79wznbJEfAcCUbqa3gL9Dqaj6wrBWBW3zOn7WKbgaUleAqV3MblciOW+1i9QhEGq/FgVBQP0g6w2zymSN49q7dy+eeOKJSssjIyNx5coVCSIiIiIiIiJbMKumYuvWrejSpQsA4LvvvoNOp0N2djbeeecdzJ8/X9QAqZxCISDBhCGJ5ODplIY4/VofqcOwCzXVWb43opXN4nAWYlRwiVnRvGxMG/RqGgYftXkJKWNfj9gVe+aWZ2kPIGvxrJAQrO616QC41zC/jy3d6Wno7WZZIlOe74Z5Hmpb16LzXMrK7/gw2/aOssQj7cuHaktpHCJxJET2w83NDTk5OZWWnzhxAsHBwRJEREREREREtmBWAubWrVsICAgAAGzYsAFDhgyBh4cH+vbti3/++UfUAOmuihVDMq2/rERRTWtvMp6byn5bdNsbW11X9yYgkuoHYumjre2y95aXA/Vi6tYoBAMSIzC9b2OpQzGKm0qJo3N7Yd+MFNkmtWzNnOSY1BM3b3imC76d2AH1gzwNllu796Mlyab5AxNwfH4vxIYYJo3YeYOoev3798fcuXNRWloKoPy7QEZGBl588UUMGTJE4ujsHz8FiYiIiEiuzKrZjYqKwq5du5Cfn48NGzagZ8+eAICbN28ajGlMJHdSV7w5g9qG2zJ2OC5bMace+7n7pRluz5qMfVtskWS11RmiVAh4+6GWeLyLNHMTmcPdVQk3lTx65NijBsGeta8kMs97kpb1gzzRJjqg0no9GoXaKqRaVXU/sMfzLjpImvnpiABg4cKFyMvLQ0hICAoLC9G1a1fExsbC29sbr776qtThOSStVl7fMYmIiIjIOZnVdPmZZ57ByJEj4eXlhXr16iE5ORlA+dBkCQkJYsZHMmPrRtZto/2x9+xN2+5UZtiy3XaqqmQ0JhHRq1kYFv58wuTtyPnwcraO1wYlmDRM57cTO2D7yWt4uF1dnMrKt2JklTUM9cKu09dN3k4hw5PHlJB83V1wq7DUesEYoWmEL/47shWe/OKAWdvfeb2cn4vM4evri59//hk7duzAoUOHkJeXh1atWiElJUXq0BxCVfcjjU4HBRtbEREREZHEzOoB8+STT2LXrl1YtmwZtm/fDoWivJiYmBjOAWNFcqh7sXWl8v9N7IhOsYG23anMyK2HiCORKrll6Xsqg1uBRR5pX8/iMgYmRgAAEqP8TN6Wl5T1Pk/iQi2fx8Sc0EYk1UVCHeMTMG2iA/BMShxUSvsZ4jHUx03U8gTBtteCpfe97o3EmW+mT0I4WtX1E6UsIlOsWLECxcXF6NSpE5588km88MILSElJQUlJCVasWCF1eA5Jyw98IiIiIpIBs2se2rRpg0GDBsHT01P/o7pv377o1KmTaMEREZHjaV3P3+IyBreqg7X/6oyvJ7QXISKy1JapyVg1qQPqBdp+SC9b2z/ddq3Vg7zKky7fTuzA3pAi+uyxJLO2Y10uWWLs2LG4detWpeW5ubkYO3asBBE5lqqGFdZqJQiEiIiIiOgeZidgVqxYgYSEBLi7u8Pd3R3NmzfHZ599JmZsJHOsC6Ka2MPpIZfeRbaKIthb3Bb05hBrYnFBAJpF+kLtYtt5KGRyyshOdJAnWterPI/JHWL1XpCDQC/bXEc66LDl+WT8/Ox9Vc4RQ8a797JV1jB3ldTfbTzd7G9uHTKOTqerMpF64cIF+Poa34OPjKfhhzYRERERyYBZc8AsWrQIM2bMwJQpU/Q9XrZv346JEyfi2rVrePbZZ0UNksSV0jgEvxzNNFg2OTlWomhqZ83fTrWN426rn22O/PNQLq22w33VuHyrqMZ1qjofZBK+AXPOl/ubhCLURy16LGQaZ60LSrs/Dr8ey6x9RYlZ63o39233clOhoQXDusnpfLM0FCkS5v+b3AkD0nfYbH+TuzUQZRg/kpeWLVtCEAQIgoAePXpApbr780uj0eDMmTPo1auXhBE6Lo1WRjdBIiIiInJaZiVg3n33XSxZsgSjRo3SL+vfvz+aNm2K2bNnMwEjcx+Nbovms39CTlGZftmk5AZGbcuJZwmQV6Wesb6d1BGdXv/V5O2s8VqNLVLMfSfHB4tX2D3efigRT3990GrlS0GOiTd75mLDuVZMvWwqvtf2eG+zRwsGJ2Da6r+kDqNWPu4uNt3f86mN8L+DF226T7K+gQMHAgAOHjyI1NRUeHl56Z9zdXVFdHQ0hgwZIlF0jk0uPZ2JiIiIyLmZlYC5fPkyOnbsWGl5x44dcfnyZYuDIttjZSNJZWLXBnhp9V+ID/XG8au5VttPpJ97retUNX64uWobaquqOgF7rScYkBhpVwkYS+53Yt8rXWUwCTzv/2Quc+9ZD7eri0vZhXj315PiBkQkQ7NmzQIAREdH46GHHoKbm/TDgTqiqj7L2AOGiIiIiOTArJqf2NhYfPPNN5WWr1y5Eg0bNrQ4KJIve60gJvka3jYKvz7XFe+NaCl1KGar6kd/TUOv3fuMpfXf1r4spR5GzpHzA+M615c6BNnhx4xzeK5nPJqE+0gdBkYm1TV4XNP3HCYryRLdu3dHVlaW/vGePXvwzDPP4IMPPpAwKsfGOWCIiIiISA7M6gEzZ84cDB8+HFu3btXPAbNjxw5s2rSpysQMiU8OvyeiAz2lDsHq5FDXIoO32izGxi0IAmKCvXAyM8+q8ZjLGhVu9vqekuXkUoErwDrnYVyoV+0rkWxYej7a8ny2ViJ4WJsozHigCRrN2FB5n1bZIzmrESNGYMKECXj00Udx5coVpKSkoFmzZvjiiy9w5coVzJw5U+oQ7VpVtwit1vZxEBERERHdy6weMEOGDMHu3bsRFBSENWvWYM2aNQgKCsKePXswaNAgsWO02KBBg+Dv74+hQ4dKHYpFxBweSQz/6tEQYzpGY+WE9lKHQhb4ZGxbq5ZvT+NvO8McRzFBjp84FUN1p60dnc5GM/U1hXhXP3xOuG/tQ/1ZW8soPwCWDe9mSl1/3+bhZu/H4djJ9XHv+6t2URq1nSNe/2Q7hw8fRrt27QAA33zzDRISErBz50588cUXWL58ubTBOSj2gCEiIiIiOTC7dqJ169b4/PPPsX//fuzfvx+ff/45WraU5xBCTz/9NFasWCF1GLIy4b4Yi8vwcFVidv+mSIoJFCEikkq3+BCrlCuvdKEhZ0i0VGe8CNe+rTnvuyVPL/VuZNZ2rev5G7WepfeON4Y0x6TkBlj/TBcAQHyot4UlVq91PX+kj2hllbLl1ujCYnZ4IdthyCRjpaWl+vlffvnlF/Tv3x8A0KhRI86hKYrK98zt/2RVsR4RERERkW0ZnYDJyckx+k9ukpOT4e1tvQoYW6lYaWzpSBxPJseiW3ywhRGZp7EMxnwny1hjJBi5DM10L2tUgk7q2kD0MqUwpHUdk7dhY1Tn1aqun0324+/pihd7NUKDYPsYDk2qRIscEjym3PeN7U35fxM7mBmNCXgfIzM0bdoUS5cuxbZt2/Dzzz+jV69eAIBLly4hMJCNmSxV1f3kxVV/2T4QIiIiIqJ7GJ2A8fPzg7+/f41/d9YxxdatW9GvXz9ERERAEASsWbOm0jrp6emIjo6GWq1GUlIS9uzZY9I+HJGllZgKhYCESF9xgjGR9FU+RMazRm+ZZCv1OrKllMahCPKqfigqqbw6qJnUIVisZ5NQqUMgI/HzTH7aRgeYtL4tkv9hvmqjP0mYpHZcb7zxBt5//30kJyfj4YcfRosWLQAA33//vX5oMiIiIiIicjwqY1fcvHmzVQLIz89HixYtMG7cOAwePLjS8ytXrkRaWhqWLl2KpKQkLF68GKmpqTh+/DhCQsorMRMTE1FWVlZp240bNyIiIsIqcUtB7Naqlv7GZ8UT2Tu5V3TJOTwXpbR3gOruhyOT6uGV7w7bOBpxqSQ+tiQ+pYLvqZT3M6mTmo92qIdz1wskjYGkl5ycjGvXriEnJ8egwdqECRPg4eGhf7xjxw60adNGP1wZERERERHZN6MTMF27djW58CeffBJz585FUFBQtev07t0bvXv3rvb5RYsWYfz48Rg7diwAYOnSpVi3bh2WLVuGl156CQBw8OBBk2OrTnFxMYqLi/WP5TikmjXIuWrI0tapozvUw6e7zpm1ra0qjHo3C8ML3/5po71RdZX3vZvZx2Tag1pG4IdDl6QOw8D6p7vgy90ZUCkFfLLjrNThWI0zzx90R4vbk9yT8Ya3jcLWE1no1igE+cWVG4xYi9zPV2+10V9DzXZsXi+oXZSilGXu9xE3lfH7l+twnCQOpVJZabSA6Ohog8e9e/fGwYMHERNjf3O2yZFOp4PAC4uIiIiIJGT0EGTm+Pzzzy1KYJSUlGD//v1ISUnRL1MoFEhJScGuXbvECLGSBQsWwNfXV/8XFRVllf2Q8SztpTC7f1OrlS0Wb7WL1CEQzJ9c3Fqqqy7o3sj6rblNratoHO6DeQObGQxL1qOR/Q+1RobW/quz3cytcocpSQhr1dF5uCqx4Zn78GIved1jLGXp4XqobV1R4qiJWMkXA6zLJSsydr4jMnSno+G9PQ7XH74iQTRERERERHdZNQFj6Q+Ia9euQaPRIDTUsLIxNDQUV64Y/2U6JSUFDz74IH788UfUqVOnxuTNtGnTcOvWLf3f+fPnzY7fmsRu1WrLn3q2/lnJVm+G3n4o0Sb7MfW42/Jdqu76Mb+iTpzoHa3K5b0RrSTZ7xNdYyye8N1at43qy5Xu3TfltTaTaO4wR+KMdasPNA+v8juhm8qqX0NFZ8l7x28iRLbxr+6xBo/f+/WkRJEQEREREZWzr1++Zvrll1+QlZWFgoICXLhwAR06dKh2XTc3N/j4+Bj8OSp/D1epQyAJDEiMlDoEpyd25b41WsvWVqQxu6xp3otd07qbGJHxpvVujJVPVH+ft4TYc3E5C7kPhXUvvs/ialHHT+oQqsX3msixHbnsHMNJExEREZF8yToBExQUBKVSiatXrxosv3r1KsLCwiSKSh7EqDBIjg8WIRL7xs4xVJNIP3fEhXqLXm51yQtbnI5yaX0f7utu0fb2VqFvClYI259XBzWTOgRJOO5VKB253KOJiIiIiIhIHLJOwLi6uqJ169bYtGmTfplWq8WmTZtq7MVCxuHQXEQ12/pCN7gorXObFPPy47XsWBw1uWTseWrr07ni7syt/B7U0j57Ftqyst8xz2rjOfvrJ+PxM11cnI+OiIiIiKQmeQImLy8PBw8exMGDBwEAZ86cwcGDB5GRkQEASEtLw4cffohPP/0UR48exaRJk5Cfn4+xY8dKGLX07LmCztl+Vr42KKHG5+cPdOyW0/Z7ppYPocXWyM53zdbEHu+9d+4xi4cnShsIyYo9nstEzsAaw4o6My+1SuoQiIiIiMjJWTUB88gjj9Q6h8q+ffvQsmVLtGzZEkB5wqVly5aYOXMmAGD48OH4z3/+g5kzZyIxMREHDx7Ehg0bEBoaas3QZYkN4owX4u0mdQh6nm41T+zuaqUeFnL0cp9GUodgJc5XWWLT+5GTVUaJPQTZI+3r4di8Xhhop700LGXNId2seR3Y42d+dVeqMcmeTc91FTcYK7DH94Tko7CwEAUFBfrH586dw+LFi7Fx40aD9XJzcxETE2Pr8Oxexa8KFRsc8LIlIiIiIqmZ3SQoOzsbe/bsQWZmJrRarcFzo0aNAgAsWbKk1nKSk5Nrbek1ZcoUTJkyxdxQnUbzOr7488ItqcOQhWaRvvj1WKbUYYhCjnXP5sYUHegpbiBmCvNRV/ucsa/NJvO12GAf1iTXykpj3mNrXXduqpoTstaidjHcryAI8ry5kM0IEGx6jdZ2ujUI9kKYjxpXcopsE9BtZh0DXjpkhgEDBmDw4MGYOHEisrOzkZSUBBcXF1y7dg2LFi3CpEmTpA7RIQgQ4Kq627iJQ7oRERERkdTMSsD88MMPGDlyJPLy8uDj42PwxVYQBH0Cxp6lp6cjPT0dGo1G6lCM9nxqPB79eI/N9scfNMZx1uNU1cuW+lh8OKoNtv2ThYfa1b0dj2nbpzQOxSPt61ohMnIWbw5tjh4Lf9M/dtLbA1VQ3TlgD/kxY09fa/ZCEltN12RN70m4rxqXb1mePOLQcI7rwIEDeOuttwAA3377LUJDQ/HHH39g1apVmDlzJhMwIlIY/DaVMBAiIiIiIpg5BNlzzz2HcePGIS8vD9nZ2bh586b+78aNG2LHKInJkyfjyJEj2Lt3r9Sh6Pm4u+j/r1JIM2yVs41L7WyvV0oVkzMtovysso/7m4Ri7oBmcLk97Jupb++i4S2QHM/JXMl8DYK9pA6hkrhQb6lDICuR+0eYzMMzyax+TWt8nnXAVFBQAG/v8vvtxo0bMXjwYCgUCrRv3x7nzp2TODrHoqhwwa0+cFG6QIiIiIiIYGYC5uLFi3jqqafg4eEhdjxUA193F3w5PgnfTuxg0LWezCf3yilnpWBNldU4SktQe2pRbzIbv7RRHaJtu0OJKY24wTjKdSInlvbssPePa3uPnywXGxuLNWvW4Pz58/jpp5/Qs2dPAEBmZmatc2aSaRS8iRMRERGRjJhVi5+amop9+/aJHQsZoWODILSJDqj2+X3TU2wYjXlcnCx5VGsvGif6jei4PYrEeRPlenQSIn2lDkFUFtXL3PMmubuIM6dLvxYRopRjDleVAu1jqv9cEYNcLv3lY9ti10vdDZbZup5ueNso2+6QTCKXc5Ucz8yZMzF16lRER0cjKSkJHTp0AFDeG6Zly5YSR+dYjEm0ExERERHZilk14X379sXzzz+P2bNnY9WqVfj+++8N/kg6QV5uolUIViW1aZjZ27qqFIgKcMd/hjY3aTspK0OknrPEEZg1v7Gk77nhYy/13amyXJXyTB5aO7EV4uOGqT3jrLoPuTH20ndzMf2c2P5it0rLXuzVyORyHJf17rvJ8SEI8VFX+7y5vTRMuQSbRfpi1aQOZu3HXhl7XM09/t5uZk1pSGRTQ4cORUZGBvbt24cNGzbol/fo0UM/NwyJg1/fiYiIiEhOzPrFOn78eADA3LlzKz0nCIJdTVxPxlv4YAsEermZvf3Q1nXw2qAEESNyEDJtbTt/YDNMX3PY7O3l0op4xgNNLNrey02Fzx9LgkIBqC1Ibi4enohnVh60KBYpRfi5Sx2CSax2/olQqVPHv/LwnRXPLWevN4oJ8pQ6BKsL8DT/s9ReWfMzISbEC4fOZ5u1rSkVtazUJUuFhYUhLKy8MVNOTg5+/fVXxMfHo1EjJuHFVFymlToEIiIiIiI9s5pza7Xaav+YfHFcllQ+25qjDHWVGOWHRCtNSF+bR9rXM3vbSD93DG4VadI21qrXGtTStDiq0rlhEDo2CDJ7+ye6xqB74xCL45ATVkTat3vfPjndMhUKAR+OaiN1GA5heBt5DHfmKHM22eI6kdO1SOIaNmwY3nvvPQBAYWEh2rRpg2HDhqF58+ZYtWqVxNE5luNXcqUOgYiIiIhIT57j6RARAGDN5E52N471sylx2P5iN3irXQAY38HHWnVOAZ6uVipZPHdee6XEIWvinFJK41CpQ7AKUxLj9nLXk3tiYVJyA6lDkL1730Pedslatm7dii5dugAAvvvuO+h0OmRnZ+Odd97B/PnzJY7O/lW8dO3sqzMREREROTijhyB75513MGHCBKjVarzzzjs1rvvUU09ZHBiJ78enusCL46STlemgq3buHM6p41wc8t22YuXsJ2Pb4uy1fAxsGYnYEC888O526+3MxnjpS0Ml03mrzGGtU6imc1PMfTKxQ7du3UJAQAAAYMOGDRgyZAg8PDz0c2uSOAShvCdlRaUaLXacvIY20QH8LURERERENmf0N9C33noLI0eOhFqtrnGiSEEQHCIBk56ejvT0dLsZUi3E2w1towOqfb53szA0ifCxYUR0R30HnM/A2pWprKciZ1E/8O79oVt8CBBf/v9mkb4SReR8FBVuaLaqJDemN5DVk1ZWKN+aw39K8bnAzyISU1RUFHbt2oWAgABs2LABX3/9NQDg5s2bUKvVEkfnWCreikK83bBw4wks/e0UujQMwmePJUkXGBERERE5JaMTMGfOnKny/45q8uTJmDx5MnJycuDrK/+KsJ0vdde3dO2dEIbVBy4aPP/W8MRK21haUSLnBs1y6mnh4arEoVk94aKUT0xyxKPjHGxVoWnLW8DbDyXi6a8PmrTNN090wO7T1zGkdR3rBEVGq5gkV5k4bo3u9hkto48cWdLJLJVR09Bx1noveY7QM888g5EjR8LLywv16tVDcnIygPKhyRISEqQNzoFpdTqs2HUWALDtn2vSBkNERERETslxxqZwchWHGZk3oBneHNrcYPJdtYvS4n0IgniVKFEB7qKUY21iteb1dXeBh6v5Qx6E+bBlpD0JNHPeGTlVUVasLJRTQtNWTLn0ByRGmlx+u/oB+FePhnY3x5OtdIkLstm+Kp7fd952R3pXIv3k8Xkr5v1NqRCwZWqyiCWaRk73arIfTz75JHbt2oVly5Zh+/btUCjKv7vHxMRwDhiRVbzvFZZoUFKmlTAaIiIiInJ2ZtcIX7hwAd9//z0yMjJQUlJi8NyiRYssDozM5+mmwrA2USjT6LBy3/lq1zO1UlXMkUW+Gt8er68/hrV/XhavUDtlTFLri/FJeO/Xk/juj4u1riu1mloWW3N4GindeymtmdzJcIFOmvH/O8cGYftJ81p76nTAlG6x+OHPSxjXKRq/HssUOTp5mdWvidQh2JSbSoGyEtsNsVnb+d80wgd/X8rRP3ZTKdEs0geHL+bUsJVjsHay54vHk7D0t1MoKNHg+0OXrLy3qtX0uWCOR5LqItqI4T1dVbW3M5Jbfrlzw/LkY90AD4kjIWto06YN2rRpA51OB52ufM68vn37Sh2Ww+mdEIZnVpb/P9+Gn3VERERERFUxqwfMpk2bEB8fjyVLlmDhwoXYvHkzPvnkEyxbtgwHDx4UOUQy17A2dfBkcgN8LsOxjuv4e+DFXo2sVr6xFf2Nw60/L44YFe8Ngr3w1vBE+Lq7mLV9kJcbAPvpeWTPHmlfF1EyqTj7/HHLrv2pqfH47flu8POo3KNnfJcYi8qWk/882AJjO9WXOgyb+nRcO0T6ueODR1vbbJ+mJv3FqrSP9Hfu+150kCdeH9K8yoSFWmV571gxDZVgSD5zzjNr5mxCvNU4NLMnNj3X1Yp7IamsWLECCQkJcHd3h7u7O5o3b47PPvtM6rAcjptKiak946QOg4iIiIgIgJkJmGnTpmHq1Kn466+/oFarsWrVKpw/fx5du3bFgw8+KHaMZCaVUoEXejXSt6akyiYlN8CzKXH4z4MtpA7FqlY+0R4Ptq6Dz8bJLxl3h9xaIYvNkV7fn7N7omVdf0ljqO14mpL4NKVn1r1r2uJtHd9F/ORQm+gA7HipO3o2Dav03JiO0aLvT0oLBiegV9MwfDW+vdShyI6rSoFf0u6rdb1GYd6W78yIy+yZlDh8Mrat5fuyc74eLnBRcpRgR7No0SJMmjQJffr0wTfffINvvvkGvXr1wsSJE/HWW29JHZ7DiQsV4b5FRERERCQCs4YgO3r0KL766qvyAlQqFBYWwsvLC3PnzsWAAQMwadIkUYMkxyDH+me1ixJPpzTEsSuOPcxNg2Av/NvBk0xkXf4VesH4qM3riWVP5JQwc4bjbU2hPmosNbKnj4zedvFVk2iMDam9kjIxyg/HruSKHVElLkoFusWH1LqeQsS5k2x1rTvoCJxkgnfffRdLlizBqFGj9Mv69++Ppk2bYvbs2Xj22WcljM7xJEb5SR0CEREREREAM3vAeHp66ud9CQ8Px6lTp/TPXbtm3nwDRFKqqmJEygl+5Y4VSSaqooKvymOoq/GhKNrVDzBru+T4YIztFF1rb7HowNrnZZAbU4bGcugKejJZTcNXDWll++G0bM2WiUqdDpjaMw71Aj0wuVus7XZsAjklbkl+Ll++jI4dO1Za3rFjR1y+zDkRLXXv9yplNYna9M0nbRANEREREdFdZiVg2rdvj+3btwMA+vTpg+eeew6vvvoqxo0bh/btOcQH2b//m9jBqAl+qXZM1tTOlnV2DYK90CzS9LmPBEHArH5Na52joU9CGF7q3QhfT+BngVhsXanLSmRxvDa4mdQhOJwp3Rvit+e76ec1E4OYp/vh2akilkaOJjY2Ft98802l5StXrkTDhg0liMgx3bmmVYq7P3NdKwzp9++fjuN6XrGNoyIiIiIiZ2ZWAmbRokVISiqfS2LOnDno0aMHVq5ciejoaHz88ceiBkgkBTeVeGOvM/9wV009DUJ91Pr/u4g4vAxV1iDYy2plC4KAiV0boH1MoMmTrhNJTcz7tZvMJri3BpPmWpLpp6GYtylPNxWCvFyrfI63Q5ozZw5mzpyJXr16Yd68eZg3bx569eqFOXPmYO7cuSaXl56ejujoaKjVaiQlJWHPnj3VrpucnAxBECr99e3bV7/OmDFjKj3fq1cvs16rHKiUdy+6Eo3W4Ll7HxMRERERWZPJtcwajQYXLlxA3bp1AZQPR7Z06VL8+eefWLVqFerVqyd6kFJIT09HkyZN0LYtJ4OtjhSVCcZOzivPap6qWbuHSFSAu3V3IBK1ixKHZvXE4TmprKgiA5ZeIhufrX2ScaKK5JA89HG3bO6ftx9KrPY5V6UCPZuEWlS+PTDlXZzTvykCPF3xxpDmVouHnNuQIUOwe/duBAUFYc2aNVizZg2CgoKwZ88eDBo0yKSyVq5cibS0NMyaNQsHDhxAixYtkJqaiszMzCrXX716NS5fvqz/O3z4MJRKJR588EGD9Xr16mWw3p05P+1RdUOQERERERHZmsrUDZRKJXr27ImjR4/Cz8/PCiHJw+TJkzF58mTk5OTA19dX6nBkQ+rhpLrFh6BJuA+OXM6RNhA78uXjth0KypJ6S18LKxzt3b2Xl7WqDuypSuLTce1w7nq+RWVUHHrEUve+R/aU7DWW1Pd5R9S6nr/J21g6z8mAxMhqnzs8JxWuJvT0NPbebM1Tx3o5sfKCR3eMxqgO9VCm5QVA1tO6dWt8/vnnFpezaNEijB8/HmPHjgUALF26FOvWrcOyZcvw0ksvVVo/IMBw/revv/4aHh4elRIwbm5uCAsLszg+OXCp4bNfw+uciIiIiGzI5AQMADRr1gynT59G/fr1xY6HSBbuTKzs6+6C/BKNxNGYb2rPOEQFeEgdhp5OZjW7FYenINuIMXFupeqGA7TkVOrWKATv/spJeG1JZpe+zWx9vhtOZuWiS8Pgatep6tC4qRRWTUibknwBgCe7xeLI5RwMrCGpUxt7OAfKez5ZFmh1r9MeXj+JLyfH+AZDPj7Gzc9WUlKC/fv3Y9q0afplCoUCKSkp2LVrl1FlfPzxx3jooYfg6Wn4mbxlyxaEhITA398f3bt3x/z58xEYGFhlGcXFxSguvjuXiimv1RZq6gDDBAwRERER2ZJZzYLnz5+PqVOnYu3atbh8+TJycnIM/ogcxYej26BphOkTlpN9CPcVZ3g2pnGM987DLaUOAa3q+mP90130j5tFinuNd42rvrLdXJ891g5RAe74cnyS6GWT9dQN9ED3RvY/1Jevuws+eywJQ1rXkToU0ZnTs4ZVt2QsPz8/+Pv71/h3Zx1jXbt2DRqNBqGhhveW0NBQXLlypdbt9+zZg8OHD+Pxxx83WN6rVy+sWLECmzZtwhtvvIHffvsNvXv3hkZTdUOkBQsWwNfXV/8XFRVl9GuwhZqGkmRPNyIiIiKyJbN6wPTp0wcA0L9/f4MvtzqdDoIgVPtFncjeNI3wxbqnuqDpzA122RPGz6PqyYCDvFxxLa/ExtHI03P3x2HhzyekDgOAcyRyIvxMS3pZ65g0DvfBthe64WpOERqFVU7AGNtavar4Fg9PRMt5P1sW4D26NAzGthe6i1omyZcMpqAxii3jtFYPEjs51GSnNm/eLHUIlXz88cdISEhAu3btDJY/9NBD+v8nJCSgefPmaNCgAbZs2YIePXpUKmfatGlIS0vTP87JyZFdEqY6l7OL0CDYS+owiIiIiMhJmJWA+eSTTxAVFQWlUmmwXKvVIiMjQ5TASJ7spVLI2S0enoit/2RhWJuqfwh/9lgS5v5wBFNT420cmWOqWC8oWFCdZ8z8Iu1jAqpYSvfSGdFGPSrAwypD9Pl7Vp34pLsebF0H/7f/gv5xhJ87/r5k2IPWmPfQETjLx6qc3k1nObdIel27djV5myeffBJz585FUFBQlc8HBQVBqVTi6tWrBsuvXr1a6/wt+fn5+PrrrzF37txa44iJiUFQUBBOnjxZZQLGzc0Nbm5utZZjO8Zf1498vBtnX+9rxViIiIiIiO4yKwEzbtw4XL58GSEhIQbLr1+/jpSUFIwePVqU4MgxPJncAF/vPY8p3S2bUNia7CWxZGycA1tGYmDL6sfqbxzug68mtK+0vHNsEIa2roPmdXzNDbFGNQ0HYW8sfS3mbD6sTR28Pri5Rft1Rg502jmM1wYnGCRgujQMQmKUHxqHe0sYlRlkem4Nryr5LsMLQQ7zojjS5xI5hs8//xxTp06tNgHj6uqK1q1bY9OmTRg4cCCA8kZwmzZtwpQpU2os+//+7/9QXFyMRx55pNY4Lly4gOvXryM8PNzk1yAlXtJEREREJDdmJWDuDDV2r7y8PKjVaouDIsfyQq9GmNozHoqaZsMUmRwqdeyRIKDGxI25ZcqZPZ0q7i5Km15Hcmbt86qq8r3cVBjXqb51d+wkFFUc4MndpEvSt4sOwJ6zNzBI5PufFL4cn4Q29dhTriYVvyPwjkpyozPiS2xaWhpGjx6NNm3aoF27dli8eDHy8/MxduxYAMCoUaMQGRmJBQsWGGz38ccfY+DAgQgMDDRYnpeXhzlz5mDIkCEICwvDqVOn8MILLyA2NhapqanivTgiIiIiIidkUgLmzji/giBgxowZ8PC4O3SLRqPB7t27kZiYKGqA5BgsqTS2xVAhUiZsxN61u4uy9pXIqQ1rG4U1By9JHYZR5JIg69kkFEseaQ0lE2CS6NIwCNv+uWa18r+e0B65xWXwdXcBYHqlvFqlhKerUhZzhXVsUHWreakZU6nsCKpLDsu9MQLZl+HDhyMrKwszZ87ElStXkJiYiA0bNiA0NBQAkJGRAYVCYbDN8ePHsX37dmzcuLFSeUqlEn/++Sc+/fRTZGdnIyIiAj179sS8efNkNsyY+ZqE++D8zQLkFpVhcCv7T7YTERERkf0wKQHzxx9/ACj/Ef3XX3/B1fXuOPeurq5o0aIFpk6dKm6ERCIL9HTF9XzbTUBv6zqnt4a3sO0O79Em2t/gsRiv31WlQEmZ1vKCjOAMdYQxQbaZeNbR6httnXxpEeWHQ+ez0a9FhFHrT+kWi/c2n7RyVLZjyXxKplIoBH3yxdztD8y8H+v/uoJnVh4UL7B7PJ8aj3//dNxq5TsjWyVGnOGzhWxrypQp1Q45tmXLlkrL4uPjq02Euru746effhIzPFlwUQoo1ZS/Zi+1CmM7RuOdX0/Cy82sQSCIiIiIiMxi0rfPzZs3AwDGjh2Lt99+Gz4+PlYJimyjYp2DsRUDBsN22GlzTjsN2yiPda6Pnk1qnoBVDDUdw5paX5tz6J/oGoPne8Yj9pX1ZmxtPaa05ja2ItlZWoiTcVZP6oi8ojL4ehiXGJiaGu9QCRh746ZSQu2iqH1FCwxqGckEjAk8XKvuEcpbLZFz6N4oBD/9fRUAsOfMDXSJLf+OWqqxTaMeIiIiIiIAMKum4JNPPnH45Et6ejqaNGmCtm3bSh2K1dQL9ECXhkHokxAGV5V1K43ENCKpLoDyMftNFejpWvtKqNzSfWpqPADg4XZVTGwsIzMeaOIQc4TcWzmmUhp/fvZoFCJyNOJwqTAUiJsE11uDYNN6vaiU8jmPbNVjR26UCsHo5Mu9/E3cruIlZ2mSOsS78nA1nm5KdIsvvzY9q6kUJ/vTMMTb6HWfTC6f48fceXYCvYz7/AaAj0a1QUyQJz4Z267K5ysObXpvgrziI1MSauG+nAORSG5eHZRg8PjO751iG/WqJiIiIiICTOwB40wmT56MyZMnIycnB76+vlKHYxWCIOCzx5Ik23+AkcmQe41MqouESF/Eh3mj0YwNJm07tHUdrDpwocZ1+iSEoXG4YaXSmI7R6N4oBFH+Hvhqz/lqt51wXwz6JoRjQPoOk+JyFtZsdPxkcgMAwKLhiRjw3nacvV5gxb0ZMqa+2t1ViTn9m6JUo4W/pyvyS8pM3k+Ap+njsP9vciecyspD+5i7E+5WrHwc1DIS3/1x0WCbmQ80gbfa/OGYxNYpNhALBicgLtQbQ5bslCQGNwvmVpretzE+3HYaw9pYP4G7alIHvLnhOGb1aypKeUFerriWZ9qQjT89cx+OXslBTJAXuv57Mx5oHoF6gZ6oF+iJ76d0Qt0AD5N7w3VvFGLVOWBqUtU14ujqBnjUvhKA/i0i8NH20zh8MafWddPuj0PPpqFoHG5aA57FwxPxw6FLeLlPY6O3SWkSipQmoUate2/CUaVUYMYDTVBQXIZwX/dat//ssXbIuFGAFlF+RsdHVJNHHnnE4Ru62UqQl+H3JpfbDXruDEtGRERERGQLTMCQZDzNHH9ZEIRaKzqq7QRiRK3ff0e2rnKf9QI9a91Wqag9Nkcgx+Fbkm4nGHzdXfBoh2jMW3vErHKsOUTd6I7RZm/bNyEc4++rb/J2LaL8ajwn5w5oWqlyeVxn0/djTYIg4OF2dSXbf71AD7zcp5FZ2z5xXwwe7xKDxzrXt8mwja3rBWDlEx1EK08QBEzu1gDpm08ZvY2/p6t+KMLj83sbPNe8jh8AQKs17SYyqkM0vtqTgRNX8yo952pCDzlzTEpugEPns3H6Wr5V91ORLee/qUrvBOOGslQoBIzrVB9p3xwCUPNng0Ih6N9/U9zfJBQDzew1Ux1VhR6J3urK30UeM+Ee2KVhsCgxkXPIzs7Gnj17kJmZCa3WsBfGqFGjAABLliyRIjSHFxXgDpfbPWBK2QOGiIiIiGyICRhySDP7NcXhS7vwxH0xUodi0NugKneq2T4Z0xb/3XISxy7nIre46t4Rckx82MrGZ+9Dz7e2il7uwMRILPr5BFrV9RO9bGPp7vlXv7zCgvSRrWwSi9xGsDM3nIpDvoX6WDY00E/P3Ad1NT1gakuq3Bluzl7nzJILpUJAr6ZhOHH17hw3nz+WhNk//I03hiTUsKV1hVl4bjmiGQ80wby1R/BE1xi8/9tpqcOpkqtKgc8ea4dSjRZ+Hub1xiUy1Q8//ICRI0ciLy8PPj4+Bp8LgiDoEzBknuq+I0f6ueNidiG6x4fA9fbwqiez8qDV6hxi2F4iIiIikj8mYMgh1Q/yxJ6Xe1Sq9KzjV/twIrZ25/dit0Yh6NYoBA+8u82o4VycTVyo4bBwE7s2EKXcuoEeODSrJ7zM7JF1R7C3G7Jyi5Ha1LiW43L195xeUocgCoVCwOE5qdBodNUmT2yCiRfx3HMsOzcMwi9pXSUJZcW4dvhqTwZm9mti1vayz6VbEOBjneujd7MwhPuqseHwFZy7XmD0cGBVsdYlZEnPlQdb18F3f1xEs0jjh4mq2Bhj17Tu2HPmBp7++qDZMZD9ee655zBu3Di89tpr8PAwbpg/Mt293/1XP9kRPx+5isGtIvHxtjMAgJOZeXj2m4N4+6GWUoRIRERERE7GfmZeJzJRxR9gK8a1w4T7YvCQCMMYpTQ2vyLJ0TSvUz4/Uksb9x5RKQS81Nu8IaGq4uvuAqWFrSB/fa4r1j3VGZ0bBokUlfHE7Bnl7kATpHu5qcyexJ6cW8X6u6qur/vigrHkkdaV5hcwb1+Ol6SL8HOHIAj4+dmu2PtKCuoH1T6EpyVcbNyKvWNsEH57PhmrJnWsdd3OsZU/E0K91RiQKO6waiR/Fy9exFNPPcXki42F+qjxSPt68HBVYcuJLP3y/x28JGFURERERORMmIAhp3BfXDBe7tNYP/mmJT54tDUWDJZuyBs5+XpCe6yZ3Mkmk4vLnbfaBU0jfKUOw2Syb4kvEX/Pu8MSqZx8iBJrDH3ogDkH2fNzt04ysqbzw1WlQLC35Umq2rw+JAGRfu5W+WxWu1T9vaFeoCfcVDUnrI/N64XPHmsHQPp5fUh6qamp2Ldvn9RhOLUhrepIHQIREREROSEOQWbHPhrVBi+s+hNvDU+UOhSnolAICPWxXoXSU90bYsJn+zFY5EmHrcHDVYXEKD8cu8wh08TgzHP8yI2XmwobnukClUKAysqTvMuZlOdkbfNn2YogAGG+apy+li91KBYZkVQX+87dQHJ8iNX2UdWE9jXxr6aH2pz+TTHr+7+NLic2xBs7Xupu0r6NtXlqMjos+NWsbSUd/pBkp2/fvnj++edx5MgRJCQkwMXF8Pzv37+/RJE5jy4S9FImIiIiImICxo6lNAnF/sYpDjl8ibGWjGyFp78+iLcfSrSoHGtWMppads+mYdj7SgqCvBxlYmDTD64Tn9IOxZrvoy1OkUZhxs/vQI7t3w+2wMw1h/FY5/pSh2I2tYsS/x3Z2qr7MHU+hQ4NAvFE1xjE3zPH131x5s/PIrZwX/nNHUf2afz48QCAuXPnVnpOEARoNBpbh+R0mBQlIiIiIikwAWPnbJ18kaI1dJeGwfj99A24V/GjqXdCOHo2DbN4/g6xJUb54eD5bLO3t8WQLabo1TQMLev6YcH6YxaVY813qUm4bSvLTbkU5NKS/w4OhWM7cruWyTyRfu74eExbqcOQvdgQL5PWFwQB03o3rrxcrICIZESr1UodgtNzu2dIwc3HMtGtkfV6BRIRERERAZwDhiQWcHuehZoqKSfcF4OFD7bApue6Vvm83JIvALDaiIl57cm4zvXxRNcGFpdjbBrClETfoZk9seOl7qzoJllZ+khrjEyqi4fa2vf8SNbK8ZvTeOCRpLpwVSkwuJX8h2c0V4Pg8snquzeuukLQ2ecjIiKyhMc9jbnGLt8rUSRERERE5EzYA4Yk9f2UTvjxr8uI8vfApC8OAACiAtxx/kahfh0XpQJDWstr0szahiRRmFBJJlavIleVdPlUKft3+Hq4wLeaeQRsRayeaPf2lJFbzxkyXq9mYejVLEzqMBxKiI8af89JhYsDz8nz1YT22HD4CgZVMwdYiI/axhFJwxGHoeT93Dm98847mDBhAtRqNd55550a133qqadsFJVjMub7tDPP6UZERERE0mEChiRVx98DE+5rgG3/ZOmXebhY97QUI+HRONwHbw5tjoh7EjH1Az0tL9xEaffH4dD5bDx7f5zN903G4ZBfjsvUIZfIMo6cfAGAEG81RnWIljoMsjJHTDBR1d566y2MHDkSarUab731VrXrCYLABIyNvDW8BZ5deUj/+GZ+Cfw9HWXeRSIiIiKSIyZgiMw0rM3doYW+eaIDdp++XmVPHTHnzamq0iYu1BtP9WgoSvlt6gWYtZ3c6pJ0UkxWRFZh63mujLX2X53x6c6zeK5nvNShiGLmA03wwLvbARgmDJ35UooJ9sStglJEm5BYt/Xx8nUv7/13q7DUtjuuwIlPEaJanTlzpsr/k3QGtayD1348hqzcYgBAKefmISIiIiIrc+ympBZIT09HkyZN0LYtJ921hQA7b3nWrn4A/tWjoSTz0YhRP715ajLm9G+KickxlhdGNuGtZv5cSs0iffHvB1sgzNcxhoRqFumr/z+HSipP/P38bFf8/nIPSYd3rM3+6SnwcnO8e4Ej9hp0xNdEZK8+GXP39x3zL0RERERkbY73q10kkydPxuTJk5GTkwNfX9/aNyCLNI3wxct9GiHc1x3v/XpS6nCcTv0gT9QPsv3waWS+ilV5EX41z0lERKZTKgQoZV5prlIqHL7HHxMX5EguXLiA77//HhkZGSgpKTF4btGiRRJF5XwqNjooLNVIGAkREREROQMmYEg2JtzXAACYgCGnZW49arv65g0d5ygifNW4dKuI87GQ3XB18LlsnNl9DYOx+o+LCPZ2kzoUkplNmzahf//+iImJwbFjx9CsWTOcPXsWOp0OrVq1kjo8p5VdUAKAjZCIiIiIyHpYA0CyI9MpH4hkJe3+OADA8ApzETmTirmqrya0x6gO9QyGFCGSs6gAD4zpGI1/dY+VZOjK2jh2nxrrmjOgKab3bYz/Te5ksJxD+9G0adMwdepU/PXXX1Cr1Vi1ahXOnz+Prl274sEHH5Q6PKf175+OSx0CERERETk49oAhk3DeCeOlNA5BVm4x4sO8pQ5FUj5qF6lDkCVjervUNPTO6I7RSI4PQd0ADxGjEpdgo2xqvUBPzB3QzCb7cj66GpPicU5+f7PE7P5NzdpOIQBaB6/Lr3jO2Vviwlvtgse71Dyfmq3ujSQvR48exVdffQUAUKlUKCwshJeXF+bOnYsBAwZg0qRJEkfonHaeuo7HP92Hj0a3kToUIiIiInJQ7AFDJokK8MD0vo3x76HNpQ7FbFXVe4T4iD9UyEej22LN5E61tm62tHLJlsP/3zl2rer5G71NiI8ai4a1wNJHWjvUSP4VX4ulk3Sbc1wEQUB0kCcU95xf8aHlFeL1AuWbmJHC0z0aAgDmDTCv0psM/fhUFwxrUwfvPtxSlPLaxwSKUo4zGNq6jtQhkEg2PNMF0bxXOw1PT0/9vC/h4eE4deqU/rlr165JFRYB+OXoVfx6rPyPiIiIiEhs7M5AJqutZaelpJhPOMjLDV8+ngR3V6Wo5TpaK9dNaV2x/vAVjO4YbdJ2g1uVVxjmFJUCAGKC7H+sbZVSgWdT4pBXXIpIP3dRyrz33DcnOTewZSTaRvs7fM8EU6+sZ++Pw6Md6iHIi/MyiKFJhA/eHNpClLIWD09EXGjl8/W5++MxdvlePNzOOYfZq47cJqVPuj0HlQxHUpO9RmE+6BQbhLPXM6QOhWygffv22L59Oxo3bow+ffrgueeew19//YXVq1ejffv2Uodn9yxt0DRu+T4AwIEZ9yPA01WMkIiIiIiIADABQ6TXMTZI6hBkLybYC5O7xZq9vY/aBUfmptY6AbW9DDjzdEpDqUOoRBCANtEBUodhsmPzeqHRjA1W3QeTL/IUG+JV5fJujULwx4z74efBYQytbcHgBGw9kYX1h6+YvG1UgAe2vdANvlZ6n6RolEFkDYsWLUJeXh4AYM6cOcjLy8PKlSvRsGFDLFq0SOLoHIelbZ8OX7yF++KCxQmGiIiIiAhMwBCRjXm48rZTHTE6TNlrI3S1i7i9z2xtSrdYvLf5pH6oMxKHv521QrbXTo8Pt6uLh9vVRfRL68zaPkrGc1ERyYFGo8GFCxfQvHn5EL6enp5YunSpxFFRVUYt2wMAOLOgj8P1ZCciIiIiaXAOGCI750y/DUNvz9XTrr799fAg08SHesPdRYmESF+pQzHKcz3jsPX5bnhGhr2iLMHeB6ZJjg9Bg2BPDG4VKXUoFnGXOCFa8XPNUU5BuQ0dR7alVCrRs2dP3Lx5U+pQ6LbezcJqfP7E1TwbRUJEREREjo5N0YnIYraqIPt2Ykf8377zGGXiHDT2gpXdd/34dBeUabVwU9lHzxhBEFCXk2k7PbWLEr+kdbXbVtPzBjTF2j8v4/Eu9aUOxeFYOj8F2b9mzZrh9OnTqF+f15ccPNczrsZhFz/ddRZz+jeFSy3D5hIRERER1YbfKInIbkQFeCCtZ7zdzeVRVV2sndbP2oxSIdhN8oWoIntNvgDAox2isfKJDvBWy2feHZ2DZ6Yd+9VRRfPnz8fUqVOxdu1aXL58GTk5OQZ/ZFs+tdznvtydgU92nLFRNERERETkyJiAIZKYpXVLDl43ZZb+LSIAAJ1iAyWOhIiIiAjo06cPDh06hP79+6NOnTrw9/eHv78//Pz84O/vL3V4TsdLXftAEG//8o8NIiEiIiIiR8chyIjI4YT4qHF0bi+oXUzPMTtDQqvicVEp5NNav0ejEGw6lil1GE6Pc1XYF0e/ZdlzjyKiij755BNERUVBqTTs3anVapGRkSFRVM7LmLmu8ks0NoiEiIiIiBwdEzAkO6xrITG4u9r/8FXWSgb5ebhiTv+mUCoEeLjK52OgSYQPEzAy4+iV+yRPFZMujj4EGb/yOI9x48bh8uXLCAkJMVh+/fp1pKSkYPTo0RJF5pwq3mdSGodixgON8fORq3h/62lk5RYDAOpxbjciIiIiEoF8at6IbnPwuhYiWRjdMVrqEIgA8J5PRM5Bp9NV2aMrLy8ParVagogciyWfJY91ro96gZ54vEsMHu8Sg+iX1gEAzl0vECk6IiIiInJmTMAQ2ZF3H26JRz/eg3kDmmLG//6WOhyHJEUPLNY/ExHdVfE27Cj3R1clp110VmlpaQDKe1zMmDEDHh53e1VoNBrs3r0biYmJEkXneEwZRvPbiR1w/GouOjTgnIFEREREZD1MwFQjPT0d6enp0Gg49i/JR5eGwTj5am+olAqbJmCiOQSDQ7sz90qLKD+pQyEickgxwV54pH1d+Hu4Sh0K2dgff/wBoLwHzF9//QVX17vngKurK1q0aIGpU6dKFZ5TaxMdgDbRAZWWLxvTBuOW7wMAFJVqoDZivhgiIiIiouowAVONyZMnY/LkycjJyYGvr6/U4RDpqe5pRWvNHhu/PZ+M3KIyhPjYdmiMwa0isf/cTZvu05ktGp6I7w9eRJ+EcKlDMR4nTiByCo40RN38gQlSh0AS2Lx5MwBg7NixePvtt+Hj4yNxRFSb5Li78/TcKixlAoaIiIiILMLxEIjsnDUrp+oFeqJZpO0TkA+3rWvzfcqBVJNN+7q74NEO0Qj0cpNk/3eE+XIMfLmJ8neXOgRyQlIMBUlkbZ988gmTL3ZCoRAQdPs70bW8YomjISIiIiJ7xwQMGa1ZJH80km0oFKx9M1cdf/sdLm5YmyiM6RiND0e1kToUp7dqUkekNg3FeyNaWX1fbi78KmIKncPMimIkJ3u5RCQPwd7lCZisXCZgiIiIiMgyHIKMarX75R64nleCeoGeUodCRNX47LF2+CMjG72bhUkditlclArM7t9U6jAIQOt6/nj/Uesmwp67Pw6ZucVoGOJl1f2Q/TFlEm0iIms4ejkHAPD9wUtIjg+pZW0iIiIiouoxAUO1CvVRI9TGc4AQkWm6NAxGl4bBUodBZLR/9WgodQhEREQ1Wv3HRSwanih1GERERERkx5iAIdlxuuFVyGE90TUG//vjEh7vXN+o9e8983klkBw40iToZB8CPF31//d04+TXRFQ7e/ioysotRm5RKWKCHbfn5/EruUhdvBWTkhtg7Z+XoNUCD7WNQvMoP0T6uSPA0xUKAfDzcK29MCIiIiIHwQQMEVnM191F6hBkaVrvxnipVyMInFGaiKzE3cXxEhSuKgX+nN0TAgCVknMEEZHxxPrK9VT3WLzz60kAQJlGa/G9SKfToe2rvwAAVoxrh/vipOu1XFKmxRsbjiHUxw3urirkFJbikfb1LPo+/8zXf2DNwUv6x0u2nNL/f+HPJyqt/7/JnRAd6AkfdxW/JxMREZHDYwKGZIdjv9uf1KZheLB1HbSq5y91KLLDH5Vkb5hQtS/vjWiFPu9sA1CeuHAUPmqeh0Qknb7NI/QJmPWHr6Bfi4hat9FodWjw8o/wcFViYtcGWPTzCfRrEYHTWXn4+1KOfr1Ry/bg7Ot9qy1nxa6zmPm/v/H2Q4kYkBiJnSevYf66o1g+ri1CvNU4nZWHOv4eZt3zi0o1aDRjQ6Xl//7peKWYLmYXotPrv2LmA00w7p7e3FqtDolzNyKnqMzkGABgQPoO/f/n9G+K0R2j9bGlNA7BeyNaQX27gcFnu87ien4JnkmJM2tfRERERFJjAoacTh1/D1zLK5E6DD1zh0xoXscXf128hY6xgaLGYw6lQsC/H2whdRhkZ7zdVMgtNu+HO4nvPw+2wPq/LuPxLsYNmUfy0CTCB2cW9MHOU9cRF+otdThERA4hLvTuMGEnrubWun789PUoLtMCAApKNFh0u9fHD4cuVbl+9Evr8Om4duh6T0+YolINZv7vbwDA018fxNNfH9Q/1+7VTVWWNb1vYzzeJabS8mdXHiz/jj60OQRBQGGJBl3e/LXa1xD90roql89dewSDW0Vi8S//YPnOswCABsGe1SZf5g1shhlrDuPB1nXQo3EovtyTgQeahyMrtxj//ul4pfVnff83Zn3/t/7xL0czq0wSLf7lHwDAS70bYVDLSHirVfBwZXUGERERyR+/sZDTeffhlpi/7ggm3Ff5h4o9WfNkJ5RotPrWYUT25ovxSXjlu8N4uU9jqUMhAENb18HQ1nWkDoPMIAgCOsUGSR0GEZHDqNiD+WpOEco0WmQXliLIy63SukWlGn3yxRSjl+3BMykNkZVbjBFJddE0whc//X3F5HLmrzuK+euO6h8vH9sWYz7Zq3/87f4L+PW5rui+8DeTy74jce7PBo9PZeVXWmfPKz0Q4q0GADzavp5+ea9mYfr/T+4Wi2FLd2HP2Rtmx/L6+mN4ff0xg2VxoV7o3Swc7q5KBHu5oUGIFxKj/MzeBxEREZGYmIAhpxMV4IH3H20jdRgWUygEqBWOn3xpVdd5hjVztsnOm9fxww//6ix1GERERETV+mbfBXyz7wIA4PspndC8jp/B8/e/ZVxi480hzfHCqj8Nlt3p1fHF7gwsfLAF5q87YnG8FZMvd9ybfDk0syd8PcqHejx0PttgSDBTnJjfGzro4KYy/jfJNxM73N3+ai56vrVV//iVPo1xMjMPK/ed1y9LiCzv9V9jHFfzcOLqP1XG50jDcxIREZF9YgKGiGTpt+eTceRSDno2CZU6FJKh4CpaoJJ1cBojIiKici98+yfWP90Fl28V4UZ++ZDG528U1rjN/U1CsXh4IjzdVOifGIFnVx7E+sOVe7o893+H9P9fPrYtvtidgZ+PXMWUbrF4oEU4Nh/LwuoDF/BQu7qYt9b8RE3vZmH65AsAtIjyM5j/pahUg5zCUoT4lPdmqTg02Z3hxQBgy9Rki5MbcaHeOPt6XxSUlMHdRanvefTG0OZVrl/dHDbVlj99PQ7MuB8Bnq4WxUlERERkCSZgiEiW6gV6ol6gp9RhkMx8NKoNruQUoSHnuiAiIiIrWvpIK0z8/IDBsrhQb9Sf9mO127w5tDle+La8l8vKCe0R7uuOSH93KBXliQW1ixJLHmmNm/klaDnv52rL6RoXjOT4EINljcJ8MCm5AQBgZFJdrNh1FsHebnh25aGqisD3Uzrh/d9OY91flwGUz73315zUWl51eYwVhzg++3pfHL54CzmFpegYG2QwvJhYjJ3LRe2iNEgWAYBOp8N3f1xEsLcb1v15GTtOXTNIirW6fZyPzevFoZuJiIhIEkzAEBHJlI/apfaVnEwKe0QRkUT8PHhPJnImSfUDKy37/tClatff9kI3RAV4oFezMGRcL0CzSN9q1/Wv0COje6MQ/Hos0+B5oZbup2oXJSbcV56MGdTy7vxtRaUa5BWX6eeqSR/ZCuk1lmScml6L1ARBwOBW5cegS8Ng/fIFPx7F+1tP6x/f6TnTLT4YU1Pj0TRCvq+JiIiIHAsTMCQ7OjjZRBhEt9177o/pGI29Z29wGDYiIgn958EWOJ2Vh9b1nGdOMiJ7Y4159PxNGLbq30ObIyrAA0B5AxpjEhZnX+8LrVYHhUIwGOZrzys9TA/2tnt7rzizaX0a48LNQn0PoDs2H8/C5uNZAIAgL1d0jg3CW8MTa016ie3Q+WxMX3MYJWVavNS7Ebo1Cql1G51OZ1acx67koNfibQCACffFYFLXBrjvzc3ILS5Dk3AfLB/XFiHe5UPOncrKw0fbzuDKrUL9cbpXbIgXTmbmAQB81Cp8OKoNBEHAd39cRGrTUHSKDcLN/BIEeblBoXDssWx1Oh0OX8xBblEpEur4IqeoDBG+6irfp+IyjUnzJRERkeNgAoaISKbcXZVYNqat1GEQETm1oa3r1L4SEcmC2FW9h2b1xNlr+bVOUv9gmyizyr9TOb15ajK6/WcLZvdroq8IJ8vd6QE0fc1f+Pz3jErPX8srwZqDl7DpaCbeH9Ua7i5KDPrvTv3ze17ugcJSDUJ91Gg26yeUacszfdtf7AaFIECpEBB6e64cnU6H7SevoW6AB67lFaNRmA883VTQaHX44dAlLNtxBvGh3vi//RcqxTF2+d5qX8OZBX3w099XMfHz/dWuExfqhZsFpcjKLYa7ixKFpZpq1/1g62l8UKFn0JHLOWj36qZq16/KneQLAOQUlWH4B7/rH3+1p/JxvuPDUW2QFBMADxcltDro5xC6kV+CU1l58HJT4diVHJzKzEe/FhGID7s75PDF7EI88tFu+Hm4INLPHWv/vIx/D22OQS0joVIqoNHqcC2vGED5XJEKhYCiUg0OX7yF5nX8apyvqEyjxbErueVJVB1w+NIt7Dx1DembTwEAPh3XDuG+amw9kYVSjQ6Nwrwxb+0RnL6WX22ZggBE+LpDq9OhWaQvzlzLx8nMPLSLDkCdAHesPnARrioFkuoH4IHm4ThxNQ86HfBCr3i4qRTYcjwL8WHeiPBzB1Deu02nA/JLyqDV6hDg6QqV0vQ5mMxN4hERkWWYgCGSmjWa7BERkUOydMJjIiIynq+7C1pE+eE/D7bA1P+7O9fKi70aYc0fF5FTVIqdL3W3eD/1gzwrzW1C4pk/MAHzByZAo9XhtxOZGLd8n8HzucVlGPHh7krbtXut6sRE5zc2G7XfphE++PtSjv7xnxdumRB1uZrmHLrjxNW7CZGaki9iclEKKNWY9jt2/Ip9ta9023ubT2JgYgRGJNXD4l9OYOep6/rn/sjIBgA8/+2feP72nEvWNHrZHpO30enKk0YAcPlWkX75nrM3sOds+f9LyrTY9s81bPvnmv75ZTvOmLSfSD93BHi6wlutQm5RGUpvJ5PuEITyXnm3Ckur3F6pEBDk5YoIP3fU8fdAg2BPhPqoEeHnDpVCwJlr+biRX4Jz1wtQptXCRalA+O0ePrtPX8d9ccG4lF2IEG814kK98Nnv55BbVIZOsUGIC/WCr7sL6gZ4wNfDpcrkckFJGQ6cy0aEnxoxwV6VnjtzLR/1gzzh4apyuORRqUaL8zcKUFiqgZ+Ha7U9p4jIMTABQ0RENvHhqDZSh0Bk957uEYfdp29geFvzWlsTEZHpBreMNEjATEpugEnJDSSMiMyhVAjo3ihUn+zSanWIebn2BIe5KiZf7pXSOATvP9oGGq0OcdPXWy0GAFj6SCukNg2DIAjIKy7DpexC1Av0gJtKiYKSMsxfdxRf7s5AatNQDG0dhZTGIUZXBOt0Onyw9TQ8XJV4pH09bDmehTKtDiqlgGXbz6BRmDd+O5FlkCQy1pqDl7DmYPXzLlmTm0qBOv7uOJVVdS+XSD93+Hm4YGBiJAa1ioSXmwoXbhZAIQh4cdWfyC0qg5tKgYISDe5vEoowXzViQ7zwR0Y2fjuRhT1nbgAAFAJwX1wwbhaU4tD5bJPjvJhdqE/0VEWnQ7XJFwDQaHW4mlOMqznF+sSWKXbffh33+uti5WRj/SBPuKkUUAgCruYUIaeotFISL8jLDTHBnvrjU5GrSoF6AR5oFumLMq0OAR4u2HbyGjrEBOLwpRzkFZUiM6cYglB+rWt1QE5RKXzdXdAg2Avt6gcgNtgLV3KKkFNYihAfNYK8XFFQosHeszdQqtEh7/b61/NLcKuwFGE+ahSWauCtViErtxguSgVCfdRoHO6NizcLUVCigadbeXLo8KUc/HXxFmY80ARuKgXcXZTILSrDqaw8uKoUyC4owfkbhdBodTh7PR9XcooqtcWtG+CBeoEe6NAgEEn1A1FYokGHBoFQVjOUX05RKW4VlKKOv3uN16ylySudTodreSXIKSrFmax8nMrKw8XsQn2v0xsFpSgu1cDfwxWR/u6ICnCHr7sL8os10Op0qB/kiTAfNQpKNDh/s6C8B5xSgZZ1/eCmUiC3uAxnr+VDpwPcXBRQKRTIyi3GzYISKAQg3Ncd3moVbuSX4MLNQtwqLIVCAOLDfKBUCNBodfDzcEGYrxq3CkqhUAjILy6DQhCQU1SKMo0OJWVauLsqEB/mA4UAXM0pxqXsQmTmFuFSdhFclQr4e7rCy02FAE9XeLgqERNcnvzLLSqFu4sSSoUAnQ4o0+oMGsVptTpodToUlWmRV1QGV5UCAZ6u0Ol0uJFfghv5JcgrLgNQfo5HBXggt6gU2QWlcFMpkJlbDK1OBw9XJYpKtVDfPga5RWXw93RBgKcrcovKoNXpEOjp5rAN8nQ6HYrLtLhZUIIQb3W15729YgKGZEcQffAAIvvQMMQbV3OKpQ7DKr6f0gnN6/hJHQaR3Qv2dsPPaV2lDoOIyKlUnMeib/NwCSMhMSkUAk691geHL97C5VtFuJRdiEc71IOLUoGPtp3G/HVH8VT3WJy6lo8HEsLROyEcG/++ggmf7YefhwviQ70NKqCn922M+euOIql+gMHytx9KRP8WESgu06JUo4W32kX/nFIhVNv7afmOM1j08wl8MrYtWtcLqPZ1VFW5Wl2Fq5ebCnGhd4f28nBV4bVBCXhtUELtB6wKgiDgia53k5EV57LpFl/+/1f6lg/zdfpaPnKLSuGiVGDe2iO4lleCM9fy8ebQ5hjWJgparQ55JWXwdlNh+c6zmPPDEQDl88zU8ffAyifaGxy7m/klOJBxE//dcgr+Hq54rHN9hPuq8felHJRptQj2dkNMkBd+PZaJVQcuQCEAAZ6u+Onvqwav4YVe8RjXqT4u3CxAYYkWDUO9DOZSKi7TQKstHx66TKPFzYJSBHu7VToWsSHlx/X/Jnas9nh1bBCEyd1iq3xOp9Ph9fXHcCDjJuYPTIAglM8V5KJUIC7UG5eyC9E8yhdqFyV2nbqO01n5yC4swbXcEpy/WQCdTofOscEI83WDIJTXqriqFPBWq3DuegESIn2RW1QGCOX72nwsCyv3nUeErxpqFyVOZ+WjRKOt8N4Cod5qtKrnB0EQEO5TXiF6+lo+Nh29Cq0O6BQbiIYh3lj312X43K4grxvgAZVSgfziMtwqLNX3ADpTw5Btd1zLK9YPJXevkjIt/snMwz+Zhsm809Ukye7ILijF/nM3sf/czVr3f68/UXWvte/+qH6bGWsOG12+SiHAw1WJvOIyaHVAxo0CZNwoMOgVpRCAxuE+CPJyg0arw63CUly4WQC1i9KgdxUAhPuqoRAEXMwuRLivWv+e7zl7AxqtDnUDPODv4YLoIE+UarTw83CFj9oFPu4q5BeX6RMc0YGecFUpcPFmIS7dKkRmTjGu5BTdG77FBKE82VlUqq19ZRkQhLsD2IT6uMHTrfy43cwvNbh2ACDMR40SjRY38ksqlXMnaWQuPw8XeKtViAnygp+HCzxclYjwdYe7qxJ1/D2gEMp7Q2YXlKKgRAOF8P/s3XlclWX+//H3OeyLgKhspoGJO+KOaJNOUpCWUlbq2KBmUo1mDmnlTGraolmaYznZZtZ3LMsWf2Xm5JikJYO7jllmhpIji0twxIXt3L8/GE+eAAU6cEBez8fjfsi57s99n899dQ9zLj7num7pfLFVOafPq7DY+r//XZ6Tl5uLWgd6K9jfU4ZRttSh1TD+NzvrnPy8XNXC10PNfT3k4WbWz2eLVWo15Pq/z0SGyvrDMAxlnDijEwWF8nZ3VVGpVYUlVpVarQpu4qkSq6Hc04XKtZzXueJSmVQ2wzjIz1Nmk3Qwp0CFJdZyfRjo466olv7y8XCR2WSSu6tZvh6uOltUqqM/n5VhSFbDkEllS4K+k9y3xn1aFyjAAIATVLTy3II7o/XcPw8oKTa8zvOpbWamUwMAgAbsx6cHKz3jlLq3DnB2KnAgF7NJ0a0CFP2riaX3/K6N7vldm3LxN3YOueRycRcfU1Ritfumsqebi90f9i9nbP8Ije0fcdm4igot9W0pI9f/FREuqKhIYTab5Pe/Asu4/hEaExuuolJrpX3W1MddgzoGa1DHYLv28OY+dq//ENNaf4hpfdkcLxRQfs3D9Zf3d3UxV1h8cQSTyaTpgzvatV3cZ53C/Gw/x3cO+c3vd32HYD2R2OU3n0eSHh/a+ZL7d2X+bCucNPNxl9lsUoCXm64J8lUTD1cVFJboy++P69SZIjXxdNV32ad1Y6cQdW8VoAM5p1VqNXT057PKsRTqm2P5em972bOU4joGKTK4ido095Gbi1mnzhTJzcUkmUy65n/3gauLWf/8Jls7M39W5smzcnUx6YZOwfrp1DmdKSxRsdVQj9YBCvHz1NzPvtPvIpvrqqZecv/ff+tSq+TqYtLZohJZzpXo+5zTcnMxy9PNRR1Dm8jyvyLT5/tz1L11gAK93WU1DJ0tKpW7q1nNfT1UVGpVm+Y+CvX3kiFDAV5lf1i+qqmXzGaTCktK9eWB48o7VyzLuWJ9+p8s24wkq1HZbLryM5suLshk5Z8vV6ApK/BIey6zHOLFBaCLmUxSUBMPdQ7zV4eQJjpfbFWJ1ariUkPXtPDRsbzz+vlskY7+fFYFhWV/+P/mmEWuZpMMlT2nLaJ5WXHn+OlC5Z4utBVfvN1d5OPhKqvV0MkzRWrm464gP09l55/Tz2eL5eZiss2waertroLzJcq2nFep1ZCL2aSTBYU6879ig9lkkq9n2TO4TJIKS8p+j5SUWnWmqGyZRg9Xs1oFequFr4dC/MuKBCdOF+pscakO5pxWibVs1szFLv4bTtkXZ8sXCy8UVy4uWPl7lRVJCkvKCjIXii/uLmYVlVoV4O0mF1PZc6vcXc06U1QqwzDk7mK25etiLiuqllgN5Z0tmz3z06nKZ79V1fYaFCarY58qngl6pqhUx/IrLupdKHSdOlOkL78/XqX38XA11/tlCinAAICTXfi/iGA/Tz17R7RTcwEAAEB5ZrNJsdc0c3YaaECu1GVi6orZbJKnueoFK9Rf3Vs3VffWTSvd38TTTTd3DatwX8fQssJTl5b+trb5t1dvzNwnovIZZBe7eDZXXfJwddGNFxXVLhRyzxeX6svvj+tgzmk19/VQcalVVkPy8XBVeDNvtQspK9DtO5qvn8+WLcvl6e6igvMlOnLyjDxcXeTp7qLurQJkOV+sM4Wl+vls2ZJYP58t0tnCUp0pLLEtpebpVrbE2pmiEhWcL1GO5byuCfJVTESgYiKayd3VLDcXx/xeMwxDR06eVXGpVWEBXvLxcLXbd/Ef0g3DkGHYz0at6Hx5Z4sV4F1WxK3oD/FWq6EzRWVLgXm5ucj1EtdiGGWzjfLOFqupj7sKi0tlqOzZPW4uZuVYzutsUamtcOTl5qKm3u7ydDPLcq5Eh06UFRw7hfrZFZHPFJbo+OlC+Xq6qpmPe6W5XpzHqTNF8vFwlbuLWfnninW8oFDHTxfqxxNnZDlXrGN551RSaujU2SKdLCi05eXr6aagJh4qKrHKx8NVfl6u8nV3la+nq1o08dDp82WznrLzz8vFbLLNMvFwLXvW07niUuWeLlTmybNycykrarmYTGUz7ExlqxeZTGUzHAN9PBQZ7KvCklK5mM1ydyk734mCshlAof6e/5u54yYXs8n2vqVGWfHO38ut7P8zDamZr4dyLGUFxP3H8lVUashqNXT6fLHOl1jl5eaiiOY+KrUaKjUMebm5KOR/s3jqcf2FAkxllixZoiVLlqi0tG4eYgcAAAAAAAAAnm4uiu8cctkZT/3aNq+jjBzHZDKVm6128b5fv77cH9ZNJpOa/q+gURmz2WS3jOHlzhfg7a4A7/+d08v+uGA/z0qP9fd2U49KCo4+Hq52xaaq5NHM95dZd0193NXUx13tgpuofwP8735BRCX/7S8IC/BSWICXel5deeG2oeErGZWYOHGi9u/fr23btjk7lUbHUM3XQgQAAGgoOoRUvNwJAAAAAODKQAEGcDLKTY1TfZ4aCQCoG6P6tNajN3XQx5P6OzsVNDBLlixReHi4PD09FRMTo61bt1YaO3DgwP99e9R+GzLkl+dYGIahmTNnKjQ0VF5eXoqLi9PBgwfr4lIcgi9wAQAAoL6iAAMAF2Gt5tph8HcRACjH1cWs+wZco65XBTg7FTQg7777rlJSUjRr1izt3LlT0dHRio+PV25uboXxH374obKysmzbvn375OLiojvuuMMWM3/+fC1evFhLly5Venq6fHx8FB8fr/PnK35Aan3FF1wAAABQ3/CXRgC4SM/WTTUkKlQTf193D+CjNgEAAKpq4cKFmjBhgsaNG6dOnTpp6dKl8vb21rJlyyqMDwwMVEhIiG1bv369vL29bQUYwzC0aNEiPfbYYxo2bJi6du2qt956S8eOHdPq1avr8MoAAACAKw8FGAC4iNls0pLRPTQtvoOzUwEAALBTVFSkHTt2KC4uztZmNpsVFxentLS0Kp3j9ddf18iRI+XjU/YA1IyMDGVnZ9ud09/fXzExMZWes7CwUBaLxW4DAAAAUB4FGAAAAABoAE6cOKHS0lIFBwfbtQcHBys7O/uyx2/dulX79u3TPffcY2u7cFx1zjl37lz5+/vbtlatWlX3UgAAAIBGgQIMAAAAADQCr7/+uqKiotSnT5/fdJ7p06crPz/ftv30008OyhAAAAC4slCAAQAAAIAGoHnz5nJxcVFOTo5de05OjkJCQi557JkzZ7Ry5UqNHz/erv3CcdU5p4eHh/z8/Ow2AAAAAOVRgEG9Y5LJ2SnUKT9PN2enAAAAgAbA3d1dPXv21IYNG2xtVqtVGzZsUGxs7CWPXbVqlQoLC3XXXXfZtUdERCgkJMTunBaLRenp6Zc9JwAAAIBLc3V2AsCvGTKcnUKdmHdblLZmnNLNXUOdnQoAAAAaiJSUFI0ZM0a9evVSnz59tGjRIp05c0bjxo2TJCUlJally5aaO3eu3XGvv/66EhMT1axZM7t2k8mkKVOm6Mknn1RkZKQiIiI0Y8YMhYWFKTExsa4u67dpHMMHAAAANEAUYAAnGdmntUb2ae3sNAAAANCAjBgxQsePH9fMmTOVnZ2tbt26ad26dQoODpYkZWZmymy2X+jgwIED+uqrr/T5559XeM6HH35YZ86cUXJysvLy8nTttddq3bp18vT0rPXrcaTGNpMeAAAA9R8FGAAAAABoQCZNmqRJkyZVuC81NbVcW/v27WUYlU8TMZlMmjNnjubMmeOoFAEAAACIZ8AAAOpAWEDD+gYtAAAAAAAA8FsxAwYAUGu+eGiAzhaVqpmvh7NTQQ018XRzdgoAAAAAAAANEgUYAECtadPC19kp4DcaExuutEMndWPnYGenAgAAAAAA0KBQgAEAAJXycnfRm3f3cXYaAAAAAAAADQ7PgAEAAAAAAAAAAHAwCjCodwzD2RkAAAAAAAAAAPDbUIABAAAAADRYfH8LAAAA9RUFGNQ7JpOzMwAAAADQ0DCOAAAAQH1DAQYAAAAAAAAAAMDBKMAAAAAAAAAAAAA4GAUYAAAAAAAAAAAAB6MAAwAAAAAAAAAA4GAUYAAAAAAAAAAAAByMAgwAAAAAAAAAAICDUYBBvWMYzs4AAAAAQENhMIAAAABAPUUBBgAAAAAAAAAAwMEowAAAAAAAAAAAADgYBZhKLFmyRJ06dVLv3r2dnQqAK5CXm4vtZ1ezyYmZAAAAAAAAAKgNrs5OoL6aOHGiJk6cKIvFIn9/f2en06iY+Fs0GoFmvh6aPbSz3FzM8ryoGAMAAAAAAADgykABBgCcZEy/cGenAAAAAAAAAKCWsAQZAAAAAAAAAACAg1GAAQAAAAAAAAAAcDAKMKh3DMPZGQAAAAAAAAAA8NvwDBgAAIB6yjAMlZSUqLS01Nmp4Arj4uIiV1dXmUwmZ6cC/GZ8fwsAAAD1FQUYAACAeqioqEhZWVk6e/ass1PBFcrb21uhoaFyd3d3diqAQ1BQBAAAQH1DAQYAAKCesVqtysjIkIuLi8LCwuTu7s4fFuEwhmGoqKhIx48fV0ZGhiIjI2U2szIxAAAAADgaBRgAAIB6pqioSFarVa1atZK3t7ez08EVyMvLS25ubjpy5IiKiork6enp7JQAAAAA4IrDV90AAADqKWYloDZxfwEAAABA7WLUBQAAAAAAAAAA4GAUYFDvsMQ9AAAAAAAAAKChowADAACAeik8PFyLFi1yyLlSU1NlMpmUl5fnkPMBAAAAAHA5FGBQ7xiGszMAAAA1NXDgQE2ZMsUh59q2bZuSk5Mdcq6G4PHHH1e3bt2cnQYAAAAAwEFcnZ0AAAAAGg/DMFRaWipX18t/DG3RokUdZASgoeMLXAAAAKivmAEDAADQABiGobNFJU7ZjCr+dXPs2LH68ssv9be//U0mk0kmk0nLly+XyWTSZ599pp49e8rDw0NfffWVDh06pGHDhik4OFi+vr7q3bu3/vWvf9md79dLkJlMJr322mu69dZb5e3trcjISH388cc17tMPPvhAnTt3loeHh8LDw7VgwQK7/X//+98VGRkpT09PBQcH6/bbb7fte//99xUVFSUvLy81a9ZMcXFxOnPmzGXfMzU1VX369JGPj48CAgLUv39/HTlyRMuXL9fs2bO1Z88eu76TpLy8PN1zzz1q0aKF/Pz8dP3112vPnj22c16YOfPyyy+rVatW8vb21p133qn8/Pwa9w3QEPEoSQAAANQ3zIABAABoAM4Vl6rTzH865b33z4mXt/vlPzb+7W9/0/fff68uXbpozpw5kqRvvvlGkvToo4/queeeU5s2bdS0aVP99NNPGjx4sJ566il5eHjorbfe0i233KIDBw6odevWlb7H7NmzNX/+fD377LN64YUXNHr0aB05ckSBgYHVuqYdO3bozjvv1OOPP64RI0Zoy5Yt+tOf/qRmzZpp7Nix2r59uyZPnqz/+7//U79+/XTq1Clt3rxZkpSVlaVRo0Zp/vz5uvXWW3X69Glt3rz5soWqkpISJSYmasKECXrnnXdUVFSkrVu3ymQyacSIEdq3b5/WrVtnK0T5+/tLku644w55eXnps88+k7+/v15++WUNGjRI33//ve26f/jhB7333nv65JNPZLFYNH78eP3pT3/SihUrqtUvAAAAAADHoQADAAAAh/D395e7u7u8vb0VEhIiSfruu+8kSXPmzNENN9xgiw0MDFR0dLTt9RNPPKGPPvpIH3/8sSZNmlTpe4wdO1ajRo2SJD399NNavHixtm7dqoSEhGrlunDhQg0aNEgzZsyQJLVr10779+/Xs88+q7FjxyozM1M+Pj66+eab1aRJE1199dXq3r27pLICTElJiW677TZdffXVkqSoqKjLvqfFYlF+fr5uvvlmXXPNNZKkjh072vb7+vrK1dXV1neS9NVXX2nr1q3Kzc2Vh4eHJOm5557T6tWr9f7779uekXP+/Hm99dZbatmypSTphRde0JAhQ7RgwQK78wEAAAAA6g4FGAAAgAbAy81F++fEO+29f6tevXrZvS4oKNDjjz+uTz/91FbQOHfunDIzMy95nq5du9p+9vHxkZ+fn3Jzc6udz7fffqthw4bZtfXv31+LFi1SaWmpbrjhBl199dVq06aNEhISlJCQYFv6LDo6WoMGDVJUVJTi4+N144036vbbb1fTpk0v+Z6BgYEaO3as4uPjdcMNNyguLk533nmnQkNDKz1mz549KigoULNmzezaz507p0OHDtlet27d2lZ8kaTY2FhZrVYdOHCAAgwAAAAAOAnPgAEAAGgATCaTvN1dnbKZTL/9yQo+Pj52r6dOnaqPPvpITz/9tDZv3qzdu3crKipKRUVFlzyPm5tbuX6xWq2/Ob9fa9KkiXbu3Kl33nlHoaGhmjlzpqKjo5WXlycXFxetX79en332mTp16qQXXnhB7du3V0ZGxmXP+8YbbygtLU39+vXTu+++q3bt2unf//53pfEFBQUKDQ3V7t277bYDBw5o2rRpjrxkAAAAAICDUYABAACAw7i7u6u0tPSycV9//bXGjh2rW2+9VVFRUQoJCdHhw4drP8H/6dixo77++utyObVr104uLmUzflxdXRUXF6f58+dr7969Onz4sL744gtJZYWf/v37a/bs2dq1a5fc3d310UcfVem9u3fvrunTp2vLli3q0qWL3n77bUkV912PHj2UnZ0tV1dXtW3b1m5r3ry5LS4zM1PHjh2zvf73v/8ts9ms9u3bV79zAAAAAAAOwRJkqHea+brrYPVXEgEAAPVAeHi40tPTdfjwYfn6+lY6OyUyMlIffvihbrnlFplMJs2YMaNWZrJU5qGHHlLv3r31xBNPaMSIEUpLS9OLL76ov//975KkNWvW6Mcff9R1112npk2bau3atbJarWrfvr3S09O1YcMG3XjjjQoKClJ6erqOHz9u9zyXimRkZOiVV17R0KFDFRYWpgMHDujgwYNKSkqSVNZ3GRkZ2r17t6666io1adJEcXFxio2NVWJioubPn6927drp2LFj+vTTT3Xrrbfalnbz9PTUmDFj9Nxzz8lisWjy5Mm68847WX4MAAAAAJyIGTCod569PVp92wRq2dhelw8GAAD1ytSpU+Xi4qJOnTqpRYsWlT7TZeHChWratKn69eunW265RfHx8erRo0ed5dmjRw+99957Wrlypbp06aKZM2dqzpw5Gjt2rCQpICBAH374oa6//np17NhRS5cu1TvvvKPOnTvLz89PmzZt0uDBg9WuXTs99thjWrBggW666aZLvqe3t7e+++47DR8+XO3atVNycrImTpyoe++9V5I0fPhwJSQk6Pe//71atGihd955RyaTSWvXrtV1112ncePGqV27dho5cqSOHDmi4OBg27nbtm2r2267TYMHD9aNN96orl272opJwJWuua+Hwpt5y8/L7fLBAAAAQB0yGYZhODuJ+sxiscjf31/5+fny8/NzdjoAAKAROH/+vDIyMhQRESFPT09np4N67vHHH9fq1au1e/fuah1X2X3G519UF/cMAAAAGpuqfgZmBgwAAAAAAAAAAICDUYABAABAg3fffffJ19e3wu2+++6rszwqy8HX11ebN2+uszwAAAAAAM7HEmSXwXR6AABQ11iCrPpyc3NlsVgq3Ofn56egoKA6yeOHH36odF/Lli3l5eVVJ3lUBUuQwVG4ZwAAANDYVPUzsGsd5gQAAADUiqCgoDorslxK27ZtnZ0CAAAAAKCeYAkyAACAeoqJyqhN3F8AAAAAULsowAAAANQzbm5ukqSzZ886ORNcyS7cXxfuNwAAAACAY7EEGQAAQD3j4uKigIAA5ebmSpK8vb1lMpmcnBWuFIZh6OzZs8rNzVVAQIBcXFycnRIAAAAAXJEowAAAANRDISEhkmQrwgCOFhAQYLvPAAAAAACORwEGAACgHjKZTAoNDVVQUJCKi4udnQ6uMG5ubsx8AQAAAIBaRgEGAACgHnNxceEP5QAAAAAANEBmZycAAAAAAAAAAABwpaEAAwAAAAAAAAAA4GAUYAAAAAAAAAAAAByMZ8BchmEYkiSLxeLkTAAAAIDad+Fz74XPwcDlMGYCAABAY1PVcRMFmMs4ffq0JKlVq1ZOzgQAAACoO6dPn5a/v7+z00ADwJgJAAAAjdXlxk0mg6+2XZLVatWxY8fUpEkTmUymOn9/i8WiVq1a6aeffpKfn1+dv39jQB/XDfq59tHHdYN+rn30ce2jj+tGQ+1nwzB0+vRphYWFyWxmxWJcHmOmxoF+rn30cd2gn2sffVz76OO6QT/Xvobcx1UdNzED5jLMZrOuuuoqZ6chPz+/BncTNjT0cd2gn2sffVw36OfaRx/XPvq4bjTEfmbmC6qDMVPjQj/XPvq4btDPtY8+rn30cd2gn2tfQ+3jqoyb+EobAAAAAAAAAACAg1GAAQAAAAAAAAAAcDAKMPWch4eHZs2aJQ8PD2encsWij+sG/Vz76OO6QT/XPvq49tHHdYN+BuoG/1urG/Rz7aOP6wb9XPvo49pHH9cN+rn2NYY+NhmGYTg7CQAAAAAAAAAAgCsJM2AAAAAAAAAAAAAcjAIMAAAAAAAAAACAg1GAAQAAAAAAAAAAcDAKMAAAAAAAAAAAAA5GAaYeW7JkicLDw+Xp6amYmBht3brV2SnVW3PnzlXv3r3VpEkTBQUFKTExUQcOHLCLGThwoEwmk91233332cVkZmZqyJAh8vb2VlBQkKZNm6aSkhK7mNTUVPXo0UMeHh5q27atli9fXtuXVy88/vjj5fqvQ4cOtv3nz5/XxIkT1axZM/n6+mr48OHKycmxOwf9e3nh4eHl+tlkMmnixImSuI9rYtOmTbrlllsUFhYmk8mk1atX2+03DEMzZ85UaGiovLy8FBcXp4MHD9rFnDp1SqNHj5afn58CAgI0fvx4FRQU2MXs3btXv/vd7+Tp6alWrVpp/vz55XJZtWqVOnToIE9PT0VFRWnt2rUOv15nuVQ/FxcX65FHHlFUVJR8fHwUFhampKQkHTt2zO4cFd3/8+bNs4tpzP18uXt57Nix5fovISHBLoZ7+dIu18cV/X42mUx69tlnbTHcx0DdY9xUNYyZ6gbjptrHmKl2MG6qfYyZah9jprrBuKmaDNRLK1euNNzd3Y1ly5YZ33zzjTFhwgQjICDAyMnJcXZq9VJ8fLzxxhtvGPv27TN2795tDB482GjdurVRUFBgixkwYIAxYcIEIysry7bl5+fb9peUlBhdunQx4uLijF27dhlr1641mjdvbkyfPt0W8+OPPxre3t5GSkqKsX//fuOFF14wXFxcjHXr1tXp9TrDrFmzjM6dO9v13/Hjx23777vvPqNVq1bGhg0bjO3btxt9+/Y1+vXrZ9tP/1ZNbm6uXR+vX7/ekGRs3LjRMAzu45pYu3at8de//tX48MMPDUnGRx99ZLd/3rx5hr+/v7F69Wpjz549xtChQ42IiAjj3LlztpiEhAQjOjra+Pe//21s3rzZaNu2rTFq1Cjb/vz8fCM4ONgYPXq0sW/fPuOdd94xvLy8jJdfftkW8/XXXxsuLi7G/Pnzjf379xuPPfaY4ebmZvznP/+p9T6oC5fq57y8PCMuLs549913je+++85IS0sz+vTpY/Ts2dPuHFdffbUxZ84cu/v74t/jjb2fL3cvjxkzxkhISLDrv1OnTtnFcC9f2uX6+OK+zcrKMpYtW2aYTCbj0KFDthjuY6BuMW6qOsZMdYNxU+1jzFQ7GDfVPsZMtY8xU91g3FQ9FGDqqT59+hgTJ060vS4tLTXCwsKMuXPnOjGrhiM3N9eQZHz55Ze2tgEDBhgPPvhgpcesXbvWMJvNRnZ2tq3tpZdeMvz8/IzCwkLDMAzj4YcfNjp37mx33IgRI4z4+HjHXkA9NGvWLCM6OrrCfXl5eYabm5uxatUqW9u3335rSDLS0tIMw6B/a+rBBx80rrnmGsNqtRqGwX38W/36g4HVajVCQkKMZ5991taWl5dneHh4GO+8845hGIaxf/9+Q5Kxbds2W8xnn31mmEwm47///a9hGIbx97//3WjatKmtjw3DMB555BGjffv2ttd33nmnMWTIELt8YmJijHvvvdeh11gfVPQB7Ne2bt1qSDKOHDlia7v66quN559/vtJj6OdfVDaYGDZsWKXHcC9XT1Xu42HDhhnXX3+9XRv3MVC3GDfVHGOm2sG4qe4xZnI8xk21jzFT7WPMVDcYN10eS5DVQ0VFRdqxY4fi4uJsbWazWXFxcUpLS3NiZg1Hfn6+JCkwMNCufcWKFWrevLm6dOmi6dOn6+zZs7Z9aWlpioqKUnBwsK0tPj5eFotF33zzjS3m4v8uF2Iay3+XgwcPKiwsTG3atNHo0aOVmZkpSdqxY4eKi4vt+qZDhw5q3bq1rW/o3+orKirSP/7xD919990ymUy2du5jx8nIyFB2drZdf/j7+ysmJsbu3g0ICFCvXr1sMXFxcTKbzUpPT7fFXHfddXJ3d7fFxMfH68CBA/r5559tMfT7L/Lz82UymRQQEGDXPm/ePDVr1kzdu3fXs88+a7cUBP18eampqQoKClL79u11//336+TJk7Z93MuOlZOTo08//VTjx48vt4/7GKgbjJt+G8ZMtYdxU91hzFQ3GDc5B2Om2sGYqW4xbpJcnZ0Ayjtx4oRKS0vtPgxIUnBwsL777jsnZdVwWK1WTZkyRf3791eXLl1s7X/4wx909dVXKywsTHv37tUjjzyiAwcO6MMPP5QkZWdnV9jnF/ZdKsZisejcuXPy8vKqzUtzqpiYGC1fvlzt27dXVlaWZs+erd/97nfat2+fsrOz5e7uXu5DQXBw8GX77sK+S8U0hv6tyOrVq5WXl6exY8fa2riPHetCn1TUHxf3V1BQkN1+V1dXBQYG2sVERESUO8eFfU2bNq203y+cozE5f/68HnnkEY0aNUp+fn629smTJ6tHjx4KDAzUli1bNH36dGVlZWnhwoWS6OfLSUhI0G233aaIiAgdOnRIf/nLX3TTTTcpLS1NLi4u3MsO9uabb6pJkya67bbb7Nq5j4G6w7ip5hgz1R7GTXWLMVPdYNxU9xgz1Q7GTHWPcRMFGFyBJk6cqH379umrr76ya09OTrb9HBUVpdDQUA0aNEiHDh3SNddcU9dpNjg33XST7eeuXbsqJiZGV199td57771G9+Gzrrz++uu66aabFBYWZmvjPkZDV1xcrDvvvFOGYeill16y25eSkmL7uWvXrnJ3d9e9996ruXPnysPDo65TbXBGjhxp+zkqKkpdu3bVNddco9TUVA0aNMiJmV2Zli1bptGjR8vT09OunfsYQEPAmKn2MG6qW4yZcCVizFR7GDPVPcZNEkuQ1UPNmzeXi4uLcnJy7NpzcnIUEhLipKwahkmTJmnNmjXauHGjrrrqqkvGxsTESJJ++OEHSVJISEiFfX5h36Vi/Pz8Gt2H6YCAALVr104//PCDQkJCVFRUpLy8PLuYi+9Z+rd6jhw5on/961+65557LhnHffzbXOiTS/2+DQkJUW5urt3+kpISnTp1yiH3d2P6vX5hIHHkyBGtX7/e7ptcFYmJiVFJSYkOHz4siX6urjZt2qh58+Z2vx+4lx1j8+bNOnDgwGV/R0vcx0BtYtxUM4yZ6hbjptrDmKnuMG6qO4yZ6hZjptrFuKkMBZh6yN3dXT179tSGDRtsbVarVRs2bFBsbKwTM6u/DMPQpEmT9NFHH+mLL74oN0WtIrt375YkhYaGSpJiY2P1n//8x+4X7YX/s+vUqZMt5uL/LhdiGuN/l4KCAh06dEihoaHq2bOn3Nzc7PrmwIEDyszMtPUN/Vs9b7zxhoKCgjRkyJBLxnEf/zYREREKCQmx6w+LxaL09HS7ezcvL087duywxXzxxReyWq22wVxsbKw2bdqk4uJiW8z69evVvn17NW3a1BbTmPv9wkDi4MGD+te//qVmzZpd9pjdu3fLbDbbpoDTz9Vz9OhRnTx50u73A/eyY7z++uvq2bOnoqOjLxvLfQzUHsZN1cOYyTkYN9Uexkx1h3FT3WDMVPcYM9Uuxk3/Y6BeWrlypeHh4WEsX77c2L9/v5GcnGwEBAQY2dnZzk6tXrr//vsNf39/IzU11cjKyrJtZ8+eNQzDMH744Qdjzpw5xvbt242MjAzj//2//2e0adPGuO6662znKCkpMbp06WLceOONxu7du41169YZLVq0MKZPn26L+fHHHw1vb29j2rRpxrfffmssWbLEcHFxMdatW1fn11zXHnroISM1NdXIyMgwvv76ayMuLs5o3ry5kZubaxiGYdx3331G69atjS+++MLYvn27ERsba8TGxtqOp3+rrrS01GjdurXxyCOP2LVzH9fM6dOnjV27dhm7du0yJBkLFy40du3aZRw5csQwDMOYN2+eERAQYPy///f/jL179xrDhg0zIiIijHPnztnOkZCQYHTv3t1IT083vvrqKyMyMtIYNWqUbX9eXp4RHBxs/PGPfzT27dtnrFy50vD29jZefvllW8zXX39tuLq6Gs8995zx7bffGrNmzTLc3NyM//znP3XXGbXoUv1cVFRkDB061LjqqquM3bt32/2eLiwsNAzDMLZs2WI8//zzxu7du41Dhw4Z//jHP4wWLVoYSUlJtvdo7P18qT4+ffq0MXXqVCMtLc3IyMgw/vWvfxk9evQwIiMjjfPnz9vOwb18aZf7fWEYhpGfn294e3sbL730UrnjuY+Buse4qeoYM9UNxk11gzGT4zFuqn2MmWofY6a6wbipeijA1GMvvPCC0bp1a8Pd3d3o06eP8e9//9vZKdVbkirc3njjDcMwDCMzM9O47rrrjMDAQMPDw8No27atMW3aNCM/P9/uPIcPHzZuuukmw8vLy2jevLnx0EMPGcXFxXYxGzduNLp162a4u7sbbdq0sb3HlW7EiBFGaGio4e7ubrRs2dIYMWKE8cMPP9j2nzt3zvjTn/5kNG3a1PD29jZuvfVWIysry+4c9G/V/POf/zQkGQcOHLBr5z6umY0bN1b4+2HMmDGGYRiG1Wo1ZsyYYQQHBxseHh7GoEGDyvX9yZMnjVGjRhm+vr6Gn5+fMW7cOOP06dN2MXv27DGuvfZaw8PDw2jZsqUxb968crm89957Rrt27Qx3d3ejc+fOxqefflpr113XLtXPGRkZlf6e3rhxo2EYhrFjxw4jJibG8Pf3Nzw9PY2OHTsaTz/9tN0HYcNo3P18qT4+e/asceONNxotWrQw3NzcjKuvvtqYMGFCuT9Aci9f2uV+XxiGYbz88suGl5eXkZeXV+547mPAORg3VQ1jprrBuKluMGZyPMZNtY8xU+1jzFQ3GDdVj8kwDKOms2cAAAAAAAAAAABQHs+AAQAAAAAAAAAAcDAKMAAAAAAAAAAAAA5GAQYAAAAAAAAAAMDBKMAAAAAAAAAAAAA4GAUYAAAAAAAAAAAAB6MAAwAAAAAAAAAA4GAUYAAAAAAAAAAAAByMAgwAAAAAAAAAAICDUYABADjV2LFjlZiY6Ow0AAAAAKBeYswEAA0XBRgAAAAAAAAAAAAHowADAKgT77//vqKiouTl5aVmzZopLi5O06ZN05tvvqn/9//+n0wmk0wmk1JTUyVJP/30k+68804FBAQoMDBQw4YN0+HDh23nu/AtsNmzZ6tFixby8/PTfffdp6KiIudcIAAAAAD8BoyZAODK4+rsBAAAV76srCyNGjVK8+fP16233qrTp09r8+bNSkpKUmZmpiwWi9544w1JUmBgoIqLixUfH6/Y2Fht3rxZrq6uevLJJ5WQkKC9e/fK3d1dkrRhwwZ5enoqNTVVhw8f1rhx49SsWTM99dRTzrxcAAAAAKgWxkwAcGWiAAMAqHVZWVkqKSnRbbfdpquvvlqSFBUVJUny8vJSYWGhQkJCbPH/+Mc/ZLVa9dprr8lkMkmS3njjDQUEBCg1NVU33nijJMnd3V3Lli2Tt7e3OnfurDlz5mjatGl64oknZDYzyRMAAABAw8CYCQCuTPymBQDUuujoaA0aNEhRUVG644479Oqrr+rnn3+uNH7Pnj364Ycf1KRJE/n6+srX11eBgYE6f/68Dh06ZHdeb29v2+vY2FgVFBTop59+qtXrAQAAAABHYswEAFcmZsAAAGqdi4uL1q9fry1btujzzz/XCy+8oL/+9a9KT0+vML6goEA9e/bUihUryu1r0aJFbacLAAAAAHWKMRMAXJkowAAA6oTJZFL//v3Vv39/zZw5U1dffbU++ugjubu7q7S01C62R48eevfddxUUFCQ/P79Kz7lnzx6dO3dOXl5ekqR///vf8vX1VatWrWr1WgAAAADA0RgzAcCVhyXIAAC1Lj09XU8//bS2b9+uzMxMffjhhzp+/Lg6duyo8PBw7d27VwcOHNCJEydUXFys0aNHq3nz5ho2bJg2b96sjIwMpaamavLkyTp69KjtvEVFRRo/frz279+vtWvXatasWZo0aRJrGQMAAABoUBgzAcCViRkwAIBa5+fnp02bNmnRokWyWCy6+uqrtWDBAt10003q1auXUlNT1atXLxUUFGjjxo0aOHCgNm3apEceeUS33XabTp8+rZYtW2rQoEF23+4aNGiQIiMjdd1116mwsFCjRo3S448/7rwLBQAAAIAaYMwEAFcmk2EYhrOTAACgusaOHau8vDytXr3a2akAAAAAQL3DmAkAnI/5hgAAAAAAAAAAAA5GAQYAAAAAAAAAAMDBWIIMAAAAAAAAAADAwZgBAwAAAAAAAAAA4GAUYAAAAAAAAAAAAByMAgwAAAAAAAAAAICDUYABAAAAAAAAAABwMAowAAAAAAAAAAAADkYBBgAAAAAAAAAAwMEowAAAAAAAAAAAADgYBRgAAAAAAAAAAAAHowADAAAAAAAAAADgYBRgAAAAAAAAAAAAHIwCDAAAAAAAAAAAgINRgAEAAAAAAAAAAHAwCjAAAAAAAAAAAAAORgEGAAAAAAAAAADAwSjAAAAAAAAAAAAAOBgFGAAAAAAAAAAAAAejAAMAAAAAAAAAAOBgFGAAAAAAAAAAAAAcjAIMAAAAAAAAAACAg1GAAQAAAAAAAAAAcDAKMAAAAAAAAAAAAA5GAQYAAAAAAAAAAMDBKMAAAAAAAAAAAAA4GAUYAAAAAAAAAAAAB6MAAwAAAAAAAAAA4GCuzk6gvrNarTp27JiaNGkik8nk7HQAAACAWmUYhk6fPq2wsDCZzXxfC5fHmAkAAACNTVXHTRRgLuPYsWNq1aqVs9MAAAAA6tRPP/2kq666ytlpoAFgzAQAAIDG6nLjJgowl9GkSRNJZR3p5+fn5GwAAACA2mWxWNSqVSvb52DgchgzAQAAoLGp6riJAsxlXJhC7+fnx2ACAAAAjQZLSaGqGDMBAACgsbrcuIlFnQEAAAAAAAAAAByMAgwAAAAAAAAAAICDUYABAAAAAAAAAABwMJ4BAwAAcAUzDEMlJSUqLS11diqoR1xcXOTq6spzXgAAAAAxbkJ5jhozUYABAAC4QhUVFSkrK0tnz551diqoh7y9vRUaGip3d3dnpwIAAAA4DeMmVMYRYyYKMAAAAFcgq9WqjIwMubi4KCwsTO7u7sx2gKSyb/cVFRXp+PHjysjIUGRkpMxmViYGAABA48O4CRVx5JiJAgwAAMAVqKioSFarVa1atZK3t7ez00E94+XlJTc3Nx05ckRFRUXy9PR0dkoAAABAnWPchMo4asx0xX/VLS8vT7169VK3bt3UpUsXvfrqq85OCQAAoM4wswGV4d4AAAAAyvDZGBVxxH1xxd9ZTZo00aZNm7R7926lp6fr6aef1smTJ52dFgAAAIB6YsmSJQoPD5enp6diYmK0devWS8avWrVKHTp0kKenp6KiorR27Vq7/YZhaObMmQoNDZWXl5fi4uJ08OBBu5hTp05p9OjR8vPzU0BAgMaPH6+CggLb/tTUVA0bNkyhoaHy8fFRt27dtGLFCrtzfPPNNxo+fLjCw8NlMpm0aNGiGl3f+fPnNXHiRDVr1ky+vr4aPny4cnJyLtdtAAAAAC7jii/AuLi42KaPFRYWyjAMGYbh5KwAAAAA1AfvvvuuUlJSNGvWLO3cuVPR0dGKj49Xbm5uhfFbtmzRqFGjNH78eO3atUuJiYlKTEzUvn37bDHz58/X4sWLtXTpUqWnp8vHx0fx8fE6f/68LWb06NH65ptvtH79eq1Zs0abNm1ScnKy3ft07dpVH3zwgfbu3atx48YpKSlJa9asscWcPXtWbdq00bx58xQSElLj6/vzn/+sTz75RKtWrdKXX36pY8eO6bbbbqtxnwIAAAAo4/QCzKZNm3TLLbcoLCxMJpNJq1evLhdT3W+k/VpeXp6io6N11VVXadq0aWrevLmDsgcAAEB9Fh4eXumsgOpKTU2VyWRSXl6eQ86H+mHhwoWaMGGCxo0bp06dOmnp0qXy9vbWsmXLKoz/29/+poSEBE2bNk0dO3bUE088oR49eujFF1+UVDb7ZdGiRXrsscc0bNgwde3aVW+99ZaOHTtmG+t8++23WrdunV577TXFxMTo2muv1QsvvKCVK1fq2LFjkqS//OUveuKJJ9SvXz9dc801evDBB5WQkKAPP/zQlkvv3r317LPPauTIkfLw8KjR9eXn5+v111/XwoULdf3116tnz5564403tGXLFv373/92VDcDAACgHmPcVHucXoA5c+aMoqOjtWTJkgr3V+UbWxee7/Lr7cLgJSAgQHv27FFGRobefvttptMDAADUYwMHDtSUKVMccq5t27bZzSqozx5//HF169bN2Wk0KkVFRdqxY4fi4uJsbWazWXFxcUpLS6vwmLS0NLt4SYqPj7fFZ2RkKDs72y7G399fMTExtpi0tDQFBASoV69etpi4uDiZzWalp6dXmm9+fr4CAwMden07duxQcXGxXUyHDh3UunXrSvsAAAAAzse4qWFwdXYCN910k2666aZK91/8jS1JWrp0qT799FMtW7ZMjz76qCRp9+7dVXqv4OBgRUdHa/Pmzbr99tsrjCksLFRhYaHttcViqeKVAAAAoC4YhqHS0lK5ul7+o2yLFi3qIKMypaWlMplMPMCzATlx4oRKS0sVHBxs1x4cHKzvvvuuwmOys7MrjM/Ozrbtv9B2qZigoCC7/a6urgoMDLTF/Np7772nbdu26eWXX67i1VXt+rKzs+Xu7q6AgIBK8/01xkwAAAD1H+Om+qFeX2VNvpH2azk5OTp9+rSksm+Mbdq0Se3bt680fu7cufL397dtrVq1+m0XAQAAUE8YhqGzRSVO2ar6DL6xY8fqyy+/1N/+9jeZTCaZTCYtX75cJpNJn332mXr27CkPDw999dVXOnTokIYNG6bg4GD5+vqqd+/e+te//mV3vl9PpTeZTHrttdd06623ytvbW5GRkfr4449r1J/Lly9XQECAPv74Y3Xq1EkeHh7KzMy85DGpqanq06ePfHx8FBAQoP79++vIkSNavny5Zs+erT179thdt1S2nO4999yjFi1ayM/PT9dff7327NljO+eFb4C9/PLLatWqlby9vXXnnXcqPz+/RteF+mfjxo0aN26cXn31VXXu3NnZ6TBmAgAAV6yGMGaSGDc1pHGT02fAXEpNvpH2a0eOHFFycrIMw5BhGHrggQcUFRVVafz06dOVkpJie22xWBhQAACAK8K54lJ1mvlPp7z3/jnx8na//EfPv/3tb/r+++/VpUsXzZkzR5L0zTffSJIeffRRPffcc2rTpo2aNm2qn376SYMHD9ZTTz0lDw8PvfXWW7rlllt04MABtW7dutL3mD17tubPn69nn31WL7zwgkaPHq0jR45Ua2mnC86ePatnnnlGr732mpo1a1ZuVsPFSkpKlJiYqAkTJuidd95RUVGRtm7dKpPJpBEjRmjfvn1at26dbTDk7+8vSbrjjjvk5eWlzz77TP7+/nr55Zc1aNAgff/997acf/jhB7333nv65JNPZLFYNH78eP3pT3/SihUrqn1NjUnz5s3l4uJSboninJycSh9qHxIScsn4C//m5OQoNDTULubCUgkhISF2SypLZffHqVOnyr3vl19+qVtuuUXPP/+8kpKSHH59ISEhKioqUl5ent0smEv1AWMmAABwpWoIYyaJcVNDGjfV6xkwjtCnTx/t3r1be/bs0d69e3XvvfdeMt7Dw0N+fn52GwAAAOqGv7+/3N3d5e3trZCQEIWEhMjFxUWSNGfOHN1www265pprFBgYqOjoaN17773q0qWLIiMj9cQTT+iaa6657Dezxo4dq1GjRqlt27Z6+umnVVBQoK1bt9Yo3+LiYv39739Xv3791L59e3l7e1caa7FYlJ+fr5tvvlnXXHONOnbsqDFjxqh169by8vKSr6+vXF1dbdft5eWlr776Slu3btWqVavUq1cvRUZG6rnnnlNAQIDef/9927nPnz+vt956S926ddN1111ne6B7ZUtIoYy7u7t69uypDRs22NqsVqs2bNig2NjYCo+JjY21i5ek9evX2+IjIiIUEhJiF2OxWJSenm6LiY2NVV5ennbs2GGL+eKLL2S1WhUTE2NrS01N1ZAhQ/TMM8/UaE3uqlxfz5495ebmZhdz4MABZWZmVtoHjJkAAACci3FTwxk31esZMDX5RhoAAAAq5uXmov1z4p323r/VxQ8sl6SCggI9/vjj+vTTT5WVlaWSkhKdO3fustPZu3btavvZx8dHfn5+5WYjVJW7u7vd+S4lMDBQY8eOVXx8vG644QbFxcXpzjvvtJsl8Wt79uxRQUGBmjVrZtd+7tw5HTp0yPa6devWatmype11bGysrFarDhw4wOfmy0hJSdGYMWPUq1cv9enTR4sWLdKZM2dsz6BMSkpSy5YtNXfuXEnSgw8+qAEDBmjBggUaMmSIVq5cqe3bt+uVV16RVLZcw5QpU/Tkk08qMjJSERERmjFjhsLCwpSYmChJ6tixoxISEjRhwgQtXbpUxcXFmjRpkkaOHKmwsDBJZcuO3XzzzXrwwQc1fPhw26DQ3d3d9g2+oqIi7d+/3/bzf//7X+3evVu+vr5q27Ztla7P399f48ePV0pKigIDA+Xn56cHHnhAsbGx6tu3bx38FwAAAKg/GvqYSWLcdLH6MG6q1wWYi7+xdWGwcuEbW5MmTXJucgAAAA2MyWSq8pT2+sjHx8fu9dSpU7V+/Xo999xzatu2rby8vHT77berqKjokudxc3Oze20ymWS1WmuUk5eXl0wmU5Xj33jjDU2ePFnr1q3Tu+++q8cee0zr16+v9A/dBQUFCg0NVWpqarl9v35oOmpmxIgROn78uGbOnKns7Gx169ZN69atsy2DnJmZafeA0H79+untt9/WY489pr/85S+KjIzU6tWr1aVLF1vMww8/rDNnzig5OVl5eXm69tprtW7dOnl6etpiVqxYoUmTJmnQoEEym80aPny4Fi9ebNv/5ptv6uzZs5o7d66t+CNJAwYMsN0Px44dU/fu3W37nnvuOT333HN2MZe7Pkl6/vnnbTkUFhYqPj5ef//73x3TwQAAAA1IQx8zSYybfs3Z4yan300FBQX64YcfbK8zMjK0e/duBQYGqnXr1pf9xhYAAACuLO7u7iotLb1s3Ndff62xY8fq1ltvlVT2ufLw4cO1nN1v1717d3Xv3l3Tp09XbGys3n77bfXt27fC6+7Ro4eys7Pl6uqq8PDwSs+ZmZmpY8eO2WZP/Pvf/5bZbFb79u1r81KuGJMmTar0C14VDeLuuOMO3XHHHZWez2Qyac6cObb1uCsSGBiot99+u9L9y5cvtz1QtDLh4eFVeljrpa5Pkjw9PbVkyRItWbLksucCAABA/cC46Rf1edzk9GfAbN++3daZUtkU+e7du2vmzJmSyr6x9dxzz2nmzJnq1q2bdu/eXe4bWwAAALhyhIeHKz09XYcPH9aJEycq/ZZVZGSkPvzwQ9vz/v7whz/U+BtZdSEjI0PTp09XWlqajhw5os8//1wHDx5Ux44dJZVd94UvI504cUKFhYWKi4tTbGysEhMT9fnnn+vw4cPasmWL/vrXv2r79u22c3t6emrMmDHas2ePNm/erMmTJ+vOO+9k+TEAAADgCsW4qWGMm5xegBk4cKAMwyi3Xfxtr0mTJunIkSMqLCxUenq63YMpAQAAcGWZOnWqXFxc1KlTJ7Vo0aLStYkXLlyopk2bql+/frrlllsUHx+vHj161HG2Veft7a3vvvtOw4cPV7t27ZScnKyJEyfq3nvvlSQNHz5cCQkJ+v3vf68WLVronXfekclk0tq1a3Xddddp3LhxateunUaOHKkjR47YfSGpbdu2uu222zR48GDdeOON6tq1K0tIAQAAAFcwxk0NY9xkMqoyZ70Rs1gs8vf3V35+vvz8/JydDgAAQJWcP39eGRkZioiIsHvuBK48jz/+uFavXq3du3dX67jK7hE+/6K6uGcAAEBDxbip8ajJuOlS90dVPwM7fQYMAAAAAAAAAADAlYYCDAAAACDpvvvuk6+vb4XbfffdV6VzVHa8r6+vNm/eXMtXAAAAAAC1i3FT9bAE2WUwnR4AADRETKWvvtzcXFkslgr3+fn5KSgo6LLn+OGHHyrd17JlS3l5edU4P0djCTI4CvcMAABoqBg3VV9jGjc5Ygky19pOEgAAAGgIgoKCqjRYuJS2bds6KBsAAAAAqH8YN1UPS5ABAABcwZjsjMpwbwAAAABl+GyMijjivqAAU4klS5aoU6dO6t27t7NTAQAAqDY3NzdJ0tmzZ52cCeqrC/fGhXsFAAAAaGwYN+FSHDFmYgmySkycOFETJ060reUGAADQkLi4uCggIEC5ubmSJG9vb5lMJidnhfrAMAydPXtWubm5CggIkIuLi7NTAgAAAJyCcRMq4sgxEwUYAACAK1RISIgk2QYTwMUCAgJs9wgAAADQWDFuQmUcMWaiAAMAAHCFMplMCg0NVVBQkIqLi52dDuoRNzc3Zr4AAAAAYtyEijlqzEQBBgAA4Arn4uLCH9sBAAAA4BIYN6E2mJ2dAAAAAAAAAAAAwJWGAgwAAAAAAAAAAICDUYABAAAAAAAAAABwMAowAAAAAAAAAAAADkYBBgAAAAAAAAAAwMEowAAAAAAAAAAAADgYBRgAAAAAAAAAAAAHowADAAAAAAAAAADgYBRgAAAAAAAAAAAAHIwCDAAAAAAAAAAAgINRgAEAAAAAAAAAAHAwCjCVWLJkiTp16qTevXs7OxUAAAAAAAAAANDAUICpxMSJE7V//35t27bN2akAAAAAAAAAAIAGhgIMAAAAAAAAAACAg1GAAQAAAAAAAAAAcDAKMAAAAAAAAAAAAA5GAQYAAABAo7ZkyRKFh4fL09NTMTEx2rp16yXjV61apQ4dOsjT01NRUVFau3at3X7DMDRz5kyFhobKy8tLcXFxOnjwoF3MqVOnNHr0aPn5+SkgIEDjx49XQUGBbX9qaqqGDRum0NBQ+fj4qFu3blqxYkW1czGZTBVuzz77rC0mPDy83P558+ZVuf8AAAAAVIwCDAAAAIBG691331VKSopmzZqlnTt3Kjo6WvHx8crNza0wfsuWLRo1apTGjx+vXbt2KTExUYmJidq3b58tZv78+Vq8eLGWLl2q9PR0+fj4KD4+XufPn7fFjB49Wt98843Wr1+vNWvWaNOmTUpOTrZ7n65du+qDDz7Q3r17NW7cOCUlJWnNmjXVyiUrK8tuW7ZsmUwmk4YPH253XXPmzLGLe+CBB35z3wIAAACNnckwDMPZSdRnFotF/v7+ys/Pl5+fn7PTAQAAAGpVY/v8GxMTo969e+vFF1+UJFmtVrVq1UoPPPCAHn300XLxI0aM0JkzZ+wKIX379lW3bt20dOlSGYahsLAwPfTQQ5o6daokKT8/X8HBwVq+fLlGjhypb7/9Vp06ddK2bdvUq1cvSdK6des0ePBgHT16VGFhYRXmOmTIEAUHB2vZsmVVyqUiiYmJOn36tDZs2GBrCw8P15QpUzRlypRq9NwvGts9AwAAAFT1MzAzYAAAAAA0SkVFRdqxY4fi4uJsbWazWXFxcUpLS6vwmLS0NLt4SYqPj7fFZ2RkKDs72y7G399fMTExtpi0tDQFBATYii+SFBcXJ7PZrPT09Erzzc/PV2BgYJVz+bWcnBx9+umnGj9+fLl98+bNU7NmzdS9e3c9++yzKikpqTSPwsJCWSwWuw0AAABAea7OTgAAAAAAnOHEiRMqLS1VcHCwXXtwcLC+++67Co/Jzs6uMD47O9u2/0LbpWKCgoLs9ru6uiowMNAW82vvvfeetm3bppdffrnKufzam2++qSZNmui2226za588ebJ69OihwMBAbdmyRdOnT1dWVpYWLlxY4Xnmzp2r2bNnV7gPAAAAwC8owAAAAABAPbZx40aNGzdOr776qjp37lzj8yxbtkyjR4+Wp6enXXtKSort565du8rd3V333nuv5s6dKw8Pj3LnmT59ut0xFotFrVq1qnFeAAAAwJWKJcgAAAAANErNmzeXi4uLcnJy7NpzcnIUEhJS4TEhISGXjL/w7+VicnNz7faXlJTo1KlT5d73yy+/1C233KLnn39eSUlJ1crlYps3b9aBAwd0zz33VHhdF4uJiVFJSYkOHz5c4X4PDw/5+fnZbQAAAADKowADAAAAoFFyd3dXz5497R5Ib7VatWHDBsXGxlZ4TGxsrF28JK1fv94WHxERoZCQELsYi8Wi9PR0W0xsbKzy8vK0Y8cOW8wXX3whq9WqmJgYW1tqaqqGDBmiZ555RsnJydXO5WKvv/66evbsqejo6Er744Ldu3fLbDaXWyYNAAAAQPWwBBkAAACARislJUVjxoxRr1691KdPHy1atEhnzpzRuHHjJElJSUlq2bKl5s6dK0l68MEHNWDAAC1YsEBDhgzRypUrtX37dr3yyiuSJJPJpClTpujJJ59UZGSkIiIiNGPGDIWFhSkxMVGS1LFjRyUkJGjChAlaunSpiouLNWnSJI0cOVJhYWGSypYdu/nmm/Xggw9q+PDhtue6uLu7KzAwsEq5XGCxWLRq1SotWLCg3PWnpaUpPT1dv//979WkSROlpaXpz3/+s+666y41bdrU8R0OAAAANCIUYAAAAAA0WiNGjNDx48c1c+ZMZWdnq1u3blq3bp3t4faZmZkym39ZOKBfv356++239dhjj+kvf/mLIiMjtXr1anXp0sUW8/DDD+vMmTNKTk5WXl6err32Wq1bt87u2SsrVqzQpEmTNGjQIJnNZg0fPlyLFy+27X/zzTd19uxZzZ0711b8kaQBAwYoNTW1yrlI0sqVK2UYhkaNGlXu+j08PLRy5Uo9/vjjKiwsVEREhP785z/bPeMFAAAAQM2YDMMwnJ1EfWaxWOTv76/8/HzWNgYAAMAVj8+/qC7uGQAAADQ2Vf0MzDNgAAAAAAAAAAAAHIwCDAAAAAAAAAAAgINRgAEAAAAAAAAAAHAwCjCVWLJkiTp16qTevXs7OxUAAAAAAAAAANDAUICpxMSJE7V//35t27bN2akAAAAAAAAAAIAGhgIMAAAAAAAAAACAg1GAAQAAAAAAAAAAcDAKMAAAAAAAAAAAAA5GAQYAAAAAAAAAAMDBKMAAAAAAAAAAAAA4GAUYAAAAAAAAAAAAB6MAAwAAAAAAAAAA4GAUYAAAAAAAAAAAAByMAgwAAAAAAAAAAICDUYABAAAAAAAAAABwMAowAAAAAAAAAAAADkYBBgAAAAAAAAAAwMEowAAAAAAAAAAAADgYBRgAAAAAAAAAAAAHowADAAAAAAAAAADgYBRgAAAAAAAAAAAAHIwCDAAAAAAAAAAAgINRgAEAAAAAAAAAAHAwCjAAAAAAAAAAAAAORgGmEkuWLFGnTp3Uu3dvZ6cCAAAAAAAAAAAaGAowlZg4caL279+vbdu2OTsVAAAAAAAAAADQwFCAAQAAAAAAAAAAcDAKMAAAAAAAAAAAAA5GAQYAAAAAAAAAAMDBKMAAAAAAaNSWLFmi8PBweXp6KiYmRlu3br1k/KpVq9ShQwd5enoqKipKa9eutdtvGIZmzpyp0NBQeXl5KS4uTgcPHrSLOXXqlEaPHi0/Pz8FBARo/PjxKigosO1PTU3VsGHDFBoaKh8fH3Xr1k0rVqyodi5jx46VyWSy2xISEqqVCwAAAICaoQADAAAAoNF69913lZKSolmzZmnnzp2Kjo5WfHy8cnNzK4zfsmWLRo0apfHjx2vXrl1KTExUYmKi9u3bZ4uZP3++Fi9erKVLlyo9PV0+Pj6Kj4/X+fPnbTGjR4/WN998o/Xr12vNmjXatGmTkpOT7d6na9eu+uCDD7R3716NGzdOSUlJWrNmTbVykaSEhARlZWXZtnfeecdu/+VyAQAAAFAzJsMwDGcnUZ9ZLBb5+/srPz9ffn5+zk4HAAAAqFWN7fNvTEyMevfurRdffFGSZLVa1apVKz3wwAN69NFHy8WPGDFCZ86csSuE9O3bV926ddPSpUtlGIbCwsL00EMPaerUqZKk/Px8BQcHa/ny5Ro5cqS+/fZbderUSdu2bVOvXr0kSevWrdPgwYN19OhRhYWFVZjrkCFDFBwcrGXLllUpF6lsBkxeXp5Wr15d4TlrmsvFGts9AwAAAFT1MzAzYAAAAAA0SkVFRdqxY4fi4uJsbWazWXFxcUpLS6vwmLS0NLt4SYqPj7fFZ2RkKDs72y7G399fMTExtpi0tDQFBATYCh6SFBcXJ7PZrPT09Erzzc/PV2BgYJVzuSA1NVVBQUFq37697r//fp08edLuHNXNpbCwUBaLxW4DAAAAUB4FGAAAAACN0okTJ1RaWqrg4GC79uDgYGVnZ1d4THZ29iXjL/x7uZigoCC7/a6urgoMDKz0fd977z1t27ZN48aNq3IuUtnyY2+99ZY2bNigZ555Rl9++aVuuukmlZaW1jiXuXPnyt/f37a1atWqwjgAAACgsXN1dgIAAAAAgMpt3LhR48aN06uvvqrOnTtX69iRI0fafo6KilLXrl11zTXXKDU1VYMGDapRPtOnT1dKSorttcVioQgDAAAAVIAZMAAAAAAapebNm8vFxUU5OTl27Tk5OQoJCanwmJCQkEvGX/j3cjG5ubl2+0tKSnTq1Kly7/vll1/qlltu0fPPP6+kpKRq5VKRNm3aqHnz5vrhhx+qncsFHh4e8vPzs9sAAAAAlEcBBgAAAECj5O7urp49e2rDhg22NqvVqg0bNig2NrbCY2JjY+3iJWn9+vW2+IiICIWEhNjFWCwWpaen22JiY2OVl5enHTt22GK++OILWa1WxcTE2NpSU1M1ZMgQPfPMM0pOTq52LhU5evSoTp48qdDQ0GrlAgAAAKD6WIIMAAAAQKOVkpKiMWPGqFevXurTp48WLVqkM2fO2J61kpSUpJYtW2ru3LmSpAcffFADBgzQggULNGTIEK1cuVLbt2/XK6+8IkkymUyaMmWKnnzySUVGRioiIkIzZsxQWFiYEhMTJUkdO3ZUQkKCJkyYoKVLl6q4uFiTJk3SyJEjFRYWJqls2bGbb75ZDz74oIYPH257Hou7u7sCAwOrlEtBQYFmz56t4cOHKyQkRIcOHdLDDz+stm3bKj4+vsq5AAAAAKgZZsAAAAAAaLRGjBih5557TjNnzlS3bt20e/durVu3zvZw+8zMTGVlZdni+/Xrp7fffluvvPKKoqOj9f7772v16tXq0qWLLebhhx/WAw88oOTkZPXu3VsFBQVat26dPD09bTErVqxQhw4dNGjQIA0ePFjXXnutrXAiSW+++abOnj2ruXPnKjQ01LbddtttVc7FxcVFe/fu1dChQ9WuXTuNHz9ePXv21ObNm+Xh4VHlXAAAAADUjMkwDMPZSdRnFotF/v7+ys/PZ21jAAAAXPEa0uff3Nxc5ebmymq12rV37drVSRk1Tg3pngEAAAAcoaqfgVmCDAAAAECDsmPHDo0ZM0bffvutLnyfzGQyyTAMmUwmlZaWOjlDAAAAAKAAAwAAAKCBufvuu9WuXTu9/vrrCg4OlslkcnZKAAAAAFAOBRgAAAAADcqPP/6oDz74QG3btnV2KgAAAABQKbOzEwAAAACA6hg0aJD27Nnj7DQAAAAA4JKYAQMAAACgQXnttdc0ZswY7du3T126dJGbm5vd/qFDhzopMwAAAAD4BQUYAAAAAA1KWlqavv76a3322Wfl9plMJpWWljohKwAAAACwxxJkAAAAABqUBx54QHfddZeysrJktVrtNoovAAAAAOoLCjAAAAAAGpSTJ0/qz3/+s4KDg52dCgAAAABUigIMAAAAgAbltttu08aNG52dBgAAAABcEs+AqcSSJUu0ZMkSljAAAAAA6pl27dpp+vTp+uqrrxQVFSU3Nze7/ZMnT3ZSZgAAAADwC5NhGIazk6jPLBaL/P39lZ+fLz8/P2enAwAAANSqhvD5NyIiotJ9JpNJP/74Yx1mg4ZwzwAAAACOVNXPwMyAAQAAANCgZGRkODsFAAAAALgsngEDAAAAAAAAAADgYMyAAQAAANCg3H333Zfcv2zZsjrKBAAAAAAqRwEGAAAAQIPy888/270uLi7Wvn37lJeXp+uvv95JWQEAAACAPQowAAAAABqUjz76qFyb1WrV/fffr2uuucYJGQEAAABAeTwDBgAAAECDZzablZKSoueff97ZqQAAAACAJAowAAAAAK4Qhw4dUklJibPTAAAAAABJLEEGAAAAoIFJSUmxe20YhrKysvTpp59qzJgxTsoKAAAAAOxRgAEAAADQoOzatcvutdlsVosWLbRgwQLdfffdTsoKAAAAAOxRgAEAAADQoGzcuNHZKQAAAADAZfEMGAAAAAANyrlz53T27Fnb6yNHjmjRokX6/PPPnZgVAAAAANijAAMAAACgQRk2bJjeeustSVJeXp769OmjBQsWaNiwYXrppZecnB0AAAAAlKEAAwAAAKBB2blzp373u99Jkt5//32FhIToyJEjeuutt7R48WInZwcAAAAAZSjAAAAAAGhQzp49qyZNmkiSPv/8c912220ym83q27evjhw54uTsAAAAAKAMBRgAAAAADUrbtm21evVq/fTTT/rnP/+pG2+8UZKUm5srPz8/J2cHAAAAAGUowAAAAABoUGbOnKmpU6cqPDxcMTExio2NlVQ2G6Z79+5Ozg4AAAAAyrg6OwEAAAAAqI7bb79d1157rbKyshQdHW1rHzRokG699VYnZgYAAAAAv6AAAwAAAKDBCQkJUUhIiF1bnz59nJQNAAAAAJTHEmQAAAAAGpTz58/r2Wef1eDBg9WrVy/16NHDbquuJUuWKDw8XJ6enoqJidHWrVsvGb9q1Sp16NBBnp6eioqK0tq1a+32G4ahmTNnKjQ0VF5eXoqLi9PBgwftYk6dOqXRo0fLz89PAQEBGj9+vAoKCmz7U1NTNWzYMIWGhsrHx0fdunXTihUrqpVLcXGxHnnkEUVFRcnHx0dhYWFKSkrSsWPH7M4RHh4uk8lkt82bN6/K/QcAAACgYhRgAAAAADQo48eP1/z583X11Vfr5ptv1rBhw+y26nj33XeVkpKiWbNmaefOnYqOjlZ8fLxyc3MrjN+yZYtGjRql8ePHa9euXUpMTFRiYqL27dtni5k/f74WL16spUuXKj09XT4+PoqPj9f58+dtMaNHj9Y333yj9evXa82aNdq0aZOSk5Pt3qdr16764IMPtHfvXo0bN05JSUlas2ZNlXM5e/asdu7cqRkzZmjnzp368MMPdeDAAQ0dOrTcdc2ZM0dZWVm27YEHHqhWPwIAAAAoz2QYhuHsJOozi8Uif39/5efny8/Pz9npAAAAALWqIXz+9ff319q1a9W/f//ffK6YmBj17t1bL774oiTJarWqVatWeuCBB/Too4+Wix8xYoTOnDljVwjp27evunXrpqVLl8owDIWFhemhhx7S1KlTJUn5+fkKDg7W8uXLNXLkSH377bfq1KmTtm3bpl69ekmS1q1bp8GDB+vo0aMKCwurMNchQ4YoODhYy5Ytq1IuFdm2bZv69OmjI0eOqHXr1pLKZsBMmTJFU6ZMqWbvlWkI9wwAAADgSFX9DPybZsDk5uZq8+bN2rx5c6XfEAMAAAAAR2rZsqWaNGnym89TVFSkHTt2KC4uztZmNpsVFxentLS0Co9JS0uzi5ek+Ph4W3xGRoays7PtYvz9/RUTE2OLSUtLU0BAgK34IklxcXEym81KT0+vNN/8/HwFBgZWOZfKzmEymRQQEGDXPm/ePDVr1kzdu3fXs88+q5KSkkrPUVhYKIvFYrcBAAAAKK9GBZjTp0/rj3/8o1q2bKkBAwZowIABatmype666y7l5+c7OkcAAAAAsFmwYIEeeeQRHTly5Ded58SJEyotLVVwcLBde3BwsLKzsys8Jjs7+5LxF/69XExQUJDdfldXVwUGBlb6vu+99562bdumcePGVTmXXzt//rweeeQRjRo1yu5bepMnT9bKlSu1ceNG3XvvvXr66af18MMPV3gOSZo7d678/f1tW6tWrSqNBQAAABqzGhVg7rnnHqWnp2vNmjXKy8tTXl6e1qxZo+3bt+vee+91dI4AAAAAYNOrVy+dP39ebdq0UZMmTRQYGGi3XWk2btyocePG6dVXX1Xnzp1rdI7i4mLdeeedMgxDL730kt2+lJQUDRw4UF27dtV9992nBQsW6IUXXlBhYWGF55o+fbry8/Nt208//VSjnAAAAIArnWtNDlqzZo3++c9/6tprr7W1xcfH69VXX1VCQoLDkgMAAACAXxs1apT++9//6umnn1ZwcLBMJlONztO8eXO5uLgoJyfHrj0nJ0chISEVHhMSEnLJ+Av/5uTkKDQ01C6mW7dutphfL+FcUlKiU6dOlXvfL7/8Urfccouef/55JSUlVSuXCy4UX44cOaIvvvjiss9piYmJUUlJiQ4fPqz27duX2+/h4SEPD49LngMAAABADQswzZo1k7+/f7l2f39/NW3a9DcnBQAAAACV2bJli9LS0hQdHf2bzuPu7q6ePXtqw4YNSkxMlCRZrVZt2LBBkyZNqvCY2NhYbdiwwe6B9evXr1dsbKwkKSIiQiEhIdqwYYOt4GKxWJSenq7777/fdo68vDzt2LFDPXv2lCR98cUXslqtiomJsZ03NTVVN998s5555hklJydXOxfpl+LLwYMHtXHjRjVr1uyy/bJ7926ZzeZyy6QBAAAAqJ4aFWAee+wxpaSk6P/+7/9s367Kzs7WtGnTNGPGDIcmCAAAAAAX69Chg86dO+eQc6WkpGjMmDHq1auX+vTpo0WLFunMmTO2Z60kJSWpZcuWmjt3riTpwQcf1IABA7RgwQINGTJEK1eu1Pbt2/XKK69Ikkwmk6ZMmaInn3xSkZGRioiI0IwZMxQWFmYr8nTs2FEJCQmaMGGCli5dquLiYk2aNEkjR45UWFiYpLJlx26++WY9+OCDGj58uO25Lu7u7rZl1i6XS3FxsW6//Xbt3LlTa9asUWlpqe08gYGBcnd3V1pamtLT0/X73/9eTZo0UVpamv785z/rrrvu4st1AAAAwG9kMgzDqO5B3bt31w8//KDCwkK1bt1akpSZmSkPDw9FRkbaxe7cudMxmTqJxWKRv7+/8vPzLztVHwAAAGjoGsLn388//1yzZ8/WU089paioKLm5udntr27eL774op599lllZ2erW7duWrx4sW0mysCBAxUeHq7ly5fb4letWqXHHntMhw8fVmRkpObPn6/Bgwfb9huGoVmzZumVV15RXl6err32Wv39739Xu3btbDGnTp3SpEmT9Mknn8hsNmv48OFavHixfH19JUljx47Vm2++WS7XAQMGKDU1tUq5HD58WBERERVe88aNGzVw4EDt3LlTf/rTn/Tdd9+psLBQERER+uMf/6iUlJQqLzPWEO4ZAAAAwJGq+hm4RgWY2bNnVzl21qxZ1T19vcJgAgAAAI1JQ/j8azabJancs18Mw5DJZFJpaakz0mq0GsI9AwAAADhSVT8D12gJsoZeVKmKJUuWaMmSJQzeAAAAgHpm48aNzk4BAAAAAC6rRjNgJCkvL0/vv/++Dh06pGnTpikwMFA7d+5UcHCwWrZs6eg8nYZvcwEAAKAx4fMvqot7BgAAAI1Nrc6A2bt3r+Li4uTv76/Dhw9rwoQJCgwM1IcffqjMzEy99dZbNU4cAAAAAC5l06ZNl9x/3XXX1VEmAAAAAFC5GhVgUlJSNHbsWM2fP19NmjSxtQ8ePFh/+MMfHJYcAAAAAPzawIEDy7Vd/DwYlhEGAAAAUB+Ya3LQtm3bdO+995Zrb9mypbKzs39zUgAAAABQmZ9//tluy83N1bp169S7d299/vnnzk4PAAAAACTVcAaMh4eHLBZLufbvv/9eLVq0+M1JAQAAAEBl/P39y7XdcMMNcnd3V0pKinbs2OGErAAAAADAXo1mwAwdOlRz5sxRcXGxpLLp/pmZmXrkkUc0fPhwhyYIAAAAAFURHBysAwcOODsNAAAAAJBUwxkwCxYs0O23366goCCdO3dOAwYMUHZ2tmJjY/XUU085OkcAAAAAsNm7d6/da8MwlJWVpXnz5qlbt27OSQoAAAAAfqVGBRh/f3+tX79eX3/9tfbs2aOCggL16NFDcXFxjs4PAAAAAOx069ZNJpNJhmHYtfft21fLli1zUlYAAAAAYK9GBZi33npLI0aMUP/+/dW/f39be1FRkVauXKmkpCSHJQgAAAAAF8vIyLB7bTab1aJFC3l6ejopIwAAAAAoz2T8+mtjVeDi4qKsrCwFBQXZtZ88eVJBQUEqLS11WILOZrFY5O/vr/z8fPn5+Tk7HQAAAKBW8fkX1cU9AwAAgMamqp+BzTU5uWEYMplM5dqPHj0qf3//mpwSAAAAAKpk8uTJWrx4cbn2F198UVOmTKn7hAAAAACgAtVagqx79+4ymUwymUwaNGiQXF1/Oby0tFQZGRlKSEhweJIAAAAAcMEHH3ygjz/+uFx7v379NG/ePC1atKjukwIAAACAX6lWASYxMVGStHv3bsXHx8vX19e2z93dXeHh4Ro+fLhDEwQAAACAi508ebLCmfd+fn46ceKEEzICAAAAgPKqVYCZNWuWJCk8PFwjR46Uh4dHrSQFAAAAAJVp27at1q1bp0mTJtm1f/bZZ2rTpo2TsgIAAAAAe9UqwFxw/fXX6/jx47rqqqskSVu3btXbb7+tTp06KTk52aEJAgAAAMDFUlJSNGnSJB0/flzXX3+9JGnDhg1asGABy48BAAAAqDdqVID5wx/+oOTkZP3xj39Udna24uLi1KVLF61YsULZ2dmaOXOmo/MEAAAAAEnS3XffrcLCQj311FN64oknJJXN0n/ppZeUlJTk5OwAAAAAoIy5Jgft27dPffr0kSS99957ioqK0pYtW7RixQotX77ckfkBAAAAQDn333+/jh49qpycHFksFv3444/lii9ff/21CgsLnZQhAAAAgMauRgWY4uJi2/Nf/vWvf2no0KGSpA4dOigrK8tx2QEAAADAJbRo0UK+vr4V7rvpppv03//+t44zAgAAAIAyNSrAdO7cWUuXLtXmzZu1fv16JSQkSJKOHTumZs2aOTRBAAAAAKgJwzCcnQIAAACARqxGBZhnnnlGL7/8sgYOHKhRo0YpOjpakvTxxx/bliYDAAAAAAAAAABorFxrctDAgQN14sQJWSwWNW3a1NaenJwsb29v2+uvv/5avXr1si1XBgAAAAAAAAAA0BjUaAaMJLm4uNgVXyQpPDxcQUFBttesuQwAAAAAAAAAABqjGhdgqoI1lwEAAAA4i8lkcnYKAAAAABqxWi3AAAAAAICz8IUwAAAAAM5Uo2fAAAAAAICz5ebm6sCBA5Kk9u3b2y2HLEmnT592RloAAAAAIIkZMAAAAAAamNOnT+uPf/yjWrZsqQEDBmjAgAFq2bKl7rrrLuXn5zs7PQAAAACQVMsFGNZcBgAAAOBo99xzj9LT07VmzRrl5eUpLy9Pa9as0fbt23Xvvfc6Oz0AAAAAkFSDAoxhGMrMzNT58+erFAsAAAAAjrRmzRotW7ZM8fHx8vPzk5+fn+Lj4/Xqq6/qk08+qfb5lixZovDwcHl6eiomJkZbt269ZPyqVavUoUMHeXp6KioqSmvXrrXbbxiGZs6cqdDQUHl5eSkuLk4HDx60izl16pRGjx4tPz8/BQQEaPz48SooKLDtT01N1bBhwxQaGiofHx9169ZNK1ascEouAAAAAGqmRgWYtm3b6qeffrps7OnTp9WmTZsaJQYAAAAAFWnWrJn8/f3Ltfv7+6tp06bVOte7776rlJQUzZo1Szt37lR0dLTi4+OVm5tbYfyWLVs0atQojR8/Xrt27VJiYqISExO1b98+W8z8+fO1ePFiLV26VOnp6fLx8VF8fLzdl9hGjx6tb775RuvXr9eaNWu0adMmJScn271P165d9cEHH2jv3r0aN26ckpKStGbNmjrPBQAAAEDNmIwaTFPp3LmzXn/9dfXt27c2cqpXLBaL/P39lZ+fLz8/P2enAwAAANSqhvD595VXXtGqVav0f//3fwoJCZEkZWdna8yYMbrtttuqtQxZTEyMevfurRdffFGSZLVa1apVKz3wwAN69NFHy8WPGDFCZ86csSuE9O3bV926ddPSpUtlGIbCwsL00EMPaerUqZKk/Px8BQcHa/ny5Ro5cqS+/fZbderUSdu2bVOvXr0kSevWrdPgwYN19OhRhYWFVZjrkCFDFBwcrGXLljk9l4s1hHsGAAAAcKSqfgZ2rcnJ582bp2nTpumll15Sly5dapwkAAAAAFTXSy+9pB9++EGtW7dW69atJUmZmZny8PDQ8ePH9fLLL9tid+7cWel5ioqKtGPHDk2fPt3WZjabFRcXp7S0tAqPSUtLU0pKil1bfHy8Vq9eLUnKyMhQdna24uLibPv9/f0VExOjtLQ0jRw5UmlpaQoICLAVPCQpLi5OZrNZ6enpuvXWWyt87/z8fHXs2LFe5FKf7P4pT9n555ydBgAAAOqYq9msuE7Bzk7jkmpUgElKStLZs2cVHR0td3d3eXl52e0/deqUQ5IDAAAAgF9LTEx0yHlOnDih0tJSBQfbD9qCg4P13XffVXhMdnZ2hfHZ2dm2/RfaLhUTFBRkt9/V1VWBgYG2mF977733tG3bNrvikrNyKSwsVGFhoe21xWKpMK6uLPsqQx/vOebUHAAAAFD3/L3ctGfWjc5O45JqVIBZtGiRg9MAAAAAgKqZNWuWs1OoUxs3btS4ceP06quvqnPnzs5OR3PnztXs2bOdnYZNRHMf9bq6es/+AQAAQMPn41Gj8kadqlGGY8aMcXQeAAAAAFBleXl5ev/993Xo0CFNmzZNgYGB2rlzp4KDg9WyZcsqnaN58+ZycXFRTk6OXXtOTo7t2TK/FhIScsn4C//m5OQoNDTULqZbt262mNzcXLtzlJSU6NSpU+Xe98svv9Qtt9yi559/XklJSU7N5YLp06fbLX1msVjUqlWrCmPrwp9vaKc/39DOae8PAAAAVMZc1UCLxVLlDQAAAABqy969e9WuXTs988wzeu6555SXlydJ+vDDD+2e53I57u7u6tmzpzZs2GBrs1qt2rBhg2JjYys8JjY21i5ektavX2+Lj4iIUEhIiF2MxWJRenq6LSY2NlZ5eXnasWOHLeaLL76Q1WpVTEyMrS01NVVDhgzRM888o+TkZKfmcjEPDw/5+fnZbQAAAADKq/IMmICAAJlMpkvGGIYhk8mk0tLS35wYAAAAAFQkJSVFY8eO1fz589WkSRNb++DBg/WHP/yh2ucaM2aMevXqpT59+mjRokU6c+aMxo0bJ6ns+ZctW7bU3LlzJUkPPvigBgwYoAULFmjIkCFauXKltm/frldeeUWSZDKZNGXKFD355JOKjIxURESEZsyYobCwMNuzazp27KiEhARNmDBBS5cuVXFxsSZNmqSRI0cqLCxMUtmyYzfffLMefPBBDR8+3PY8Fnd3dwUGBtZpLgAAAABqpsoFmI0bN9ZmHgAAAABQJb9+GP0FLVu2rPTB8ZUZMWKEjh8/rpkzZyo7O1vdunXTunXrbA+uz8zMlNn8y8IB/fr109tvv63HHntMf/nLXxQZGanVq1erS5cutpiHH35YZ86cUXJysvLy8nTttddq3bp18vT0tMWsWLFCkyZN0qBBg2Q2mzV8+HAtXrzYtv/NN9/U2bNnNXfuXFvxR5IGDBig1NTUOs0FAAAAQM2YDMMwauvkf/rTnzRnzhw1b968tt6i1lksFvn7+ys/P5+p9QAAALjiNYTPv0FBQfrnP/+p7t27q0mTJtqzZ4/atGmj9evX6+6779ZPP/3k7BQblYZwzwAAAACOVNXPwFV+BkxN/OMf/+CZMAAAAAAcaujQoZozZ46Ki4sllS21lZmZqUceeUTDhw93cnYAAAAAUKZWCzC1OLmm1i1ZskSdOnVS7969nZ0KAAAAgIssWLBABQUFCgoK0rlz5zRgwAC1bdtWTZo00VNPPeXs9AAAAABAUjWeAdPYTJw4URMnTrRNJQIAAABQP/j7+2v9+vX6+uuvtWfPHhUUFKhHjx6Ki4tzdmoAAAAAYEMBBgAAAECD8tZbb2nEiBHq37+/+vfvb2svKirSypUrlZSU5MTsAAAAAKBMrS5BBgAAAACONm7cOOXn55drP336tMaNG+eEjAAAAACgPAowAAAAABoUwzBkMpnKtR89epTlgwEAAADUG7W6BNldd90lPz+/2nwLAAAAAI1E9+7dZTKZZDKZNGjQILm6/jKcKS0tVUZGhhISEpyYIQAAAAD8osYFmLy8PG3dulW5ubmyWq12+y6sufzSSy/9tuwAAAAA4H8SExMlSbt371Z8fLx8fX1t+9zd3RUeHq7hw4c7KTsAAAAAsFejAswnn3yi0aNHq6CgQH5+fnbT/00mEw+9BAAAAOBws2bNkiSFh4dr5MiR8vDwcHJGAAAAAFC5Gj0D5qGHHtLdd9+tgoIC5eXl6eeff7Ztp06dcnSOAAAAAGBz/fXX6/jx47bXW7du1ZQpU/TKK684MSsAAAAAsFejAsx///tfTZ48Wd7e3o7OBwAAAAAu6Q9/+IM2btwoScrOzlZcXJy2bt2qv/71r5ozZ46TswMAAACAMjUqwMTHx2v79u2OzgUAAAAALmvfvn3q06ePJOm9995TVFSUtmzZohUrVmj58uXOTQ4AAAAA/qdGz4AZMmSIpk2bpv379ysqKkpubm52+4cOHeqQ5AAAAADg14qLi23Pf/nXv/5lG3906NBBWVlZzkwNAAAAAGxqVICZMGGCJFU4vd9kMqm0tPS3ZQUAAAAAlejcubOWLl2qIUOGaP369XriiSckSceOHVOzZs2cnB0AAAAAlKnREmRWq7XSjeILAAAAgNr0zDPP6OWXX9bAgQM1atQoRUdHS5I+/vhj29JkAAAAAOBsNZoBAwAAAADOMnDgQJ04cUIWi0VNmza1tScnJ8vb29v2+uuvv1avXr1sy5UBAAAAQF2qcgFm8eLFSk5OlqenpxYvXnzJ2MmTJ//mxAAAAACgMi4uLnbFF0kKDw+3e33TTTdp9+7datOmTR1mBgAAAABlqlyAef755zV69Gh5enrq+eefrzTOZDJRgAEAAADgdIZhODsFAAAAAI1YlQswGRkZFf4MAAAAAAAAAAAAe2ZnJwAAAAAAAAAAAHClqfIMmF87evSoPv74Y2VmZqqoqMhu38KFC39zYgAAAAAAAAAAAA1VjQowGzZs0NChQ9WmTRt999136tKliw4fPizDMNSjRw9H5wgAAAAA1WYymZydAgAAAIBGrEZLkE2fPl1Tp07Vf/7zH3l6euqDDz7QTz/9pAEDBuiOO+5wdI4AAAAAIEkyDEOZmZk6f/58lWIBAAAAwFlqVID59ttvlZSUJElydXXVuXPn5Ovrqzlz5uiZZ55xaIIAAAAAcIFhGGrbtq1++umny8aePn1abdq0qYOsAAAAAKC8GhVgfHx8bM99CQ0N1aFDh2z7Tpw44ZjMAAAAAOBXzGazIiMjdfLkSWenAgAAAACXVKMCTN++ffXVV19JkgYPHqyHHnpITz31lO6++2717dvXoQkCAAAAwMXmzZunadOmad++fc5OBQAAAAAq5VqTgxYuXKiCggJJ0uzZs1VQUKB3331XkZGRWrhwoUMTBAAAAICLJSUl6ezZs4qOjpa7u7u8vLzs9p86dcpJmQEAAADAL6pdgCktLdXRo0fVtWtXSWXLkS1dutThiQEAAABARRYtWuTsFAAAAADgsqpdgHFxcdGNN96ob7/9VgEBAbWQEgAAAABUbsyYMc5OAQAAAAAuq0bPgOnSpYt+/PFHR+cCAAAAABWyWCxV3qpryZIlCg8Pl6enp2JiYrR169ZLxq9atUodOnSQp6enoqKitHbtWrv9hmFo5syZCg0NlZeXl+Li4nTw4EG7mFOnTmn06NHy8/NTQECAxo8fb1vmWZLOnz+vsWPHKioqSq6urkpMTKw0944dO8rLy0vt27fXW2+9Zbd/4MCBMplM5bYhQ4bYYsaOHVtuf0JCQlW6DgAAAMAl1KgA8+STT2rq1Klas2aNsrKyfvOABwAAAAAuJSAgQE2bNr3kdiGmOt59912lpKRo1qxZ2rlzp6KjoxUfH6/c3NwK47ds2aJRo0Zp/Pjx2rVrlxITE5WYmKh9+/bZYubPn6/Fixdr6dKlSk9Pl4+Pj+Lj43X+/HlbzOjRo/XNN99o/fr1WrNmjTZt2qTk5GTb/tLSUnl5eWny5MmKi4urMJeXXnpJ06dP1+OPP65vvvlGs2fP1sSJE/XJJ5/YYj788ENlZWXZtn379snFxUV33HGH3bkSEhLs4t55551q9SMAAACA8kyGYRjVPchs/qVuYzKZbD8bhiGTyaTS0lLHZFcPWCwW+fv7Kz8/X35+fs5OBwAAAKhV9fXz75dfflnl2AEDBlQ5NiYmRr1799aLL74oSbJarWrVqpUeeOABPfroo+XiR4wYoTNnzmjNmjW2tr59+6pbt25aunSpDMNQWFiYHnroIU2dOlWSlJ+fr+DgYC1fvlwjR47Ut99+q06dOmnbtm3q1auXJGndunUaPHiwjh49qrCwMLv3HDt2rPLy8rR69Wq79n79+ql///569tlnbW0PPfSQ0tPT9dVXX1V4vYsWLdLMmTOVlZUlHx+fS56/qurrPQMAAADUlqp+Bq72M2Ak6Y033lCrVq3k4uJi1261WpWZmVmTUwIAAABApapTVLngT3/6k+bMmaPmzZtXuL+oqEg7duzQ9OnTbW1ms1lxcXFKS0ur8Ji0tDSlpKTYtcXHx9uKFxkZGcrOzrabteLv76+YmBilpaVp5MiRSktLU0BAgK34IklxcXEym81KT0/XrbfeWqXrKywslKenp12bl5eXtm7dquLiYrm5uZU75vXXX9fIkSNtxZcLUlNTFRQUpKZNm+r666/Xk08+qWbNmlX6voWFhbbXrIIAAAAAVKxGS5Ddfffd6tKliwYMGGC3de3aVXfffbejcwQAAACAavvHP/5xyeLAiRMnVFpaquDgYLv24OBgZWdnV3hMdnb2JeMv/Hu5mKCgILv9rq6uCgwMrPR9KxIfH6/XXntNO3bskGEY2r59u1577TUVFxfrxIkT5eK3bt2qffv26Z577rFrT0hI0FtvvaUNGzbomWee0Zdffqmbbrqp0pUN5s6dK39/f9vWqlWrKucMAAAANCY1mgFzYamxXysoKCj3DSwAAAAAcIYarLbcoMyYMUPZ2dnq27evDMNQcHCwxowZo/nz59stG33B66+/rqioKPXp08eufeTIkbafo6Ki1LVrV11zzTVKTU3VoEGDyp1n+vTpdrOALBYLRRgAAACgAtUqwFz4kG0ymTRjxgx5e3vb9pWWlio9PV3dunVzaIIAAAAAUBuaN28uFxcX5eTk2LXn5OQoJCSkwmNCQkIuGX/h35ycHIWGhtrFXBgrhYSEKDc31+4cJSUlOnXqVKXvWxEvLy8tW7ZML7/8su39XnnlFTVp0kQtWrSwiz1z5oxWrlypOXPmXPa8bdq0UfPmzfXDDz9UWIDx8PCQh4dHlfMEAAAAGqtqLUG2a9cu7dq1S4Zh6D//+Y/t9a5du/Tdd98pOjpay5cvr6VUAQAAAMBx3N3d1bNnT23YsMHWZrVatWHDBsXGxlZ4TGxsrF28JK1fv94WHxERoZCQELsYi8Wi9PR0W0xsbKzy8vK0Y8cOW8wXX3whq9WqmJiYal+Hm5ubrrrqKrm4uGjlypW6+eaby82AWbVqlQoLC3XXXXdd9nxHjx7VyZMn7QpIAAAAAKqvWjNgNm7cKEkaN26c/va3v8nPz69WkgIAAACAupCSkqIxY8aoV69e6tOnjxYtWqQzZ85o3LhxkqSkpCS1bNlSc+fOlSQ9+OCDGjBggBYsWKAhQ4Zo5cqV2r59u1555RVJZasFTJkyRU8++aQiIyMVERGhGTNmKCwsTImJiZKkjh07KiEhQRMmTNDSpUtVXFysSZMmaeTIkQoLC7Pltn//fhUVFenUqVM6ffq0du/eLUm2mTTff/+9tm7dqpiYGP38889auHCh9u3bpzfffLPcdb7++utKTExUs2bN7NoLCgo0e/ZsDR8+XCEhITp06JAefvhhtW3bVvHx8Y7sagAARCn7DQAAMX5JREFUAKDRqdEzYN544w1H5wEAAAAAdW7EiBE6fvy4Zs6cqezsbHXr1k3r1q1TcHCwJCkzM9NuNkm/fv309ttv67HHHtNf/vIXRUZGavXq1erSpYst5uGHH9aZM2eUnJysvLw8XXvttVq3bp3d8zJXrFihSZMmadCgQTKbzRo+fLgWL15sl9vgwYN15MgR2+vu3btL+uXZNqWlpVqwYIEOHDggNzc3/f73v9eWLVsUHh5ud54DBw7oq6++0ueff17u+l1cXLR37169+eabysvLU1hYmG688UY98cQTLDMGAAAA/EYm40p/MuVvZLFY5O/vr/z8fGb8AAAA4Ip3JX3+vf/++/XEE0+oefPmzk7linYl3TMAAABAVVT1M3CNZsAAAAAAgDPl5eVp69atys3NldVqtduXlJQkSXrppZeckRoAAAAASKIAAwAAAKCB+eSTTzR69GgVFBTIz89PJpPJts9kMtkKMAAAAADgTObLhwAAAABA/fHQQw/p7rvvVkFBgfLy8vTzzz/btlOnTjk7PQAAAACQRAEGAAAAQAPz3//+V5MnT5a3t7ezUwEAAACASlGAAQAAANCgxMfHa/v27c5OAwAAAAAuiWfAAAAAAGhQhgwZomnTpmn//v2KioqSm5ub3f6hQ4c6KTMAAAAA+AUFGAAAAAANyoQJEyRJc+bMKbfPZDKptLS0rlMCAAAAgHIowAAAAABoUKxWq7NTAAAAAIDL4hkwAAAAAAAAAAAADsYMGAAAAAD13uLFi5WcnCxPT08tXrz4krGTJ0+uo6wAAAAAoHImwzAMZydRn1ksFvn7+ys/P19+fn7OTgcAAACoVfX1829ERIS2b9+uZs2aKSIiotI4k8mkH3/8sQ4zQ329ZwAAAIDaUtXPwMyAAQAAAFDvZWRkVPgzAAAAANRXPAMGAAAAAAAAAADAwZgBAwAAAKDBOXr0qD7++GNlZmaqqKjIbt/ChQudlBUAAAAA/IICDAAAAIAGZcOGDRo6dKjatGmj7777Tl26dNHhw4dlGIZ69Ojh7PQAAAAAQBIFmHrNMAxZDWdnAQAAAGcwSTKbTc5Oo16aPn26pk6dqtmzZ6tJkyb64IMPFBQUpNGjRyshIcHZ6QEAAACAJAow9Vru6ULFPL3B2WkAAADACabFt9fE37d1dhr10rfffqt33nlHkuTq6qpz587J19dXc+bM0bBhw3T//fc7OUMAAAAAkMzOTqC+WrJkiTp16qTevXs7OxUAAAAAF/Hx8bE99yU0NFSHDh2y7Ttx4oSz0gIAAAAAO8yAqcTEiRM1ceJEWSwW+fv7OyWHFr4e2jXjBqe8NwAAAJzL083F2SnUW3379tVXX32ljh07avDgwXrooYf0n//8Rx9++KH69u3r7PQAAAAAQBIFmHrNbDapqY+7s9MAAAAA6pWFCxeqoKBAkjR79mwVFBTo3XffVWRkpBYuXOjk7AAAAACgDAUYAAAAAA1GaWmpjh49qq5du0oqW45s6dKlTs4KAAAAAMrjGTAAAAAAGgwXFxfdeOON+vnnn52dCgAAAABcEgUYAAAAAA1Kly5d9OOPPzo7DQAAAAC4JAowAAAAABqUJ598UlOnTtWaNWuUlZUli8VitwEAAABAfcAzYAAAAAA0KIMHD5YkDR06VCaTydZuGIZMJpNKS0udlRoAAAAA2FCAAQAAANCgvPHGG2rVqpVcXFzs2q1WqzIzM52UFQAAAADYowADAAAAoEG5++67lZWVpaCgILv2kydPKi4uTmPGjHFSZgAAAADwC54BAwDA/2/v3qOjqs/9j38m90FIQgwkDAQSlXKRSJDLEFCpJcsE0BL1HIGTdSAcCtUDXhagiBXw1oaCUA7KISpFcCmGco7iKqU5YiBFJCYSiRjACBQItCSIYXIBISH5/v7oj13HBAg4MwHyfq01K5nvfvae7374Ot1Pn+wZAMA15fxHjf1QTU2NQkJCWmBGAAAAANAYd8AAAAAAuCZMnz5dkmSz2TRnzhy1adPG2lZfX6/8/HwlJCS00OwAAAAAwB13wAAAAAC4JuzcuVM7d+6UMUZffvml9Xznzp366quv1LdvX61ateqyj7ts2TLFxsYqJCRETqdTBQUFF41ft26devbsqZCQEMXHx2vjxo1u240xmjt3rjp16iS73a6kpCTt27fPLaaiokJpaWkKDQ1VeHi4Jk2apJqaGmv7mTNnlJ6ervj4eAUEBCg1NfWCc+/Vq5fsdrt69Oiht956y237qlWrZLPZ3B4/vEuoOfMFAAAAcPm4AwYAAADANWHLli2SpIkTJ+q//uu/FBoa+qOPuXbtWk2fPl2ZmZlyOp1asmSJkpOTVVJS0ug7ZiRp+/btGjdunDIyMnTvvfdqzZo1Sk1N1eeff64+ffpIkhYsWKClS5dq9erViouL05w5c5ScnKw9e/ZYzY+0tDQdO3ZMmzZtUl1dnSZOnKgpU6ZozZo1kv5xR4/dbtdjjz2m//3f/21y7suXL9fs2bP1xhtvaODAgSooKNDkyZPVvn173XfffVZcaGioSkpKrOc//Pi25swXAAAAwOWzGWNMS0/ialZVVaWwsDBVVlZ6pMADAAAArmat7frX6XRq4MCBevXVVyVJDQ0NiomJ0aOPPqqnn366UfyYMWN06tQpbdiwwRobPHiwEhISlJmZKWOMHA6HZsyYoZkzZ0qSKisrFRUVpVWrVmns2LHau3evevfurc8++0wDBgyQJGVnZ2vkyJE6evSoHA6H22ump6fL5XJp/fr1buNDhgzR0KFDtXDhQmtsxowZys/P17Zt2yT94w6YJ554Qi6Xq8nzb858L6W1rRkAAACgudfAfAQZAAAAgFaptrZWhYWFSkpKssb8/PyUlJSkvLy8JvfJy8tzi5ek5ORkK/7gwYMqKytziwkLC5PT6bRi8vLyFB4ebjVfJCkpKUl+fn7Kz89v9vzPnj3b6A4Vu92ugoIC1dXVWWM1NTXq1q2bYmJiNHr0aO3evdva1pz5NvW6VVVVbg8AAAAAjdGAAQAAANAqnThxQvX19YqKinIbj4qKUllZWZP7lJWVXTT+/M9Lxfzw480CAgIUERFxwddtSnJyslasWKHCwkIZY7Rjxw6tWLFCdXV1OnHihCSpR48eWrlypT744AO9/fbbamho0JAhQ3T06NFmz/eHMjIyFBYWZj1iYmKaPWcAAACgNaEBAwAAAADXoDlz5mjEiBEaPHiwAgMDNXr0aE2YMEHSP+7kkaTExESNHz9eCQkJGjZsmN577z116NBBr7322hW/7uzZs1VZWWk9jhw54pHzAQAAAK43NGAAAAAAtEqRkZHy9/dXeXm523h5ebmio6Ob3Cc6Ovqi8ed/Xirm+PHjbtvPnTunioqKC75uU+x2u1auXKnTp0/r0KFDKi0tVWxsrNq1a6cOHTo0uU9gYKD69eun/fv3N3u+PxQcHKzQ0FC3BwAAAIDGaMAAAAAAaJWCgoLUv39/5eTkWGMNDQ3KyclRYmJik/skJia6xUvSpk2brPi4uDhFR0e7xVRVVSk/P9+KSUxMlMvlUmFhoRWzefNmNTQ0yOl0XvZ5BAYGqkuXLvL391dWVpbuvfde6w6YH6qvr9eXX36pTp06NXu+AAAAAK5MQEtPAAAAAABayvTp0zVhwgQNGDBAgwYN0pIlS3Tq1ClNnDhRkjR+/Hh17txZGRkZkqTHH39cw4YN06JFizRq1ChlZWVpx44dev311yVJNptNTzzxhF566SV1795dcXFxmjNnjhwOh1JTUyVJvXr1UkpKiiZPnqzMzEzV1dVp2rRpGjt2rBwOhzW3PXv2qLa2VhUVFaqurlZRUZEkKSEhQZL09ddfq6CgQE6nUydPntTixYtVXFys1atXW8d44YUXNHjwYN1yyy1yuVxauHChDh8+rF/84hfNni8AAACAK0MDBgAAAECrNWbMGH3zzTeaO3euysrKlJCQoOzsbOtL6UtLS93uJhkyZIjWrFmjZ599Vs8884y6d++u9evXq0+fPlbMU089pVOnTmnKlClyuVy64447lJ2drZCQECvmnXfe0bRp0zR8+HD5+fnpwQcf1NKlS93mNnLkSB0+fNh63q9fP0mSMUbSP+5mWbRokUpKShQYGKi7775b27dvV2xsrLXPyZMnNXnyZJWVlal9+/bq37+/tm/frt69e1/WfAEAAABcPps5f/WOJlVVVSksLEyVlZV8tjEAAACue1z/4nKxZgAAANDaNPcamO+AAQAAAAAAAAAA8DAaMAAAAAAAAAAAAB5GAwYAAAAAAAAAAMDDaMAAAAAAAAAAAAB4GA0YAAAAAAAAAAAAD6MBAwAAAAAAAAAA4GE0YAAAAAAAAAAAADyMBgwAAAAAAAAAAICH0YABAAAAAAAAAADwMBowAAAAAAAAAAAAHkYDBgAAAAAAAAAAwMNowAAAAAAAAAAAAHgYDRgAAAAAAAAAAAAPowEDAAAAAAAAAADgYTRgAAAAAAAAAAAAPIwGDAAAAAAAAAAAgIfRgAEAAAAAAAAAAPAwGjAAAAAAAAAAAAAeRgMGAAAAAAAAAADAw2jAAAAAAAAAAAAAeBgNGAAAAAAAAAAAAA+jAQMAAAAAAAAAAOBhNGAAAAAAAAAAAAA8jAYMAAAAAAAAAACAh9GAAQAAAAAAAAAA8DAaMAAAAAAAAAAAAB5GAwYAAAAAAAAAAMDDaMAAAAAAAAAAAAB4GA0YAAAAAAAAAAAAD6MBAwAAAKBVW7ZsmWJjYxUSEiKn06mCgoKLxq9bt049e/ZUSEiI4uPjtXHjRrftxhjNnTtXnTp1kt1uV1JSkvbt2+cWU1FRobS0NIWGhio8PFyTJk1STU2Ntf3MmTNKT09XfHy8AgIClJqaesG59+rVS3a7XT169NBbb73ltv2NN97QnXfeqfbt26t9+/ZKSkpqdH7p6emy2Wxuj5SUlEulDQAAAMAl0IABAAAA0GqtXbtW06dP17x58/T555+rb9++Sk5O1vHjx5uM3759u8aNG6dJkyZp586dSk1NVWpqqoqLi62YBQsWaOnSpcrMzFR+fr5uuOEGJScn68yZM1ZMWlqadu/erU2bNmnDhg3aunWrpkyZYm2vr6+X3W7XY489pqSkpCbnsnz5cs2ePVvPPfecdu/ereeff15Tp07VH//4RysmNzdX48aN05YtW5SXl6eYmBjdc889+tvf/uZ2rJSUFB07dsx6vPvuu1eUTwAAAAD/ZDPGmJaexNWsqqpKYWFhqqysVGhoaEtPBwAAAPCq1nb963Q6NXDgQL366quSpIaGBsXExOjRRx/V008/3Sh+zJgxOnXqlDZs2GCNDR48WAkJCcrMzJQxRg6HQzNmzNDMmTMlSZWVlYqKitKqVas0duxY7d27V71799Znn32mAQMGSJKys7M1cuRIHT16VA6Hw+0109PT5XK5tH79erfxIUOGaOjQoVq4cKE1NmPGDOXn52vbtm1Nnm99fb3at2+vV199VePHj7/o8Zurta0ZAAAAoLnXwNwBAwAAAKBVqq2tVWFhodsdJn5+fkpKSlJeXl6T++Tl5TW6IyU5OdmKP3jwoMrKytxiwsLC5HQ6rZi8vDyFh4dbzRdJSkpKkp+fn/Lz85s9/7NnzyokJMRtzG63q6CgQHV1dU3uc/r0adXV1SkiIsJtPDc3Vx07dlSPHj30yCOP6Ntvv73o61ZVVbk9AAAAADRGAwYAAABAq3TixAnV19crKirKbTwqKkplZWVN7lNWVnbR+PM/LxXTsWNHt+0BAQGKiIi44Os2JTk5WStWrFBhYaGMMdqxY4dWrFihuro6nThxosl9Zs2aJYfD4dYgSklJ0VtvvaWcnBz99re/1V/+8heNGDFC9fX1TR4jIyNDYWFh1iMmJqbZcwYAAABak4CWngAAAAAA4PLNmTNHZWVlGjx4sIwxioqK0oQJE7RgwQL5+TX+W7v58+crKytLubm5bnfOjB071vo9Pj5et912m26++Wbl5uZq+PDhjY4ze/ZsTZ8+3XpeVVVFEwYAAABoAnfAAAAAAGiVIiMj5e/vr/Lycrfx8vJyRUdHN7lPdHT0RePP/7xUzPHjx922nzt3ThUVFRd83abY7XatXLlSp0+f1qFDh1RaWqrY2Fi1a9dOHTp0cIt9+eWXNX/+fH344Ye67bbbLnrcm266SZGRkdq/f3+T24ODgxUaGur2AAAAANAYDRgAAAAArVJQUJD69++vnJwca6yhoUE5OTlKTExscp/ExES3eEnatGmTFR8XF6fo6Gi3mKqqKuXn51sxiYmJcrlcKiwstGI2b96shoYGOZ3Oyz6PwMBAdenSRf7+/srKytK9997rdgfMggUL9OKLLyo7O9vte2cu5OjRo/r222/VqVOny54LAAAAgH/iI8gAAAAAtFrTp0/XhAkTNGDAAA0aNEhLlizRqVOnNHHiREnS+PHj1blzZ2VkZEiSHn/8cQ0bNkyLFi3SqFGjlJWVpR07duj111+XJNlsNj3xxBN66aWX1L17d8XFxWnOnDlyOBxKTU2VJPXq1UspKSmaPHmyMjMzVVdXp2nTpmns2LFyOBzW3Pbs2aPa2lpVVFSourpaRUVFkqSEhARJ0tdff62CggI5nU6dPHlSixcvVnFxsVavXm0d47e//a3mzp2rNWvWKDY21vqOmbZt26pt27aqqanR888/rwcffFDR0dE6cOCAnnrqKd1yyy1KTk72ZuoBAACA6x4NGAAAAACt1pgxY/TNN99o7ty5KisrU0JCgrKzsxUVFSVJKi0tdbubZMiQIVqzZo2effZZPfPMM+revbvWr1+vPn36WDFPPfWUTp06pSlTpsjlcumOO+5Qdna22/euvPPOO5o2bZqGDx8uPz8/Pfjgg1q6dKnb3EaOHKnDhw9bz/v16ydJMsZIkurr67Vo0SKVlJQoMDBQd999t7Zv367Y2Fhrn+XLl6u2tlb/8i//4nbsefPm6bnnnpO/v7927dql1atXy+VyyeFw6J577tGLL76o4ODgH5ldAAAAoHWzmfNX72hSVVWVwsLCVFlZyWcbAwAA4LrH9S8uF2sGAAAArU1zr4H5DhgAAAAAAAAAAAAPowEDAAAAAAAAAADgYTRgAAAAAAAAAAAAPIwGDAAAAAAAAAAAgIfRgAEAAAAAAAAAAPAwGjAAAAAAAAAAAAAeRgMGAAAAAAAAAADAw2jAAAAAAAAAAAAAeBgNGAAAAAAAAAAAAA+jAQMAAAAAAAAAAOBhNGAAAAAAAAAAAAA8jAYMAAAAAAAAAACAh9GAAQAAAAAAAAAA8DAaMAAAAAAAAAAAAB5GAwYAAAAAAAAAAMDDaMAAAAAAAAAAAAB4GA0YAAAAAAAAAAAAD6MBAwAAAAAAAAAA4GE0YAAAAAAAAAAAADyMBgwAAAAAAAAAAICH0YABAAAAAAAAAADwMBowAAAAAAAAAAAAHkYDBgAAAAAAAAAAwMNowAAAAAAAAAAAAHgYDRgAAAAAAAAAAAAPowEDAAAAAAAAAADgYTRgAAAAAAAAAAAAPKzVNGBOnz6tbt26aebMmS09FQAAAAAAAAAAcJ1rNQ2YX//61xo8eHBLTwMAAAAAAAAAALQCraIBs2/fPn311VcaMWJES08FAAAAwFVm2bJlio2NVUhIiJxOpwoKCi4av27dOvXs2VMhISGKj4/Xxo0b3bYbYzR37lx16tRJdrtdSUlJ2rdvn1tMRUWF0tLSFBoaqvDwcE2aNEk1NTXW9jNnzig9PV3x8fEKCAhQamrqBefeq1cv2e129ejRQ2+99ZZX5gsAAADg8rV4A2br1q2677775HA4ZLPZtH79+kYxl1sQ/dDMmTOVkZHhoRkDAAAAuF6sXbtW06dP17x58/T555+rb9++Sk5O1vHjx5uM3759u8aNG6dJkyZp586dSk1NVWpqqoqLi62YBQsWaOnSpcrMzFR+fr5uuOEGJScn68yZM1ZMWlqadu/erU2bNmnDhg3aunWrpkyZYm2vr6+X3W7XY489pqSkpCbnsnz5cs2ePVvPPfecdu/ereeff15Tp07VH//4R4/PFwAAAMDlsxljTEtO4M9//rM++eQT9e/fXw888IDef/99t7/uWrt2rcaPH6/MzEw5nU4tWbJE69atU0lJiTp27ChJSkhI0Llz5xod+8MPP9Rnn32mbdu2aeHChVq1apWKi4v18ssvN3t+VVVVCgsLU2VlpUJDQ3/0+QIAAABXs9Z2/et0OjVw4EC9+uqrkqSGhgbFxMTo0Ucf1dNPP90ofsyYMTp16pQ2bNhgjQ0ePFgJCQnKzMyUMUYOh0MzZsywvn+ysrJSUVFRWrVqlcaOHau9e/eqd+/e+uyzzzRgwABJUnZ2tkaOHKmjR4/K4XC4vWZ6erpcLlejP1YbMmSIhg4dqoULF1pjM2bMUH5+vrZt2+ax+V5Ka1szAAAAQHOvgVv8DpgRI0bopZde0v3339/k9sWLF2vy5MmaOHGievfurczMTLVp00YrV660YoqKilRcXNzo4XA49OmnnyorK0uxsbGaOXOm3njjDb3wwgsXnM/Zs2dVVVXl9gAAAABw/amtrVVhYaHbHSZ+fn5KSkpSXl5ek/vk5eU1uiMlOTnZij948KDKysrcYsLCwuR0Oq2YvLw8hYeHW80XSUpKSpKfn5/y8/ObPf+zZ88qJCTEbcxut6ugoEB1dXUem29Tr0vNBAAAAFxaizdgLuZKCqIfysjI0JEjR3To0CG9/PLLmjx5subOnXvR+LCwMOsRExPzo88DAAAAwNXnxIkTqq+vV1RUlNt4VFSUysrKmtynrKzsovHnf14q5vzd/OcFBAQoIiLigq/blOTkZK1YsUKFhYUyxmjHjh1asWKF6urqdOLECY/N94eomQAAAIDmuaobMFdSEP1Ys2fPVmVlpfU4cuSIV14HAAAAAH6MOXPmaMSIERo8eLACAwM1evRoTZgwQdI//nDNW6iZAAAAgOa5qhswnpaenn7J738JDg5WaGio2wMAAADA9ScyMlL+/v4qLy93Gy8vL1d0dHST+0RHR180/vzPS8UcP37cbfu5c+dUUVFxwddtit1u18qVK3X69GkdOnRIpaWlio2NVbt27dShQwePzfeHqJkAAACA5rmqGzBXUhABAAAAQHMEBQWpf//+ysnJscYaGhqUk5OjxMTEJvdJTEx0i5ekTZs2WfFxcXGKjo52i6mqqlJ+fr4Vk5iYKJfLpcLCQitm8+bNamhokNPpvOzzCAwMVJcuXeTv76+srCzde++91h0wnpgvAAAAgCsT0NITuJjvF0SpqamS/lkQTZs2rWUnBwAAAOCaN336dE2YMEEDBgzQoEGDtGTJEp06dUoTJ06UJI0fP16dO3dWRkaGJOnxxx/XsGHDtGjRIo0aNUpZWVnasWOHXn/9dUmSzWbTE088oZdeekndu3dXXFyc5syZI4fDYdU0vXr1UkpKiiZPnqzMzEzV1dVp2rRpGjt2rBwOhzW3PXv2qLa2VhUVFaqurlZRUZEkKSEhQZL09ddfq6CgQE6nUydPntTixYtVXFys1atXW8fwxHwBAAAAXJkWb8DU1NRo//791vODBw+qqKhIERER6tq16yULIgAAAAC4UmPGjNE333yjuXPnqqysTAkJCcrOzra+h7K0tNTt+1SGDBmiNWvW6Nlnn9Uzzzyj7t27a/369erTp48V89RTT+nUqVOaMmWKXC6X7rjjDmVnZyskJMSKeeeddzRt2jQNHz5cfn5+evDBB7V06VK3uY0cOVKHDx+2nvfr10+SZIyRJNXX12vRokUqKSlRYGCg7r77bm3fvl2xsbEeny8AAACAy2cz56/eW0hubq7uvvvuRuMTJkzQqlWrJEmvvvqqFi5caBVES5cuvaJb869EVVWVwsLCVFlZyWcbAwAA4LrH9S8uF2sGAAAArU1zr4FbvAFztaOYAAAAQGvC9S8uF2sGAAAArU1zr4H9LrgFAAAAAAAAAAAAV4QGDAAAAAAAAAAAgIfRgAEAAAAAAAAAAPAwGjAAAAAAAAAAAAAeRgMGAAAAAAAAAADAw2jAAAAAAAAAAAAAeBgNmAtYtmyZevfurYEDB7b0VAAAAAAAAAAAwDXGZowxLT2Jq1llZaXCw8N15MgRhYaGtvR0AAAAAK+qqqpSTEyMXC6XwsLCWno6uAZQMwEAAKC1aW7dFODDOV2TqqurJUkxMTEtPBMAAADAd6qrq2nAoFmomQAAANBaXapu4g6YS2hoaNDf//53tWvXTjabzeevf76Txl+TeQ859g3y7H3k2DfIs/eRY+8jx75xrebZGKPq6mo5HA75+fGJxbg0aqbWgTx7Hzn2DfLsfeTY+8ixb5Bn77uWc9zcuok7YC7Bz89PXbp0aelpKDQ09JpbhNcacuwb5Nn7yLFvkGfvI8feR45941rMM3e+4HJQM7Uu5Nn7yLFvkGfvI8feR459gzx737Wa4+bUTfxJGwAAAAAAAAAAgIfRgAEAAAAAAAAAAPAwGjBXueDgYM2bN0/BwcEtPZXrFjn2DfLsfeTYN8iz95Fj7yPHvkGeAd/gvzXfIM/eR459gzx7Hzn2PnLsG+TZ+1pDjm3GGNPSkwAAAAAAAAAAALiecAcMAAAAAAAAAACAh9GAAQAAAAAAAAAA8DAaMAAAAAAAAAAAAB5GAwYAAAAAAAAAAMDDaMBcxZYtW6bY2FiFhITI6XSqoKCgpad01crIyNDAgQPVrl07dezYUampqSopKXGL+elPfyqbzeb2ePjhh91iSktLNWrUKLVp00YdO3bUk08+qXPnzrnF5Obm6vbbb1dwcLBuueUWrVq1ytund1V47rnnGuWvZ8+e1vYzZ85o6tSpuvHGG9W2bVs9+OCDKi8vdzsG+b202NjYRnm22WyaOnWqJNbxldi6davuu+8+ORwO2Ww2rV+/3m27MUZz585Vp06dZLfblZSUpH379rnFVFRUKC0tTaGhoQoPD9ekSZNUU1PjFrNr1y7deeedCgkJUUxMjBYsWNBoLuvWrVPPnj0VEhKi+Ph4bdy40ePn21Iulue6ujrNmjVL8fHxuuGGG+RwODR+/Hj9/e9/dztGU+t//vz5bjGtOc+XWsvp6emN8peSkuIWw1q+uEvluKn3Z5vNpoULF1oxrGPA96ibmoeayTeom7yPmsk7qJu8j5rJ+6iZfIO66TIZXJWysrJMUFCQWblypdm9e7eZPHmyCQ8PN+Xl5S09tatScnKyefPNN01xcbEpKioyI0eONF27djU1NTVWzLBhw8zkyZPNsWPHrEdlZaW1/dy5c6ZPnz4mKSnJ7Ny502zcuNFERkaa2bNnWzF//etfTZs2bcz06dPNnj17zCuvvGL8/f1Ndna2T8+3JcybN8/ceuutbvn75ptvrO0PP/ywiYmJMTk5OWbHjh1m8ODBZsiQIdZ28ts8x48fd8vxpk2bjCSzZcsWYwzr+Eps3LjR/OpXvzLvvfeekWTef/99t+3z5883YWFhZv369eaLL74wP//5z01cXJz57rvvrJiUlBTTt29f8+mnn5qPP/7Y3HLLLWbcuHHW9srKShMVFWXS0tJMcXGxeffdd43dbjevvfaaFfPJJ58Yf39/s2DBArNnzx7z7LPPmsDAQPPll196PQe+cLE8u1wuk5SUZNauXWu++uork5eXZwYNGmT69+/vdoxu3bqZF154wW19f/99vLXn+VJrecKECSYlJcUtfxUVFW4xrOWLu1SOv5/bY8eOmZUrVxqbzWYOHDhgxbCOAd+ibmo+aibfoG7yPmom76Bu8j5qJu+jZvIN6qbLQwPmKjVo0CAzdepU63l9fb1xOBwmIyOjBWd17Th+/LiRZP7yl79YY8OGDTOPP/74BffZuHGj8fPzM2VlZdbY8uXLTWhoqDl79qwxxpinnnrK3HrrrW77jRkzxiQnJ3v2BK5C8+bNM3379m1ym8vlMoGBgWbdunXW2N69e40kk5eXZ4whv1fq8ccfNzfffLNpaGgwxrCOf6wfXhg0NDSY6Ohos3DhQmvM5XKZ4OBg8+677xpjjNmzZ4+RZD777DMr5s9//rOx2Wzmb3/7mzHGmP/+7/827du3t3JsjDGzZs0yPXr0sJ4/9NBDZtSoUW7zcTqd5pe//KVHz/Fq0NQF2A8VFBQYSebw4cPWWLdu3czvfve7C+5Dnv/pQsXE6NGjL7gPa/nyNGcdjx492vzsZz9zG2MdA75F3XTlqJm8g7rJ96iZPI+6yfuombyPmsk3qJsujY8guwrV1taqsLBQSUlJ1pifn5+SkpKUl5fXgjO7dlRWVkqSIiIi3MbfeecdRUZGqk+fPpo9e7ZOnz5tbcvLy1N8fLyioqKsseTkZFVVVWn37t1WzPf/Xc7HtJZ/l3379snhcOimm25SWlqaSktLJUmFhYWqq6tzy03Pnj3VtWtXKzfk9/LV1tbq7bff1n/8x3/IZrNZ46xjzzl48KDKysrc8hEWFian0+m2dsPDwzVgwAArJikpSX5+fsrPz7di7rrrLgUFBVkxycnJKikp0cmTJ60Y8v5PlZWVstlsCg8PdxufP3++brzxRvXr108LFy50+ygI8nxpubm56tixo3r06KFHHnlE3377rbWNtexZ5eXl+tOf/qRJkyY12sY6BnyDuunHoWbyHuom36Fm8g3qppZBzeQd1Ey+Rd0kBbT0BNDYiRMnVF9f73YxIElRUVH66quvWmhW146GhgY98cQTGjp0qPr06WON/9u//Zu6desmh8OhXbt2adasWSopKdF7770nSSorK2sy5+e3XSymqqpK3333nex2uzdPrUU5nU6tWrVKPXr00LFjx/T888/rzjvvVHFxscrKyhQUFNTooiAqKuqSuTu/7WIxrSG/TVm/fr1cLpfS09OtMdaxZ53PSVP5+H6+Onbs6LY9ICBAERERbjFxcXGNjnF+W/v27S+Y9/PHaE3OnDmjWbNmady4cQoNDbXGH3vsMd1+++2KiIjQ9u3bNXv2bB07dkyLFy+WRJ4vJSUlRQ888IDi4uJ04MABPfPMMxoxYoTy8vLk7+/PWvaw1atXq127dnrggQfcxlnHgO9QN105aibvoW7yLWom36Bu8j1qJu+gZvI96iYaMLgOTZ06VcXFxdq2bZvb+JQpU6zf4+Pj1alTJw0fPlwHDhzQzTff7OtpXnNGjBhh/X7bbbfJ6XSqW7du+sMf/tDqLj595fe//71GjBghh8NhjbGOca2rq6vTQw89JGOMli9f7rZt+vTp1u+33XabgoKC9Mtf/lIZGRkKDg729VSvOWPHjrV+j4+P12233aabb75Zubm5Gj58eAvO7Pq0cuVKpaWlKSQkxG2cdQzgWkDN5D3UTb5FzYTrETWT91Az+R51k8RHkF2FIiMj5e/vr/Lycrfx8vJyRUdHt9Csrg3Tpk3Thg0btGXLFnXp0uWisU6nU5K0f/9+SVJ0dHSTOT+/7WIxoaGhre5iOjw8XD/5yU+0f/9+RUdHq7a2Vi6Xyy3m+2uW/F6ew4cP66OPPtIvfvGLi8axjn+c8zm52PttdHS0jh8/7rb93Llzqqio8Mj6bk3v6+cLicOHD2vTpk1uf8nVFKfTqXPnzunQoUOSyPPluummmxQZGen2/sBa9oyPP/5YJSUll3yPlljHgDdRN10Zaibfom7yHmom36Fu8h1qJt+iZvIu6qZ/oAFzFQoKClL//v2Vk5NjjTU0NCgnJ0eJiYktOLOrlzFG06ZN0/vvv6/Nmzc3ukWtKUVFRZKkTp06SZISExP15Zdfur3Rnv8fu969e1sx3/93OR/TGv9dampqdODAAXXq1En9+/dXYGCgW25KSkpUWlpq5Yb8Xp4333xTHTt21KhRoy4axzr+ceLi4hQdHe2Wj6qqKuXn57utXZfLpcLCQitm8+bNamhosIq5xMREbd26VXV1dVbMpk2b1KNHD7Vv396Kac15P19I7Nu3Tx999JFuvPHGS+5TVFQkPz8/6xZw8nx5jh49qm+//dbt/YG17Bm///3v1b9/f/Xt2/eSsaxjwHuomy4PNVPLoG7yHmom36Fu8g1qJt+jZvIu6qb/z+CqlJWVZYKDg82qVavMnj17zJQpU0x4eLgpKytr6aldlR555BETFhZmcnNzzbFjx6zH6dOnjTHG7N+/37zwwgtmx44d5uDBg+aDDz4wN910k7nrrrusY5w7d8706dPH3HPPPaaoqMhkZ2ebDh06mNmzZ1sxf/3rX02bNm3Mk08+afbu3WuWLVtm/P39TXZ2ts/P2ddmzJhhcnNzzcGDB80nn3xikpKSTGRkpDl+/LgxxpiHH37YdO3a1WzevNns2LHDJCYmmsTERGt/8tt89fX1pmvXrmbWrFlu46zjK1NdXW127txpdu7caSSZxYsXm507d5rDhw8bY4yZP3++CQ8PNx988IHZtWuXGT16tImLizPfffeddYyUlBTTr18/k5+fb7Zt22a6d+9uxo0bZ213uVwmKirK/Pu//7spLi42WVlZpk2bNua1116zYj755BMTEBBgXn75ZbN3714zb948ExgYaL788kvfJcOLLpbn2tpa8/Of/9x06dLFFBUVub1Pnz171hhjzPbt283vfvc7U1RUZA4cOGDefvtt06FDBzN+/HjrNVp7ni+W4+rqajNz5kyTl5dnDh48aD766CNz++23m+7du5szZ85Yx2AtX9yl3i+MMaaystK0adPGLF++vNH+rGPA96ibmo+ayTeom3yDmsnzqJu8j5rJ+6iZfIO66fLQgLmKvfLKK6Zr164mKCjIDBo0yHz66actPaWrlqQmH2+++aYxxpjS0lJz1113mYiICBMcHGxuueUW8+STT5rKykq34xw6dMiMGDHC2O12ExkZaWbMmGHq6urcYrZs2WISEhJMUFCQuemmm6zXuN6NGTPGdOrUyQQFBZnOnTubMWPGmP3791vbv/vuO/Of//mfpn379qZNmzbm/vvvN8eOHXM7Bvltnv/7v/8zkkxJSYnbOOv4ymzZsqXJ94cJEyYYY4xpaGgwc+bMMVFRUSY4ONgMHz68Ue6//fZbM27cONO2bVsTGhpqJk6caKqrq91ivvjiC3PHHXeY4OBg07lzZzN//vxGc/nDH/5gfvKTn5igoCBz6623mj/96U9eO29fu1ieDx48eMH36S1bthhjjCksLDROp9OEhYWZkJAQ06tXL/Ob3/zG7ULYmNad54vl+PTp0+aee+4xHTp0MIGBgaZbt25m8uTJjf4PSNbyxV3q/cIYY1577TVjt9uNy+VqtD/rGGgZ1E3NQ83kG9RNvkHN5HnUTd5HzeR91Ey+Qd10eWzGGHOld88AAAAAAAAAAACgMb4DBgAAAAAAAAAAwMNowAAAAAAAAAAAAHgYDRgAAAAAAAAAAAAPowEDAAAAAAAAAADgYTRgAAAAAAAAAAAAPIwGDAAAAAAAAAAAgIfRgAEAAAAAAAAAAPAwGjAAAAAAAAAAAAAeRgMGANCi0tPTlZqa2tLTAAAAAICrEjUTAFy7aMAAAAAAAAAAAAB4GA0YAIBP/M///I/i4+Nlt9t14403KikpSU8++aRWr16tDz74QDabTTabTbm5uZKkI0eO6KGHHlJ4eLgiIiI0evRoHTp0yDre+b8Ce/7559WhQweFhobq4YcfVm1tbcucIAAAAAD8CNRMAHD9CWjpCQAArn/Hjh3TuHHjtGDBAt1///2qrq7Wxx9/rPHjx6u0tFRVVVV68803JUkRERGqq6tTcnKyEhMT9fHHHysgIEAvvfSSUlJStGvXLgUFBUmScnJyFBISotzcXB06dEgTJ07UjTfeqF//+tcteboAAAAAcFmomQDg+kQDBgDgdceOHdO5c+f0wAMPqFu3bpKk+Ph4SZLdbtfZs2cVHR1txb/99ttqaGjQihUrZLPZJElvvvmmwsPDlZubq3vuuUeSFBQUpJUrV6pNmza69dZb9cILL+jJJ5/Uiy++KD8/bvIEAAAAcG2gZgKA6xPvtAAAr+vbt6+GDx+u+Ph4/eu//qveeOMNnTx58oLxX3zxhfbv36927dqpbdu2atu2rSIiInTmzBkdOHDA7bht2rSxnicmJqqmpkZHjhzx6vkAAAAAgCdRMwHA9Yk7YAAAXufv769NmzZp+/bt+vDDD/XKK6/oV7/6lfLz85uMr6mpUf/+/fXOO+802tahQwdvTxcAAAAAfIqaCQCuTzRgAAA+YbPZNHToUA0dOlRz585Vt27d9P777ysoKEj19fVusbfffrvWrl2rjh07KjQ09ILH/OKLL/Tdd9/JbrdLkj799FO1bdtWMTExXj0XAAAAAPA0aiYAuP7wEWQAAK/Lz8/Xb37zG+3YsUOlpaV677339M0336hXr16KjY3Vrl27VFJSohMnTqiurk5paWmKjIzU6NGj9fHHH+vgwYPKzc3VY489pqNHj1rHra2t1aRJk7Rnzx5t3LhR8+bN07Rp0/gsYwAAAADXFGomALg+cQcMAMDrQkNDtXXrVi1ZskRVVVXq1q2bFi1apBEjRmjAgAHKzc3VgAEDVFNToy1btuinP/2ptm7dqlmzZumBBx5QdXW1OnfurOHDh7v9ddfw4cPVvXt33XXXXTp79qzGjRun5557ruVOFAAAAACuADUTAFyfbMYY09KTAADgcqWnp8vlcmn9+vUtPRUAAAAAuOpQMwFAy+N+QwAAAAAAAAAAAA+jAQMAAAAAAAAAAOBhfAQZAAAAAAAAAACAh3EHDAAAAAAAAAAAgIfRgAEAAAAAAAAAAPAwGjAAAAAAAAAAAAAeRgMGAAAAAAAAAADAw2jAAAAAAAAAAAAAeBgNGAAAAAAAAAAAAA+jAQMAAAAAAAAAAOBhNGAAAAAAAAAAAAA8jAYMAAAAAAAAAACAh/0/UoSVc/JsGrcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import os\n", + "from seaborn import lineplot\n", + "import pandas as pd\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "metrics = [\"loss\", \"lr\"]\n", + "fig, ax = plt.subplots(2, len(metrics), figsize=(20, 10))\n", + "\n", + "if os.path.exists(PATH_TO_CSV):\n", + " df = pd.read_csv(PATH_TO_CSV)\n", + " for i, metric in enumerate(metrics):\n", + " df[f\"train_{metric}_step_cumsum\"] = df[f\"train_{metric}_step\"].expanding().mean()\n", + " lineplot(data=df, x=\"step\", y=f\"train_{metric}_step\", ax=ax[i, 0], label=f\"train_{metric}_step\")\n", + " lineplot(data=df, x=\"step\", y=f\"train_{metric}_step_cumsum\", ax=ax[i, 1], label=f\"train_{metric}_step\")\n", + " ax[i, 0].set(yscale=\"log\")\n", + " ax[i, 1].set(yscale=\"linear\")\n", + "else:\n", + " print(f\"File {PATH_TO_CSV} not found\")" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "import torch\n", + "\n", + "from minecraft_copilot_ml.model import LightningUNetModel\n", + "\n", + "flow_matching_model: LightningUNetModel = torch.load(PATH_TO_BEST_MODEL)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "torch.Size([2, 1, 679, 16, 16, 16])" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import torch\n", + "\n", + "from minecraft_copilot_ml.model import LightningUNetModel\n", + "from torchdyn.core import NeuralODE\n", + "from scipy.integrate import solve_ivp\n", + "\n", + "node = NeuralODE(flow_matching_model, solver=\"dopri5\", sensitivity=\"adjoint\", atol=1e-4, rtol=1e-4)\n", + "with torch.no_grad():\n", + " traj = node.trajectory(\n", + " torch.randn(1, len(flow_matching_model.unique_blocks_dict), 16, 16, 16).cuda(),\n", + " t_span=torch.linspace(0, 1, 2).cuda(),\n", + " )\n", + "traj.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 26, "metadata": { "execution": { "iopub.execute_input": "2024-02-18T19:54:09.706970Z", @@ -83,27 +166,34 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_4978/197854407.py:10: MatplotlibDeprecationWarning: The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.\n", + "/tmp/ipykernel_7355/1558102088.py:10: MatplotlibDeprecationWarning: The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.\n", " colors_palette = cm.get_cmap(\"tab10\").colors\n", - "Found 875 copy 12.schematic: : 1it [00:00, 45.76it/s]\n", - "\u001b[32m2024-03-24 14:12:00.862\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mminecraft_copilot_ml.data_loader\u001b[0m:\u001b[36mlist_schematic_files_in_folder\u001b[0m:\u001b[36m228\u001b[0m - \u001b[1mFound 20 schematics files.\u001b[0m\n", - "Processing /home/mehdi/minecraft-copilot-ml/datasets/875 dataset/875 copy 10.schematic: 0%| | 0/20 [00:00" ] @@ -166,6 +256,24 @@ "output_type": "display_data" } ], + "source": [ + "inter_res = traj.cpu().numpy()[-1, 0].argmax(axis=0)\n", + "print(inter_res.shape, inter_res.min(), inter_res.max(), inter_res.mean(), inter_res.std(), np.unique(inter_res).shape)\n", + "display_voxels(inter_res, zero_block=flow_matching_model.unique_blocks_dict[\"minecraft:air\"])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2024-02-18T19:55:03.442615Z", + "iopub.status.busy": "2024-02-18T19:55:03.442175Z", + "iopub.status.idle": "2024-02-18T19:55:06.453597Z", + "shell.execute_reply": "2024-02-18T19:55:06.451323Z" + } + }, + "outputs": [], "source": [ "from minecraft_copilot_ml.data_loader import nbt_to_numpy_minecraft_map\n", "\n", @@ -175,7 +283,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2024-02-18T19:55:06.457320Z", @@ -184,38 +292,7 @@ "shell.execute_reply": "2024-02-18T19:55:12.023777Z" } }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAGKCAYAAADALgxIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eXhk+V3fi7++55zaF5V29b5v07P07NPdY+MxvrYxEGPCYuI4wOQCAYJjuHEMwWa72GDyu1wH+MWGm7AkBO5D8M+JwdgY7PEyns093ZJaUrekbu37VlLtVWf7/VE61VWlU5tUUnePz/t55nmmVVVnqTrn+z6f7f0WpmmaOHDgwIEDB02EdLcPwIEDBw4cvPHgkIsDBw4cOGg6HHJx4MCBAwdNh0MuDhw4cOCg6XDIxYEDBw4cNB0OuThw4MCBg6bDIRcHDhw4cNB0OOTiwIEDBw6aDodcHDhw4MBB0+GQiwMHDhw4aDoccnHgwIEDB02HQy4OHDhw4KDpcMjFgQMHDhw0HQ65OHDgwIGDpsMhFwcOHDhw0HQ45OLAgQMHDpoOh1wcOHDgwEHT4ZCLAwcOHDhoOhxyceDAgQMHTYdDLg4cOHDgoOlwyMWBAwcOHDQdDrk4cODAgYOmwyEXBw4cOHDQdDjk4sCBAwcOmg6HXBw4cODAQdPhkIsDBw4cOGg6HHJx4MCBAwdNh0MuDhw4cOCg6XDIxYEDBw4cNB0OuThw4MCBg6bDIRcHDhw4cNB0OOTiwIEDBw6aDodcHDhw4MBB0+GQiwMHDhw4aDoccnHgwIEDB02HQy4OHDhw4KDpUO72ATj49oJpmui6TjqdRpZlFEVBlmUkSUIIcbcPz4EDB02CME3TvNsH4eDbA4ZhoGkamqaRyWQKZCKEQJIkXC5XgXCEEA7ZOHBwH8MhFwe7DtM0MQwDVVWxLrdcLockSZimWXjdNM0CqVgkY0U2Dtk4cHB/wSEXB7sK0zQL0Qrko5TFxUVmZ2cJh8O0trYSDAaRJKnwfjuyUVUVv9+P2+0upNEcOHBw78IhFwe7Bita0XW9EHUMDw8zOzvLgQMHSCaTrK+vY5omkUiE1tbWAtlY77fI5uWXX+bMmTNEIpFCZGOl0RyyceDg3oNT0HfQdFhFe03TMAwDSZJIJpP09fUhhOCZZ54p1FUAEokE0WiUaDTK+Pg4QogSsgkEAgVCkWW5EA2pqgqAJEklKTSHbBw4uPtwIhcHTYVpmoVoxcL8/DxDQ0McOnSI06dPA/mai10dxTCMErLZ2NhAkiR0XWf//v0cOHAAv9+/JbIpT6M5ZOPAwd2FQy4OmgbDMMjlcoVoRdd1hoaGWFlZ4aGHHqKzs7PkffUU6Q3DIB6P09/fj8fjIZVKoSgKra2thejG5/OVkI1FNBbKyaY4anLgwMHuwCEXBzuGlQazusEkSSIWi9HX14fP5+Ohhx7C6/UW3t8IuVh45ZVXOH36NJFIhI2NDaLRKOvr62xsbOB2u7eQTfGxWWRjF9kUd6M5cOCgeXBqLg52hPI0mBCCiYkJbt26xfHjxzl+/HhTFm4hRIG4rFoMgK7rBbKZn59neHgYj8dTeE9raysej6fkeK1GA4vgJEna0iDgkI0DBzuDQy4Otg1VVclkMoWahqqqXL9+nXg8zhNPPFEggHI0c+GWZZm2tjba2toA0DStQDbT09MMDQ3h8/kKRBOJRKqSDUA0GqWzsxOPx+OQjQMH24RDLg4ahtWttbS0xODgIG9+85tZW1ujv7+fSCTC5cuXcblcVbfR6GJtRS61oCgK7e3ttLe3A3myWV9fJxqNMjk5yeDgIH6/v4Rs3G534bxM02RgYICnn34aTdMKkU15g4BDNg4cVIdDLg4agvWUbxgGQggMw2B0dJTJyUnOnj3LwYMH76mFV1EUOjo66OjoAPLRlkU24+PjJJNJAoFAgWxaWloKn1OU/O1h1Yiy2axDNg4c1AmHXBzUheL0kdUNpmkauVyOpaUlnnnmGUKh0K7tv97IpRZcLhednZ2FzrVcLlcgm9u3b5NKpQAYHx+no6ODSCRSIBkrsjFNk2w2W0ijOWTjwMFWOOTioCbKi/aSJLG4uMj169cRQnDx4kVkWd6T42g23G43XV1ddHV1AZDJZHjppZfQdZ3R0VEymQyhUKjQiRaJREqGOYvJpjiyKRbhdBSfHXw7wiEXB1VRLOEiSRKGYXDjxg3m5+c5ceIE4+Pje0Ise7U4W8X+kydP4vF4yGQyhbbn4eFhstks4XC4QDYtLS22ZJPJZArHbZGNYy/g4NsJDrk4sEUlCZfe3l4UReHSpUvous7Y2NieHtNew+v1sm/fPvbt2wdAOp0ukM2NGzfI5XK0tLQUopp6yKZc8dkhGwdvRDjk4mAL7GZXZmZmuHnzJkeOHOHkyZNIkkQikdizBf9eWXx9Ph8+n4/9+/djmmaBbKLRKLOzs2iaViCb1tZWQqHQFrIxDKNANqurq4TDYUKhkEM2Dt5QcMjFQQmsSfviov3g4CDRaJRHH3200HUFzSuy14t7TUxCCIHf78fv93PgwAFM0ySVShXIZnp6GsMwSsgmGAyWkM309DSHDh3C7XaTyWSQJGlLg4BDNg7uRzjk4gDY6rsiSRIbGxv09fURCAS4dOlSyfAh7C253A+LqxCCQCBAIBDg4MGDmKZJMpkskM3k5OQWewFLdUBRlEJko+s6uq5XbBBwjNMc3A9wyMVBSYuxhfHxcW7fvs3Jkyc5evSo7WJmkYul2bXb2G0i61tY4kAw0LTtCSEIBoMEg0EOHTqEaZpb7AV0XWdqaopsNluwFyhvfbZqX45Lp4P7CQ65fBuj3H5YCEEul6O/v59UKsWTTz5JJBKp+PntLmiGYbC0tITf7y8xBquG3V48//23rvP/Do2i6zredJLzc1HeefIo733kPGGft/YG6oAQglAoRCgU4vDhwxiGwauvvorf72d1dZWxsTEkSSqJbPx+/xaysbxsKpGNYy/g4F6AQy7fprA6mKzaihCC1dVV+vv7aW9v59FHHy0sapVQbE1c7+KfSqXo6+sjk8mgaVqJEGW5fL7dMTcb8ZzK933pRW6vrAEgJIlsIMRVDa7enOBjg7cJazkebAnyrpNH+YGHH8C3KRezU1iCmV1dXXR0dBTsBdbW1lheXubWrVu29gL1kI3j0ungbsMhl29DWNHKlStX2LdvHwcOHGBkZISpqSnOnTvHgQMHGoomLIKqBWvwct++fVy4cAGAeDxONBplcXGRkZGRgnx+a2srbW1thTrPbkQuLy+u8uNfeYlMNlfxPUKWics+Xs7ovDxwm4/2DhPRVf7l8QP83P/2XFOPR5IkWlpaChI0hmEURDjLv59isikmecel08G9Aodcvo1gN7uSzWZ59dVXMQyDixcvEgwG695esUFXNRiGwfDwMLOzs5w/f56enp5CKi4SiRCJRDh27FiJfP7s7Cw3b94sKBrncrnCgtkM/E7fMP+pdxAajIYMQ2fhyqv87WxXU8ilWtS3XXuBcrKxFJ81TWN1dZVDhw45ZONg1+GQy7cJ7CRccrkcY2NjHDx4kDNnzjQ8aV8PuaRSKXp7ewG4dOkSfr+/4vvt5PMt3a90Os3t27dZXFwsUTSulborR1rT+Jdfv8JL03MNE4u+uoLa9zqYRu037wK2ay9gkUcmk2FsbKxA7uC4dDrYPTjk8m2AcvthwzAYGhoiHo+zb98+HnjggW1ttxa5LCwsMDAwwP79+zl79mzDT8jFisbpdJpwOIzP5yMajZbofhUrGlcjyOvRDf7Zl75JPJ3O/0GWQZLyJLPZgl0J6uhN9Knx4rNv6FwqYSd1pEbtBazOsuKaTblxmuPS6aBZcMjlDQw7++FEIkFvby9ut5vOzs6G0mDlqEQuuq4zPDzM3NwcDz30EN3d3Ts6DwuKotDd3V3YnqX7FY1GuXHjBqqqbpmOtwjtj26O8Vuv9WEWtVuj6/n/NuFVZJJLS6DISP4gQlEwdB319Vcx4xtNOQc7NGvxrsdeQAjByMhIIbIp9t1xXDodNBMOubxBYRgGmqaVSLhMT08zPDzM0aNHOXHiBAMDAyWzLY3Cjlws/TFJkgppsGbAbmCzWPerXIrFmo4PhcN8fD7GlaWVmvvIaDpyWz4KMA0DbXEBbXgQ1K0F/2atr7s5u1NuL7CyssLQ0BCmaRbsBcoVn4vTjJXIxrEXcFAPHHJ5g8FudkXTNAYGBlhfX+exxx4rpFEkSdrx4la86M/NzTE4OMihQ4c4ffp00wvF1Y7VToplaHGZ933tCutWGqwB6HPTaMNDOzncurFXi7NVUzlz5gwA2Wy2IMJZzV4A7nz3jnGag3rhkMsbCOUSLkII1tfX6evrIxQKcfny5YKlr/X6TiIXyBOUqqoMDAywuLjII488UvBGaSYaXbA+Mz7DL792neymQGQjUG70k5mbrX48DW/VHnutzVb8PXo8Hnp6eujp6QGoaC9QrvhcfNwO2TioBIdc3iAo9l2xCrNjY2OMjY1x6tQpjhw5suUmb0bkAtDX14fb7ebSpUv4fL66P9eobEw9x2qaJv/6pWt8frSo+F5n4V5oGulXvg7ZbOFvXpeLjG0LdPMWzL1afGt935XsBazW50r2Ata2y106NU0jHo/T3d3tkM23IRxyuc9RaXalv7+fTCbDU089VRjKK8dOI5fZ2Vl0Xae1tZXz58/v6rxEPQvSUjrDe/7+RWbXy4rv5YV7t5uMaYJhInQNEzDSacT1qyXEAlQgFnApzTFI22ul50YW9p3aCySTSW7evEkkEnFcOr8N4ZDLfQy72ZXl5WWuX79OZ2cnjz32WNU5kO2qGmuaxo0bN1haWkJRFA4fPrwng3jVjvUfZhf5ma++WtegZSZ3p0BvAvrGOmrvt2q2IxfDMJpHCvdK5FIN27EXsDoUXS6X49L5bQiHXO5TlM+umKbJzZs3mZmZ4fz58+zfv7/mNraTFovH4/T19eFyubh8+TIvv/zynjx9V1twPnJlgD8fHGl4KNI0DLSJ2+gLsw0RC8D6xjpXr14tLKThcHhbBHs3ay47QT32AlZUPDU1VfCysVqbHbJ548Mhl/sMVhrs1q1byLLMoUOHCmKQkJ+CDwTqk41vJC1mmiazs7PcuHGj0Mps3fh7tUCW7yeeU/mxr73G64srjRNLLktusB9zbQW89deJLISCIbq7u4lGo8zMzGx5ag+FQnUvivdD5FILdvYCs7OzjI+PF+ZshBAlis+BQKAm2TiW0PcvHHK5j1CcBkulUsiyzPz8PIODgwUJl0aenuuNXCw3ytXV1bvmRlm+oLyytMaPf/kl0sU1ElkBSYBhlNRYyuFJxtm4dgWyjXeSWZBkiQMHDhRSRMVP7RMTEwghSjS//H7/XV8U98p3B/K/l8/nw+1288gjj2AYRsHLptheoFiE0+/3byEbwzDIZrOOS+d9CIdc7hOU2w8LIVheXmZ2dnbb7b/1RC7xeJxr167h9Xq5dOkSXm+pt8ndiFz+P/3D/H+vDW7dr66BxSlC5LvEECjkW7RN00SfnSYzMlR3pNOTiLMQCG6ZmhRF3WLlT+3FC2m5dH6xtYB1Tm+EyMUOxWrZkiQRDocJh8McOXKkbnuBchFOO5dOh2zuTTjkco/Dzn44Ho8zPz+PJElcvnx5y4JfL6pFLpa/+/DwMMeOHePEiRNV3Sh3G0IIcobB933pRXrnFmt/oKjtWANM3UCbHke/PVLX/lyGwT+fGudidIWUaTItu7gZCvN6ZzcLoXDVz9otpJXUjK0W8r3AXpNLLcXnZtgLlLt0apqG1+vF4/E4Lp13GQ653MMotx8WQjA5Ocno6CgtLS14vd5tE4u1PbvIxZroj0ajJRP9lbbRKLkIIUin0wgh6j7+8YzKv71xi2RZq3A9MFJJ1P6riDprUd1qlp+8PcKhdAoAvxCcMTTObKzx7o014qbJ0vAA33DBAz/8Q7SfOFF1e+XS+cVqxrqu09vbSyAQKFEzLtb8ahb2uu3ZMIy6F/Zm2Qv09vZy9OhR2tvbHUvouwyHXO5BFEu4WKkFVVW5fv068XicJ554grW1NZLJ5I72Yxe5bGxs0NfXh8/n49KlSwWzrka2UQ2WrtXY2BiGYRAMBmtK6P/J8AQfvzG5rSd8bWkRbagPdB3htxfplACLYh/aiPL85G0CVWo2ISEIpZJE/+IvePG//3cybjfysWNc/u3fYt/p0zWPqVjNeG5ujocffhhVVYlGo4yNjZFMJkvUnotlWHYCqzW4mVA1g//2j9/inU+cYX9HpOS1ek3k7NCovUBraytutxvTNAtzNI5L592FQy73GOxmV6LRKH19fUQiES5duoTb7WZ9fX3H0i3FkYtpmkxNTTEyMsLx48c5fvx43W6U9R5HLpejv7+fVCrFE088gaIohQVjZGSkRG6kra2NQDDI8994nW9MztzZiCSBtLnQ6lrF2omp62hjo2Uy+VW0yYB/bmhcHhuhkeVGCEEuneblK1fouXq1LnIpOU7TRFEUIpFIQWDS0vyKRqNbZFgsa4Httj0386l9cT3J933if7K6Hue3/udVvKic6g7xnReO8963Pt5UMqvXXiCTybCxsUEwGMTtdjsunXcRDrncQyiWcLEiglu3bjExMcGZM2c4dOhQYXGwfFl2AiulZWmDra+v8/jjjxeeFhvZRi1Eo1F6e3uJRCJcvHgRyKc+iiX0rQnwtbU1rk5O8xsLMWLlFsSGkf9vEx6XiyyAaSLpOoZpYmQyaIN9GOtr5Qdre2w+0+B9qThPbEOociKbZXAzVSe2KQlTvuCXa34VT8bPzc0VJuPb2toaantuJrm8NrrA83/weXK5O6ZjWdwMLGUZ+NINPvnFQXwix+EWN++ZSfKDb3mUcKDxlu9KqGQvMDg4yMLCAuPj4wSDwRIRTpfLVdGlExyyaTYccrkHYCfhkslk6O/vJ5fL8cwzzxAKhUo+0wxysdJtL730EoFAYIuwZT2oRS6maTIxMcGtW7dKNM40m6FFS27kpazBh6/dKkRv1ZAtSpUZgB7bQO29YiuTbxe4HFUUfurmddrXo8TbOpjPZlFMg+5MmkCN7/dKMsli8TFuY92uh5jLZViKJ+MnJycBtsyP2JFIs2ouf/bVIT7+Vy9iVnHkFJJEBi8jMfjE3/bz25+7RkjR+cEnj/JLP/ZPmnIcxbDsBYQQPPTQQ4XoPhqNVrUXKCYb6+GukkunQzaNwSGXuwy7NNjS0hIDAwN0d3fz+OOP29YhdqoLZpomKysrJJNJTp8+zbFjx7b1VFuNXKw6USwW48knnyQSidQ8pg+83MvfjIw1fBymaaJPT6DdHimJbEoPtvQ43yQE7732Kq5NogutrWBRuAHMebyIbAafrhOUJJTN7ydnGLyYTJIuO2+xzYWnke/dbjI+Ho8X5kdu376NLMtb2p6t32mnkcuH/tvX+V8vNR7hmQiWxwb5YmJqV8jFgvVw5na76erqKrToN2IvALVdOh1L6NpwyOUuonx2xTAMbt68ydzcHOfPny+o09phJ4rGuVyu0A3m8/k4fvz4dk+hIrlsbGzQ29tLMBgs1ImKUf6Z5UyWH33hVYZWylJZdcBUVdQb1zGWF6u6eAVkhTjgEoL3pRJcujlQ8b0SsN8aspRldNNkQ9dZ1zSGslns6OtuLDRCiC1tz7FYzLalV9f1HUUv/+L/+w+8MnC74c8ZWo70+Oug5XDJkW3vvxasVJdddLETewFr245LZ2NwyOUuwG52JZlM0tfXV7eD43bTYlZzQCgU4vz584yM1Df3UQnl5FLcGHDixIm6IqJ/nF3iZ776CjkrxWUNQAqRn7Svcp6eTJLY1SuYm23D1YYjk5pOuyzzwflpumen6z9JQBaCJU1jpGordOMLS61oYm1tjf/23/4bPT09fOd3fmeJOoIdJEkiEokQiUQ4duxYSUvvwsIC2WyWV155pSSyqbftuW8ugRTqANPE1FVMNQta9dZwPR0nM9kLmym0ZqlJ28G6H+pJXdWyF1BVtS6yyWQyvPzyy1y4cAG32+142RTBIZc9hvVkaV2AQEGz6/Dhw5w6daqum6NRcrGrfUSj0R3n4YvJpXg+pt7GgF+5Msh/HRwuJYVy3xWrQ0yA0HXMzfPWFubI3rhe+HcttBk6Hx4eoCUeq/8EAcM0eSmbYz2XrU4fTV5IBgcH+eM//mM0TWNsbIxvfvObmKZJV1cXjzzyCM8999yWWlw5ilt6rfmirq6ugt7XwMBAXe3gUESEQiAkD7g8mKaJnI2TTea/U6G4Cwuqur5Ibv5myTZcrt1bchohl3Js117AMAxSqRSKomCapmOcVgSHXPYIxWH1a6+9xoMPPkhLS0tBs+vChQuFVtR60GgL8PXr10kkEiW1j2Y5UVpSHteuXat7Piae0/j+L32DkeXV2jsp6hAz2eSe6XH00ZvVP1d8nJ3dHEjEOa6qLB06ypLHgzseo3VpAakKwaZMk5cSCbKmiSBfi6m0dEllC0fixpe59do/cOS5f0Hr4QdsP1OJ3P/u7/6OL33pSyWvW3n/lZUVvvzlL/MP//APSJLE/v37eeKJJ3j22Werfu+maSLLMp2dnYVrLZfLFRbR4lqE1YkWDoeLDMG2blMIgeEN4/LmVQsMNYORiqFuLKDOb42KXVUsIHaKnZBLMRqxF7DI3ZqhAcel04JDLnsAu6J9IpFgcHAQn8/H5cuXay7G5ai35lLcAnzp0qWSFEgznCgtK+XR0VGOHj3KyZMna94wry2u8iNf/Fqp6GSdMDJp1OvXEJ46lQlcLkSoBWN5EdPvx62pHJyf4eDmy4lAkNmOLgxZxhVdJbB2h+zmfH6uLi8hir6jqsuWdOe8V7/wW8z+/e8hTJi6+mcM6W6M9pO0Pvg2jj33owQ67lgiFH9fuq7zh3/4hwwPD9c8NWsRnZub43Of+xx//dd/zZkzZ/jgBz9o+367FJzb7d7SDm51WQ0ODpY8sRt1XCuSy4vU4kVPrdu+7t6DyKXZC3Y1e4GVlRUAXnzxxZKOvWAwaEs2lksn2Lc+v5HIxiGXXUb57Ark00fDw8OcPHly211atdJipmkWbI5Pnz7N4cOHt+xnp7pgVj4/l8ttUUuuhE/23+T/en0Q3a5VuNb+1lZRr18FTUN01iYXEQpj6npeVj//ly3vCWbSnJmZLPx71etl1uVhQjeYW15AaSCyE0Jg6Dqzf/gDrA2/UrofOQfrQ+gvDjHyjf9IggCi+xyp0BnURx/C6/USi8X43d/9XaLRaN37tJBIJJicnKxqM11Pt5iVHtq3b9+WJ/aGLpUKbcruXY5c9kK4slioNBKJcO3aNR599NHC91TJXqDYpdP6r5xs3kgunQ657BLsZles9FQul+PkyZM76tKqRi6WzXE6na5qc7yTWZlEIkFvby+6rnP48OGaxJLVNH7g71/k9dn5/B8aKNqbhoE+OYY2Nlr38UkdXRhrK1W3a4d2TaNd01hxe1HqmLMp2Wdmldu/cYHU+kr19wlBmBQsvU5o6XVGfuUvmJaPcMX3FpKZxqO55eVlFhfzYp7VUkKNtiKXP7FD/c0f4WCAZZu/u93N10yzsBO5mZ3sU5ZlQqEQoVCIw4cPb9teoJpxmvXe+4lsHHLZBdilwdbW1ujv7y/ksXciOGlt044YVldXC/u5cOFC1U6g7dZc5ubmGBwc5PDhw2Sz2Zq6VzeiG7zn818llkrd+aNN0T7odpPQ9BJZFzOXQx3qx1i1W6psIEnQ1oGxsrTlJXMX78sT+wy8r/4KqQYJCWAo08UVzwVIpQt/s75TwzCqRpeTk5PE4/Etn7PDTuVYGglcYomU7d89bzBy0XV9y3e+E3uBSmTz7ne/m5/4iZ/gX/yLf7Gn57cTOOTSZNjZD4+OjjI5OcnZs2c5ePAgr7/+elN1weCOIOT4+PgWqZhq22gkLabrOjdv3mRhYaHgITMwMFB1G//55m1+7cXXMYwai65hkMgUmXfJMkYiQe7qK5Cp09TL60O4PZir9pGDuU15llp48IjGO58ySDXmlAzAPyZOMxV4GETpoliuTmCJlLpcLtxuN7quc/v27UJKxUIzI5cdwSYtFmlp4cP/+3t3bZd3i1xq7bMRewGLcKz0pkU28Xi8asrzXoRDLk2ClQZTVbXwhJhOp+nv70fTNC5evEgwmFflbZZ0i7WoZ7NZ+vr6yGQyPP3004TD1f1GirdhHXutRSeVStHb24sQgosXLxbmcCoRlG4YvP/LL/PV8alGTqsAbXoCfWa6bmIRkTbMVBIztp6PXmz4ziXtfGG1Nlu8pRP7oCOQ/x50E7IaJHKQrcKnGUPib9NPEAserWu/xdbVsViM2dlZW3mcWpHLTshFYNZN0OXt4Yf2dfOrP/Yu5iZvk4lHa7Y9bwd3My3WCKrZC8zNzXHz5s2CvUA0GmXfvn0kk8m67cvrwde//nX+w3/4D7z++uvMz8/z2c9+lu/7vu8rec+NGzf48Ic/zNe+9jU0TeOBBx7gM5/5DIcPH65rHw65NAGGYaBpWkkabHFxkYGBAfbt28fZs2dLLsBmksvKygr9/f20t7fz2GOPNXSzWgtNrRtkcXGR69evs3//fs6ePVtyA9uRy2Q8wT/94jeYi643dlKAqWuowzcw5mcQwcozHD5FxjIckDq789P5NaDvsDNOcwtG3hFgo1PCvazRMq3Sc+tOuCKEQBGguCHgzhPRRNQgq4MiwK3kv+/FnI8vGZdRA/ULhFpYX19nZmam4uu7Gbn83Hcc5csDU9xazpAR7urbKopc3vHmZ/gvv/6BgrhkNBrl1q1bpNPpEmuB8kHFRnGvRi61UM1e4I//+I/567/+a4QQfPrTnyYWi/Hcc88Vuvu2i2QyySOPPMLzzz/P93//9295/fbt2zz77LP8y3/5L/n1X/91wuEwg4ODDaXzHXLZAYpnV6wb1zAMbty4wfz8PA8++GBBbqIYzSAXC9euXePcuXMcOHCg4YWjOHKxg2EYjIyMMDMzU/FcytNzfz02zS989ZW8+kCd8vgW3Nk08d7XMRPxqu8DyOg6KC5C7W3EF8uIpcL3oO2AW5JtEqPfFSQbkZEA7bDM6mEPK5dMlhIxYGshXgDHWu8sPGtpg1dTR3g9dxjNZ+8tUw3Wk201VHu42Cm5/PS7nuCn3/UEADMrG/zl1wb5+s05JqI5NLmsld40AcH//gPv5Nf/db5OUK73ZUmwRKNRbty4QS6XKxlUDIfDDS3c90vkUgvF9gL/+T//Zz7xiU9w/vx5wuEwv/M7v8P73vc+fuInfoJPf/rT297Hd33Xd/Fd3/VdFV//5V/+Zd71rnfxO7/zO4W/nahhirflPLZ9dN/mKJdwEUKQSCTo6+tDURQuX75cMUe6U3LJZDL09vYC8MQTTxTC60ZRHLmUI51O09fXh67rXLx4sWJIbkUupmnyr79xhc/evHXnxTJ5fGQZn8tFWtNKi/mAvrJEYrAPs/jv1dSWJRk8nq3EUgFSZxcTDz3Gzz78GBfnp3nmWy9zcmG24vs92h215fgJN8Nv9aO77W2eJZeAGiUlE3hBejPXlR4ICjANRGY9L58iuzA9LXeIuAyGYTA+Pk46XVrwt0uL7VXN5WBHCx/6p5f40Oa/h6aW+KsXb/DS6CKzcR2vW+GDP/pufvi7vqPiNoolWMqn4mdmZjAMY8vsSLXjv18jl1pobW0ll8vxK7/yK5w+fZq1tbVttavXC8Mw+PznP8+/+3f/jne84x1cu3aNY8eO8Uu/9EtbUmfV4JDLNlA8u2JNTc/MzHDz5k2OHDnCyZMnq15wkiTVJSdvh+XlZfr7++ns7GR9fX1HedhKkYu1j+7ubs6dO1f1yUwIwWpW5eJn/p6ptRoXvK6TLjpvSVbQMVFHb2KM39r6/grkIrV35nP6yUSloyr5l3LmPMrBIxiYLPkD/K8TZ/lfJ86iAPs3ojw+Nso7e1+jbWO98Jm2VBITWLzoY/Kx6qmAWst1xnTxX9LvYFktetgQEqY3cuffhoYsAElG6CqamZdZ0XNppmbmS4gFthb8LVTTpNvNgv4Dh7v4tX/WVdhPMpPl5uBA3Quv3VS8NahYPDtSrInm9/tLzude6RZrNnK5HJqmFdQAilNou4GlpSUSiQS//du/zW/+5m/yiU98gi9+8Yt8//d/Py+88ALf8R2VHxiK4ZBLA7CbXdE0jcHBwbr85i1UeuqsBsMwGB0dZWpqigceeID9+/czNze3owjIujGLJ4hv3brF5OQkDzzwAAcOHKi5jVc3knx04DaqjT9LLeipBLnBPsx6J/WFyM+vLC8idfVUbI2VJIGh59/vfvpZpEAQuwq/Bky1tDL16FN89tGniGgaZ6++yqWxEZSFCca+M8jK4Z21zi4Yrfxp6q1k9BqLnqSgm+RnfpBAz6KuzzG5sEaG+tUb7HxyLOxVt5gQgqDPi2EY295f8aDioUOHCrMjdu281n9vlLRYORKJ/EOU1RC027DWlHe/+938/M//PAAXLlzgpZde4tOf/rRDLs2GaZrEYjF0XS/0pK+vrxcUhhsx2rJMuuqFlaIq7zrbqTaYFXVZ6q79/f1ks1lbczI7fPS1fv5L30jNWood9I0oav81yGUhUOGmKZZd8Xgxvb47hfsq+zRMwB/A98ybMBtY3NYVhVeeuszgiVMIwJ2OEtwYQ5MmSAeXG14or2kn+ZvUo/njaRDJtXmmlmLoNEZutRa6vRzCa6bNcfHsyNGjR0vaeefn5xkeHi5Mti8sLNDW1taw8d12sBeElkwmC5HdXqCjowNFUXjggVI9vHPnzvHiiy/WvR2HXOqANbtiGTGdOXOG8fFxbt++XeKuWC8aqbksLS1x/fp12xRVs6yO19bWGBkZqbvjLJ5TefcXvsbNxWWQlbymlmFsPnVXh2maaDOTedFJ066x9w4UASogIq2YmTTmRlHarcrXLfXsx332/LakbTqmJ4h270d3u4Eu4AwAnmSCyMoYIjtGIjCBotxpOrA7lC/knuDV9LGG9w+wNjnIXNwAZLB1jqmM3WxFbhQ7iVxqobyd15JUisfjTE9PMzQ0RCAQKJkdqddaoBHour4r2y2G1Ya8V7+d2+3mySef3KJvNzIywpEjR+rejkMuVVA+uyLLMqqqcuXKlZrSKtVQDylYnVrT09OcP3+e/fv3b3nPTsnFKsQPDQ1x7tw5Dh48WJfo5D/7+6+RsmRKdO1OMVuIPNmUSeMX9qeqiNEb6PNlhfQKu1QNs3KbcYVxe+XBC8j7D4EkEIaBWWf60TQMjI0oK4eO2r6eDQRZDDwMPJz/Q3IFKX4bRR0nbfQW3pczZf4k83bmc3dmmqymh5q/uaYyf/s6UdXNnS+lsQXFUu1ta2uzrUncr5FLLSiKgtfrRVEUzpw5U2h7XltbK7E5LiabZqSz9qKgn0gkmk4uiUSCW7fu1DnHx8fp7e2lra2Nw4cP86EPfYgf/uEf5s1vfjPPPfccX/ziF/mbv/kbvvrVr9a9D4dcKsBOwiWbzbK4uEh3dzePPvrotgfAapFCKpWir68PwzC4dOlSxaL9Tt0o+/v7MU2Thx56yJa8yvF/9d3gd1/rr+ydbpqw2WVl5g8QnyyTNkHfWEfrfx0zldz6ObubRlYQ4RaMpYUKR1N23rKM++KbkTzeAuGZkJ98l/NeMGiV26HNRBy5tXa9rIBAB0agg1ziOB8T/xv/l5bi/PoIRzdcaEV8Vv47uyUTObWELnnIucJ3JvPVNAvTE5vEUhuVpP/9fj8rKyvcvn0bRVEK0vnWE/4bJXKptT+Xy1ViLWDZHEej0S3Ok21tbQ23PRfvc7drLqlUqqkDlABXrlzhueeeK/z7F37hFwD40R/9Uf70T/+U97znPXz605/mt37rt/jABz7AmTNn+MxnPsOzzz5b9z4ccrFBuf2waZoMDw+zsLBAOBzm4Ycf3tFNU61bzBpYtBu+LMd2ay6WG2VLSwsul6tmLjerafzQl77Jt2aqz1hsgWGQNgy0xXmMxXl7YgHKn85FIIgpRGkarPwTRd+/CLfgfvKS/TO+aYBW2g4dcruIq5vt0LIMuoEUbjwCFdEpzFA3KB461w0OrnvQavweOUOANz8AJxk53LkYuVSM4bkYWdPudiw9KxNY84fwq1l8NsrSra2tPProo+i6TiwWY21tjdnZWW7evFn4zhRF2bU0Ucmx7mHkAtUX+nKb4+K254GBATRNK2l7DoVCdd3jexW5lEehO8Vb3vKWmg+mzz//PM8///y29+GQSxHs7IetYrphGBw9erRQXNsJLAe7YhiGwfDwMLOzs5w/f75gv1oNzXCj/NrXvlb1IrsR3eD7P/9VNlL2QoRV96fraLdH0KcnkDorTxS7JIHV3iDaO/Okomngrtwl5ZEEKSB4/BTa8VP1NxXoOvF0ntif2RC8aTHLjaBgUMSZ6Aph1vEUapomxvoaUiSv3/bo3DiHFxuzTQYwJDfr0TXWoutkTTuCzw8iWpAVhelwG1FvgBNL9jM61uIqy3JJxKKqKq+//jpCiJI0kRXZ7HQ63vb87kLkUi9hljtPplKpwvzI5GTegqFcMt/uXPYickkmk3vWKdZMOOSyCWt2pdjNbm5ujqGhIQ4cOMDp06eZm5sjFmvMItcO5aRg6XYBXLp0qe6ukEbIRVVVrl+/TiwWq9uN8o9vjvHbr/WR0HVQlC2Dj1WPLZslff0qZtHsSCUY+QOhpWc/GyX1mMqEkdENXI89hd7a3nC3mmSa/PAcfOdMnjDPROH7cJOaTHJTTjMYghtdAZbatt7QpqpippLIre0Iw+A7xq7TEqt9jlu2Y+jEpgaYTshEKjz4CnEn7akLwa1IF9lNwvV43KBtjVwqLXSWdPv+/fvp6uoqpInW1ta4ceMGqqoWpuPb2trqfnKveo53IXLZzv6KrQUOHTpUEIq0JPOtRh6LaNra2vB6vQgh9rTmcr/h255ciiVcrItT13UGBwdZWlri4YcfLshV2EUc20ExKSwsLDAwMGCr29XIdqphY2OD3t5egsEgly5dKmnRtKvbmKbJv/jKy3z59mT5purqDtOjq+Su92LWaQhmKAqiJVJGLFQmDZcL5eyDSIEALiDXQFt3SINfmIRDK+ktr/mFwmNGiMc2gA1YMaPccGUZisjc6AkRE3p+1qYlgj+b4blbfSi5bENFewBTTbM4foOVXP53qLWEC3+AkXA7RtEEfzabxW60s95useI0Ubkp2NRUXmw0EokUIpvtpGXuRndaM6IIIcQWyfxYLFaiYmwJS1oK6LuJ3ai57AW+rcnFrmgfj8fp6+vD7XZz+fLlEqG2nUzWF8PaztDQEHNzcxV1u2qhlmS+aZpMT08zPDzM8ePHOX78uK0bZfHNMRVP8k8+/wJLsQr6XkXdYbIkoUsybmGi6gaGrqNPjqPdrm3RW9h/SyTfVbZuU1+xOTfR3oHnwlOACapKDurWMDuaFvzMSIa2TH2/YYfw8CbNw5tW4NZiFCEpjPh0ZoLL9CSmC9I25YuLJEmosoKiqVt+HzWXZnZynESuqHBfYf0VQiA6u7mubJUREhV5t3JaqNJib2fjW+4/4nK5Sp7ca9lyW52Iex257AaZSZJEJBIhEolw7NgxdF0vCHCqqsrg4CDj4+MlA53NrGc5abH7DHb2w1NTU4yMjHDs2DFOnDix5UJtVuSSy+VIp9NsbGw0lAYrR7XIRdM0BgYGiEajPP744xXlIoojl8+Oz/BvXni56pR3MfRN7bAcYKo5tJkp9EpukTb3vNTZjbGylCcYu8+UN4SdOovryPGt5FGmYSZkGVOSkAF9M6q5HBX881spXA1ONBqmybC+wRm5BUkINGMOLVa9scEwDGQjhwloCKKqBpjEYnESC3PIZccve/xQVtKSZJlU1z5ui0qLlP15NGPOpfjJ/ejRoyWS8LOzs9y4cQO/31+IauyaA3bLz74a9mpCX5blgrCkJVCraVpBpmZgYIBgMFgg4paWlh1ZCyQSCYdc7gfYSbioqsrAwAAbGxs1F+KdRi7z8/MMDg4iSRJPP/30jm6GSuQSj8fp7e3F4/Fw6dKlqk+ZVuTyr1+8wv9vqH4b4WIY8Ri5/qtIoWo+MkWLjCwjWtuL5lfsF6C8f0geoWeeRQ2E6qqvmLoOuo4OyCa8Z0FwLKGz7FPoSaq2Lbx2SJsaM0aKc0oEA4NXPLdYNjfq/HQeCiadLpnBuQUS8RgBm+OfUj34i1SV3R4PM23drEtKxfOttGTvxhBluSR8+QyJnXS+9cByP9RcdgJd1wspMqvtOZfLFVKMIyMjZDKZQtuzpfbcSPoumUxua57ubuPbilzs0mDRaJT+/n7C4XBNCZedRC66rnPjxg0WFxc5deoUt2/f3vGNYEcuMzMz3Lhxg6NHj3Ly5Mmai0lMN3jfy/3cXN9eo4I2N4N2cyC/CFbxXwkpMhuA5A9gyDJmsQ1xhUM0TRO8PjwX34y6je+qRYN/dVvj1Pqd2k/SJZGK+IgZOq0JlbYKjl4rRgYNg1NymLTI8ZJnmJTRuL99TtcZnJrGlUwgXLVnWLyhEEOhNtJIbEe8ZC8m9O1mSKxOq6GhITRNKxjWJRIJWlpa9iSC2YvOrWJYNbby+9jtdtPd3V3wXClue56bm0PTtBJrgVAoVHUtSKVSdc2h3Wv4tiGX8tkVoGALfPr0aQ4fPlzzBthu5JJIJOjt7UVRFC5duoSu64yMjGzrPMqPxyIXq4aztLTEhQsXCjd+NXxldpGfHJkrFZ2sU87F1HU8YyNkpibqOta4qiG1dWDENyBVXoC3/96lzh7cDz+aJ64GO8KOpwQ/O5qhpay+ElANAstJrG9nxaew6hFIqyvslwIEhMKYHqdb8hIQXlbkOFeVMTRhFB4u6h1cTeRURsYncKv1kZK7rYOrnuAdt0dBxYY5UeEYapHLbsDj8ZRI56dSKZaXl1lfX6e/vx+gpF7j8/l2hWz2OnKx7r1ahGbX9lzcPGGaZknzRHnbc7NdKPcKb3hysZtdyWazBZHGRm2BG41cZmdnGRoa4vDhw5w6daowO2MtUjuynd0s6BeTV3kTQiX8yrf6+c+9Q1sX7TI5l5DXQ1zVSwrlRjqN2n+VbKI82qm0EgpwuTGWK8yC2HwFygMPoew7WKilKIqCJsSmCkD1mtCb1wQ/cjuJq46fqiOt0ZEG5BY00+CatoIHmWUjw6x3hRExl1+UizhKCFGoVVW6HuZicVZmZ3HrtetXJrDY2smKtzSvXunK8GUzVPquaxX0d3vxtZoDJElibGyMZ599douasdUcYC2mtZoD6sVek0txBqRe2DVPJBKJQlv42NhYQTctlUrh9/ubXnOpx+LYwr/6V/+KP/zDP+T//r//bz74wQ82tJ83NLlYRfvXX3+dzs5ODh06xPLyMtevX6erq6thW+DiJ9dapKBpGjdu3LCNJBrxrq8GSZLY2Njg1q1bJeRVDfGcynu+8DWGFpdr78A0iaeLPOwlOa9mfPVV+wXebr1zuxGBEFRpFxaIOx+VJNzPvBmpzGitvMnA7/GQMgw8QHZz27Jh8r45ePNs4wOfGVNnykjwqNKBickV7xgLhr1CgFW3u3PIEmkNkoZKiyxxe3mFzNJiXbUdTZJYCrWS8tp0hJWHLqaJP5ch5fHtac1lO7CIrFzNuLg5wE5gsrW1ddvF77sVuexkn0IIQqEQoVCIw4cPYxhGoVPvf/yP/8Hv//7vI4Qgm80SCoV461vfysGDB3d03LUsji189rOf5ZVXXtl2Su4NSS529sOapnHz5k1mZ2cLfiiNwrpxa+V2rXZml8tlG0lYF+NObgZLcjydTnPhwoXCLE41XFle471f+BqpTKbme8thGgba2CjGerRi5FDOLSLckh86jK4iqkzo+xWZBOAKh5GeuFTXApja9IDJAghBxJB5z6zK+dXG6yJZLYeOyWmlhSwq3/SOkDS2zsFUgmEYeCRwCYnp9Ri5SsRS9gVlFBdTbd2oin20IctSIXKTDAOPliPlyZOQJCTsFJN30+a4EVTaV3FzwIkTJ6o2B1idVvXeI3cjcrFmnJoFSZJoaWmhpaWFX//1X+dDH/oQly5doquri//0n/4Tzz//PO9617v43Oc+t+191LI4hnzG5ed+7uf4+7//e777u797W/t5w5FLedHeSh1NTk7i8XiqWvbWgnXhVnKfM02z0KpZzZGymFy2A2uiX1XVwsR1LfzB9VE+/srr2/JeMXNZcoP9mGsriNbKDnheSWAtycGefSQWF/PaXjWQ0nXkQ0fxnD1fU5vLDieT8NMjCVqy+c8u+xTWfAptQhBcT+OrUiZL5lJ4ZDceWWFNSvCqexTNaLyullJVbk5MIdRcXQ4sMa+f2UgnRpXF0Lo+3Jvqzmn3nYeUcsVpC7XIZa9Q70Jf3hyQyWQKKaLBwcFC8dtKoVVTDrgbkctuNxAEAgFkWeYnf/Ineec738nGxgYzMzO7uk/DMHj/+9/Phz70Ic6fP7/t7byhyKV8dkUIwezsLCsrK4TD4R23/hZHLuXQNI2hoSFWVlZ49NFH6ejoqLidnZCLJWxpRV61nppUw+CH/v4bvDo9l699KK5NhWC9roXfm4qzfvVbYLlFVlmfcroBkoRo6yCxMF/vKSEdPIrS0bktYvmeDZnvGY6jFB1XZ1qjM52PrjQB02E3KUUimNXYl1CRNr+zWCZB0BNAEoIx1xIjyhzGNhbg5WSKmakp3LqGKlVebIJeL0Yix0oowmIwYq8GXQQBtLkUNrI59C21lK3HKUnStoYodwPb3ZfX693SHGB1ok1MTJRYHZc3B9ytyGW3kUgkCuZ9VlSzm/jEJz6Boih84AMf2NF23hDkYje7YnVPrays0NnZWXCP3Aks58byjrHyuZJaBfViB8h6Uezv8uCDD7Jv3z6Gh4erdq+NbMT5vr99gfXkphpxkSQ+kJ9sl2V8QpDOlUq1mKaJPjvN+khZ0b+aA6QQiGCotM24GmQFz6XvQLjdIAR+t5uU1aVW47tRDJP3z8Dl+QpKAtb7TDgUu3NummmQzKbRDB2/24sQcNUzzqy5WlK0L36QqPbEP7O2xtr8PK46SCmezbIW6STmr684+5DXhZRJMSdMZkzQRfXrt9biupfk0oxp+XLNL6seEY1GWVpaYnR0FLfbTVtbG5FI5J5SYW4m9lL+5fXXX+c//sf/yNWrV3f8+9335GI3uxKLxejr68Pn83Hp0iWmpqYashWuhuJZF9M0mZmZ4ebNm3XPlVhopK05k8nQ29uLpmkl/i7V7JL/bHicX37xWxjV9rE52W6lsjyKTE5I6Lkc2lA/xoLNJHqlob7WdhACM1bfkKGItOF+/Ok7hWnTLNRRAJAkFEVBATJlxNeqws/e0jgaa/w3NQwdRVYIeYPk0PiqZ4iEubW+UvzbyEggCzDB0HRMCUzDZGN6hfV4aX2l0q+vSjLzLe0F4cliyJKUVzvYhAS8oy1IGBM8YQ6TX8hi6QzLOZVZvXIr8r0UuTR7oS+uRxQ3B6ytrTE9ne9EvHbtWqGmE4lEdjQZXwuV0uPNhGmaeyr/8o1vfIOlpSUOHz5c+Juu6/wf/8f/wSc/+UkmJibq3tZ9TS6W/XDxE9vk5CSjo6MlWlqyLJPZRhHbDhYpFMurPPbYY7S3N2A0Rf0DmcvLy/T399dtc2yaJj/2lVf4h9sTDR0PQFbTMVIxtPFb9sSS38OWv1hukSJSuR7jlgTWL+A6cRr52Mnq9R/DQMvlsFoH3C4XOaAlZ/DhwRQdFYYfqyGeTeFWXPgUL+tSklfco6hG7VZhHaOoPRtE2mB1don5zMqW9wZNiQylx5ZyeZhu60KT7W+3YmLxCcG72gIoZd+NJElEAn4iATgFaJEAiUSCZDJJIpEoPGSsr6+TyWRso+e9jlx2O4oobg5QVZVvfOMbHD16lI2NDUZHR8lkMltsBZp5THuRFrPGFqy02G7j/e9/P29729tK/vaOd7yD97///fz4j/94Q9u6L8ml3H7YeoK/fv068XicJ554ouBjAfmLsBmCk9a24vE4/f39hchoO336tWZmTNPk1q1bTExM8MADD3DgwIGa25hJpPjez7/A4sY2p+2XFtGG+vKtw5VQpM0lu92YwfAdGZcqZKFtfs715EXkcKThxoKcqoLLxYbQ+cULXlpMmdMxg7cuZjkVrR3BxDMJAh4/kpCYcq3QL01iNqgzBqClc0xPTKGY9T2xrvsCzEU6MGuktAB6XApvDnsrRiXFsAy/LOuEpaUllpaWWF9f5+WXX8br9do+wd/rNZftwroPurq6CiKwmUymUK+xJuMtj5a2tjaCweCOjnGvXCiBpkYutSyOyx+UXS4XPT09nDlzpqH93HfkYhgGmqaVpMHW1tbo7+8nEolw+fLlLamBZpGLRWo3btzgxIkTtirD9aIauWSzWfr6+shmszzzzDMVn1qKVZE/NzHLL754hXVVzU/Z1zG8V4Cho94eRZ8az/+7SqHfLQmygAiFUUyT7Frx03v1eoznLW9HbPNm9HncpLNWesxkQ2h8qwW+1eJCEh66khoPj0d5Lumis8jR0TANErkU4c0BxQH3NOMsVm1MqITsWoqJ+SlUU6NF2OfAM34PJDejiPYuZj315cr3e1y8KeDeVjff3Nwca2trADz00EMcOXLEtr0XIBaL4Xa7d/2J+25ZHBefl9frZf/+/YXJ+GQyWZiMn5iYKKgdW5FNo8oBe+XlIklSXYPR9aKWxXGzcN+Qi93sSvHT/ZkzZzh06FDF3vqdkoslbqmqKidPnuTEiRM72l4lclldXaW/v5+2traaQ55Wiu7fvPg6/2PIRk5GUfIdSVUK5EYmgxjqQ4+u1XXcOU1D6ujCWFslW96yW2FhlDq7cT38GEKSQRLIhlH/7yEkkEQRsdicg2mw4JdYON/OlwyDnvUkZ6IaD2+YHEuahD1BNAxe8g6zYeSbG6xuwnrlXOKzUaaic0VSmvZQZQXZ5SbTEWa2AgGV45BL5uHAdpTE8k+dyeQd+2hZllEUhY6OjkLHYiaTYXV1lVgsxvDwMDdu3KgqN9IM3GtGYUIIgsEgwWCwpDlgbW1ti0eLFdlU0xm09rkXLpTN/n3qsTguRiN1lmLcF+RSLuEihCCTydDf34+qqlWf7mHn5GKZbQUCAUKhED7f1mnqRlFOLqZpMjY2xtjYWFWiLEZc0/mpkVnmExUm0ouGHV2KjCokZNPE0DRMQI+uoV6/BuWmXpXSdZIE4ZbK9RibC1Y5ex7lwJH8a5vSMjrkSW+zBiEbekndoQBZAUMHvYEWZUlioS1EVk7y2gEXuixxZnGNk2u3MIqiueLvvviJt/w6MQ2T5fEFltKrde1ed3uY6ughk9k6zBkRWdbNOylUATzqd3PKeyfSrrdLTdM0bt++vaWhw66g7/V66e7uZnh4mKeffppcLsfa2lohslEUpbCg1uPVUg/uRuTSqNGe1RxQ7tFSrBxQbCtQ/qC3V5HLTtN3dwv3PLkUz65Yi8Di4iIDAwO2RW47bFdw0hq+HB0d5cSJExw7dowrV640zY3SOqZcLkd/fz/JZJKnnnqqrj72r80t8aNfe71uF0ZV04G8DL1pmujLi2jXr9m/2W5R8/oQHg+mnalX4XNF/y8E7mfehOQPYJuDKmqL1gEkGb/bRUrT8qToclWVjKmGzpVVVlsjGLLMkegyx1dHata3SrrDVIGkgaZrTM9MsaElt3zGJatQlnlMde9nKtKJHreveemKCzZPySXgUtBLj6v02i0+DsOEdCqJEAK3211Y3NLpNGNjY7bkU6lbrFgC33qCt+RGrI4rawDYkmPZScfVvRa51EKxRwvkMxXWMKfVHFAsm9/S0rJnNZft+j3dbdyz5GI3u2IYxrbcG7cTueRyOQYGBojFYiUNAs1yo7S6xaLRKH19fbS0tHDp0qW6HOx+/cp1/vDa4Pam7VUV9cb1qhbE5YuWiLRhppKYG+vgqZz79VgdYf4AbZffkp9ZqReGTspSMFZc+XNzuWqqM5ccp2HQvZpgoTO/QDw2e5tDS7M1PrUVusskk86wOLvAhr6VWAB0s3QhWz96itmchqhyzgl/O2xECUqCN4W8hOXqi6EkKLSdm6ZJJpMhkUiwsLBg/35JqrjYWb9p+ROwJZJoXd/WohqNRksWVSuqqSUPb+Fej1xqweVy0dXVVVC/KJbNn52dRdd1XC4XPp+PeDy+a9HFbqTF9gr3JLmYpsnGxgYbGxt0dXUhSRLJZJLe3l5kWW7YvbFRH5b19XV6e3sJhUJbPOeb5UYphGB5eZmhoSFOnz7NkSNHal5ASU3j/f/4Eq9MNb5gAhiJOGr/Vcx0ChGOVHyfwp2H8uC+AySKve2rFPuzuo60/xDuBx5qjFis/cpyfr9aacQiSxIelyu/zWwapK2XrTeTw59RWegMIxkGz92+TjDRmLGXhdRijMnlGTyics59ub0VZWkeU5JYPH6W1dTmrEy131BAT3s7l80sSoMdBUII1tfXWVnZ2v5swTCMmnWCWtdYpUV1bW2NmZkZDMMoUTT2+/2227zfIpdaKJfNTyaT3Lx5k2w2y9WrV0tI2lIOaAbuVxdKuAfJxZpdWV9fZ2xsjO7u7kK4Xq/ybznqjVxM02RiYoJbt25x8uRJjh49avuk14zmgHg8jq7rPPnkkyVt05VwbTnKD33hqySteR1Zzhe7zfqe7D0ri2xc771TT6mWz9d1UFxILS2lxFLjc/KJ03mZ/DqPqQSKkidtG1LSDePOgKWQCGaX8KazmGaEaDhAOJkh51JYiwQIZtM8e3sAv5aDBv1XTMNkfWqF2cRizfdqsoLw+pg5cIxEqj6Ry0ORME/HV5G20ap2e2qKVCyfbqtGD5VSWJUil1ooX1Tt5PMtoikugt/vkUs1WM0BXq+Xrq4uDh48WLE5wPpuapF+JezlAGWzcc+QS/nsisvlQtM0+vr6WFtbq6nXVQ0WuVTrvc/lcoU5mSeffLIwP2C3rZ1ELlZzAMCRI0fqIpbfuz7MJ17tLRUr1PM1FKBQHA+6ZBKZbAkBmIaONnqTzMxU6UarLLjC68XUdYxVm6dku9kQWcZ98TuQPJ5C1KFIEpqls1XkBWOLzfpKXd+qkEh4ukhs1px7ljfQZBlvNsOB2CoPLNwGwygZYyz2X9ENw3Zx1jWdmdszxNXqcjIWVK+X6Z7D5NK1iUUIwROHD3I8tkLS4yWZSCIDYUXCVWMB1nWd27dvk8vlqpKKhUpp1WZ42hfLwx85cqRkQn5qaoqhoSGCwSBtbW35432Dkkv5Pqs1B0xOTjI4OEgwGCxENo3UsZLJpFNz2QnsJFwymQzpdJpAIMDly5d31MFSSyrfqntYVsfV6h47aQ6Ynp5meHiY48ePk0wm6xKd/OEvvVg7DbZZHE9sLuwuWUaVJIxUErX3ir0kS4X0ltTeiZGI3RGqrPE5EY7gfvLiloVPK4tCPC5XXh6/3OxL2Wbh3jDoWY2z0JlvfnhkfpyjC/ZmZHb+KxoyrrSK7gYtlWN6coqkUarioClyoQBfjMT+w8wFImhrdimq0m/C7fbwbE87nfF8q3cgmyGwWcQ3TJN1TSdrmoRdLnxlEU1OVbk1OtrQw0y1yKXZi33xhDzc8Y63Ihtd18lmsyX1mt0inLtBLpXkX8qbA6zvpbyOZUU24XC44rE7kcsOYGc/PDExwejoKEIIHn/88R1fkNYFUH4xFLf/1mt1LMtywzplmqYxODjI2tpaQSpmcHCw6qJxayPOu//2BaJJ+4JyNai6jr68hD47VVnrqzySECI/v7K8mG85roSizwVPnEI7dqquxoJs0XcmhKBTk3kkqjMY1JhrcD7MzGQxkykWOlsRhsF3jA/SEqvSxVYEweZChIHugexKktnFeVLmVnkgRdMpb3tYPX6GhUwOUfE7uvNdhMNh3hT0VKz9SEIQUeSSz1nXZyaT4fbYWFPqexZ2O5Io9o53uVxks1laWloKdr5ASctzs+oScPfIpZ59Fn8vUFrHmp2dxTCMgnJAa2trSXOAQy7bgJ39sJWaspzSrl2r0CrbIOxmGLLZbGFf9bb/WttqJHIpV0y2IrBq2/mvI+P8+2/UEJ2sANMw0CbH0MdGEW1V0ohFEYjk8WJ6fXXJuFivuR57Gq21bVsda08mJP75zTh+Lf/ZqFdmsNXNVIebVz0qySrdnUpiDVV4kdpb8eWyvPVWH0p2e7pxsZk1ptfn8FRwYNFcMha7GLLCwrEzRDflOCqe9+aisK+zk4sihyvTmCumruuk02lWV1fRmyS2Cnsvx2Kltg8ePMjBgwcrDi1aRNPa2lpXp2Ql3K202HZake2aAyyZmvHx8UID040bN5idneX48eNNO+ZqFseqqvKRj3yEv/u7v2NsbIyWlhbe9ra38du//dvbMle8K+RilwZbWVkpTKZfunSpUIBsRi+5JV5p7W9tbY2+vj5aW1vrbv+10EjNZXZ2lqGhIVvFZEmStlj3mqbJ8y+8yj9OztwxkWqAYGRNJT3Qh7G6bG2w8nvNfEeYaGnFzKYxN4qe/KvWR9z5+ZXtFChNk+9dEvyTiXhJ8qg1o/PsfBrm07wXWFA2mAqsc60tSG/HPvTN7rC25DhR30GE7KInvsbTUyOQq9xSXQmGbrAyvsBSproqQSLox72WRAsEme45XNB5qoWzhw7yUGodaRvEa5lBNVuo8G6QS/FiX16X0DStUJcYHx9nYGCgRGQyEok0RBb3cuRSDcXKAdbcUSwW44UXXuAzn/kM169fJxKJsLGxwdve9jaee+65Esv0RlHN4jiVSnH16lU++tGP8sgjjxCNRvk3/+bf8E/+yT/hypUrDe/rrpCLdZFbEi7Dw8NMTU1x7tw5Dhw4UOKZ0ixZa2sxv3XrFuPj43VPwdttp1bkYumPLS4ucuHCBduLQZZlckUL41wyzff87VdYKBedtCbZBflaRYUFS4/F0AauYhQXmKsKSep5NeOVJfv3WZ1oxX9q78Rz4UnABEnK+69YQ4814NXhf580ubBcvQAuAfu1FvZvtPDMBqjjMabdywyH0rzWdYg12cWDi1OcmJ8sHLcl5WJJBFWDqqnMjk2RyNXX4ZXp6GYqEEatp3AvSTzRHqFVmEQj7fhSSfzZ+vZjmCYry8ssLeW9cLbbXVQJd0NIstp9Wy5Rk81mC6mioaGhgsikRTa15kjup8ilGiy9s/e85z285z3v4Qd/8Ac5cOAAoVCIj3/84/zbf/tvmZyc3PZvWc3iuKWlhX/4h38o+dsf/MEf8NRTTzE1NVUiw18P7lpazAr9+vr6MAyDixcvluQWrQVD07Sm3GiSJBUu2qeffppwOLyt7dSKXMrncSrllYvlXz43McvPfeUlVLtFuszgy+t2kTFBMYx8yzCgzU2j3bQZqqxELrKCaGm9kwazPUBRap51+hyuw8fubNMwSBXbGMgKHkUuDL4WoycLPzuaY1+yATHNOydBmyr4rtXTvGPV4GXPNdbM0o6ucikXXVZwmVv1yxbSGRamplDKBkgrUXCqpZU5VcNUax+32+PhTd3tdMRKZWJSXj8prx/JNAglYrhsBEXTqsbE/Dx6UX0st42I7F7xcrH218hi7/F46Onpoaenp8SBcm1trZAqKm55LhdyvF8jl1rI5XI88cQT/PRP/zSQjy728nfc2NhACFGxe7Ya7hq5zM/P09/fz/79+zlz5syWJ4DyVNZOsLq6Si6XIxAI8NRTT+3IQKha5DI/P8/AwACHDh3i9OnTVS88i1x+4aWr/L8DI9Qr05vJ5YlGA0xdR5uZQr91s8K7t25TBIKYQmBaqbMKkKU737376WeRgqHq6TJdI2stnEIQ8nqIqzrnoxr/aiSFT2s8RZRkFSEkIuZBMkLlm55hUkb1+oppmkiaWuDFOII0EuuxGJnpSRSbLrm4S+AuKm+YQrBy4izLigczW3sQs6WlhTf5XQRsCvf+TAr/Zt3FEIKYP4hLzSF0HbeusZHJMjE5iUurXV8xgVV/iI6Ufbt0OamXfPYuRC7b3Z+dA2UsFmNtbY35+XmGh4fx+XwlcyRvlMilHOUulHvZlpzJZPjwhz/Mj/zIj2zrYfyuFvQfeuihQgeFHXZKLsWqyR6Ph8OHD+/Ymc4ucjEMg5s3bzI3N8fDDz9c9ZwsxHWdn7gxzVyi8W4wACOdQu2/ivBVudiM8rRWR17CRdNq+rfrQoDXT+DSm/P/3whMk0QqzfctCd41kWIx6GLKLePTdPbH1LouuhVmidCBYnpYleK85rqFVq7CXAcCpsHE0hKpVJpAhfZrIe4Qn+FyM3vkFLFUChGu3f6+v7ubZ4wMrjrSX5JpEk4lCv+ejiWILi3WRSy6EEy09yCbZkVyqYZ7PXKpBitVZD09a5pWaO21LAUsKZb19fWqrb3NgpWC3QtV5LvRLaaqKj/0Qz+EaZp86lOf2tY27hq5HDhwoOqTFuQX8lrvqYRMJkNfXx+5XI5nnnmGoaGhpgtOQv7JwhqKrFeW5hvzS/z4i32ltr4NQF9ZQh3oBV2vSi4esan1JQSuzm7UpSJNqhrFZqmrB/fZ8+jbKEr7dPj5GcHxhfwT+76Eyr7NgZGsIrHS4mFDzdEeTdEhly7ghmkyko1z2rMfSQhuuxa5IWYakgi3kNF1hmbmcMc3oIoBmukLQi6KGm5hsn0f2ToL9+cOH+KhxFpdw43lGFleIbO4gCbJ1Er6apLErY4D6IqCrwaJra6uEolEtix691PkUguKotDZ2VmoZWYyGQYHB9E0jevXrxdae61OtEoSNTuBtZbsJolZnWR75UJpwSKWyclJvvKVr2y7hHDX51yqQVGUbUUuy8vLXL9+nY6ODh5//HEURWlaiq04cllaWiqk9s6ePVvXhfZ/XhngD3s3Z1wkKS/jUj5YWAGmoeObnmD9lo13iw2yug5uDyIQKCUWC5JkK7einH8E+cAhEBLCNDAb+N72ZwU/O5KlO2V/Ph7NoGc1TQ+A7GFFy7KqZXEJiVbFTVTLcdYbxsTkdc84C0QL0/WNPBysZXNMTk3hrrNNOdW9nym3H70OwpckifOtIQ6nEw0Ti2GaDMzMIW1EkaidDE0rbsY69hVmj+QaJHvz5k1UVaWlpaWwuAaDwfs6cqkFr9eL1+stdFwlEgmi0Sirq6sFS4HiludmWAoUd7ruJlKp1J5GLhaxjI6O8sILLzRs316Me5pcGiUEwzAYHR0tdJ4dPHhw29uqBKvrzOpwe/DBB9m3b1/NzyU1je//wte5Pl9URC/X0to093KZ5pbivpnNkBvsJxst9xWpvNicSKc4MDvFlbZOknY3lJCgWHRFknBffDOS11eQlzE3/14PCT4eE/z4SAqvXn+U0aF46FA8LKsZMoaOLASD2Sjz4VnS1mBj0c9Wj8nXVCJFdGoSV51ptFjnPhZT6fo02jxe3tTVSvta/nfMeLwkfUGEaRJMxnBXSXHlEAytraMUtX1XW+4TkXYm/fU/NUqSxKVLlwrFcMtxUZZl/H4/mqaRzWabsrjWwt3SFiuWqCm3FKjXp6Ue7BW5WKrIzUI1i+N9+/bxAz/wA1y9epW//du/Rdf1ggJ3PeZp5bhr5FLPhddIWiydTtPX14emaVs6z6xtNYNcNE1DVVWWl5dt92OH3tUoP/R3XyWRrvEUvXmuKvm2VrcikzVMtJUVtOtXIWfzVF1hHX9OwA/2voai67x3foYlIRj2B3m9o4vhto7NFmfpjjxZKIz7qcv2i105CcoKSAJlcxBWmCbvWRS8a3J79aN5NUNEduGTZKJSkhuuSVTT/ncv7wyThcSGATI6XmBoJYq+MEt5Jtwjb91eQdFY1HcbRDYL9/7knXZxbzaDdzM6MoF4IEzW7cGVyxJKxrCWnrgkc3t2HmV1qeZ+ZFlmLdTKpLl14RI1Ihe7YvjGxgazs7PEYjG++c1vFhZXy69lN+oG94oqcrFa8YkTJ0p8WkZGRgoqAlZzQCOWArIs7yqBGobR9JpLNYvjX/u1X+Nzn/scABcuXCj53AsvvMBb3vKWhvZ1T0cu9abFlpaWuH79elXzsGaoGa+srBTqKxcvXqzrpvz9gRF++5VrpaKTdcA0DDJZHW1mEmN5yZ5YYEvtxCXg/YkEz4wMFv4mC8E+YF8qwVumEqQnbzOhuBho6+DVji6Sp87hPvNA/XWNTUdJDfCbEj80o9Od1om5JcK5xs4zlknQ48n7VUy6lrkuTdWvYmyaaKZOgLwO27XVdVyLc7YEmdVdKNypV+jFisbB2jntgz3dPK1nUKrUPAQQSsYIbXKsKitsBMLENJ31gT6UomJ+0VmU/Mvl8TDb1o3s9kIVa2fb/dssdNbiqmka6XSaCxcuFBbXSim0ZiyYex251NsWbGcpYEV509N5bbrieo3P57M9j71oQ06lUpim2dSaSy2L4+3UNivhniaXWtGGYRiMjIwwPT3N+fPnq0oU7CRyKe46O3nyJMPDwzUvLNUweO+XvsnLUzPb26eqog4PYizOI7V1VEx+iaJXumWZn5oa5+DSfNVt+4TgnK5xbnmBf7o0z+rIELeuvMTfvu27iXfVZ8AGcCQn8VPDGbo26ysGMB90ofvd+FSDlmi64gWmGzopNUPYG8TEpNczwbS5Um9Hdgniqsbo9DQaooKQC/j9AjYX/WxrO1MtHXUpGgM8cPgQD26jcO/SNTZiMVZWV/HaEgsUNarhDQS5Ee4gJQSH3S5bcql2DNUWc6vmUry4mqZZWFzX1taYmJgozJPs1PJ4ryOX7e7P5/Nx4MABDhw4gGmaBYma5eVlRkdHcbvdJfWaYkuBvWhDBpqaFttL3PNpsUqEkE6n6e3ttR3ArLSt7QymZbNZ+vr6yGazPPPMM3g8HoaHh9F1vWqu9qde6efl9Xhe9beOVtNieDJpYte+hZnaXA2rfFeymc9sPSzL/MuBa/gy9S2YFiQhCKs5UsNDdPXsJ/5W++ndcjy1Ifix0STuovqKRL4zjET+fNMYTGVTaKZBj+wh7MovVFkti2lCyBNAQ+M17xirhr01cC3MpzIsTk3i1lQ0f+VrIONpxccG2v4uxqQwRp3XwsUjhzgcry4TUwk3VBNtuA+6a9fk9NZ2+nwhtE36qCyOWpl9q+XE7Z5IhRD4/X78fn9B/8uaJym2PN5OCu1+9HMRQhAOhwmHwxw9erSidH5bWxuKouz6+SWTSRRF2ZMa2W7gno9c7Goui4uLXL9+nX379nH27Nm6Lvjt+LAUa5A99thjJWm6WttKGma+MO715W9sTcPMZiBVvS6hLc6TvXG9pEOr2sO8Zpp8n67xzt7XtqVltayqXEmnMQCpjshOmCY/uCB4+1Tt+ooPieOeOwt+VsuRyqWRJZmA209MSvOye4SckV9IG5FxAVhYiLKyOodiGWHVeH9e0TgLdRT6PV4fb2rx41MzrEQ6kA2dUCKGUsdnVQRD8RTy5O26op2lUIRlX2nh3jY9YZq4qvxGtdIdtRbD4nmS48ePl9QnhoeHyWazJSmjaim0e6XmshNUks63hjlVVeXatWuFqKbZlgKJRIJAILDnw6HNwj1NLoqikC1qDTUMg+HhYWZnZzl//nxdXVoWGkmLmabJ+Pg4t2/f3qJBZqewbAdvEeEJIcDlQrhcmIEgGAaSlkNPpQpeJqauo90eQZ+e2LqxChesX5J4fnyUFjXH2NETtK+u0Bpbr+scAYYzGW4VPcELTQNZxiUrSJhky57ugxr81LjBubUspqkjRGNpgayWI+ILI4RgSl7hujKJUWQ+Vk4osiwjGWJLcd80TNYml1hJLpcs3l7VnpAMWWG1pY2NaBQ7ChKYJQTeGonwrE8uFO6tCXtdSGyEIqiKC082TTC1tRU5IWRuLSyiLBe1fldagIVgo2s/y3Jt4VTJMHBruTsGbDaodk1upxV5Jym0e7XmshMUS+fPz88zPT1NZ2dnyffRTKvjZneK7TXum7RY8bDixYsXG/7S6yUXS/Y/kUjYSvFbroa1ycX+QhdCgCxjyj4kz2ZUo6pk//Hz+en5Cp8pfyY9rCj89OgQ7eulPiarbe1EW9rw5LJ0L8zhttGyMgyDV9Np1srOQdY00HXUwt8FKDKKJNGSVvnQUIaOtI5HGies/AnxbI5YrhudR3C7LiJL9jeTbhik1BRhbz6Kue6ZYsJcqllf0XW90IUsqyBpAs3QmZ2ZJmrjGNmiQXlyzVI0ziiVUwvCMAqHcqinm6f0NEp2a1pKNg1a4uuFf2ddHhKBIMKEQCpOXDeYHRtDSdRO8WmSxFRbN+mKxHLn/lB0DWEYZNxeXHrliLGemst20WgKba/lWPZ6f6Zp4na7bS0FFhYWGBkZwev1FqKa7VgKOOSyi7DSYgsLCwwMDDQ0rGi3rVqEsL6+Tm9vL+FwuKoUfz0pNl8FcimHEALT5apILHZ4VhK899prtjMV7WurtK/lZ2E0t5toTscwTXxC4JdlUobBN5NJcnY5+C3fTz6dJ9xuVmWTX37Ex/ML/8D3zn92s2YCIc88MI9mfJFoxk9aO4YsX8SlnEIIQVbLYZgGIU8QDYNXvCNEDfvidjXoLshkMyzNLBDV7OVPys+oWNFYClWeFzE2o8zzhw5yPhmtu3DvUbN41vOR9ZRQWJmfx21HLGX1k4zXz1RbF2qVPVnn4lZz6JKE5srXU+QKEjZQfeai2UOUtVJouVyOkZERurq6mtqFVgl7nYYrj5TqsRQodp9saWmpebwWuexlBNhM3FVysfLr1V6Px+MMDAzw4IMP0tNTfydTOaqRi2maTE5OMjIywqlTpzh69GjVH7SeyMXXQCeJEKLitDxA2KWwDigIns+meGKov67tKrkcrUXHMZnNMpTNVvSql2yiHFwu1FwOTJNfnfxPPLI2YBtwKBJ0+lPAIDBIIidYz7ajGg/i87yJhICXPMNkje0ZYGWW44wvTuMWlZ/+oi1+lPV8Cit26DgzJkWKxlWaIoTM00cOcWibhfubukC92QcVzNmMojpbIhBmOtyGUZPCTAIYpGQFs3gRqhLt7WbkUgvlKbSvf/3rtLW1sbGx0dQutErY68illhWInaWA1fJsSdUU16/sSCSRSNy3LpRwD0cuyWSS27dvo2kazz777I7VQCuRi6qqDAwMsLGxwZNPPklra2td26oVufgbbVNUXBVnWWKaTpss89MzkxxZmG1su5u4rqpM1ZA2KS3o59N3qCphLcHv3/odIun6F9+g2yToXgG+yu30NV6RvhNNeGo+UNhhY2qF6ZhVw6jiUeNxIwvB6tFTLJantSp8zOfz8XBXG5FMEpPaTQHF0BEMpjJIY6P5z9Vwp1yLtDPvC9UUDQXoUCTWUiZmuVp4lfO/m+Ridxw9PT0EAoGmdqFVwr2ehvN4POzbt499+/YVNMOsSG98fBxZlkssoD0ezxZF5PsN9yS5zM/PMzg4SHt7O7FYrCky03bkEovF6O3txe/3c+nSpbrlDYq9WCohoDR4obsqk0urYfDhkUEiRX4f9UIVgi/sO4h8Mz9UmQ2F8MTt00qFtJgl9aJrPJgc5f8c+09IDbZTW3gleZAh31MgKQV5FatuVasrzNAMlsbnWMmuF/5WlZaEYObEA8TshCdt1tW2tlaedUv4NqVcsi43iUCoUEPxqJXbldNCYnh5FaVOsp/v6GHNXbvAKwHv6mknkMvwQHuQRCbLUjbHjA6LNRoo7hVygdKCfj1daNYgZ3t7e8MpNEsK6F6KXKqh2H2y3FJgdnaWF154gY997GMF35pYLLZt8chiVLM4hvw18qu/+qv8P//P/8P6+jqXL1/mU5/6FKdOndrW/u6ptFixg+PDDz+M2+3m2rVrTdlXcSrLNE2mp6cZHh7m+PHjHD9+vKGLuZ76TaBBvSLhctkunFJXDx2pBCdyOSYPHyPlduNeXSGyRWNsK1Z9fl5we/HdvDOtnwu3ViQXSddL5nIuJ67z0Yk/IrsNLxbdNPlC8mGWgue2vGaaZsn3pwgZUwKhg2bqIEBLq8xMTJHQS+d2zAr0ooYjzHXuJ726Yvu6rGsl6cDD+/bxpJpEKeqI86g5POurm/uBeCCUl3JRVUKJGNLmvqOSwuTEBEp5Z57NoemSzFKojWQdC5FPknhXZwtKLi8nI0kSYb+PsN/HSUDVNGIug7TQSSQSW9r07xVyMU2z6mJfrQttcnKy0HVlPcWXG4OVYy8Uiu32uVP7Dgvl5Hvy5ElM0+T3fu/3GB8fp729naeffpq3ve1tfPjDH952F1o1i2OA3/md3+H3fu/3+LM/+zOOHTvGRz/6Ud7xjncwNDRU8zewwz0TuSQSCfr6+griez6fz/YG2i6sVJamaQwODrK6uspjjz22LdXPWpGLYRjEV6qbcZVjC7m4XEihFoylBbRQGLemcmpuuvDyUkcn8y1tyLksLfOzKGWRxY32Lm6sreBbLFNDrrDI6S6ZuaciKNnbaNJ+EAoP5qbo9m/qVRqQUiGepWLNxkJMU/i8+gzpYGXFhGJopn5H48wAbS3D2NIEORt9MbvlMa9oHChpay6HUbSwPnTkEOfi1Sfu81IucULJPBFbUi7rqka8/yqKjdqyaZQeb05xM9XeQ9bjrTlI2+lx8VzYh6gSLbkUhfZwGMJhTNMkk8mQSCRYX18nm83WHKLcS3KB+hb7al1oc3NzBWOw4in58ojhbpCLrutNt6K2EIlEeN/73sfAwACGYfDhD3+YL3/5y7z00ks7qlVVszg2TZNPfvKTfOQjH+Hd7343AP/1v/5Xuru7+Z//83/y3ve+t+H93RPkMjc3x+DgIIcPH+bUqVOFi8SKEJpxY1jbevnll/F4PFy+fHnbP1S1yCWbzdLb24uWaHBS3uUuLNrelggZVcVYyz+Fqzan3rUepWuzDTmnuJjcf5C4y01ofY1veX3ER4fx2Cxois0NmOiKcPtHDpLVbhBcuYEpudF8JxBmvhAthMAlQ4sMYU8+dojrCgvrKl6l9Il5KhviK+JZDN/29JDii+vMRxdtiQVKBJIBWD96itmcBrpWtR5hSjKyLPPm7na6tlG4d+kaKxvrbKyvF4Qqt+yjSJg05QswFelAF1JN75zjoQBPukVdqswWhBD4fD7S6XRBeeJeilxqHU8lVEuhFQtNWmQTCoUaIrNmYa+Mwjo6Ojhy5AjPP/88zz///K7ta3x8nIWFBd72trcV/tbS0sLTTz/Nyy+/fP+Ri2EYXL9+naWlJS5cuFAw/7Fg/XjN+CGXlvJqtF1dXSUEth1U6hazJvrb2tp49MBRuDJU9zaFku+Ckjq68rL6RdvXapSZy6Oar05OIFeYJM8CxUH1/GNHmXzWQGh3agfCyOFK3kDPbZ2pEEIggBZFp6VDIpkzWU6ZZFQYUvfR770IdQwFlsM0TFYnFllIreDaoml8B2m/FyWp5hWNj55mNVOf4ZoiSzy3r5PINlwcdeBGRoVbw7D/UMX3WWvpRijCbLAFU0ilL9jg0bYWTqPVJCA7zM/Ps7p6Jz3a7CHK7cKKJJqxv3KhSctOoDiFZtUjstnsttI328FeDG0mk0mOHTu2q/uwYEnrl7vodnd3F15rFHeVXAYGBkilUly+fNn2orBympqmbZtcius4AMeOHdvxRVGeFjNNk4mJCW7dusXp06c5fPgw6dX1qtvwyxIp3UARoJlguFxInd0Yy4tb3tuo3KakKJi5Cp8quuGH3/0w0UNzNvMteeTqWBwCboHPJfjz7HcylokgsjFEOoOheMET3vSMqQ5V1ZgZmyap5smsetG+SNG4XHiywgfb29q4SA5N9hAPhBCGSTBd36xNRkjcXI2iFJF3NSy3dbHk8dfVEfbW7na69BySkBs2Q5uYmCCRKD0HXddZXFykra1ty4zWvZoWaxTlKbR4PM78fF6o9eWXXy5JoW3Xq6Ue7JVwpdMttk2cO3eu0DlkByEEQohtqxknk0l6e3uRZZmLFy/y9a9/vWlulNZ2LGtVq5XZ8vkO1rioU3p+ISnUyhWXLbFA4+SCIkOF1L0pBKrbxfUffQjVPV6iyluOakN+FmKmj/+SegcbmgsEmN7InTVeyyKyMcDE8HcgbIhGjWeZnJokY945YKMKvai+IDOBcN2Kxkf37+OJXAI5a0CRXH7G7SXlCyDlsvhzWdz61hTihqQwPj2NUkfzhCEECy0dJBSbqK3sa5SA7+5uw69mMCn9fa0FK6uqtilMwzC4deuWrQirJEkFgcVQKER7ezttbW2EN2s092PkUg3W4KIQguXlZZ555hnW19erptCadUx7Fbns1ZyLNUO4uLhYIqu1uLi4xdulXtxVcvF4PFUL9kKIbUvlW1P9Bw8e5PTp00iS1HSr43g8zrVr1/D5fFtamUOuBrvFqlyojbY0CFmpuDxnw15GfuokGOM1t1NLN3hM7+EvU8+iGhVuWMWDqWymOk0TIUmYmoSsauhuSC/HmViaRi9rEah0+yf2H2bGH8prstmhbAj0kSOHOFuhvuLNZfBudmUZQhALhsnJLtyaSigZY0FysTQ6jJKusK8iaLLCVMc+0i6PvShm0Y8RkCW+qyOMrNqn86zrU5EkstksqqoiSRJerxdN07h9+3bFa9jj8fDUU08VBvbW1tYKnvJutxuPx0M6nd6x5lUtWES2l2QmSRIul4vOzs5Cej2VShXqNdvpQqu1z72ouexV5HLs2DF6enr48pe/XCCTWCzGq6++yk//9E9va5v3REG/Ghpxo4T8j37z5k3m5uZ46KGHSnKIzbQ6jsViTE1NcfToUU6ePLnlRmpplFyqRDreBi9it8uFXclZO3KM2EkvZruEmfMj4rMIo3LNolp/0zfUB/lK6lzd9itCiLxhmmSguUwS02tMxux9Z+y2mVc0zoFeJXW0KeooywoXD/ZwoM7CvWSahItkW0YlF+nBfmSba8Usl3LxeJlq7UKV5ApHfgddHjdvCXsRFeX0S+HxeApNJ4lEgunp6arXr3UNlg/sxeNxRkdHSafTvPLKK3i93kJUsxupo3tFbt9KoR04cKBE+2t+fn5LF1qj38P9GLlUszg+fPgwH/zgB/nN3/xNTp06VWhF3r9/f8ksTCO4L8ilXkJIpVL09fVhmiaXLl3aMnzZDDdKwzBYW1sjHo/z2GOPbWlCsBBWGnyqkSv/FPEG27F1m/RT9ORZImOjKBfCuPV5kMGMyHg8x4nnXHgy66jJ0rScarMdE/h/M29hOGt/3rVgagYLY7Ns5CrXPIrTYoYss3DsLNFCtFJ9Aff7A7w5EqAlHq36Ptv9miY3VANzZKBi9GQm7xx3IhBiOtxe1OZceUE9FfDymFdpqCPMQnR9g9mZ2jUfu8XO8igJhUK0tLRw9OjRwtP86OgomUxmRwOMdrgX5fbLtb9UVS2k0Mq/h3pSaDsZoqwH1hR/M10oq1kc/+mf/in/7t/9O5LJJD/5kz/J+vo6zz77LF/84he3HeHd8+TSqNVxT09PRY+XerdVCZZBWTabpaOjoyKxwDaKmVWemmSXm9GDRzi4tICvkt1xybbunLvuchE7fIzWWzcBEEU8JdDJZafxAHjyEv7ejI6uGiRMCbs9/Zn6PUxkt5dW0VI5piemSBoZZCp/P6YkEIaJFggy1XmAdHEarAq3tHndXGgNEo413mqcE4Ib63Hkmcka79yUcmlpZ95fn5TLKY/M414XZhXRyUpYWloqdDrqQiDX0OKrBCtVpSjKltRRefeVRTRtbW3bmuW4VyKXaihPoRUPck5NTQGUaKGVL7D3Y0G/lsWxEILf+I3f4Dd+4zeasr+7PqFfC/VYHY+OjjI1NVXT6ngnkcvy8jL9/f309PTQ3d3NxkbjUixVYXehCoHU0U0mleDUzCSaJDHecwAzEMC3HmXfqv2gprSZHspEWtG8Plpvj9zZZJX1TXXJqK7N1JJp8sRcnOtJ6HDBvs01JubqIByWC1P2uVyurrRlamWGyYUoej3qXaZ5R9F4S+Ha/uY4tn8/j+fiyLEEOcVFIhDGFBBMVpdxAYgLmdvz8ygrS7UPDVho72bVU58k0Xe2hWjHwDSNkuaVeq7DqakpYrE76bpqxAJUlXSvtOCXd19tbGywtrbG9PQ0Q0NDBIPBAtHUo+QL92bkUgvFdsf1pND2QstsLwv6u4F7PnKpVnPJZDL09fWhqmrdVseNulGapsmtW7eYmJjggQce4MCBA0xNTdW1OHgkiWyd+xPl5OJyI4IhjOUFTH/+6UUxDI4VaVmthltIdHSi5lQOLs7j3VxEhSwTO3gEb3SVYJnfS1BI1Hqulw2DX51aZv+mXbGqwVBSMJsJY3aDkERhoXS5XIU22kwyTkYzUcrsBqJTN5iLqZhF0YqBBhWil/jBY2WKxkUoX2CF4MLhg5wpqq+4NZW2jTsyLimvn5QvgEvNEUpslOx1SVKYv30LJVm7NVmXJFbCrSQqGnbdOTYZeFd7CL9Z2rJefN0ISUISAgMw9Du0a5omEzMzJIuIpR7UepKux4nS8h45ceIEuVyu8DQ/ODiIrutEIpEC2fh8Pttt3g+RSzXYyeeXpxJN02Rubo6urq6mO1BC/pxSqZRDLruJSqmslZUV+vv76ejo4Iknnqjb6riRyCWXy9Hf308qleKZZ54p5D/rJSmtASJzK65Cd5YUCmPoOuZmC6xRIZ3SHtugfVPMUpVkxvYfxBUIkMrmCPZdQ7L5XCpb/fy7chq/NrGEO1f62aBkcsa/wQ2b0Mfq6guEI3gNg7VElqC6jGZIzE3cYiXnohKRFMMUgpXjZ1lK20/AA1Ak8aLICpcO9rCvSuFekHeStNwkNUlmPZQfcFyPxUgOXUeuQ5RTVVxMtu8j664t5RKUJd4ZCVT1XgEwDaPQhiy4c13Nzs6S3EZkvFOb43K43W56enro6ekp1ABWV1dZXl5mdHQUj8dTIJrW1tZCQfx+jFyqoTyVGI/H+da3vlUYdQBK5Gma0Y2XTOZnvppZc9lr3HdpseJI4ty5cxw8eLDu/TVCLpZxWEtLCxcvXixJOdSbXpOEQK9wwwtKEzz65s0hdXTlZV+KhzSraGZZcBk6x+dmAAiHW0lUWNiqpcWejKf5qenVquJhtX4xWZLoDPuAwxjpjU1i2QqzbEuGy83skVP2isY2BxAIBHhT2N9w4V4xdNo21rihQXI9ircOYkl7/Uy1dqIJiVoNBT0eN28OuhHbqK/kcjmmp6e3DEfWi912orSUfI8cOYKu64Wn+du3b5NOpwmHw7S1te16LaIcey23b3XwPfTQQwBN7UKzYJGLE7nsIooJIZvN0t/fTzqdLokktrOtSihWTD558qStcVi9kYssBGoFcrH+6heClGliyHLFCf1GC8GeXJZKy5PQ7Y/nfUvrvHUpUbO1WJhm/aYnVafz72zEVCTGDx0nU0wsQthLopgmne3tXFYMPNnaMyjl0EyTwWQGeeI29Byo+f5YKMJMIIJZR0fYEZ+bZ7zKtqRccrkck5OTZGt47lRDtUW92UOUsiyXmGEVF8RXV1cxTZOBgYFCZNNsc7Bi3A2jMLgz5F0rhdbS0kJrayvt7e11p9CSySRut7tha+R7CfcFuWiaVtDtam1t5dFHH93W00AtcrEUk9fW1nj88cdpa2uzfV+9kYtcx0WU2lyITJOKE/pmg3WiyMoSlWbKRVkUJBsGvzy9wuF4rs6ZlQYWzprnb+IROa53nEAt1wirQC7He3o45lFImgZSfANXBQ01OySFxPjcLPKmDbSrRqF/pbWTRW+gro6wJ1sCHFMEch0+NeVIp9NMTk7uWAF8L22Oy1FcEF9YWGBiYgK/37/FHKy9vZ2WlpamRjd3wyhMlmXb77M8hVZMutPT+Xby4kHOSim0RCJxX1scw32SFltZWWFubo4zZ85w6NChbX/h1UghkUjQ29uLy+Xi4sWLVXu7645cJFG3douo9oTSILlUu81cGRMTGbF5YO9MprhIjowvL6efq7GrasrDW99c/YZX5BzXOk9h2hXIy39jIXj08EFOx9dgU8XFEIKNYAuqy40nkyZURS9sRVKYHR9Djt8pkqsuj61EpikEs+09bLjr6+9/22ZHGGUFe2sBVXW94m8Sj8eZmpoqURK2q53kZWIElbUX7i65lMPtdhe8klRVLSywN27cQFXVksYAv9+/o2O7G5FLvfur1IW2sLDAyMgIPp+vQDbFdatkMtkUk8S7iXs6csnlcszPz5NOp3n66adpaWnZ0fYURbFNO9hJxVRDvZGL0sgNI1fZp2HUnHEo2VSFv+vtnQy99wOofjeu7Aj+lW9g6leRJUHADQF3fhHK6ZveLTYP9o2QS6UFQ2ASIMnrHWfsiQVKAiRFcXH5QBc9ZYV7yTRpSdwpfGfcHpL+EBgGoWQM96YczJRQWL85hFxHW7MmK0x39JCqQ9nZJeBdbSG8FdKW1jUikf8uYsEwOoJQIoZsGgypJsZkrbma/FEuByP41QzBCnL/cO+QS3m3mMvloru7m+7ubkzTJJVKsbq6yurqKrdv38blchWimtbW1oZTQXeDXLYTeVXrQrt16xaZTIZwOMzf/d3f4ff7dzVy0XWdX/u1X+PP//zPWVhYYP/+/fzYj/0YH/nIR5q2z7tOLpWe1KyCusvlKvwgO0U5KRiGwcjICDMzMzz44IMF8bZaqDdycUn1/0iiYntrHllJxq/XlzaRbC6OjYcf57Wf/oVCRKD6HmLj0EMsL38d4r9/5ziEwKOAR4GI16Q/2cZGTiIiEkSkTEPkYtpELjIablQSBPP1m4onIYGhE/D7eXNrkHB8veb+vLks3s0hUyuqmcvk0PquINlFA2UyLFm3h6nWLnJV1BIsBBWJd7bU7ggr7Ms0CcXzRJiTFQZ1CWm4d+sby9KBJjAT6STmD3Jotbr0+V7WXKqhWreYEIJAIEAgEODw4cPoul6YlB8fHy+IblpkEwqFahKHYRh7Wpto1gClXQptbm6OK1eu8PLLL6OqKj/wAz/A29/+dt7+9rdz9OjRHe/Twic+8Qk+9alP8Wd/9mecP3+eK1eu8OM//uO0tLTwgQ98oCn7uOvkUg7TNJmcnGR0dJSTJ0/i8XgKE7M7RTEplM/INDIJa5FUtRvWNE1EA/WAaikkqaOLP23v5PLaMqdUFX+teYXizQrB2Hvey623f6/te7NS5QlsIQSPBO90Y01kQqwnkqQULxGfZEtixSivObmFCqZBetNRpuqSIQRdHR1cEiqe9FZfmVowTZPJpWWyuRy+Sk0VRdtN+oNMtbRj1GERsG+zI4xtdISlEQwvLaPKCnbZ9uIuQgOYaO8h7cm/cydDlHczcqkGWZZpb28vOMJms1lWV1dZW1tjZibf/WgVwyuJTd6Nmstu7M/n83HixAn+1//6X/zpn/4pf/zHf8yFCxf48z//c372Z3+W69evc/bs2abs66WXXuLd73433/3d3w3A0aNH+cu//Etee+21pmwf7jFyUVWVgYEB1tfXeeKJJ2htbWVpaakpYpNwpzlgdXWVvr6+hmZkyrcDlW9YqzHAVBs4bruLVZKQ2jsxlhf5wqFjfKF7P5gmj0RXefPaMg+lU3Sb5pZF3lrUhcvN6z/3YVZPb/Wxt5CT6n/iO+pNgOaizS+T00zWMyomgrBHwuey0SErOq5WOUlM96JzZ3/VoqCjPd08mYoi1dGGXY40guHVNZT5WTh4pMo788cXbWljzh+uq3C/T5F4s9+1rY6wDUlhfGoKZX0NtcJxWdeTobgYbetGK5Hwr77P+yFyqQWPx8P+/fvZv39/QXRzdXV1S5tve3s7kUik8MB4P6TFGkE2m6Wnp4ePfOQjfOQjHyEWizV15uXSpUv80R/9ESMjI5w+fZq+vj5efPFFfvd3f7dp+7jr5GKlxWKxGL29vfh8Pi5fvlzQNGqWkjHkI45UKsXVq1c5e/YsBw8e3LYVK9gX9pLJJNeuXcPlcnGkJcTien3Oh6Ishab4fOhu750OMut1Iehr66CvLd8CGslmeDsmTyzOcWw9ilcIZAF6Wzsv/tLHyIXCJdv1SRLpopRetgFyAWh3p0jSilsRdAXznzVNEz0Tx6vFMBUvmqd1MxLLfzcdcoIVPUB5G69sN3QjBFJHFw97FbLhg6iZNN5EHHcFifpyRIXM5NQUysZmxKVVXpAblXJ5piXAYTn/SUmSCtduPSnSReFi4dYISqp2FOaJtHLNG8Ysu7Zq9t7VGKLcKzRrQt8S3QyHwwWxSatGMTw8TC6Xo6WlpeBAuVcEejcUkS23zWbhF3/xF4nFYgUdRl3X+djHPsb73ve+pu3jrpOLNVdy8+bNQndJ8QWiKMqOWzQhHxVNTU2RyWR45plndlTDKbZfLsbS0hL9/f0cOHCAM2fOkPn61bq36VUUqwkK0dIKuQzmxp2UFBVqMuseL5999Cn+9ux50HUee/0VgrNTfP373mv7JJ4uO+as1Nj8QUCNkXSXzocIIZC9IVQ2n6y0DK5sFEyTNjnJim4/CLalDqK4EKEwxvIiSugQHanN+onfy4a3naRpIqVT+OMx26hnViisjtxEKS56y/aLjSFJLIciJOu0ZH57W5DWYrXmsu9RlmV0w7RNlU1oJrFbA3UpAUit7Vx1VXCyrMEPGxsbDA8Pb+k8gr2dmt+tfRVbHpumSTqdZnV1lYmJCaanp1lYWCgRm9yO6GY92AvRykQisasDlH/1V3/Ff//v/52/+Iu/4Pz58/T29vLBD36Q/fv386M/+qNN2cddJ5fBwUEWFhZ47LHHCnnXYjQjcrGiIkVR8Pl8O24OsMjPOq5i1YAHH3yw4OTmqVLQlygdhM9Y1rCd3RgrS2hbNLQqFEhD4Tuil7JM71OXMbhc97lkGiQXqZ6CvuJFVfLfwZpe2ZQs4w4V2qyFP4ApxB3Jm6LndAlozSRp3fxHpr2ddbcPNZPGl4jhUnOMmjKZoX6k8ijC5idQFRdTHT1k3F6o8eDiEvDdbSE8NeorhWuBvBR/1u3BpaosxOLkhq/bNhSUHKYQ6F37uOHylkjclJ5K9W2Ew2GEEIWJ+ZaWlkKtYi/1vvZiX0KIgujm8vIy3d3d+Hy+gqrx0NBQSWNAOBxuGuHtReSy2xbHH/rQh/jFX/xF3vve9wJ5tYHJyUl+67d+641DLvv27eP48eMV50osctluyDszM8ONGzc4duwYbW1t9Pf37/SQC1pahmFU1B8D8FR5urGWKhd5Uy7TMBAdXRUHKbEhKqm9E2N9DYqe1BstMVcr6NuhUVkTgblF6qUAWQbDQATDmNkMFA01mlUWUq+m0rMZBRh+H1OeDrJf+ZLtXsxMaetuiZRLjQU/rMi8o8Vvq9FWCQIIJeP4k3GG0irGzGTNQrwky8S79jEhXHi3CAPVD5/Px+nTpwEKT/Vra2tMTExgGAYzMzMYhkFbW9uudlfdDW0xRVEKEQtg68ZZ3BiwE/2vvXKhLDY6bDZSqdSW32g7wr7VcNfJpaOjo2pkYv2Iuq437BR348YNFhcXefTRR+no6CAWizW1fhOLxRgdHSUUCm3RHwPw1nGDWYkSobgwq0i+y5J0Zx5zU4rfWM63ppp1dqXZLVsJyYtqClyivgVNapC+JAEVFGfyysoVJG+MOjVmJKgaVZhFNsWxYAszodY7jQZCotKU636PizcFPdvqCMshGIrGUGYnwVNpEDN/DC6Xm/nOHhY3p5OqnnWNn6h4wfP5fBw8eLAgpf/KK6+gKAqTk5MMDg4SDocLC60V8TQL94IqcrkbZyKRYHV1lcXFRUZGRvB6vSWNAW90F8pyfO/3fi8f+9jHOHz4MOfPn+fatWv87u/+Ls8//3zT9nHXyaUWrB+9EXJJpVL09vYihODSpUuFp5RmOFEWY2BggBMnTmypE1nwVhuMLEeNe1GW5fwy6HITjERILBfNPFSz/i2CCbRmDQKayZxfwhCCNU8bb3n8T3j71Bd5bvklHtZmiLgqb0+qk4QKqBAhmEIgQi0VI7VGlvR6lrHV1g4WvMG6OsLOBX087FXyqcsGC+EJSeLW3MIdb5gqn8+2tjPtDRIrbsqucHj+bJrtdotJkoQkSezfv5/29vaSdt/p6WmEECW1ip3qgJmmuafilbW6xYQQhEIhQqEQR48eraj/Va8bpxUp7SZ2m1x+//d/n49+9KP8zM/8DEtLS+zfv5+f+qmf4ld+5Veato+7Ti61nnAscbh6ScFypNy3bx9nz54tueissG8nXSWGYXDz5k1UVeXUqVOcOHGi4nt9jZBLjSVSNc18+sjQSSyXRTgNzNOENJNPXcm3Dnyz1eAl1zgDnS187vj38bmT/xSA88u9vGv6SzyVHOKInMjL2GyikRQRgISMTmldQ/d40Vpaoci3vhyVbAZsUaVuYiKY69hHtE4pl4uRIIclEwyjQHDF0XM1rAiZ2bFxlCrnZSHn8TInZIzyB4Py69I08ag5Up7aaZx6W5GL230tSZLV1dWCDth2DMKKcS9ELtVgN7xokW2xG6dFNuWNAbqu71qzgIVkMrmrNZdQKMQnP/lJPvnJT+7aPu46udSCVd+oR814dHSUycnJio6U202xWchkMvT29mIYBoFAoGbfuU9p4Omt1s3o9WPG5u092BvIk2pF+7kclbjMCViCZWmVL4WWuBZs49b+M/yHxy4A0DM3wZvjL/Edq69y3pgvmV3ZDtRwBBPwLM3DscqNFaYk131eosJvqUsyKY+3bmJ5R1uIiE3MVKLqIMm4BKQUF0o2i7wZTcwIhbXhG8hlNtR2KgQbh08wF4pgLG2N2ooDQ2EYeLRcvvGA2hHadoYoiyVJjh8/XmIQNjAwUKjR1BJarGdfu4WdzrmUpxAtN06rXhsMBktEN/eq5nI/e7nAfUAuUN2NEvIaZH19fYU240o/SqUW4nqwtrZGb28vnZ2dPPDAA7z22ms1Cc/fjAtwc+6DXBaz0v4aSPVpFe7BTsPP+zaO8r4N0GZUXnNF+UZIZzzo5q9O/wh/Jf4ZmCZvH3yZrkR9szsAUlGXW7ZrH8r6WmEBrrb87HQsIycrIARKHZI5LiH47rZgzY4wAMnQ0QGPrqPJCtFgmOV0hmzvla2daoBZdt2unDjLYjqLVKkOtUlWsmEg61qBWMCeqEo+2wQ/l3KDsPJahc/nK0Q11hBjOe7nifl63DitfaVSqYpunDvFbkcue4G7Ti71/DCV3CgBotEovb29dUnxN+JfbqFYjqZYlbmezoodk4vLhQjm5z5Ee2fFtymNkGUdemeKkLikhbkUhZWZKNnpVf7Rn+JquwtdNHbJWOoBiuTFXF4oXSAr/fayTMbrQ8vqdZ1b+VYyihtFV1FME9TqsyURl8z/1uK3JYZakDSVueWV/CJT6fObhGVKEvPHzxJNbU4zVRT1FIQUmXRWI+dyl71WHc2e0K9Uq1hdXS2khi1F3/b29sJC+0ZyorRz4+zv7yeRSPDqq6/i8XhKRDebUYuxxD2dyGUPYJcWK170T506xZEjR+qq3zQyN6NpGgMDA0SjUZ588kkikUjhtXqaA1pc9ZNL+bH7WlpIq1ph7qNa2kw1DOotwVYxELaFITQO4OVHU15+NAVfUUwWK5yWhsBcTyG5ZCS/a7NeJuE33KTIbFkcbc/I40V4PLgyaYRpsurxo7k9BLJpgrnaR590efCp2TpMlaFVFrw96GvY0gDyXX5DiTTy5BgcPFrxfYJ8em7m+FkSxWZoFYKQA4pAZDOMbWOx3G35l+JahZ26sdvtpr29veAxvxewFBL2gswsN063283hw4dpb29nfX29cP7FbpyNGIPZwYlc9gjlhFC86FsaZNvdViVYMi5ut5tLly5t6aCpJ3LxNlJzAVBcoKmI9k6yG9GSQrUQVUboGoiQ9EbvQaP0A0qV52cFEyL5nLyR09HSKoopEZPS9h8oW4BEKIypqpixDYzOVmTTpD2bgk3HyYTiIukLoBgGLakEymZUkG+xFmR69hNYmK371NpkiWAggKZp5HK5utOlaSExvLSMsjhf872qrDDduY9suX2zTdfdY0EvJ10yIuDhIcMgkcmylM0xZcAyMveStlgldePV1VWSySS3bt1iZWWlIEq5W/LxFontZXealRorF90sNwYTQpREdo104e12t9he4L4gl2IJmEQiwbVr1/B4PLaLfi3UQy6WjEs1f5d6IpdADel2rxBkTIPCM7zbjdTahrG8WPcYndTRhVk0fFg++V8O3WhMSqf8OKS6YgKQ3DKSW8aQTaiwy+K1RrR3YK5HC/UjuxbgoKYS3JTe14TEsseP4XajqhqZfQfwzc/UdWyFfZKPZGVZLnT/6LpOLpdDrZBO26JdVgVpl5uJ1m4MyeY6KJvC/46WAD1F66MkSYT9PsJ+HyeBnKqSkHpIxOMkEglbIrybwpXFC20ikaC9vR1ZlgtDnNbrVmNAs4Y4re9hrxsI7L5rO2Ow1dVV5ubmGB4exu/31+XGqes6mUzGIZedol43Sl3XmZ+fZ2BggMOHD3Pq1KlthcLVyKWSjEul7dR60g3WSIvlJV+K2nwjrRhzFRbILTmlfKHfWF5E6r5znMVH5BF5v8liKRm14Qe8suiizuHGO++vNn+Qf020tmGurpTuVYiqD+qKadC5GdUsu30ViaWaZEqxCoB1HSqKgqIo+WK27GJDceFZj+JWs8xLLpZGbqJkyiOxrfuIe3xMt3ZtEZ8s2uHm8cE724KEazxOuF0u2lpbaWttLaSkEokEy8vLhfdUy/fvtSqyx+Ohp6enpANrdXWVycnJgjSLRUY7SR9Z9+C95kRZ3oVniW6urq7WdONMJPKOqg657AEkSWJhYYFkMskjjzxCV1fXjrZlRy7VZFwa2U4xgo2mxWxcMi34ZQXLxFfyeDD9gTsDiBWOI2uRimniT8zi02JkPK2YZqCwsNdCee5cNhsvCleEJBAdXbbKBI0o7e/GkimEIGRohHIaht/Liq+DlRf+EdnmuzaTpfbKa/4Q8y3tNdvLJVnm3REf7gbrE0IIfD4fs7OlKcBaqaG7Jblf3IEFNHWI826Qy3ZakctFNyu5cc7OzhbWt90kl9nZWT784Q/zhS98gVQqxcmTJ/mTP/kTnnjiiabt454nl0wmw8pK/qn20qVLO/aVtotcNjY26O3trSjjUu92yhFyNfj1VtlvenNfIhRG6DpGtMjyt1atQAhSoYNYWf8Y46SMKLJw08Z+FFF5IKx82asWidiiQnea7vVjypUlb0xdq+EmVnRM1c6/yrpdd+oRCKg5RKWIN6cWtrfY1s2qt/Y1qsgy37G/C3ey9sBlOVRV5datW1uuv3vFz6VWgb2ZQ5zWvvYyLbZT+Re7epUV2f3mb/5mQV3kYx/7GO985zt56qmnmlpTikajXL58meeee44vfOELdHZ2Mjo62lDtuh7cdXKpdlGsrq7S29uL1+slHA7vmFhgKylYg1InTpzg2LFjdV+kkiSR2+LJXopQo5FLjcVBau/EiK6hl03kmw12O/kI0yLlW5s1M8eSMY6OSlh0EhDVL7BGbynZJq5QI22ga0hV2oRNWQGz+vd756CqzHdU+zmb+LRrCMFsx35irtqT28FgkGfcYCouJElqaO4qk8lw+/Zt226sSg9FpmnueVqskftoJ0Ocd2OmptnyNrIsF87vq1/9Kn/zN3/DT/7kTzI8PMwf/MEfYBgGn/nMZ3jrW9/alP194hOf4NChQ/zJn/xJ4W/Hjh1ryraLcdfJBe4YhlkwTZOxsTHGxsY4d+4c2WyWZLJxq1s7WLUSwzC4ceMGCwsLBWHL7WynEnK5HLcHrje0TVEpchEC0+XGnJu2f70RO2UgYwrcm/e+Itx0iTsXVjSzTiqXxSO7afW1bFnEFLOxm6p8kcl078e9toKk5hBVRF8b1V62Q9rlrqzIDE0jF0MSTHYdIFWHN0x7Wxtvcpl4Ehv5z27+3VRcSKaBpmlb7KEtxONxJicnK2670oJn/Yb3g+R+pSHOhYUF2yHOu0EusLvdaZFIhLa2Nv7yL/8SwzB4/fXXOXnyZNO2/7nPfY53vOMd/OAP/iBf+9rXOHDgAD/zMz/DT/zETzRtH3CPkEsxVFUtDCk99dRTtLS0MDEx0VSr40wmw6uvvoppmiXClo2gWs0lFotx7do1Qo32qdstTq68gZZQsxXTOA0NUQJalYRQqzdC6+ZQeEbLkVazzMeXiHhb8Lk8dQk/FqN4kUkfPIJ3ZqqmLwnULuiX7MPmjUm3B38uS1aplvLb+SyG6nKTcHvrIpaDPd08raVRbOyvhaZikreotrrVhBB4vV4kSWJtbY25ubmq20+n01UteO8Hm+Ni2A1xWlGNNcQZDAbRdX1Xp+WLsRc1HqsN2ZrLe+qpp5q6/bGxMT71qU/xC7/wC/z7f//v+da3vsUHPvAB3G5307xc4B4jF6v2EQwGuXTpUiHMb5YbJeTJa3FxkX379nHu3LltP4FUilysjjbLVVOe/WpFyflyiLIajQgEMTEx11YRHZWbGDS92Jm+NrQ64wKv4sbr8rAv1IVhGqwmo6TcKahQZxTm1jSUIE8SbuGBmdKn7krZLBEKo7o8LLr9BNJJglqd6THyfJRyewjk6rNF3gkyHh+KptY0AgM4ffAgj6TX63qv2+0utEYbhsH8/Dyrq6s1P7e6usrXv/71QhdSe3s7fr//rkQuu7H4KoqypSg+PT1dMi1vRTXNmpYvh67reauIXSaX3RygNAyDJ554go9//OMAPProowwMDPDpT3/6jUcutayOm+FGaZomExMTrKys0NrayoMPPrij7ZUfk2EYjIyMMDMzU9LRVi+xAAQ8HjY2/9/X2UU6unZnkLJaYbqJkUs5VtxwgLxGWHuglbAcB+xnPEwBekrFyGoIl4wccCELCQ8ustS32EttHRgb60i5DN3ZPKkk3F6SHh8ePUsond5ivmVdKYbLRcYUZcRS+Vx9SgOUXKZRlvIH8KZTdZHFI/u6OZuqPRdjh9n5eTai9X329OnTPP3004UupLGxMdxud6FQ20wjqGrYi/qOVRS3fJoef/zxgoz+rVu3CjL6zR7ifCN4uezbt48HHnig5G/nzp3jM5/5TFP3c9fJxTRNBgcHWVxc3DWrY2uif319nf379zflIisuxFrCmdlslosXL5Y8ddQaaixGanOZlDq7SZf5nFRL4fxIzyon+36X1zse4/XOx4i7w1X3s8VCuQrKIxHJrH5jyX4Xsj+/aBuqjmkYZEWFwn1ZQb/YOKzYLCyYyxSkX3KSxJo/jCkJWtJxPJqOALRAEMPlxr++Rr1I19AdK4ZZRC7JQAh/Mn7nCCt9n7LM04cPcnRjxf71GpiamiIWi+VTkXX8ZoqiFKx/Dx06VJiaX1rKd+S99NJLW6Ka3SCBvbZUtqblOzo6CrXTVCpVSKE1c4hzrxSRm9G8VAmXL19meHi45G8jIyMcOXKkqfu56+Ri9bifOHGiqtXxdtNiiUSC3t7egozLzMwM8Xj9qr6VYBGeVV8Jh8O2wpmiysKgcMcdUgNwuZHaO2wNtIS5lV48Mnzo4AxvivdBHJ5deAkdiYnW07zS/ihXOh9nInx0y7ZUUf8TbPk+7bq/KkFyyUhVOuaEywU5tWQg9M5+7b8zt2HQmdwo/HvD62ddUvKptwaIJX8Alc9lMRghmE0TUO9EQSaQCoQIJMuuH7vtuFyIYIiH0Fjv2kdakpGScXzxjZrfoGEYTExMkNqUjLGukVoov/asBTUUCjE/P8+TTz5ZGOSzohqLaFpbW5u2aO6lcGWlFJxFstYQ5/r6eoFodjLE+UaIXH7+53+eS5cu8fGPf5wf+qEf4rXXXuOP/uiP+KM/+qOm7ueukwtQkEuohGqqyNWwuLjI9evXOXToUGGiv1lulFYr8quvvmqbyiu8j0pGultVUUxMjFX7p9zyrq3ugOBXW/s4ES/tIJMxOBG9yYnoTd536y9Z9nbwLXM/V7qfZOD4d6B6/Og7KGTLDTYj17xpXS6EL7CFUOs9wpZMCtxeZlOJ2m8uQzVvmu7EOgAxwyRpgq4bpP3BrcQCiHIrY58fZBlzPYoU8dK2qY2GBHpLBHQNVVXJ5HJbZPQ1TWNsbKxmmztsjeirtSIDBAIBgsFgSVSzurpacGNsVlSz15FLrX0Vm3+dPHlyR0OcexW57Ca5PPnkk3z2s5/ll37pl/iN3/gNjh07xic/+Une9773NXU/9wS51Lo4Gk2LFRuHPfTQQ/T09Gx7W3YwDIPp6WlyuRyPP/54wdHO9tiFQK0zDSVVmZHwSwKrGfuhDpOPKi/Sktqo+H4LnZkV3sUK75rqJzP5p3yTw3zL+35aDBfdUuNdco3Kv6hVZlCErIBbwoytb3mtMVXdyu/d6RIXlgRhIIGEvwKBCX8A0vm0XV58MweJlG2rs4wJlp6Zx0MmnS6IZmqaxvj4+JYovbxVH+yv40ZakctFF4snxncS1Vj72svIpdHFvtIQZ7E5WKUhzr2KXHYzLQbwPd/zPXzP93zPru7jniCXWrBupHoKhcXGYRcvXtzyBLBTcsnlcvT29pLJZAoS5FWPXRL1F12q3CQpNb/gfM/BLP8q/QKuXOPnMJMWjE9N8/Jb1/mLhx7m8HyUJ2diPJVQOCfCFecrSg6xweU64bK/EbOd3XnzswrzS1IltUu7YzKrfBfVGiGaLAsvIm2Y8diW4n8lSEIU0jcAk5OTdaV/K13D1SKXWveNXa1mO1HNXgtJ7rQzrZEhzvb29j2LXA4cOLCr+9gL3DfkArXtiTc2Nrh27RotLS1cvHjR9r31CE7W2n4kEuHMmTO8+uqrtY+9kZus2kVrGvybI8u8K/5a/dsrwjdXTW4tpAmYIOfWAZja18rUvlY+A4TiaR6dXOWpNYMn9CAhKR9FlR+9xM6GKAEy+w/jWZhBaqk8uKriAuprQTYqHJMJqNLeSLFLHV0YFaRs6kYd10q1tG6le6PR7q2dRDV3I3Jp5r5qDXG6XHlVhdXV1YpOnDvFG0FuH+4Rcql14Vs3TTVyqVfGZbuRy+zsLENDQ4XtZzKZghREteNXGiKXCj+H20Mg4OG7fZNMBx9ATifp2pja0pJbCZ+ZV8isprGSbpK+tS04HvLx9QcP8nVA6DrnplZ5ciFNe9nAn2TYz7NUQvF3YyLIHDyCb2ai8JdKMOutYleAIQQZxYWrQfWCbe3L7bYllkaf3Wu9304qpvh6bha5lKORqMY6hvslcqkGuyHO0dFRotFoVSfOneKN4EIJ9wi51IIlTGdHCoZhMDQ0VLWVuRiNkothGAwPDzM3N8eFCxcKaTDriaVWmOyqw1bYgrC5SUQojKlpZGIJDvmWOER+EUu0BRh2HyCnQ3t0Bq+6Nb2UReYvUsfxrg6VlOElrXoLrinLDB3rYugY6IsL/HfZ4ImpdZ6KCbokUTex5E8g/2ZDCHI9B4qIpfpiqksKpp6ra4Euf48mSWhCwq/m2KjhqbMTmJJEpucgUoXie73kX9helfcLIaoSi/XvSttt1mJfK6qxUnNra2u0tbXtegppL+VfFEXB5/Nhmibnzp0rnPvKygq3bt1q2hBnIpHY9ZrLXuC+IBewJ4V0Ok1vby9A3TIujZBLNpult7cXVVW5ePFiyQ9uXdC1yKXd5WIxU196p3w7ckcn+toaGDqmr7QjKagleVwbAUDzS9zyHWWZAMH4Mu3JJZZEkM8ttRBYHNqyH0mvf74Dcix29PD5jjCfBw4sL/Lc7QpvNSGqqkRcSmExE0KgSjK6JPCWea5UWu6kzm6ErpFW3KQ9LkwUWtKJilFI8XaysoIwTbybdY+qS2qdtgP5gyp9r+Fyk2ttxzc3RfzEufq30yAqCVvaXcc7qblsF+VRzeLiIjdv3iwMMu72XM1ea4tZBX07ZeNmDXE6kUsTUc+XXi4Bs7q6Sl9fH11dXQ3JuNRLLsX1lccff9x2hgDyF1u1gax0A/UdV5H8i9TVg760UPi3qVdp1cbgbHqSs/l/sPz/b++749uq7vafe7U9JO89M+xsryROmKEEQhZxQhihLYGmNLSEwksppbyM8AINo80bViFQIP218EIgizJSIIMUEgjxiLdjO95Dkre1pXvP7w/n3kiypi3ZSqLn8+HzIfLVvedKV+c55zueJzYWX9WJEKpsdni8N+RCs7b2vAapC9VfCogUi6CzMBg0W0BT1EhanhBILQ4+c/uVOk2Dihrp82HDMhBiMSHknPQLA6BfGgKjSIIwo55vqjx3IgCAMS4RQlX3SEWWB/BE44w/Vnz+vi0hYWAlEkhV52yOnTy/3k6j9jsXZ8TiLO8yGeRiDYFAgIiICNA0jcWLF/usAs0VWJb1i8yLq+s5GrenTZzcvbuaMzQajV/lXyYKAUEunsC6Yqy5uRkNDQ2YOXMmUlJSvD6Pu1wJl1+ZNm0aMjIyHB5HUZTDUIU9xC5WVVKahsHq/UZCAUIRaLkCrBWxAN5JvMSaehBKIuDEud67nYvdvbMeJMhDhAKEnGue7KZpiIjjsVPWjmBiCaiQEN7fZXTzJhBp0AGGEbIbFsugpwgEAhHEZhP0yWmQdrZ7RRiuFhkscax9ZgqXg2YJxP3WWl+OrxkrFuK7ThUyQiSIDQ2B2IuucPtFkPUzaP/McSTkr5yLN7DuO/FVBZq76030zsWT7n5nTZxNTU2oqqqCXC7nczXWTZycZlowoT+BEAgEfBnw4OAgr5jsLbgH0VFxAMuyqK2tRVdXl0cy/J7sgiQC5w++wW6SICwDSKVg+0Y3UnqrHxajVcOJQD9oD0tlR2D7g7d4E0qCmwKoc58NFXJOoHPgvIaWnQP0KISb9BgJHBgwKBRD1tHq1bgAOHXwBAAzgEGJDBBJIDeM5LOMsQkQDvRBYLYNc1J2tpkUgHiJGGqTGZ2EoMpoAfo0SBbSmCoTIylUhnAHyV9u5+LOitsa1rubQCAXZ935znI1fX19Nrsab/MVkyG57+2Oy76J02Aw8Lsa6ybO/v5+pKen+1240hrPPfcc/vjHP+L+++/Hjh07fHrugCAXTx/8uro6XjFZLHZvyuQIzirPuPyKxWIZlV9xBk+MniRePPiUWAJonEjTsCwYQkFAediQ6eIjFZoNzv84alD2Oxcvf8guyIgiZKQ3RDMM2BUZeEOlY1OJgstqNAkFxBn1gFEPFoBSGgpxr8qh62WsZgAq4Ui+TwAgWixCt9EEsfVnR1HoYAg6NEZAY0Qs24OpUhGSZRIo5HIIhUIQQhwqgDt6zrjfjPXrrshlouBpd76zXY23uZrJyrmMB1Kp1GET54svvoj9+/eDZVn87W9/g16v99gZdyz48ccfsXPnTsybN88v5w8IcnGH7u5uDA8PIyoqCvPnzx/XKox7r/XKcGBgAKWlpYiKisKcOXN8mr/x6rFwsyvQUSKEe9j7IXRyKkpGYyimCdLGv8Ikng02ei4QEuViTLafNePlD8sVyRGRCGSw36H2GjEzgKfrBxcEby+vYnMND09PAwhnzE7tlLlbFNMUwgQCqM7ZHrsSBRMZdBjq7gW3lFAoFLBYLB7lXRx17Fs3Y9pjIrW+xnKt8exqLoSdiytYN3Hu2rWLVxXp7e3FzTffDL1ej5dffhl33nmnz64JjOR1fvrTn+Ktt97CM88849NzcwhocmFZFvX19Whra4NCoUBMTMy4t/ecAQ/3g+X6Y1zlV5zBnU5ZX18fdIMD8DS1S7kpW9bBc3JxFI0zR4nw7U+SoB8WIVR6BqE4A7ZvL0zdiTBSs2BRzAGJzABlQ3J2YTGvmxJH39NIv0saaLPJudqvyJUqm90VXNocu/hMfRgqChHQEFAU+sxuQo6EIEk3hOjhAZvd2eDgiJSP9cTlaPHiiGxkMhn+/Oc/O93NT1bOZazwZlczEXIs1vD39bgqsb/97W+Qy+UoKysbU/jfHe69916sXLkSS5cuvfTIxVrGZdGiRQ41l8YKgUAAs9mM6upqdHV1edQf4+w8jsJinD9NXV0dosIVwICHFs2uQkghofh+KBzXSLWQe7CiF9j9vgcyQ1FcOOIxQygpcE6pjKYoSCXdkKIb0B+GeSgMBiYL5pA5YGNmjSmhbzNu+/cLhTDFJEDW3gLdlBlO3+cu5+IJDEIRWFfn8FG4SEBRYAmBzq6ij7X3nSEEqcP9CNcMghUI4Sr45ymxRERE4KGHHkJ3dzfUajU/6UZFRfEr/EDIuYwV7nY1nJ+9QCDwm0GYNfwt/8LZuYeGhoKmaeTn5/v8Gh988AFKSkrw448/+vzc1ggIcrF/8B3JuPhCcJIDTdOoqqoCTdNjtjnmzmM/Jq6pU6VSoaCgAJ83Kb0gFyclrZFRIBoNHmEvA3r0WCTqwo3SViwMHUCijAHt4H0cuVAU0JQXicasCI+GIBJpIBKVAGwJ2C4aw/rZMFuMgDweVGgUWGqkHsvTqcr6u7VIQ8CGhkLazfW7OJ/cvcm5OEpD6URiSM0mmF00UfrC5jg0NBRaAhhYB+diWX7BQBOCjAE1ZPpzpE5Yp/foTJTS/rXk5GTs3LkTMpkMLMticHAQPT09OHv2LKqqqmx2+xOVd/G3IrL9ruaHH34ARVET1lfj750LJ1rpLwJra2vD/fffj6+++sqpxYmvEBDkApyPI3OOlPZhKqFQCLMX5k7OMDAwAKPRiJCQEBQUFIzrS7TfuRiNRpSWloJlWSxevBgymQzh7V4YRTmS7Lcy0IIoFKAofG9JwveaJEADpFBDWCc9iyWKHkwTGyE6xyoCmgItJCi7KgHquDGSp4CFSDQMS+JIkyAZ6AK8dVQ8d09GgRA0TUPcq3b/HpEYtFgMpSwMYXodQi3uXCxtJ06tWIIQk3HcisguLgFgJIQxPDwMhLpueBOxLNL7lJCY3BdSEEI8UkCeOXMmXnzxRb6K0jp2P336dOj1er7HpK9vxOemrq7O594tjsY/UWEqgUAAmqaRmpqKqKgon1WguQLDMH7fufjLxA0AiouLoVKpbHZEDMPg2LFjePXVV2E0Gn12fwFDLgzD8Ct+R2EqgUAAg8GLKicH4PIrEokEqamp4/4QrXcu3G6Ls1Dmzi3xIowkFgjO96bQNMLjEjDc3Xn+AAcPXDuR42V9Lt6ZKkS8/Edc3aPBlVodBkOBbwvjoA8ZZ6UJdT4GR0UkAhGJQKuzImdAbbKAYRlEikWQ0DRoCtCLxBCbTRDYSdY72nFQIaEgFAWLyYR4y8gqf0gig04shdhkQoRptLUw96kQioJOJLazOXaOEC8mQald+bFcLh9xibQZgd29AJAyFqT1dkPkRnIHOB/2omnaZVnyFVdcgWeeeQYsy4JhGL5viwsbUxQFsViMpKQkpKSkoKurC83NzaAoCmfOnIHJZEJkZCS/wh/rzt0RJtLLhbseR2a+qkBzdz1/k4s/y5CvvfZaVFRU2Lx21113YcaMGfjDH/7g03sLCHJhWZZXGOZW/PYYjxsly7KoqalBd3c38vPz0dDQ4BM/cW7n0tnZiaqqKodFATIXfS72MHGTplgCShZiSyyA05zMvBiC+/u/x1lLDE4rEvBc/AB0Uz1L/LsD5WFSnUOsWAhACJYQqI0m6C0MpGYnGmF2opiUIgJErwdMRhCrxYXcqIfcOEK7RlqAodAwEAAKnQYSdsTmeCSXE4/Q7g678TsPB2m9eAZorhGUoiAPD7ciFueQMhYk93RD4EY801FZMeCYWNauXYv7779/ZEznzO+491r/Z/0+QgjEYjGysrIwffp0foWvVqtRX18PmUzGT7pch/1YMZE7F8B5tZi/+mr8HRbjuvP9RdDh4eGYM2eOzWuhoaGIjo4e9fp4ERDkQtM0srKyEBkZ6fSLG6sbpcFgQFlZGViW5fMrzc3NPsnfUBQFpVIJjUZjI2ppjVAXNr8AIKQAISEwgAIoiheqJIOjw08UTY+aKlekGPEb/RGI9AxS9EpcpRoRfaySp+O0IgJ1oXp00+4nQucYG6HTFIVYiRh9IhF0To6hRDRgHPke6OhYsP29fFmxs3yIhGUQqxmprGIB9MvCoBMIYVZEQmpHLOdONCYowyMgMRmhMOp5YqRpGsLQsFHE4sgMLtxsRGpPNygn6gQcrDuz+SGfm6DtO/R/+ctfOnULtCcaYGQiZBgGvb29fPiMoihIpVKkpKQgLS0NFosF/f396OnpQXV1NRiGQWRkJGJiYhAdHe3SldERJnPn4gq+7Kvx987lYujOBwKEXAAgNjbW5W5iLAn9/v5+lJWVITo6GrNnz+YfCl9YHZvNZvT394NhGCxevNjpVjZM5PpBtBDAcm76IiwDotM67RyXCs+HzQQUsDmtF2uGvx91nIC1YN5AI+YNjPy7lVagmJahIkqE1hgW3sy4FDW+z8n1RHPO+yMuHqzKzubYgyHSACL1GoTRAjR7kstxfHmHiB8esPk3wzCQSqXQDY8maoNeD4jO77ZjjDrE9SpBU67FaJz1sNjLCtE0jYcffhg33HCDy9uxPh4YIamqqirodDrk5OTwO23rZ5+maURHRyM2NtbGv6Srqwt1dXX8qjY6OhpyudztRB4oOxdXcLSr6evrG6WBZr+r4cKP/k7oT7Su2NGjR/1y3oAhF3fwNizGFQZkZWUhLS1tlMXreMhleHgYpaWloCgKCQkJLh+GUC8k3yla4FKShKtIChFReC61CdkDVR6dN40dRBo7iLUqYKBbjOdFMWgVKSCRKEEL3a2sR4/Hm2oxmcj5/VAEoGLiRhELAJeNkaMH5P9KKIFAAJ3O8R7MmkISdMOIHnBfxOGogstZ1/2zzz6LwsJCr8ZrNptx+vRpsCyLBQsW8F3e3ATJ6fTZ52pCQkIQGhqKjIwMmM1m9PX1oaenBxUVFSCE8HpY0dHRDvtqJnLnQgjxSROltQ6Yq10N129yIedcJhIXFLl4Qgj2pcBRUaO7z8dDLkqlEuXl5cjIyOB9z10h3M3OxSvQFJLDKTwlP4XUgW73x9tBTwT4rFuOSHoYtUtfgNZihEB1CmJNGSTCVggloxPh1BjDYhyMjOOCAkYiBSOW8EKV9iBe1HqNeSrz5SRBCFI1A5Db7XgcX1YwqurI0S5GIpHg5ZdfRnZ2tldD4aoWxWIx8vLyRl2HGwMAfifDTdT2u5rY2FjEx8eDEIKhoSHea762thbh4eE80XDiixOtBmB9T76Au10NANTX1yMmJsYvfTXBsJgf4IkbpTtCMBgMKC0tBeC8MAAYm9UxIQSNjY1oamrC3LlzkZCQgIaGBhiNriuTwt3kXKxBUdSIb4iTsWXILHhReATheg/7ZqzQTcnxqTIUoX2twPSMkesJJWCTLocBl8MAgOqrg6z3B9BohFg2eK44zcFnTlEe7xYcfauWMDlYgQBCo/PqP9YH8wUBYHLx43fZve8FKAJkDPYg1K4azhE8bY6MiorCa6+9hsTERK/GotfrUVxcDIVCgdmzZ7udeO1zNdyuxro4gDsuLCwM4eHhmDJlCoxGIz/ptra2QiAQICoqyieFMp7Cemz+gvWuRqPR4OTJkxAIBH7rq7lYFJGBACIXd3C32+DyKzExMZg1a5bLratAIHBLCtawWCyoqKjA0NAQFi1axEs0eEJSYSIvP2KRGHAw6dKx8bhM0gyBIhatSEekthfhww7CSQ5QSSXgxyYtQjUjysFyJ79FEpUNXdS5VbJODaHqe9DGNhCzCZTofAjEKBBC5kFpLTB60WCKjoNAp4FYMwS9woWmmRdwlNlgQcEgEkHiI1UHp9emKIQbtGA92Al72hwZExODd955B3K53KuxDA8Po6SkBAkJCcjKyvJ6onO2q+FIh3vWKYqCUChEfHw8EhMT+QZOLldjNptRUlIyJqMsbzAR5GIPgUCArKwsAKN3NSKRyMazZSy7movFywW4AMnFXsrCWmolOzsbqampbh9kb8JiOp0OJSUlEIvFWLx4sU2c2ZPCgHBvHzCRyJZcKAp0TBxYtRKmMBoz9C3nLg60x8ajSxwLoV6LiP5mh7a6R6gpaK9tgdRKCVnnCbGGxMKSsRrEaARoAZjeHsBiBhUmh9iLkKL1d2GMjIRooI+X/HeV7ia0ABaaQOjBSniUzTFFw0ILEGI2QSv2Yxeym4S9NZw9c/avZWRk4M033/Ra9ZtbXKWnpyMzM9Mnk7mrXY19+Ixr4ARGwnIRERHo7e1FU1MTP+lyoSRf5Sy4MUykbpr12D3N1Xizq9FqtW6tPi4UBAy5eBIWA2yl8rnGS7Va7TS/4giekktvby/KysqQlJSE7OzsUSskT3YuCpEQAngqwQiIJRKYzsnuCyUSMLIQvkPfSIQ2M2mKSYUU00jOYjAyFPWSFBjMLOIH2iCx6PGRZQbMdVUQ2pXD0qznq3kBRYEVCCCIPv/Au5JN0RMCmdV3yf2vRiRBaH+/LRE4OQ0dGwfCMABN0CMLByMUINygR4jZCSlancckGJGul/KGaM7HKhIKPC5OMLmQwXcnselqx2Kd2M/JycGOHTu8nizVajUqKiqQlZXltXmep3C3q+Fyj9zvMzExEcnJyQ5NwqwbOMfjFc8l8yeKXFz1uLjL1Xi6qwnmXCYB1rbCQqHQJr9y2WWXeaWT445cCCFoaWlBfX29S7dLj3YuIqFXbYiWc9VlVFg4aBBYrAy0jHC+/VcwWszX1Y2cI0yIfwlyYPnmlMOJ0xuzMOLgx0Rc5FxkFIUBsxk6C3vOKI2CVixBmIOu+RGSs13FcmXJJDkFQhDE6M/72wyKpdBLZJBaTFDotfy9cfsHU3Qc6D41hB7mg0xmi+caaVbn9MTHh3+fg6owR8/f/Pnz8cc//tFrkcnOzk7U1NRgzpw5iI+P9/h944WjBk6NRgO1Wo3U1FSebGia5skEgI31cUNDA6RSqU0Dpze7mokue/ZG+sXZrqaxsRF6vd7priaYc5kEcCsUhmHQ19eHsrIyxMXFYdasWV4/YK5IgWEYVFVVobe3FwsWLEBERITT83iyc3E3UYQKaGit1XSFQtBR0WCHBketlk1E4NEyW0gsiIDzZLk3OxdH5OJuEBEiESLOFYkNanXO5VgIC55caBpUZDRfluyIHhQmAxTn9Ln0QhGGaDFosRAROg0MCSkQq7tHS8O44BlXT42zHY2nu17r5kjrZ8D+2RMKhbj++uuxcuVKVFVVwWKx8CGkmJgYl02MLS0taGxsRG5u7phUvX0Fmqah0WhQVlaG5ORkpKWl8Tka+1JniUSC5ORknoD6+/vR29uL2tpamM1mm1JndwvGC8XLxZNdTV9fH4aHhzE4OOi3nMu2bduwd+9e1NbWQiaT4bLLLsPzzz/vdTWipwgYcvFktSYQCNDW1obW1laP8yvOzuNogrCvNnP3cHvajOnCM8qWWADQcgUsne0OjzW7nA5t4cqxkvKmDJumR3Yp1nkuLz5zoSv5G0ow8sGIxaBkoSBWjZDuVHxlFjNkMAOmkZCUpLvd65Jk1sV9UBixfeBEITkfIE++b0+bIymKwqZNm3DbbbcBGLnn4eFh9PT0oKOjA9XV1ZDL5YiJiUFsbKxNuW9DQwM6OjpQUFDgF78Pb8CZ7WVkZCAzM9Pmb65kaewbOLVaLXp7e6FUKnHmzBmEhITwk7JCoRhFJBeql4ujXc3u3bvxyiuvoL29HVqtFv39/Vi+fDlmzpzps7DfN998g3vvvRcLFiyAxWLBo48+iuuvvx7V1dV+IbSAIRd34JL57e3tmD9/PiIjI8d8LkeThDfVZtbncbdz8VbqnJica4LRtOcilBHOrChxbkVuRxiuQDEsiFVJtTd3JHR5NOGFKh3J3XgKAeBVebSnEIvFfGJdr9ePi1homrbpiaJpGo8++iiWLl1qc5xcLodcLseUKVNgMpnQ09ODnp4etLa2gqZpxMTEwGAwQKvVYsGCBZNeWdTb24vTp09j+vTpSE1NHfV3Z0UBjho4ZTIZUlNTkZ6ezitg9PT0oLKy0mED54Wyc3EFblfz61//Gvfccw/mzZuHK664AocPH8bjjz+On//859i5c6dPrnXw4EGbf+/atQtxcXEoLi7GVVdd5ZNrWOOCIBe9Xo/S0lIQQjBz5sxxEQswmhQ4teTp06cjPT3d45WCu52LxWLB6dOnXe5c7EEJnRPIoJl47JtscJJX0UUkoZNZgN3favFpqhjfyy1oEphgVkQ4PRdNWDBWuRFvdi6RZhpNTv7GCkUgFgvgIGwmtDCAxIuJY0zk4sXxHkxiznpY7GP1QqEQzz//PAoKClyej1M25rzW+/r6UFtby6uD19bWIjY2FjExMeNKjI8VKpUKFRUVmDVrlkf9ON42cMbExCAuLo7f0fX29qKjowM1NTUIDw+HTCbjSWoikvoTsVMym83YsGEDrrrqKuj1evT3j33R5Q6c+6mnhVDeImDIxdnDYZ1f8VUCj5sEWJZFbW3tmN0oXe1cuBJmiUTCOxV6BBely2bi+Q9I4MCKSh07A0rlFDASFqEscGuLCbeOXBTH0YSvw/WoTorEcHyCza7GmXe8R3AyZENiCmiL+VzeZTRMXqhJAzhnzTz6XK5CX95wkbvReNocKZVK8eqrr2LatGmeXxwjE3FzczPEYjEWLlwIi8WCnp4eqNVqnDlzBjKZjA+fjVfZ2BN0dXWhpqYGc+fORVxc3JjO4U0DZ2hoKMLCwpCZmQmTyYTe3l50dnZCr9fj22+/tXHg5KRufA1/i1YCtvIvMpnMp3YI1mBZFg888AAuv/xyn6shcwgYcrGHdcXWjBkzkJqaih9++MEnasacTtmpU6dgMpmwePHiMa38nO1c7EuYBV3/caic6wiUM3IRCGASxuFL2Q2YxZQhxeRa/kVoN9G2JS3EwNloUCyBUDx6LJchFpcNA6gDWs/04qsQHU7FSdCeOPIeazBeTFyOFg36lAxI25vBJqQATvxuvN6DUNQoHtOHhAF+bqIEzmtcWcMR2cjlcrz11lteV3WZTCa+14qTcxGLxUhLS+OVjfv6+viSZJZlERUVxe9qvO2ZcYe2tjbU19cjJyfHZ4UE3jRwCgQCm89w6tSp6O3tRUtLC5+n4sgmLCzMZ7uaidi5aLVavknbn7j33ntRWVmJb7/91m/XCEhysa7Yss6vjFV23x56vR6EEIhEIuTn549ZH0ggEIzalre2tqKurs6mhFlAU5779jpaGUmkoCRS9OsF6O69Cd24CbS8G3J5OaZTZcg2NIK2uwBHLixF42z8EhgaJPzka7G4/gzTiBSbtFJsagKGzw7jK9EgfogVoT45CsZQGRgvCgtsQUGfnAZZe/O5f7tooiTeyGOOJjF9Yiqk3e0wyPybk/C06z49PR0vv/yy12Wmer0eJSUlkMvlTuVchEIh4uLibEJIarUabW1tqK6uRnh4OE80XFHAWNHU1ITm5mbk5+e7rKQcLzxp4DSbzaBpGnK5HBEREZg6dSoMBgNf6tzS0gKhUIioqCifaIH5e+diMplgsVj8Xoq8ZcsWfPrppzh27Jjf+qKAACIX7oHn8is0TY+q2BqvmjEAdHd3805sc+bMGdfDxj383IqmpqYGSqVyVMFBpEgIrZsJnYNIJIK1sAoVLgcxm0GGBsBKIvjX2aEEDAwl4Edcjx8kwwiNqkK66DTmGCsQwhohBAuzSIYG+dVgztpNJl6EucIpEa7XyrDOEgpLpxk/CAfQKPLcbpr7XmlCgQqPgKyj5fwfne3mRCIIJRKowkJAEwK5QeNeFcBqwtSnZJwnMBf36qoZ1BM42rkKhcJRYqZTpkzBzp07vQ7XaDQalJSUIC4uDtnZ2R6RgnVRwNSpU2E0GnljsObmZggEAp5ooqKiPH7+7SvUvJWmGQ8c7Wq0Wi3a29sRGxtrUxQgEon4Bk6WZT3uL/EEDMP4LeQGjHzfAPxGLoQQ3Hfffdi3bx+OHj06qrLP1wgYcgHOh5MSEhIwc+ZMhx3xY3WjJISgvr4era2tmDt3Lm8gNh5wD7vBYEB1dTXMZrNDwUw94/l1rMNikpg4GPt7eRl+ljieYGljOPRdi1CLRaihzRBFn4EI9TgjNIK0jZ5AvSpFxvn9hZCicTkTjl5aAC3t+HswMoBAYwAdIgItEgAUBQGhIQANk8Y2OUk5IhdZCEALYDYYEEePVM4xAPpk4aBBQ8QYEerAi56iKLA0DWNiqtXOyAUEAphYgu+7VMgIkSImNMTjidaVc6R9dWB+fj7+8pe/eL1b4Mp709LSMGXKlDHvNiQSiU1RAFeBVV9fD71ez6/qXRUFEEJQV1cHlUoVEBVqnAFgTEwMpk+fzofNHBUFREREICoqinfgtPdt4UzRPGng5Dx9/AWNRsPbHvgD9957L95//30cOHAA4eHh6O4eCa0rFAq/5HYChlzMZjPKy8uRnZ3tdKs21rAYd26tVotFixbxP47x7oI48jt16hQUCoXTEJuIdj4x2KehuV4WOjYBRrVtXoVx42oIABQrgkU9G73iGSC9Hzk+aAyK0DbXcBGukggAKKQjZaYaI0zaESIwUaPJSGJhbZ5ASq4AMRkBrQ4k7PwEJgAQZdWpPySRQSeWItxogsykHfkMxRIYI6Igtd4ZwYl+mUAIAWERQgHlegvKDRpQvcPIEAswVSZBQmgIQqSOmxcdOUcCjqvCrrvuOvz3f/+3w/O4Qk9PD8rLy52W944VXF9JdHQ0srOzodVqbYoCQkJCeKLhigI4C4uBgQEsWLDAbwlmT6HValFcXIz4+PhR4pzW+RlnDZxJSUl8fwnXwFlXVweTyWQjS+PoPifChTI0NNRveZ3XX38dALBkyRKb1999913ceeedPr9ewJCLSCTCVVdd5VbN2Gz2PCQDjHxhJSUlkMlkWLx4Mb+t9UWITa0eafqLi4tz2ewkcvGwsABkFKDntwfCEQMt9eiEPesBuXCQaJyLU1Je7KRGxug5ufDHUBSEYRJICAFDOakIs/pYJIooGDWD/C7NVX+Q3KiH3DjiyWkQiDAkCwUjC4VU2TnqWJqy++yFIlAWMxgAxKpQgVAUmswsmsx6YEiPBLCYJwSiFHI+TGGtEmFzDQdVYRs2bMDmzZud3oMzdHV1obq6GrNnz0ZCQoLX7/cGoaGhCA0NRXp6OiwWC3p7e3ljMK4ogOvvWbBggdeWx76GRqNBcXExkpKSMG3atFG/N29LnbldGyGEl6VRqVSor6/nq++sGzj9ndDXarU+ke13Bm977saLgCEXYGRn4uoDEAgE0Ov1Tv9uD7VajdOnTyM1NXXUKmc85EIIwdmzZ3H27FkIBAKkpKS4fCBc7VwAK2Lhzu/EQEvqxXM9alK1AgXARFiIXRxjMx47UvPm0XftcnzO7Ck2Hka1nc2xh+eXMmZINQM4O9jvUMPNmpApkRjEbHJ7bhljgaKnEx0Mgw6MPCtyuXzUytVReEwgEOA3v/kNbrrpJg/v4DxaW1vR0NAwKXIunIQ+Zww2MDCAqqoqGI1GsCyL06dP87ua8RYFjAXDw8MoLi5Gamqqx2FCVw2c9qXOUqkUKSkpNtV3vb29qKqqAsMwPNH606/mYnKhBAKMXByJ/FnDU0IghKCpqQmNjY2YPXs2kpKSxnwuezAMg8rKSvT396OwsBDFxcVuHziRh5M4AFAuEoZaL3ZtlItrmlOScDZMALOQQoqZQqTO9ecwKgTkVRWXi3snBHRsPK/6bA2JmYG9qKUrMM4og98RikDMtuoHFgffW4jFjLSeLgjY858JF0KxhjNBykcffXRU2MEdOCO69vb2gJBzsVgsaGhogEQiwaJFi8AwDK8U0NzcDKFQyBNNdHS033s/BgcHUVJS4lBexlN4U+pMUZRNA6dGo+Er0Orr69HV1cXrv8nlcp8RLeflMtHE7S8EFLm4gyc5F+vJf+HChU5/qGNxo+S0xyiKwuLFi0caJD0gKYk3DYEufqj2OwhXcPaAaufNRMuaq5H6rQahzMjkOKBRQ6Ptg1QSiih50qitv/207UlYzB2IQABzRKRDYgEAgwv5GkdwpYJAiUQgDohZb9ADgvNkHmkyIKGny22hNU3To4hFKBTil7/8JTIyMryaJAghqKmpQU9PD+bPnz/pirhcT41EIsG8efMgEAggFAqRnJzMV2BxRQFnzpyB0WhEZGQk38Dp65wMV9gwZcoUpKen++y83jRwhoSEIDQ0FEqlEhkZGSCEoLe3F+Xl5SCE2DRwjqen6GJSRAYuMHJxVy3GlTELBAJ+8nd1Lm92LtxDHhMTY9Nv4In8utSbOK2r/AxNY9A4DIXIfZPVqB0DRaH32sugXDz33Lko4By5RITFIiIsFgCgMwyj36SDkBYgShYBkWB0qNKbnYujQxmJFBa5ApL+XkDmpKTV2/iwg4mcoQUgUqlDYgEA2uoSsQYtYvtUHt0Zy7I2xCGTybBjxw6EhISgp6cHjY2NkEgkfMlvZGSkw1g9y7KoqKiAVqvFwoUL/VqJ5AkMBgNKSkoQFhaGOXPmOBzzWIoCxor+/n6Ulpb6vLDBHp7uaiwWC4RCISIjI5GQkABCCIaGhtDb24u2tjZelobb1XjbwKnRaCZFxsdfCChyGY+DJCcTEx8f77CM2Ztz2aOzsxNVVVUOtcd8vXOhnHSsU5HRsDBm/NX4NWL1IZiHZEwRJSJKGukwv0Jby7cIhGhbvwxDWed/oEYKcERRIdJwhEhH/mJhLVBqeqEz6xEikiJEPLIqFROhc036UQO3PcgSLgdL05ColTBFONc08jb1SNG2dWFmoQgCkRCRFudCoBySdEOIHOh1e5yj7zoiIgJ/+9vfePfA1NRUMAzDJ8crKyvBsqyNjL5YLOZ15ywWC+bPn+/zLnpvwckVRUZGYtasWR5PitZFAWazGX19fXy1G7eqj42N5cUmPQUniJmdnY3k5OSx3taY4GhX09LSAoZh+O+OOy48PBwKhQJTpkzhe4p6e3vR2tpqI7XvSU/RxWQUBgQYubiDs7AY1xWfnZ2NtLQ0j87lCSkQQnDmzBm0tbUhNzcXsbGxo47xaOfiTVjM0WqRy0tIRyZ3Na3DIdTjEFOPkGEhcpCM6cJExEtjIaTPmY1xhCOVofHOG2GItRX7ZDzxhaGFiA+LRpe2DzKRFL26QRjMBhgjzR6nQ6znKIlk5Icp1utGXnCVX5NI0BMaDoVeAxHrfhEQYgE03D+kMogIC+j1YF3uBghSh/og1wy6Pb+j5yUxMRFvv/32qNWmQCBw2DHf2trKd8wbjUZIJBLk5+f7tTHPE3BVWAkJCaMKX7yBSCSyKQoYGhqCWq1GS0sLqqqqIJfL+d2cq1U9J2MzY8YMh/nSiQRN02hpaUFLSwvy8vIgl8sdOnBSFAWhUIiEhAS+p2hwcJC3eq6qqoJCoeAXGY6qwoLkMomw/4GzLMt3xXtjc+zoXPbgVpZcb4yzL90TT5dQLxKeMgF93uaLoiCOjYdJda4s2QGJ6WgLTqAFJ9gWhF17C7KatZjebkCSQQJExaBu02owDno2LN5EK4zDoEKjEB2iAKBAHa12eqjAQsFCs6C4CrlzPyApEcFgNEGI8zsJykkOiY6Nh1mvR4yYhQUUekPksAgEiB4ehhBOwqLnLhdGyWA0mWF2Y4hGE4IYzSBkOo3L4wDHz8qsWbPw8ssvu01m23fMDwwM4PTp0wBGJvUffviBz1c4C5/5E0NDQygpKfGqCssTUBQFhUIBhUKBadOmwWAw8EUBTU1NfFFAbGwsoqKi+M+RU1qeiFJsT9DS0oKzZ8/aqBLYO3A6a+BUKBSIjIzEtGnToNfr+V1NU1MTxGKxje2xQCAIVotNJqx/5EajEWVlZWAYxmFXvDu4IgVrRWPr3hhnY3K3cxF7sXPRczsOkQhUmPw8sQDOmx8pCnRMHCw0hdo5caidM9L9TnCT01pgM+W5EUB/RASsBdVd5VwYIQExs2CGzSORMzGNECKGDqPDU0KLXS7k3H2waiUQNVKKKwRBtG7o/DF6FpSFACIKxKY2m4KcCsEw9Db9K45uUciySO1XQca4r75zRCyFhYV47rnnvJ6INRoNysvLERcXhxkzZvAy+mq12saF0l+Ck/bgPIwyMzORkZHh12txpb4pKSl8UYBarUZdXR1fFCCRSNDV1YV58+aNWWnZl3BELNbwxquGs0+wtz0+c+YM6urq8N5778FisWDevHl+vafXXnsNL774Irq7u5GTk4NXXnkFCxcu9Mu1Aopc3P1YubDYwMAAysrKEBkZiTlz5ozZetQTRWN3K0lPdi4yF+OjAAiokTmQISPhLN5Aq98uD+AoPCQQglZEjEzIVn8nFAUaIyE5nYOmScaLBbK31WK0SABaMXLPjNEMHeU47yHSDQERI+q2NEUBkdHnq8ec8Z6MPv8nEwvKSAABhXBKii4yOm9itEvmS1gG6b3dEJlNI8+Ai/tw9IysWLECDz/8sIt3Ocbg4CBKS0ttdgiczhfnxMi5UHKCk56GkcYCLi+SlZXlV/FCR7AuCuAaGM+ePYvOzpEm2IaGBgwODiImJsahA+VEwB2x2MPbBk5ODWD69OlITk5GR0cH3n77bZSVleH48eNYsWIFbrzxRlxzzTU+u6cPP/wQDz74IN544w0UFhZix44dWLZsGerq6vxC5gFFLu7AfXE//vgjpk2bhoyMjDH/4BxNHI4UjT05j7udC6PTOv0bAWCxXmhbzCAWM+DIkdLuOkKZDBahCGxfz7m/294PCzgkFgCwePGx2c/zXvW5uJwYRs4sYYwQSkOh5e4DHopKimmQc4t7g5QFRkuO2ci/hDDnelg8saZ20MeyceNG3HXXXe7HZQcuOT1t2jSnOUF7F0qj0chXYVnrYHHhs/H0liiVSlRWVgZE6ImiKAwMDECtViM/Px9yuZwvhjh9+jQIITY9NRNR+OAtsTiCN6XOKSkpePTRR1FXV4f8/Hzk5OTg888/x9/+9jefksv27dtx991388/wG2+8gc8++wzvvPMOHnnkEZ9dh8MFQy6cKisAp42R3sC6rNk6d+OthbKr3A0hBLW1tdD298G93dQIKInUMbHwB4w4LvI6XMNWISMPZV1EFPB5kgjmLjNmDbFuRzYecqFp5yRBQCHUogNAoDXb5kiEXkrUWJw4b3KQm01I6umEwE2Js7V2GPf/FEXhgQcewJo1a7waEzCiwl1VVeWxWyMHiUTC95ZwTZxqtRo1NTUwm802fi3eyLJ0dnaitrYW8+bNc1igMtHgvGFyc3P5nGlCQgJf6js4OIienh6+KEChUPBk4+vdHOAbYrGHp6XObW1tWLRoEdasWTOmZ80VTCYTiouL8cc//tFmXEuXLsWJEyd8ei0OAUUuzh4Us9mM06dP89Ivvuhg5sjFZDKhrKzMqaKxOzirFrNYLCgrK4Ner0d2Rjpwps2zE7r7sdA0qIhIkIH+UaRGPGwKNRPg6wQRvk4QQW4mWNhrQWGPBXm9ZsgcUM0ociFe2g87gRhmmCkBTILRk2PYkBaI9rzm39UkE2XUI6G32y0lOvouBQIBnnrqKVxxxRUej4WDtakWV6o8FggEAn5C5TrG1Wq1jeUvF15zNeFay8v4y9rWG3ATuTNvGIqiEBERgYiIiFFFAda7Oc4+YLxKAf4gFkdwtKs5ePAgysvLsXr1ar9cs6enBwzDjDKqi4+PR21trV+uGVDk4gicp0VoaCgWL16Mb775xmdulCaTCSdOnIBcLh+zaZhAIIDRaCsSyRUESKVSFBYWorndsVaYQ7gjl+g4EFWXwz/JKOIgbe4YMpqGnmUxJKJ4ohGZRMhpH0Sh2oRFBgmiMBKCsA9ReddE6fgHHwotDBA7JBbAc6LkL+PkcxNQ1JiJRS6X409/+hNmzZrl1Vg47bm2tjafm2pRFIXw8HCEh4fbhM+spVms/Vo4G4Cmpia0tLQEhLwMYGs65ul4rIsCuN1cT08PXxRgbR/g7SJxoojFHjRN4/Dhw7jrrrvw7rvv4qc//emEXdvfCGhyUalUKC8vR3p6Oq+C6gs1Y2Ckpry/vx9Tp07F1KlTx7y9tp+U+vr6UFpaiqSkJGRlZYEQglA3wpU2cDYOmgYVHQsy1O/47wD0ZovHalx6B5O3WSzEqSnRODUFeI1lkdU1hMJuPRJ0xMYXwCtycZA7iaBDMMACAldOlF5cAQDMDu6HFgjAsKzb0Tp6pkJDQ/Hqq696ney29j6ZCDkX6/CZdRVWbW0tTCYToqKiwLIshoeHMX/+/Amx0HUFa+Idz3jsd3OcUoBSqURdXR1CQ0P5HJVCoXD5+54sYgGAY8eOYcOGDXjllVfw05/+1G+6YjExMRAIBFAqbeWWlEql3/JuAUUu1vHuxsZGNDU1Ye7cuTY3Px7DMO7cZ8+eRXt7O2QyGaZNmzauMVtPTO3t7aipqUF2djZSU1P5xF3YeJvkRCJQYeEgauWImZYz+IB0edA0ziRH4ExyBJj+XvyDAIvah1E4SANk7GQZQYdhgD3XW+JkVwOcy1BZCCD08FpOrIYpyqGji81x9on7qKgovPPOO17vOFiWRWVlJYaHhyfF+8RemkWj0aC6uhrDw8MghKCqqooPn02GsjH3u+7o6PAp8VIUhbCwMISFhSEjIwNms5kvCigrKwMAG4UE69aCySSW48eP45ZbbsGLL76IO++806/fh1gsRkFBAQ4dOoSioiIAI8/roUOHsGXLFr9cM6DIBRjJVVRUVGBoaAiFhYWjvvDx7FysRS2zsrLQ0dEx7vFypci1tbXo6OhAfn4+oqKi+IQdTdNQiISjTMGcn8/2AROHhsEEgPT3cQc4fa83oSTWaATtaSKYAN1RYdgfFYb9ABbX92CqM7UUB7IwFEbKl8OpkPPEAoB1klyXMzREoAABQOkYUAzASihA7MJGwOqH6Ul5OAd7g6+UlBS8/fbbXnuXWCwWlJeXw2QyYcGCBZMu50IIQXNzMywWCy6//HIIBAK++ozzlnfUxOjP8Zw5c4YvmvFns6BIJHJYFNDc3GxTFGA2m9He3o758+dPOLH8+OOPWL9+PZ599lls3rx5Qoj+wQcfxMaNGzF//nwsXLgQO3bsgFarHVMFpCcIKHIxGAz4/vvvIRaLsXjxYoc/0LG6UdorGg8PD/skvAaM9DDodDosWrQIMpnMhlgoikKIUOARsQC2iihURCQYvQ6wzuk4IZc0oQA3f/oxGqbPQMXsHHQnuNZjIjotMEbzJ73E9WNDaRiAAoiMBmgKYkoEEYQYJPYl2aPJJUEoxSBM0BMCUBRIiOPgmXU1F39dJ/bDjuBokZKWlob//u//hl6vh1gs9vgHzxWFCAQCzJ8/f0y5O1+CYRhUVFRAr9dj/vz5PFHa2x1bNzFaV5/5WkCTCxWq1WrMnz9/QsUZnRUFtLa2QqvVQiwWo6Ojg/8M/E2yAFBaWoqioiI8/vjj2LJly4TtIG+99Vao1Wo88cQT6O7uRm5uLg4ePDgqye8rBBS5SCQS3rDHWePUWHYujhSNdTrduMlFr9fj7NmzYFkWixYtsiE+jlgAQC5y/TGLKArmc6zCTaR0TBzYXjUYe4thB2GeHIEAvzx9ChKTCdlnz2Dlvz/BUGwcimfMQ+O8PFSlZoLYfZ7jMfxiXXm0UAAJO/cDZQgoDQMhJYCGHW3yZn8f8RYBVMQAlgIkbrJHZoaB2WgERVGQSqVuvYCs4Whnc9lll+G3v/0t1Go1SktLQdM0v7J35VnCKQmHhoZi7ty5k9LwZw1OtohhGMyfP9+huoR9EyOXr+jq6kJtbS3CwsJ4ohmvXwlnKdDX14f58+dPuk2yVCoFwzAwGo1YsGABLBbLqByVv0gWACoqKnDjjTfi4YcfxoMPPjjhocktW7b4LQxmj4AiF5qm3cpQeEsuzhSNx+LnYg1ODlwul8NgMNhMWJzhEAeFm5Ws2WpSpCgKdFwCWNVom2MACBGJYL3+vw4ENxWfAG03scrVKlyj/hrX/OdraELDUDljDirSMlGXuwAWWYhnTYrnYD9nM56anwkokDABGCGB0zI2lgA0hWSzAB1Chmc9d0QhFgohPve5cuWcnsBRVdi6detw7733AhjpsWBZlm/s4zxLuEknNjaW3wlwFtrR0dEuba4nCmazmbec8LT60T5fYTKZ0NvbywttekqyjsCyLKqrqzE4OIj58+dPuqUA4DjHYl0UoFareZINDQ3licZdUYAnqK6uxqpVq3DffffhkUcemfTnxd8IKHIB3LtRCoVCjxL67hSNx1MY0NHRgerqamRlZSE0NBSVlZUwmUxOQylhIu+22uxAn9O/6c55sFAANjNm5JeXuD1fmFaDRcXfY1Hx9zAd+BA1San4cOlPoA0NAyX2IDRm932w3q7OWeffJw0g0SxAh8huweDFD4+maZe5qJHTOQ6Zbdq0CT//+c9HnS8qKgpRUVHIysriJx2uAZErBVYqlUhJSXHo5z7R4JrkpFIpb/I1FojFYiQmJiIxMdEhyUZGRvITrqtdCFfcoNFobEJzkwlXyXtrks3MzITZbOZLvLmiAGulAG+VrOvq6rBq1SrcfffdePLJJyf9eZkIBBy5uIMnOxdPFI25KiEuN+IJCCGor69Ha2sr8vLyEB0dDa1WC5qm8e233yIqKgpxcXGIjY21yRd5/SAJRc679GlAQlG4p0+N2c2N3p0XAG2xQNl4BuniTnTLP4CBzIVBnA9WPhWUzElZqF2RgcuwmAM4k4ChQCHBLECHZPT3SVwk7x3B1dHWVYj88TSNhx56CCtWrHB5XvtJx2Qyobm5GS0tLaAoCt3d3WAYZtJUjYGR0FxxcTHkcrmNkd14YU2ynDGYWq22Kfd1tLLnTNB0Ol1AeNUA3leFiUQinmS5ogC1Wo2mpiZUVlZCoVDw9+7OdbSxsRGrVq3CT3/6UzzzzDOXBLEAFyi5mF14yXuqaGwtxeDJj5GrBtJoNFi0aBFCQkJ486DLLrsMOp0OKpWK75pWKBQ80XidwBSJATjWIwujaDzY3oxkJ2EzV9CzLP6j0cAMIHyIhYqKRAhVjhBLOdAHGNgMGIQLYAnLBsKinf4IGG/6dgAYHahCC0BDRklQJ7LAETUwHni4WMPZWCmKGuUcKRQK8eyzz6KwsNCrawAj4dC2tjbMmTMHcXFxfGKcUzXmQkj2Ja/+wkSG5jhjMK7cl1vZW+eooqKi0NnZCbPZjIKCgguSWOxhXRQwffp06PV6/t4bGxshFottXEetd43Nzc1YtWoV1q1bhxdffHHSc3ITiYAjF3dhMYFAwMvA2MMbRWPuAWAYxm1sWq/Xo6SkBCKRCIWFhRCJRKMS96GhocjMzERmZiYMBgPUajXUajXq6+tHVjbwvDGQFokcVpdRcgUWaYYgkCvQCyDaC4LpoWn8ODTEn5dyMHdL6WZI2WZgCDAPxEBHL4Q5dDZAbEMa3u5c7ENWRCwBLRRDoxsG5eRD8baJ0vFlR+dXJBIJXnrpJcyYMcPr83FyLta6XFyoZMaMGbwpGKeDFRERYbO69TWGh4dRUlKCxMRETJ8+fUJXxNYre+vwWXV1NViWRWRkJLq7uxEbGzupSXx/9LHIZDKkpqbyrqOc+2ZNTQ1MJhNUKhU6OzuxaNEi/OpXv8Ly5cvx0ksvXVLEAgQgubiDs7CYt4rGXNLdXYhtYGAAJSUliIuLw8yZM3l1U+tz2EMqlfIPH7fCo3vqXcq728AB2VFRMSCD/RCAIO9cOGw4OgZnI6IRajFC2tYKgZMChTNRMajpaLf5sikXeRAAENE9UOBzpPfux+aWIdQJMnEybj5K0q+GmaI9djkeudj5I01iCSiWBaUbBgAwAsdn8TA/b3UJ2/M4ek7CwsLw1ltveSUgOTKW8/IprnSwrE3B7BcYISEhfEGAL5LDnIR/WloaMjMzJzXUQtM05HI5zp49C7lcjuzsbPT390OlUuHMmTNedcv7EhPRIGlvm6DRaHDgwAG8//77eOKJJxAVFYXo6GicPHkSCxYsmJBS50DBBUcu9n0uY1U0pijKbbOddaVZWloa33HPvdcTcCu8CHETek2eFRBIJRLorP7N2xwDMFkRT/jgAHIGBwAAmpBQtMQlwMQwiOxsh8Q8krP5MSEZnS1nITTb5nAc7VzsMX9Yj3vaegEWiDPX4MrWGphb38MPkgIopbke3QtwfuI3SEMgMhlsSfBctZg1aACRIgE+ae1ElkyC5NAQhMmkHk9KjoglKSkJr7/+uteTDNejwT1fnsqVWC8wLBYLX4FlnRzmKrC87Yvp6+tDWVmZSwn/iYR1lVpeXh4EAgHkcjnS09MddsuP5949xWR03nO6b9dddx22b9+Om266CUVFRfj888+xYsUKrFq1Cv/v//2/CRlLICDgyMXdBGJd5TVeRWNnDZmcvH9LSwtyc3MRExMzqjHSW2gtnucQjFzYiaIgT0jEUFcn/zeTE1ILM+gxu7Vp5BihEKrUaTglEEJVegpCBzsadzuXlX3DWNc5OCo8JQKLKUw3lA7fNeJw2W9hEUUDQu5zoinoQsIg1WlGZVekAgpaq4uIKApyoRA9ZgtMLNCtMQIaI+QUMEMmQmqIDJGhIU7J3VE1YVpaGt566y2vK5ZYlkVVVRUGBwexcOHCMYd3hEKhjbc8F0JqaGhARUWFTZmzu3Jdzl8+OzsbycmuG2UnAmazmQ8Z5+TkjFqZW3fLc77yXK6ioqLCpvrMV82Vkynp0tPTg9WrVyMnJwfvvfcehEIhfvazn8FisaC/37ku4MWIgCMXd+BWpVy8eTyKxo52LgzDoLy8nJefCQsLGzexDA8Puy3HtZn+RSJAKAIVLrchFgAwe7BjElssSGltRl1KBnqchMpc7Vw2KfuxWK11mvcQEOdvFhGCOAEFEyFQMiPdNEaxDLJBx8rEI/05I3+R0jQkNI1esxkiu895iAAndWac1JkRqezFDBGFpLBQKBQKCIVCXtTUPl83b948vPTSS15/bwzD4PTp07yci69KaSmKQmRkJCIjI23KnLu7u1FXV8c3MDrS/+K8YebMmeO3rmpvYDKZePXvefPmeeTayt379OnTodPpeEmaM2fO8KHD8ThQTiax9PX1YfXq1Zg+fTr++c9/2sxJnFr1pYQLjlyEQiFMJhO+//57ZGZmjkvR2D58wnVbCwQCLFq0CCKRiF8Fj5VYuJWmkBY5JRgWI18Et96mpCGAVDba5hiAyE23vzXkFucC/JQjziEEj7b1YMqQ0cEfz4N2QS4cxBSF+HOL2BaLCc4CgtQ5blGIRbAwDAbd9B7RABTaIQxphsDZpEVERECv14/SCVuyZAm2bt3qdqz24MI8NE2joKDAr1Vf1hVYJpOJr0Li9L84otHpdGhoaBi3N4yvYDQaUVJSgpCQkDErE4SEhCAtLQ1paWk2ocPTp08D8L6vZDKJZXBwEEVFRUhNTcUHH3wwIZWCgY6AIxdXEzghBN3d3TCZTMjNzR23VLR1l/7g4CBKSkoQExPD+3e4S9y7AiEEra2taGxsxKxZsyA+3QSYnJdQW2zeywCaIYfHDbkJZ1mDsji/HlgCwhJQ5/IdIpbFn5pViNS5zwu5dp4fDdpFdRkFIFIkhIFhobdyn3R0lwLCIr1fjQjCwJr+BgYGRh27fv36MclccAsMbtKcyASsWCx2qP9VUVEBi8WCiIgImEwmvmF3suCPvhr70KF9X4m7yrvJJJbh4WGsXbsW0dHR+PjjjwOiYTQQEHDk4gyconFfXx8oivKJBwG3c+nu7kZFRQWmTZuG9PR0GzmRsfxwWJblPT04cyZRebPH76eFIqfTt8kLktMZHO9AiEAA8SAwe0cPOnMlGMqSYH2IAbNpC3RSYMjgWsHZW3KRmwfR4+RvESIB2s2WUWe0l6cRsQzS+5SQmIwuQ4M0TePuu+/Gbbfd5tUYgfM9I1FRUZg5c+aklo5yDYwccc6ZMwd6vR5tbW2orq7mm/i4PqqJqsDS6/UoLi5GZGQkZs2a5ZfrOuorUavV6OnpQX19PWQyGU80ERERaGtrmzRi0Wq1WL9+PUJCQrBv376AkLgJFFwQ5GKtaFxQUIDjx487VMX1FjRNo7u7G319fcjJyUFsbOy48ytmsxkVFRUwGo02SWCRN42HAudfi8WLHhNHfvEiakT0UUoBAi0w5TsD8J0BiTkMhHkU5AIgXEzAEsBgAQaNgMWOaWgvycWZo0p4eDi6zBYwDnxdWJbwJcxSxoK03m6IXO3EMPJ9PvDAA1i5cqVX4wOAoaEhlJSUIDk5OSDkXDj5ou7ubixYsIBXmZgyZQqv7KtWq9HY2AipVMpXYEVERPiNFPV6PU6dOsX39UzUZySTyUaFz3p6elBeXg6GYUAIwZQpUya8n0an0+GWW24BRVH45JNPJlTt+UJAwJGL/QNrr2jMhao8aX50BYZhoNFoYLFYeImY8RKLXq9HaWkpZDIZFixYYDM+kTc/eGfkQtMQCoWoSZ+KpB4VFNphl6eJHRpAjdW/xRRg4uZ5ezFKq2gYRVEQUECoGAgREehBYYAKh0AzBCMDCFjvNNkc3blcLsfQ0BCocMde7tzwQi1mpPZ0QeCmY18oFGLTpk2QSCQ4fvy4Vz0lfX19OH36NDIzM90Kp04EOCXh3t5eLFiwYNSkZW/3y+UqKioqwLIsv6qPiYnxWamvVqtFcXEx4uPjkZWVNWnkax0+a25uxtmzZ5GQkAClUomzZ88iIiKCJ1p/esYYDAZs2LABBoMB//73v/3uOHohIuDIxRrOFI2BETmWsf5wuJ0Qy7JITk5GaGjouIllYGAAZWVlSEhIQFZW1qjVo9iLnQvlKM4vEoEKDYeGYTCzpREsgI74JAyEhCC5rwcR5/pdrCG1KlYQwYpYMDqn4axSmqIohAAIwTAQNqKeMMSYISeDGKLk8KSV0v7zDA8Px9DQSE6JJsTxKSgKCrMRST1doxSf7SGVSvHqq69i2rRp/MpWpVLxSXmOaBz5dSiVSlRVVWHGjBlISkpyey/+hrXg44IFC9yGWQQCAeLi4hAXF2eTqzh79iwqKyv5Ut/xdMprNBoUFxcjKSkpIHZ1wEiOpampycboi5Nl4cq8ZTKZX3Z0RqMRP/vZzzAwMIAvv/xywkNxFwoCklxcKRpzk/9YvVi48EdUVBRf6unIg8UbdHV18SrJqampDo9xJ7tvjRCx2FahXhYCCAQgA31g5IqRsQJIVnaC63ToksnQI5EhRqdFomkk10JTI/O2AIDrgJJzcrEHRVEIEVgwRCkgIzpEiCzo6DeACo0GRTtOfvPtLiCQhYaNlGZzf3NynRiTHnE9jsuXrREeHo6//e1vfGmu9cqWkyVRqVSora2F2WxGdHQ0v7LnOsjnzp0bEGWiXBm80Wgck+Cjfa5Cp9PxKgFcpzxHNJ76tAwPD6O4uBipqamYMmVKwBCLoxyLtSyLxWJBX1+fzY6O++6jo6PHXBBhNptx5513orOzE4cOHfK4aftSRMCRC9eU5UrReKxulEqlEuXl5Zg6dSoyMjJw5swZqFQqiMVixMfHe52MI4Tg7NmzaG1tdVsi6o3tvMHqWJEiAmaDAdCP9Ow7C0gl6vVIPKe5pmdZ6FgWepYF7eI91giRRwFO0+624Lwh9VQI9BaADpcDFhNYjRoAARUSDUporQpNQwALpIKR8Io1hAJ6VPVAvH4YMf3uxxIXF4e3337bade8vaqvRqOBSqVCa2srqqqqAIzYGvszfOIpLBYLysrKQAjxWflzSEgI0tPT+U55blVfUlLidkcHnF+IpaenIzMzc9zj8QU8rQoTCoU2O7qhoSEb3TdvVI05WCwWbNq0CY2NjThy5Aiio6N9eWsXHQKOXDjjLXeKxt6QC0cCZ8+exbx58xAXFweGYZCWlgaxWMzrP8nlcsTGxiIuLs7thMMwDKqrqzEwMGCTcHUGiRdbcvbcDoCKjoF5oB+wuldP7lpG05DRNHQ0DcZGSMYxEqdOxczbrgOqXvFofDRFAYQFrIsLhGLQ8pEKPsIyYIdVAGsBJVNASDEQgIGWGV2iadDpAem5nAIhSNYOImLIfSfzlClT8MYbb3i8AuWkOcLCwmCxWGAwGJCcnIyhoSEcP358TKt6X4FbUAmFQl4+xddwJjTJ2Rxb7+gkEgmf6wyUPBQwojDc1NTkdVUYRVFQKBRQKBQ2VsdcQYREIrFRNXYUPmMYBvfccw+qq6tx+PDhgNjpBjoCjlzkcjny8vJcHuON0RfDMKiqqkJfXx8KCwsRHh7Ov1csFvMrO5PJBLVaDZVKhcbGRn6yiY+PR1hYmM1kw8nOAMDChQs9qmuXOpCd50ADkAloaM/1eVACgY2emDWcVV45gsRFEpw7y2WrV+Ou1/+KgdL9YKo8PvVocrEeIy0AFR43chghsBDABGef0TnzM0KQNtyHMCf9PdZYsGABnnvuOa8JgHNGHBgYwMKFC/lEOad/pVKp+CZa61W9P0uSfdGM6C2cmaFxdhEhISHQ6XTIyMhAenq638fjCcZKLI5gXxDBhc8qKyvBMAxPtFFRUbwt8n333YdTp07hyJEjPmmDuBQQcOTiCTwNixmNRpSWloIQgkWLFkEsFvOli/b5FbFYjOTkZCQnJ8NisaCnpwcqlQo//vgjRCIR4uLiEB8fD4FAgLKyMigUCsyePdvjVabUxXEswBMLcG7l74BYAMCidezz4ggCFxkLoUSMlb/6FW585BEAQKgiBu6n9fOgPDRKpigKQtpaf8Du74TwzZEyg/td1tKlS/HYY495MdIRcPkMg8EwSs7FXv+Ka16sqamB2Wz2m0cL1zMSERGBWbNmTUpfjb0ZmlKpREVFBUJDQ9HS0sLL5rta1fsbviQWe9irGnO2Ca2trdi8eTNUKhUEAgF6enrw3XffBYSe24WCgCMXT1ajnoTFuERkZGQkZs+e7VXiXigU8pMNt7LhVrUMwyA8PBxJSUlerZxlXvwoKbHz3I/RiVaYw/M4eZ2mKPzs2WexeMOG86/FzUB/bCGE3aUIFziXjeFBPB+HTOL8MROyLDJ7uyExuZacAYANGzZg8+bNHl+Xg9ls5nea8+fPd0kQNE0jOjoa0dHRyM7OHuXR4ovqK+B8aW9sbOyE9oy4Qk9PD6qqqjBr1iwkJSWNWtVbJ8UnygzNn8RiD3vbhJdeegm/+tWvUFpaCmBETmjVqlW46667kJ+f79exXAwIOHLxBO7IRaVS4fTp05gyZQoyMzN5qXzA+457bmVjMBjQ1dWFjIwMPt/CMAxiYmIQFxeHmJgYl7sYV2ExezizBQa8M9ESOJiwxCIRHvjnP5F1xeU2rwvDYzH9gU8AAP21x9Bz5A3Qbd8jHJqRHIv9GAnr8ViIk/CcQCBAzPAA4KaHhaIo3HvvvVi/fr2HVzwPruxcJpN5LediP9lwneLW1Vec26i9yKQrcAufQGnYBEY08MrLyzF79mw+7GO/queS4s3NzTZmaGNyW/UAE0ks9mBZFn/729/Q2tqK8vJypKSk4MiRI/jXv/6FxsbGILl4gIAkF0/cKB3lXAghaG5uRkNDA+bOncuXo46nf4Uri+7q6kJBQQFfepidnY2hoSGoVCo0NDSgsrIS0dHR/GRjv6oLEXqRpHVBLixFo0YgwDSLZZRysD3s/xoWFoZHv/gccVOmuHxf5IyrEDnjKgCApr0a3Z9tA1N7EBFSCoJz/TqUS4EYW9AiGQBb91BOkVoqlcJgcE4uNE3jsccew09+8hOPr8dBp9OhuLjYZ3Iu1p3i1tVXLS0tEIlE/ETrKnzEJcozMjICpgJLqVSisrLSpdqyfVLcmmj9YYY2mcRCCMHTTz+NDz74AEePHsX06dMBACtWrMCKFSsmdCwXMijiahafJJhMJpfkUllZCYlEwn/pwHnvjZ6eHuTn50Mul4+7MdJisaCiogJ6vR65ublOV2eEEGi1WqhUKqhUKmg0GkRGRvKlkBKJBC/VtWD7mRaPrsvqtDAc2D36DyIRKJYFYRiILRb8RNWFKwb6kG0xQ+rg/jQsgw8GBgEAsQkJePzwIYQoFJ5/AOfA6IfR9NpNoJTlMFsYEAJ8KPs5zLRnYaGWlha0t7fz/7a2H3ZkRcxBIpHg+eefR25urtdjHhoaQmlp6YRYALMsy4eP1Go1nxSOi4uzUfTt7e3F6dOnMX36dKf9UBONrq4u1NTUjKvXx1rRWK1Wg6ZpG0Mwb6vfJptYnnvuObzxxhs4cuQI5syZM6HXv5hwQZJLTU0NKIrifdBNJhNKS0vBMAzy8/MhFovHvWPR6/UoKyuDWCzGvHnzvIov6/V6nmgGBwchl8txBFL8VTng0fspvQ7a/R/avigSAWbzyK7GbjKmWRaX9SixpK8Hs01GhJ27Xx3L4v2BAUybMwcPffovCMcZIyeEoOfUAfR/9y7+rprltFrMHmfPnkVXVxeA0SFNZ+QSFhaGl19+GVPc7LIcYTLlXKzDR2q1GlqtFpGRkZDJZOjq6sLMmTMDQgkAGFHAqK2tRU5Ojs96NjhDMK7y0mg08mZoMTExbnvJJptY/vd//xf/+7//i0OHDo1pURPEeUye7KsLeONGOTw8jBMnTkAikWDhwoUuK8I8xeDgIE6ePAmFQoG8vDyvE5cymQzp6elYsGABrrzyyhEJdZ3nVV60wTaEBOE5YgEcmsuzNI1v4xKxI78QIXv2IvH552DKzYFJKkHhDcvwyL8PjptYgJHvJXZBEbIeOADahbimPbgQkaf9SREREdi1a9eYiEWlUqGsrAxZWVmT0p/BhY+mTZuGxYsX47LLLoNYLEZHRwdYluVtGIaHh10uoPyN9vZ21NbWIjc316fNgJwhWFZWFi6//HIsWrQIkZGR6OrqwrfffosffvgBZ8+edXj/k00sr776KrZv346DBw/6hViOHTuG1atX88VA+/fvt/n7nXfeydt7cP/dcMMNbs/72muvISMjA1KpFIWFhTh58qTPxz4WBGTOxR24SYozFkpPT8fUqVPBsqxNRdhYwGlNTZ06FWlpaeMOp0gkEqSkpGA2JQZKaj16D68BRlEjOxU3asAAIA8Px6Gnn0BGXAyQPR3pkxgbpokFQ1oDhEIhv1L1lFgSExPx9ttvjylB3NHRgbq6OsyZMwdxcXFev98f4MJl+fn5CA8Pd5iniYuL86uasT04gsvPz0dERITfrkNRlEMzNK4owDpPNTg4iJaWlkkjljfffBPbtm3DF198gQULFvjlOlqtFjk5OfjFL36BdevWOTzmhhtuwLvvvsv/210P3YcffogHH3wQb7zxBgoLC7Fjxw4sW7YMdXV1k/4buGDJZXh4GGVlZZgzZw7fnzDexD23cvKH1lSYm7iz1GSE3mwGFRo2Ui3GTTT2E7KD1W5KQgKOPvM4FBMg+c19Tq7AUkJescBisYBhGI+IJS0tDc8///yYzJa47y43NxdRUY6Vlica3JisJ3HODMy6zJfTvuIqD6Ojo32mZuxqTIox5N/GA2szNIZh+H6i8vJyWCwWREVFQaPRQCqVTpgZGiEEu3btwpNPPolPP/0Uixcv9tu1li9fjuXLl7s8RiKReNWkuX37dtx999246667AABvvPEGPvvsM7zzzjt45FwP22QhIMnFFTmwLAulUgmtVovCwkIoFIpxJ+65zu2+vj4sWLDAqVbVeBDmxp7YIJaAEktAGQ1gtMPnLJHdh00KZs7AZ48+NCGOiYQQ1NXVQalUukzEW0MoFCI8PBzd3d0uj8vLy8PmzZvR2NiImpoaPiHurp+CEIL6+nq+mi8QFGoJIWhsbER7e7vTMTkq8+XUISoqKvg8RWxsrM8MqDgdvED4nAQCAWJiYqDRaEAIwZw5c6DT6dDa2jrKDM1f2m+EEPzzn//EI488gk8++QRXXXWVX67jDY4ePYq4uDhERkbiJz/5CZ555hmnYUuTyYTi4mL88Y9/5F+jaRpLly7FiRMnJmrIThGQ5OIMnOyKXq9HWFiYTyrCTCYTTp8+DYZhsHDhQr85yYV7WIpMJFKII6Nh9oBY1l11JXbe84vxDs0jcE6gGo0GCxcuxNGjRz1+r9HovEGSoiisWLECDz/8MICRHzwnMGnduMiVeFt/PyzLoqamBv39/Q59TyYDHAGrVCrMnz/fI58P6zJfTs1YpVKhu7sbdXV1CA8Pt9G8G4vldmNjIzo6OlBQUOCXxdNYwO2irGXzp06dCoPBwBdEcNL5HNFERET4pPKPEILdu3fjd7/7Hfbs2YNrrrlm3OccL2644QasW7cOmZmZaGxsxKOPPorly5fjxIkTDhePPT09YBhmVPl4fHw8ams9C8H7ExcMuWg0GpSUlCA8PBzZ2dlobGwct1S+VqtFaWkpwsPDMWfOHL+u/uVudi7WYNzdC0XhgXU34r9vKhrfoDwE1+FOCMGCBQsgFou9+rydHUtRFO644w5s3LjR5rXw8HCEh4fbNC4qlUp+ouVCR42NjQ7lXCYL9mQ31g7+kJAQZGRk2OQpVCoVmpqaeJFFTz1K7Hd2gWJq5Sp5L5VKHUrnnz59GgBsypzHGj7ct28ftmzZgt27d2PZsmXjvh9fwNqae+7cuZg3bx6mTp2Ko0eP4tprr53EkY0NAUku9pNRT08PysrKkJaWhmnTpmFwcBBarRYVFRX8itbbh4wrV01JSZmQLmm5F+Nz1aEvEgpx33XXYIEiDD/++CPfS+Mvi1eDwYCSkhLIZDLMmzePJ+DxkgtFUXjggQewZs0al++1blzkJtru7m40NDSApmkkJydDr9d7TXi+BsuyqKiogFarxfz58322A7bPU3BSRBUVFSCEuJxouV2UWq0OmJ0d4F1VmL10PlfmPJ7w4aefforNmzfjvffeG5Ml9kRhypQpiImJQUNDg0Ny4VRBlEpbHUKlUhkQ4poBSS4cCCFobW3FmTNnMHv2bCQmJoJhGISGhqKwsJBfzVVXVyMqKgrx8fEOu+Pt0dHRgdraWsyYMWPChOjCRN506Ds+ViyR4OM/PoTFWdNgNBr5Xpr6+nqEhYXxP8KxhE4cgdstcp7p1qvk8VQ2CQQCbN26FVdeeaVX7xOLxYiOjkZLSwuio6ORlJSEnp4eG8fJuLg4vysZ24NhGJw+fRpms3lMJl+ewj5Pw020nEKE9UQrFot5q+T58+dPuL+8M4yn3NjeDE2r1aKnp4ff1YaFhfH370yO5+DBg/jFL36BXbt2oaioyEd35R+0t7ejt7cXiYmJDv8uFotRUFCAQ4cO8ffCsiwOHTqELVu2TOBIHSMgmygZhoHJZEJNTQ2USiXy8vIQERHhNL/CdccrlUpoNBpERUXxE631D50QgoaGBrS3tyMnJ2fCq4oyPvkGxINJnzAM9Lv/n81rNqXGdjCbzXzTWm9vL6RSKX//Y/Um6e/v53eLjhwIm5ub8fXXX6OpqQmEEJfX6OzsRFNTE4CRH8T27dvH1Pms0+lQUlIySkXY2nFSrVbDYrHYFAT4q/IKsBXFzMvL8+u1XIGTzVepVBgaGoJQKAQhBDk5OYiMjAwI/TJ/9rFYy/H09PRAKBQiJiYG0dHRCA0NRVhYGA4fPozbbrsNO3fuxO233z7hn4lGo0FDQwOAkWdl+/btuOaaa3j7g6eeego33XQTEhIS0NjYiIcffhjDw8OoqKjgw77XXnst1q5dy5PHhx9+iI0bN2Lnzp1YuHAhduzYgd27d6O2ttaplM9EISDJxWAw4NSpUzAajSgoKIBEIvG41Fiv10OpVPI/soiICH6Sqa+vh0ajQW5u7qS4D75dXoMPz7bjDAMQsfMcASEE+g928f/2ptSYYRj+R6ZWq2081j3tpeB6fbKyspCSkuL2eLVajS+//BJ1dXUwm82jrtHV1YWzZ88iJCQEO3fuHJP0yfDwMEpKSpCQkICsrCynzwAnm84RjVar5RcbsbGxPs3NmEwmlJSUQCwWIycnZ0Iq9tyBZVmUl5djcHAQYWFhGBgYgFQq9XlC3FtMZIOktW3Ct99+i4cffhjZ2dmora3FCy+8gN/+9reT8hkcPXrUYeHAxo0b8frrr6OoqAilpaUYGBhAUlISrr/+ejz99NM2JJGRkYE777wTW7du5V979dVX8eKLL6K7uxu5ubl4+eWXUVhYOBG35BIBSS5dXV1obm7mVWy5xD3XteopDAYDX3UzODgIgUCA9PR0JCUlTWqYgGEYfFTbiLcq63CWEoGVjSYN3Qe7AELGVWrM/ciUSiXUajUIITahI0fnbG1t5YU/x9LrMzw8jK+//hoVFRXQ6XQQCATo7u5GX18f3nnnnTF5jnO7KC7J7c0zwFVeqdVqXoqHI5rxLDC4XFRYWBjmzJkzKT4n9uDyPjqdDgUFBbxahbXuFwCeaMai+zUWTLa68bvvvovf/e53SElJQWtrKwoLC7F69Wo89NBDk7bTvBQQkOTCsiyMRiMIIXwvhbfEwmFoaAhlZWWIiIhAZGQk1Go1+vr6+BxFfHz8hO9izGYzTp8+DYvFgtzcXBzqUGJXbSPKdGaYpCOkp/v4n1i3eJHPSo25GD23q+NMsKztAhoaGtDR0YG8vDyfNNgZjUYcPXoUNTU12Lx585gInWsy9HQX5W483CTb29uLkJAQnmi8CR9y4bnIyEjMmjUrIEJOnBma0Wjk9fXsQQjh7Y053S/On4XL0/gak0ksAHDy5EkUFRXhmWeewb333ovu7m589tlnOHnyJHbu3BkQ393FioAkF4PBAIvFwsfyx7oqVKlUqKys5AUMuQfJPkchk8l4orG3NPY19Ho97y9iXX3F4du2TrxZ1YC5rAG/X3G9X8bA9ZJwOxqtVsuvcrn8ViCAE1acPXu2z+PHnJKvSqVCT08PHz50J5nPFTnExcUhOzs7ICYnrqDAYrF4rIXHKXlzZDs0NOTzxsXJJpaSkhKsXr0ajz/+OP7rv/4rIL6rSwkBSS4bNmxAdXU11qxZg6KiIq9/xIQQtLS04OzZs24nJmtL456eHojFYsTHx48rGe4Mg4ODKCsrQ3x8fMBMTBaLBaWlpdDpdJBIJNBoNHyeKi4uzm9Npe7ATUwTUXjBhQ+56juWZflJ1toEbmhoCCUlJUhJScHUqVMD4vtjGIa38h5PQYH1rq6vr8+mcXEs/iyTTSzl5eVYuXIlfv/73+MPf/hDQHxXlxoCklz6+/uxf/9+7NmzB19//TWmTp2KG2+8EWvXrnXrNc6yLGpra6FWq5Gbm+tVeIeLT3Mxem41Gx8fP+5EKBfe8ZUgpi9gNBpRWloKkUiEnJwcCIVCvjtapVKhv7+fb1rkSpz9Da6ir6Ojg/flmUhYS7Go1Wro9XpERUUhLCwMbW1tmDJlyqSoLTsCtzCgKAp5eXk+y59Y+7P09PSMqGGfIxpnuTprTDaxVFdXY/ny5diyZQueeOKJgPitXYoISHKxxuDgIP71r39h7969OHjwIJKTk1FUVISioiLk5OTYEI3ZbEZ5eTlMJhPy8vLGtermDKC41Sz3A4uPj3cZNnGEtrY21NfX+yW8M1Zw6gT2Zb3W4JoWlUolv5rliMYbW19PwXW49/X1IT8/f1Iq+uyh1WrR1NTE+9FY7+omsyjEbDajpKSEXxj4KzHPlXlzuxqj0cg3bsbExIzK00w2sdTV1WH58uXYtGkTnnnmGb8Qy7Fjx/Diiy+iuLgYXV1d2LdvH99nYjab8dhjj+Hzzz/H2bNnoVAosHTpUjz33HMufXy2bt2Kp556yuY1rsLtQkXAk4s1hoeH8fnnn2Pv3r34/PPPERMTgxtvvBFFRUUIDQ3F5s2b8dRTT2HJkiU+rQKx7qNQKpU2VVfR0dFOiYaT3ujs7ERubm7A5DIGBwdRWlrqlYe7dY5CrVZDJBLZlDiP90fMMAxf6ZSfnz9p4Th7cBbAs2bN4gtCuNBRaGgo/xn4O1dnDa4EWiKROMzb+Qtcro77DIaHh6FQKPhcFdfUPFnE0tDQgOXLl2PDhg144YUX/FbB98UXX+C7775DQUEB1q1bZ0Mug4ODWL9+Pe6++27k5OSgv78f999/PxiGwalTp5yec+vWrfj444/x9ddf869xvToXKi4ocrGGTqfDv//9b+zZswf79++HTqdDVlYW/vd//xdXXHGF335wjqquOKKxjs9zQo/Dw8PIz88PGOkNLjw3bdo0pKWljekcLMvyYROVSgUA/CQ7lu54i8WCsrIysCw7JnM2f4ErKHBUlm3ftMeRraeaX2MFp4QbEhKCuXPnTmoJtLXAZG9vL4ARS4GUlBSf5yvdobm5GTfccAOKioqwY8eOCftcKIqyIRdH+PHHH7Fw4UK0tLQ4/c1t3boV+/fv5xtyLwZcsEXeISEhWLt2LTQaDfbt24d77rkHer0eP/vZzyAWi7F69WoUFRXh8ssv9+lkZS1BkZWVheHhYSiVSl6CIyYmBlFRUejs7ARN07w7ZiCAk72ZM2fOuMJznNRKbGwsZs6cye/qampqYLFYvPIl4fI+YrHYp3mD8YILZTrzhxGJREhMTOQliay9Wbidra97SbjemvDwcMyePXvSe2s4gUmGYTA4OIiMjAy+ms5ajicyMtKv32tbWxtWrlyJFStWTCixeIrBwUF+3nCF+vp6JCUlQSqVYvHixdi2bduYF4CBgAt25wIAp0+fxpIlS7B7925cd911AEZWlEeOHMHHH3+MAwcOgGVZrFy5EmvXrsXVV1/tt4meK+1sb29He3s7CCGIjo7m9c4mk2AIIbyXhz+rr6y741UqFfR6vY0Mi/1noNfrUVxcDIVCERCTJYempiY0NzePqSyb29lyn4F1jsIT3Ttn4FQrAqm3BhjZMTQ3N9sUX1h3yKvVapjNZo/9ebxFV1cXli1bhquuugpvvfXWhC9O3O1cDAYDLr/8csyYMQPvvfee0/N88cUX0Gg0yM7ORldXF5566il0dHSgsrIyYCwSvMUFTS7AiGKys7ikxWLBf/7zH3z00Uc4cOAAdDodVq5ciTVr1uDaa6/1eVx/YGAAZWVlSEpKQnJyMj/BDA8P854kcXFxEyoPz1XP9fT0ID8/f0Il1znNN/vPIDY2lk9IB1JZNlep1tnZydsSj/d81p+BRqNBZGQkv6L39PnT6/U4deoUoqOjMXPmzID4rADHxGIPa38etVptU+oeGxs7rqIIpVKJ5cuXY8GCBdi1a9ek7HpdkYvZbMZNN92E9vZ2HD161Ks81MDAANLT07F9+3Zs2rTJhyOeOFzw5OIpGIbB8ePHsWfPHuzbtw8DAwN8jPa6664bd06E0+OaPn36KO0svV7PTzCDg4NQKBT8jsafFUeBlCTnfFm4EmcAiIqKwowZMwKiKowQYkPC/hgT9xmo1Wr09/d7pGSt1WpRUlKC2NjYgCFhwDNicQT7zyA0NJQnW28qEHt6erBixQrMnj0b77333qTJuDgjF7PZjFtuuQVnz57F4cOHnbpJusKCBQuwdOlSbNu2zUejnVhcMuRiDZZlcfLkSZ5ouru7cf3112PNmjW44YYbvFqxWjdseqLHZS2Vb91HEh8f79OkP+faSVEUcnNzAyZJznmmx8XF8RVok1V1xYGzuR4cHER+fv6ElBhzKhFcQYBEIuE/A65pUaPRoLi4GImJiZg+ffoFTyz2sC6K6O3t5S0FuDyNszBpX18fVq5ciSlTpmD37t2T+mw7IheOWOrr63HkyJExafRpNBqkpaVh69at+O1vf+vDEU8cLklysQbLsigrK8PHH3+MvXv3oqWlBUuXLsWaNWuwYsUKl93JLMvylrZ5eXle/9BMJpONDA03yXJ6Z2OdTPR6vY2oYqAkybu6ulBdXW1TUOBIIYHrJxpLZ7i34FSE9Xo98vPzJ8XR0l5ckkv+9vX1ITk5+aIkFntYqySo1WowDMPrnlnnaQYGBrB69WokJiZi7969k5LLdCWdn5iYiPXr16OkpASffvqpTeFMVFQUP1576fyHHnoIq1evRnp6Ojo7O/Hkk0+irKwM1dXVYyKnQMAlTy7WIISgsrKSJ5ozZ87gJz/5CdasWYOVK1ciKiqK/5EbjUZUV1dDr9cjLy9v3KtdbhXHTbJSqZSXofEmXMBJ0wdSLgM4r7ack5PjNERg7bTITbJjbVz1BAzDoKysjNdUC4TdHcuy6OzsRF1dHWiatnGb9HUy3Fv4i1jsYW+b0N3djR07dmDJkiX46quvEB8fjwMHDkxamNeVdP7WrVuRmZnp8H1HjhzBkiVLAIyWzr/ttttw7Ngx9Pb2IjY2FldccQWeffZZTJ061V+34XcEycUJOIvYPXv2YO/evaioqMCVV16JoqIi5OXlYdOmTdi8eTM2bdrk8x8858miVCr51bx9yMQRent7UV5ePiZpen+BEILGxka0t7d7pbZs3biqUqnAMIxN4+p4d2Nms5l3sMzNzQ0Y6fXBwUGUlJQgMzMT6enpfDJcpVLx3jTe2vr6AhNFLI6gVCrx2muvYefOndBqtZg7dy7Wrl2LNWvWIDc3NyCe8yBGI0guHoAr5f3444/x3nvv8d7dDz/8MG666SYkJib67QHnVvOcgrG1+Ze1wyAXcpo5c6ZLmYmJBCGEt9odT5LcWu9LpVLBYDCMq7x3sjrc3YHzreH05+yh0+n4MCrnTcMRrj+LIiaTWICR+16/fj0IIfjHP/6BY8eO4cCBA/jyyy9x5syZgJFUCsIWQXLxAocPH8a6detw5513Ii0tDfv27cOJEyewcOFCrFmzBmvWrEFqaqrfiMaR+VdcXBwIIbwL3ViqUvwBzrhKq9X6tFLNWXmvp2XeBoMBxcXFCA8PDxiTL2AkSV1WVuaxb411vs5axdjXat6TTSwGgwG33nortFotDh48aDMGs9kcEKHMIBwjSC4ewmAwYNasWXjiiSdw5513AhiZ6Do7O7Fv3z7s2bMH3377LXJzc3miceQ97ysQQtDf34+6ujpoNBqbHc1EOQw6g8ViwenTp8EwDHJzc/2adLUv8+acJuPi4kZV3+l0OhQXFwdcv0hPTw/Ky8sxY8aMMe06rVWMud2tJ1VX7jDZxGI0GvHTn/4UPT09+PLLLwNGmy8IzxAkFy+g0+mclgsTQqBSqXirgKNHj2LWrFm8J40r3/exgGVZVFZWYmhoCHl5ebBYLLzemclksnGZnMh8grWv/Lx58yb02pwnCbeaty5xBkbMowKtrJcrzZ41axYSExPHfT7r7nguV+WNHA+HySYWk8mEO+64A21tbTh06JDfPX2C8D2C5OIHEELQ19eHAwcOYM+ePTh06BCmTZvGe9LMnDlzXOEYziaZq3Ky3hlYu0zaS7CMR37EE3Al0IEQcrKvvmNZFhEREZg+ffqElDh7Ak5xebxab87A5ao4ouG8abhclbMQ4mQTi8ViwS9+8QvU1dXh8OHDfinFdSWbD4x8dk8++STeeustDAwM4PLLL8frr7+O6dOnuzzva6+9hhdffBHd3d3IycnBK6+8goULF/p8/BcCguQyARgYGOA9af79738jJSUFa9aswdq1azFv3jyvJmGDwYDS0lJIpVKPktHW1UYajQZRUVH8at6X4SpOsDA2NhYzZswIiMkbOJ/LiI+PByHEp2Gj8aC7uxtVVVWYN2/ehPUxcLbGKpXKxtbYOoQYCMSyefNmnD59GocPH0ZCQoJfruNKNh8Ann/+eWzbtg1///vfkZmZiccffxwVFRWorq52mj/88MMPcccdd+CNN95AYWEhduzYgY8++gh1dXX87vlSQpBcJhjDw8P47LPPsHfvXnzxxReIiYnhQ2fz5893OdFpNBqUlpYiKipqTLsfnU7HE83Q0BAiIiJ4GZrxJNw5TbXU1FS/5pm8BadSnJ2djeTkZADOLY0nMlfFSfnPmzdv0vw6HIUQxWIxhoaGkJ+f75WDq6/AMAy2bNmCEydO4OjRoxNW9WjfZU8IQVJSEn73u9/hoYceAjBSIh4fH49du3bhtttuc3iewsJCLFiwAK+++iqAkWctNTUV9913Hx555JEJuZdAQpBcJhE6nQ4HDx7Enj178Nlnn0Eul+PGG2/EmjVrsGjRIpuJrqenBxUVFUhLS/PJBG4wGHjzMy4RzjVtetMQyiWjHWmqTSa4ncHs2bOdrn7tFYxNJpPf1Hs5tLe348yZM06l/CcDFosFNTU1UCqVoCiKV0ngjOAmYmfHsiweeOABHDlyBEeOHJlQqXl7cjl79iymTp2K0tJS5Obm8sddffXVyM3NxUsvvTTqHCaTCSEhIfj4449tdkAbN27EwMAADhw44Oe7CDwERufYJYqQkBCsW7cO69atg8FgwFdffYU9e/bg1ltvhUQiwerVq7F27VqcPXsW27dvxyeffOK0+9dbSKVSpKWlIS0tjV/FKpVK1NfXIywsjCcaV/0TXG+Nqwl8MtDR0YG6ujq3ISdrb57p06fzIcTm5mZUVVX5PITY2tqKxsZG5OXlITIyctzn8xXa29vR29uLhQsXIiwsjFdJ4LxprAsC/LGzY1kWDz/8ML766iscPXp00j1Muru7AWBUHiw+Pp7/mz16enrAMIzD91zIVsXjQZBcAgRSqRSrV6/G6tWrYTKZeE+aW265BRqNBldccQUaGxuRnJzs89JeiUSClJQUpKSk8IKKSqUSjY2NTkUlOTmXQOqtAcCLiHq7M6AoCuHh4QgPD8fUqVP5ECIXwuLsfL3d2XHgvOXH4hHjTzjKscTExCAmJobf2anVatTX16OiosKlP89YwLIs/vu//xuffPIJjhw54rPFUxCTjyC5BCDEYjGuv/56HDt2DGKxGC+99BJqampwzz33wGAwYOXKlSgqKsI111zjcwkQkUiEpKQkJCUl8aKSSqUSzc3NkEqliIuLg8lkgkqlQkFBwaTE5h2BU1Foa2vzSc4gJCSEl9Hh7HxVKhW/s3MnlW+NpqYmtLS0TJq3vDO4S95b7+ymTZvGFwS0tbWhurp63L4shBD8z//8D3bv3o0jR464rcSaKHC7cKVSaVMerlQqbcJk1uAszpVKpc3rSqUyoHb1E4kguQQovvjiC7z33nv47rvvMGPGDADAq6++iu+++w579uzBf/3Xf2FwcBDLly9HUVERli5d6lPJfgAQCoVISEhAQkICr3fW0NAAnU4HsViM7u5uvsR3MpP4hBDU19ejq6sL8+fP97khGmfnm5qayu/sVCoVmpqaeMJ11BlvratWUFAQUI6C3laFURSFsLAwhIWFITMz04Zwz5w5g7CwMD5P44ltAiEE27Ztw65du3D48GH+GQ8EZGZmIiEhAYcOHeLJZGhoCD/88AN+/etfO3yPWCxGQUEBDh06xOdcWJbFoUOHeOXjSw3BhH6AgutRcLYCZ1kWP/zwA+9Jo1QqsWzZMt6TxtcTLNe0OTw8jNzcXD5sxKkXW+udTWRpr7V+WUFBgc8J1hU4wuV6aYRCIT/BKhQKnD17Fp2dnSgoKJhQB1B38HW5sX1PkUQisSkIsCcaQgi2b9+OHTt24PDhw8jJyRn3GLyFK9n8tLQ0PP/883juuedsSpHLy8ttSpHtZfM//PBDbNy4ETt37sTChQuxY8cO7N69G7W1tZek/lmQXC4CsCyL0tJS3iqgra3NxpNmvFpTnJyLxWIZ1bRpX9pLCLEp7fUn0VgTXkFBwaQ6bbIsa2MXYLFYAABZWVlISkoKGHFMf/ex2NsmAEBsbCzvOBkSEoJXXnkFL7zwAr788kvMnz/f52PwBK5k83ft2sU3Ub755psYGBjAFVdcgb/+9a/Iysrij7WXzQdGogtcE2Vubi5efvllFBYWTsQtBRyC5HKRgfOk+eijj7B3717U19fznjSrVq2yUVL2BCaTCaWlpRAKhcjJyXEpH0IIsZHJt1gsiImJQXx8vM8rjRiGQXl5QDEmfQAAH/5JREFUOYxGI/Lz8yfFNMoRuJ2UWq1GTEwM+vr6YDabJ02OxxoT3SBp/Ty8++67eOutt5Camor29nbs378f119/vd/HEMTkYdLJxVu5hI8++giPP/44mpubMX36dDz//PNYsWLFBI74wgHnC//xxx9j3759qKysxFVXXYWioiKsXr0aMTExLolGr9ejtLQUoaGhmDt3rle7EGuZfKVSCaPRyBPNeCdYi8WCsrIysCwbMCZfwMg9V1dXo7+/HwUFBZDJZDbGV9YSLFwifKJIcbI77xmGwZNPPolXX30VGRkZaGpqwpIlS7B+/Xps3rx5wscThP8xqeTirVzC8ePHcdVVV2Hbtm1YtWoV3n//fTz//PMoKSnBnDlzJuEOLhxwyWWOaEpKSnDZZZehqKgIN954IxISEmyIxpdyLpzeGUc03ATLqQN4Qw6cyZdAIEBubm7AhJtYlkVVVRWGh4ddWgxY2wUMDw/zFVdxcXF+C+tNNrEQQvDPf/4TDz30ED755BNcc801aG5uxoEDB9Da2oq//OUvEz6mIPyPSSUXb+USOF+HTz/9lH9t0aJFyM3NxRtvvDFh477QQQhBS0sL9u7di7179+L7779HYWEhbxVQX1+Pp59+Gn/961/9ohPGTbBKpdIrvTOj0YiSkhLIZDLMnTs3oIiloqICOp0O+fn5bj1lOHAqCSqVCgMDAwgPD7cpcfYFAoFYdu/ejfvuuw979+4NhsIuIUwauYxFLiEtLQ0PPvggHnjgAf61J598Evv378fp06cnYNQXHzhPmr1792LPnj34z3/+AwBYsmQJXnrpJWRmZvq1zJjzY1EqlbzemaOVPKe4rFAoMGvWrIAx+WJZFuXl5TAYDOPK/Tgy/+I+h/Dw8DF9B5NNLACwd+9e3HPPPfjwww+xcuXKSRlDEJODSetzGYtcQnd3t1eSDEG4B0VRSE5Oxn333Ye4uDicPHkSt9xyCzo6OpCfn4/Zs2fzOxpfe9IAgEwmQ3p6OtLT0/neCaVSiTNnzvDGX+Hh4aiurkZMTExAKS4zDIPTp0/DbDajoKBgXLkfsViM5ORkJCcn882rKpUKp06dgkgk4onG056iQCCWf/3rX9i8eTPee++9CSOWjIwMtLS0jHr9N7/5DV577bVRr+/atQt33XWXzWsSiQQGg8FvY7xUEGyiDAIA8M033+CXv/wl9uzZg+XLl/OeNPv378fevXuxbds2TJ8+nbcK8IeTo3WzIqcC0NnZifr6eojFYojFYmi12oDoGWEYhi8qKCgo8GkFmH3zKlfae/r0aVAUxZd6R0VFOdzBBQKxfPHFF9i0aRN27dplE5nwN3788UcwDMP/u7KyEtdddx1uvvlmp++Ry+Woq6vj/x0oi5cLHZNGLmORS0hISAjKK/gJV1xxBU6ePImZM2cCGPmBRUdHY9OmTfjFL36BwcFBfPLJJ9i7dy+2b9+OtLQ0nmi8rSTzBGKxGGFhYdBqtcjMzERISAgvKsmFjOLj4z3qBvc1LBYLSktLQVEU8vLy/FpazHnPxMbGgmVZvrS3pqaGL/W2dpkMBGI5dOgQNm7ciDfffNPlpO4P2AuVPvfcc5g6dSquvvpqp++hKCo4h/gBk57QX7hwIV555RUAI/HrtLQ0bNmyxWlCX6fT4V//+hf/2mWXXYZ58+YFE/oTiKGhIRtPmri4ON6TpqCgwCdEw5l82Uv5W4eMenp6IBaLeaIZb7OoJwiUajXrUm+VSgWDwQCZTAaDwTCpcv7Hjh3DzTffjFdeeQUbN26c1F2AyWRCUlISHnzwQTz66KMOj9m1axd++ctfIjk5GSzLIj8/H3/6058we/bsCR7txYdJL0V2JZdwxx13IDk5Gdu2bQMwUop89dVX47nnnsPKlSvxwQcf4E9/+lOwFHkSodVqbTxpIiIieE+awsLCMU2+nMnXjBkzXBpGMQyD3t5evhtcIBDwROMPvTOz2Yzi4mJIJBKPXEAnEmfOnEFbWxtkMhl0Oh0iIyP5XpqJUi747rvvcNNNN+HPf/4z7r777kkPL+3evRu33347WltbnT5HJ06cQH19PebNm4fBwUH8+c9/xrFjx1BVVYWUlJQJHvHFhUlvonQll7BkyRJkZGRg165d/PEfffQRHnvsMb6J8oUXXnDbRLlt2zbs3bsXtbW1kMlkuOyyy/D8888jOzvb6XuCiT7vodfreU+af/3rX7yNwNq1a3HZZZd5FD7iPGK89ZW3ll9RqVR8biI+Pt4nemcmkwnFxcUICQnxSxhwPLAPhen1er4wgjOC4woC/KW9dvLkSaxZswbPPvss7r333kknFgBYtmwZxGKxTaTDHcxmM2bOnIkNGzbg6aef9uPoLn5MOrlMBG644QbcdtttWLBgASwWCx599FFUVlaiurraaT/Brl27cP/9949K9F2KAnRjgclkwuHDh/Hxxx/jwIEDoCgKq1atwtq1a3HllVc6LNnlXBrHa/9rnZtQqVRgGIafXKOiorzecRiNRhQXFyMsLAxz5swJaGKxB1cYYW1n7MifZzwoKSnB6tWr8cQTT+CBBx4ICGJpaWnBlClTsHfvXqxZs8ar9958880QCoX4v//7Pz+N7tLAJUEu9lCr1YiLi8M333yDq666yuExu3btwgMPPICBgYGJHdxFCIvFgm+++QYfffQRDhw4AKPRiFWrVmHNmjX4yU9+AolEghdeeAFTpkzBtdde61OXRmsrY6VSyet8cTI07ojGYDCguLgYCoUCs2fPDoiJk4O3yXtOvVitVtvkqzgV57HcW3l5OVasWIGHH34Yf/jDHwLm89m6dSt27tyJtrY2rwouGIbB7NmzsWLFCmzfvt2PI7z4cUmSS0NDA6ZPn46KigqnuZpgos8/YBgG3377LW8VMDQ0hISEBLS3t+Ojjz7CkiVL/HZta50vpVIJg8FgIyhp36ei1+tRXFyMqKgov5RejwfjrQqzVy8ei21CdXU1li9fjvvuuw+PP/54wHw+LMsiMzMTGzZswHPPPWfzN/s87v/8z/9g0aJFmDZtGgYGBvDiiy9i//79KC4uxqxZsyZj+BcNLjlyYVkWN954IwYGBvDtt986PS6Y6PM/LBYLbr/9dnz++edQKBQYGhriPWmWLVvm134WQgi0Wi2USiVUKhW0Wi1v4RsbGwuLxYLi4mLExsYiOzs7YCZO4Dyx+MqAzFEY0do2wdHurq6uDsuXL8emTZvwzDPPBNTn8+WXX2LZsmWoq6uzkcgHRudx/+u//gt79+5Fd3c3IiMjUVBQgGeeeQZ5eXmTMPKLC5ccufz617/GF198gW+//dYrkggm+nwLQgg2bdqEb775Bl9//TXS09NRUlLCe9K0t7fjuuuuw5o1a7B8+XK/2ynrdDqeaIaHhwEAERERmDNnzqT6xNjD18RiD2dq1pwcT2RkJBoaGrB8+XLcfvvteP755wMqBxVE4OCSIpctW7bgwIEDOHbsGDIzM71+fzDR51u89tprWLt27agyUU4IklNwbmho4D1pVq5c6bUnjTfQaDQ4deoUwsPDwbIsBgcHoVAo+JDRWLzifYWmpia0tLRMmGUyt7tTqVSora3Fhg0bMHv2bLS0tGDdunV46623gsQShFNcEuRCCMF9992Hffv24ejRo5g+fbrX5wgm+iYHnPkWRzRVVVW4+uqrUVRUhFWrVrn1pPEGQ0NDKCkpQVpaGqZMmQJgpFKMCxf19/fzysXx8fETaqk80cTiCEeOHMHtt98OmUyGnp4eLFq0COvWrcMdd9wxruq+IC5OXBLk8pvf/Abvv/8+Dhw4YNPbolAo+JVoMNEX+CCEoKGhgSea0tJSXH755VizZo1DTxpvMDg4iJKSEmRmZiIjI8PhMdbKxb29vXxZb3x8PEJDQ/22mwoEYunq6sKyZctw9dVX480334RarcaBAwewd+9evPzyyy57xoK4NHFJkIuzH/27776LO++8E0Aw0XehgfOk2bNnD/bu3YsffvgBixYt4tUBUlJSPJ7sBwYGUFpaiqlTpyItLc2j93BlvZwMjVQq5YlmrBL5jhAIxNLd3Y3ly5ejsLAQ7777bkApEwQRuLgkyGWisXXrVjz11FM2r2VnZzu1EgCC9s3jASEEHR0dvCfN8ePHkZ+fz1sFZGRkOJ3snWmYeQOGYXiiUavVvER+fHz8mPtHgMAgFrVajRUrVmDu3Ln45z//6VeRziAuLgSzcX7C7Nmz0dXVxf/nquz5+PHj2LBhAzZt2oTS0lIUFRWhqKgIlZWVEzjiCxcURSElJQW//e1vcfToUbS1teHOO+/E4cOHkZeXhyuvvBIvvvgizpw5A+u1VE1NDcrKypCdnT1mYgFGlIvj4+Mxd+5cXH311ZgxYwavnPyf//wHtbW16OvrA8uyHp8zEIilt7cXq1evRnZ2Nv7xj39MCLFs3boVFEXZ/DdjxgyX7/noo48wY8YMSKVSzJ07F59//rnfxxmEewR3Ln7A1q1bsX//fpSVlXl0fNC+2T8ghKC3txcHDhzAnj17cOjQIWRlZWHNmjWQyWR49tlncfDgQcyfP98v12dZFv39/VAqlVCr1SCE2MjQOKu0CgRiGRgYwKpVq5CcnIw9e/aM2WHTW2zduhUff/wxvv76a/41oVDotGDg+PHjuOqqq7Bt2zasWrUK77//Pp5//vmgmG0AILjH9RPq6+uRlJQEqVSKxYsXY9u2bU7j+SdOnMCDDz5o89qyZcuwf//+CRjpxQuKohATE8N70gwMDOCTTz7Ba6+9hh9//BHx8fH47LPPIBKJ/CJGSdM0oqOjER0dDUIIBgYGoFQqUV1d7bRRMRCIZWhoCGvXrkVcXBw++uijCSMWDpxZmid46aWXcMMNN+D3v/89AODpp5/GV199hVdffTW4MJtkBMnFDygsLMSuXbuQnZ2Nrq4uPPXUU7jyyitRWVnpcMII2jf7HxRFITIyEjKZDFVVVXj//fdBCMHevXtx3XXXIT4+HjfeeCPWrl2L/Px8nxMNd/3IyEhkZ2djaGiIt3M2mUz8yry3txfz58+fNGLRaDRYv349wsLCsG/fvklpIA0uzC4OBMnFD1i+fDn///PmzUNhYSHS09Oxe/dubNq0aRJHdmlDq9XikUcewccff8x/R7fffju0Wi2++OIL7NmzB6tWrUJkZCRuvPFGFBUVYeHChT6vjqIoCgqFAgqFAtOnT4dGo0FdXR36+/tBURQaGxt5GRp7vTN/QqfT4eabb4ZAIMCBAwcmpWE0uDC7eBAklwlAREQEsrKy0NDQ4PDvQfvmiUFoaChqamogkUhGvb5+/XqsX78eer0eX375Jfbs2YObb74ZMpkMq1evRlFRkceeNN6Aoij09PRAo9Fg0aJFoCgKKpUKra2tqK6uRlRUFJ+n8Wd4Sq/X47bbboPZbMbBgwf9quvmCsGF2cWDYLXYBECj0aCxsRGJiYkO/7548WIcOnTI5rWvvvoKixcvnojhXVKwJxZ7yGQyrFmzBv/v//0/dHd346233oLZbMbPf/5zTJ8+Hffddx8OHz4Ms9nsk/HY51jCwsIwZcoULFq0CJdddhmioqLQ2dmJY8eO4dSpU2htbfW5YZ3RaMTPfvYzDA0N4fPPPx+TyrK/EFyYXbgIkosf8NBDD+Gbb75Bc3Mzjh8/jrVr10IgEGDDhg0ARtQA/vjHP/LH33///Th48CD+8pe/oLa2Flu3bsWpU6ewZcuWybqFIACIxWKsWLECb7/9Njo7O/Hee+9BJBLhl7/8JaZMmYJf//rXOHjwIIxG45jO7y55HxISgoyMDCxcuBBXXHEF4uLioFKp8O233+LkyZNobm6GXq8f1z2aTCbccccd6O7uxsGDBxERETGu8/kawYXZBQwShM9x6623ksTERCIWi0lycjK59dZbSUNDA//3q6++mmzcuNHmPbt37yZZWVlELBaT2bNnk88++8zj66WnpxMAo/77zW9+4/D4d999d9SxEolkTPd6KcJisZAjR46QLVu2kOTkZKJQKMiGDRvIBx98QHp6eohWq3X7X2VlJfnss89Id3e3R8db/9ff30/q6urIf/7zH3LgwAFy6NAhUllZSVQqlVfnGRgYIOvWrSNz5swharV6sj9WQgghv/vd78jRo0dJU1MT+e6778jSpUtJTEwMUalUhBBCfv7zn5NHHnmEP/67774jQqGQ/PnPfyY1NTXkySefJCKRiFRUVEzWLQRxDsE+l4sAarUaDMPw/66srMR1112HI0eOODTfClo4+w4Mw+D777/nzc96enqwbNkyFBUVYdmyZQ5ttH1Zbmw2m6FWq6FUKtHX1weZTIb4+Hi3NsYWiwWbN2/G6dOnceTIkYD57m+77TYcO3YMvb29iI2NxRVXXIFnn30WU6dOBTBapgkYaaJ87LHHeHWLF154IahuEQAIkstFiAceeACffvop6uvrHU4uQQtn/4BlWRQXF/PCmh0dHVi6dCmKioqwfPlyyOVyPPPMM0hPT0dRUZHPy40tFouNDI1EIuGJRi6X888CwzC499578f333+Po0aOjLA+CCMIXCJLLRQaTyYSkpCQ8+OCDePTRRx0eE7Rw9j9YlkV5eTlPNI2NjUhJSUFHRwc++OADLF261K/ujQzDoLe3lycak8mEPXv2YO3atfj0009x7NgxHDlyxGOhziCC8BZBcrnIsHv3btx+++1obW11uiINWjhPLAghePDBB7Fz504kJyejpaUFS5Ys4T1poqOj/Uo0LMuipqYGTz/9NP7973/DYrHgtttuw1133YUlS5YExSiD8AuC1WIXGd5++20sX77cZahj8eLFuOOOO5Cbm4urr74ae/fuRWxsLHbu3DmBI7108MILL+Af//gHTpw4gTNnzqCyshJLlizBu+++i6lTp2LVqlV488030d3dDX+s9WiaxsyZM5GZmYmYmBi88847UCgU+PnPf474+HhUVFT4/JpBBBHcuVxEaGlpwZQpU7B3716sWbPGq/cGLZz9h127diEvLw85OTk2rxNC0NzczHvSnDx5EosXL+Y9aZKTk32yoyGE4KmnnsI//vEPHDlyhFcZZlkWx48fx4IFC9z2/wQRhLcIkstFhK1bt2Lnzp1oa2vzKtQRtHCefBBC0N7ejr1792Lv3r28J01RURHWrFmD9PT0MRENIQTbtm3Dm2++iSNHjgTzakFMGIJhsYsELMvi3XffxcaNG0cRi33T5v/8z//gyy+/xNmzZ1FSUoKf/exnaGlpwS9/+cuJHnYQ50BRFFJTU3H//ffj6NGjaG1txcaNG/H1118jJycHV155Jf785z+jvr7e49AZIQR/+ctf8MYbb+Crr76aMGLZtm0bFixYgPDwcMTFxaGoqMim7N0Rdu3aNcrHZTJEM4PwHYLkcpHg66+/RmtrK37xi1+M+ltrayu6urr4f/f39+Puu+/GzJkzsWLFCgwNDeH48eOYNWvWRA45CCegKAqJiYn4zW9+g6+//hqdnZ34zW9+gxMnTmDhwoW8UnB1dbVToiGE4OWXX8aOHTtw8ODBUSE5f+Kbb77hS52/+uormM1mXH/99dBqtS7fJ5fLbQz2WlpaJmjEQfgFE9mxGcSFi2+++YasWrWKJCYmEgBk3759Nn9nWZY8/vjjJCEhgUilUnLttdeSM2fOuD3vq6++StLT04lEIiELFy4kP/zwg5/u4MIHy7Kkr6+PvPvuu2T16tVEKpWSGTNmkD/84Q/kxIkTZHh4mGi1WqLRaMif//xnolAoyIkTJyZ72ESlUhEA5JtvvnF6zLvvvksUCsXEDSoIvyO4cwnCI2i1WuTk5OC1115z+PcXXngBL7/8Mt544w388MMPCA0NxbJly1yKLH744Yd48MEH8eSTT6KkpAQ5OTlYtmwZVCqVv27jggbnCXPnnXfik08+QXd3Nx577DHU19fj2muvRW5uLh577DFs3boVTz31FD799FMsWrRosoeNwcFBAEBUVJTL4zQaDdLT05Gamoo1a9agqqpqIoYXhL8w2ewWxIUH2O1cWJYlCQkJ5MUXX+RfGxgYIBKJhPzf//2f0/MsXLiQ3Hvvvfy/GYYhSUlJZNu2bX4Z98WM4eFhsnv3blJUVEQoihq1s5wsMAxDVq5cSS6//HKXxx0/fpz8/e9/J6WlpeTo0aNk1apVRC6Xk7a2tgkaaRC+RpBcgvAa9uTS2NhIAJDS0lKb46666iry29/+1uE5jEYjEQgEoybBO+64g9x4440+HvGlhcHBwckeAo977rmHpKene00SJpOJTJ06lTz22GN+GlkQ/kYwLBbEuMG5/nnjCNjT0wOGYYIugn5AoPixbNmyBZ9++imOHDnitfKDSCRCXl6eUx+XIAIfQXIJIoggfApCCLZs2YJ9+/bh8OHDyMzM9PocDMOgoqLCqY9LEIGPILkEMW5wrn/eOALGxMRAIBAEXQQvQtx777345z//iffffx/h4eHo7u5Gd3e3jbFZsPfq4keQXIIYNzIzM5GQkGDjCDg0NIQffvjBqSOgWCxGQUGBzXtYlsWhQ4eCLoIXOF5//XUMDg5iyZIlSExM5P/78MMP+WOCvVeXACY76RPEhYHh4WFSWlpKSktLCQCyfft2UlpaSlpaWgghhDz33HMkIiKCHDhwgJSXl5M1a9aQzMxMotfr+XP85Cc/Ia+88gr/7w8++IBIJBKya9cuUl1dTX71q1+RiIgI0t3dPeH3F0QQQfgWQXIJwiMcOXLEoZUyZ9fMNVHGx8cTiURCrr32WlJXV2dzjvT0dPLkk0/avPbKK6+QtLQ0IhaLycKFC8n3339PCHHdtGkymcjDDz9M5syZQ0JCQkhiYiL5+c9/Tjo6Olzew5NPPjlq/NnZ2eP+bIIIIojRCApXBhGQ+OKLL/Ddd9+hoKAA69atw759+1BUVARgpClv/fr1uPvuu5GTk4P+/n7cf//9YBgGp06dcnrOrVu34uOPP8bXX3/NvyYUChETE+Pv2wkiiEsOQZegIAISy5cvx/Llyx3+TaFQ4KuvvrJ57dVXX8XChQvR2trq0l1RKBQGCwaCCGICEEzoB3FRYHBwEBRFISIiwuVx9fX1SEpKwpQpU/DTn/4Ura2tEzPAIIK4xBAklyAueBgMBvzhD3/Ahg0bXDYQFhYWYteuXTh48CBef/11NDU14corr8Tw8PAEjjaIIC4NBMNiQVzQMJvNuOWWW0AIweuvv+7yWOsw27x581BYWIj09HTs3r0bmzZt8vdQgwjikkJw5xLEBQuOWFpaWvDVV195LXsSERGBrKysoMSIE7z22mvIyMiAVCpFYWEhTp486fL4jz76CDNmzIBUKsXcuXPx+eefT9BIgwhEBMkliAsSHLHU19fj66+/RnR0tNfn0Gg0aGxsDEqMOIC3dgjHjx/Hhg0bsGnTJpSWlqKoqAhFRUWorKyc4JEHESgIliIHEZDQaDT8jiIvLw/bt2/HNddcg6ioKCQmJmL9+vUoKSnBp59+aiN+GRUVBbFYDAC49tprsXbtWmzZsgUA8NBDD2H16tVIT09HZ2cnnnzySZSVlaG6uhqxsbETf5MBjMLCQixYsACvvvoqgBH1hNTUVNx333145JFHRh1/6623QqvV4tNPP+VfW7RoEXJzc/HGG29M2LiDCBwEdy5BBCROnTqFvLw85OXlAQAefPBB5OXl4YknnkBHRwc++eQTtLe3Izc310Zi5Pjx4/w5Ghsb0dPTw/+7vb0dGzZsQHZ2Nm655RZER0fj+++/DxKLHUwmE4qLi7F06VL+NZqmsXTpUpw4ccLhe06cOGFzPAAsW7bM6fFBXPwIkksQAYklS5aAjChI2Py3a9cuZGRkOPwbIQRLlizhz9Hc3IytW7fy//7ggw/Q2dkJo9GI9vZ2fPDBB5g6darNdY8dO4bVq1cjKSkJFEVh//79Nn+/8847QVGUzX833HCD2/vxNn8xmRiLHUJ3d3fQPiEIGwTJJYggrODOzhkAbrjhBnR1dfH//d///Z/LcwbtnIO4FBEsRQ4iCCu4UgbgIJFIvOry3759O+6++27cddddAIA33ngDn332Gd555x2H+YvJxljsEBISEoL2CUHYILhzCSIIL3H06FHExcUhOzsbv/71r9Hb2+v02LHkLyYbY7FDWLx4sc3xAPDVV18F7RMuYQR3LkEE4QVuuOEGrFu3DpmZmWhsbMSjjz6K5cuX48SJExAIBKOOd5W/qK2tnahhe40HH3wQGzduxPz587Fw4ULs2LEDWq2W333dcccdSE5OxrZt2wAA999/P66++mr85S9/wcqVK/HBBx/g1KlTePPNNyfzNoKYRATJJYggvMBtt93G///cuXMxb948TJ06FUePHsW11147iSPzLW699Vao1Wo88cQT6O7uRm5uLg4ePMiTZGtrK2j6fODjsssuw/vvv4/HHnsMjz76KKZPn479+/djzpw5k3ULQUwyguQSRBDjwJQpUxATE4OGhgaH5HIh2zlv2bKF7xGyx9GjR0e9dvPNN+Pmm2/286iCuFAQzLkEEcQ40N7ejt7eXqdd/kE75yAuVQTJJYggrKDRaFBWVoaysjIAQFNTE8rKytDa2gqNRoPf//73+P7779Hc3IxDhw5hzZo1mDZtGpYtW8af49prr+U724GR/MVbb72Fv//976ipqcGvf/1rm/xFEEFcjAiGxYIIwgqnTp3CNddcw//7wQcfBABs3LgRr7/+OsrLy/H3v/8dAwMDSEpKwvXXX4+nn34aEomEf4+9MoC7/EUQQVyMCGqLBRFEEEEE4XMEw2JBBBFEEEH4HEFyCSKIIIIIwucIkksQQQQRRBA+R5BcgggiiCCC8DmC5BJEEEEEEYTPESSXIIIIIoggfI4guQQRRBBBBOFzBMkliCCCCCIInyNILkEEEUQQQfgcQXIJIoggggjC5wiSSxBBBBFEED7H/weJW9VjRm3xOwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAGKCAYAAADALgxIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5wc+V3njz8rdA6To6RRzqtdSRslrcPaxruYMw4YMPhIC5hwhzHcGcNh4gODzf2+Ph9wZ8PdFzDxvoAPMMYRex03WWFmNHk0OcfOucLvj54qdfd0nGmNpHW9Hg8/vJrurqqurvq86p1eL0HXdR0LFixYsGChjhDv9gFYsGDBgoVXHixysWDBggULdYdFLhYsWLBgoe6wyMWCBQsWLNQdFrlYsGDBgoW6wyIXCxYsWLBQd1jkYsGCBQsW6g6LXCxYsGDBQt1hkYsFCxYsWKg7LHKxYMGCBQt1h0UuFixYsGCh7rDIxYIFCxYs1B0WuViwYMGChbrDIhcLFixYsFB3WORiwYIFCxbqDotcLFiwYMFC3WGRiwULFixYqDsscrFgwYIFC3WHRS4WLFiwYKHusMjFggULFizUHRa5WLBgwYKFusMiFwsWLFiwUHdY5GLBggULFuoOi1wsWLBgwULdYZGLBQsWLFioOyxysWDBggULdYdFLhYsWLBgoe6wyMWCBQsWLNQdFrlYsGDBgoW6wyIXCxYsWLBQd1jkYsGCBQsW6g6LXCxYsGDBQt1hkYsFCxYsWKg7LHKxYMGCBQt1h0UuFixYsGCh7rDIxYIFCxYs1B3y3T4AC99e0HUdVVVJJBJIkoQsy0iShCiKCIJwtw/PggULdYKg67p+tw/CwrcHNE1DURQURSGZTJpkIggCoihis9lMwhEEwSIbCxbuY1jkYuGOQ9d1NE0jk8lgXG7pdBpRFNF13Xxd13WTVAySMSIbi2wsWLi/YJGLhTsKXdfNaAWyUcrKygoLCwv4/X6amprwer2Iomi+vxjZZDIZ3G43drvdTKNZsGDh3oVFLhbuGIxoRVVVM+oYHR1lYWGBffv2EYvFCAaD6LpOY2MjTU1NJtkY7zfI5oUXXuDkyZM0NjaakY2RRrPIxoKFew9WQd9C3WEU7RVFQdM0RFEkFovR19eHIAg88cQTZl0FIBqNEggECAQCTE1NIQhCHtl4PB6TUCRJMqOhTCYDgCiKeSk0i2wsWLj7sCIXC3WFrutmtGJgaWmJoaEhDhw4wIkTJ4BszaVYHUXTtDyyCYVCiKKIqqp0d3ezb98+3G73tsimMI1mkY0FC3cXFrlYqBs0TSOdTpvRiqqqDA0Nsb6+zrlz52hra8t7XzVFek3TiEQi9Pf343A4iMfjyLJMU1OTGd24XK48sjGIxkAh2eRGTRYsWLgzsMjFwq5hpMGMbjBRFAmHw/T19eFyuTh37hxOp9N8fy3kYuDFF1/kxIkTNDY2EgqFCAQCBINBQqEQdrt9G9nkHptBNsUim9xuNAsWLNQPVs3Fwq5QmAYTBIHp6Wlu3brFkSNHOHLkSF0WbkEQTOIyajEAqqqaZLO0tMTo6CgOh8N8T1NTEw6HI+94jUYDg+BEUdzWIGCRjQULu4NFLhZ2jEwmQzKZNGsamUyGmzdvEolEeOSRR0wCKEQ9F25Jkmhubqa5uRkARVFMspmbm2NoaAiXy2USTWNjY1myAQgEArS1teFwOCyysWBhh7DIxULNMLq1VldXGRwc5NWvfjWbm5v09/fT2NjIlStXsNlsZbdR62JtRC6VIMsyLS0ttLS0AFmyCQaDBAIBZmZmGBwcxO1255GN3W43v5eu6wwMDPD444+jKIoZ2RQ2CFhkY8FCeVjkYqEmGE/5mqYhCAKapjE+Ps7MzAynTp1i//7999TCK8syra2ttLa2AtloyyCbqakpYrEYHo/HJJuGhgbzc7KcvT2MGlEqlbLIxoKFKmGRi4WqkJs+MrrBFEUhnU6zurrKE088gc/nu2P7rzZyqQSbzUZbW5vZuZZOp02ymZiYIB6PAzA1NUVrayuNjY0myRiRja7rpFIpM41mkY0FC9thkYuFiigs2ouiyMrKCjdv3kQQBC5duoQkSXtyHPWG3W6nvb2d9vZ2AJLJJM8//zyqqjI+Pk4ymcTn85mdaI2NjXnDnLlkkxvZ5IpwWorPFr4dYZGLhbLIlXARRRFN0xgeHmZpaYmjR48yNTW1J8SyV4uzUew/duwYDoeDZDJptj2Pjo6SSqXw+/0m2TQ0NBQlm2QyaR63QTaWvYCFbydY5GKhKEpJuPT29iLLMpcvX0ZVVSYnJ/f0mPYaTqeTrq4uurq6AEgkEibZDA8Pk06naWhoMKOaasimUPHZIhsLr0RY5GJhG4rNrszPzzMyMsLBgwc5duwYoigSjUb3bMG/VxZfl8uFy+Wiu7sbXddNsgkEAiwsLKAoikk2TU1N+Hy+bWSjaZpJNhsbG/j9fnw+n0U2Fl5RsMjFQh6MSfvcov3g4CCBQIALFy6YXVdQvyJ7tbjXxCQEQcDtduN2u9m3bx+6rhOPx02ymZubQ9O0PLLxer15ZDM3N8eBAwew2+0kk0lEUdzWIGCRjYX7ERa5WAC2+66IokgoFKKvrw+Px8Ply5fzhg9hb8nlflhcBUHA4/Hg8XjYv38/uq4Ti8VMspmZmdlmL2CoDsiybEY2qqqiqmrJBgHLOM3C/QCLXCzktRgbmJqaYmJigmPHjnHo0KGii5lBLoZm153GvRa5VIIgCHi9XrxeLwcOHEDX9W32AqqqMjs7SyqVMu0FClufjdqX5dJp4X6CRS7fxii0HxYEgXQ6TX9/P/F4nEcffZTGxsaSn9/pgqZpGqurq7jd7jxjsHJ4JSyegiDg8/nw+Xz09PSgaRovvfQSbrebjY0NJicnEUUxL7Jxu93byMbwsilFNpa9gIV7ARa5fJvC6GAyaiuCILCxsUF/fz8tLS1cuHDBXNRKIdeauNrFPx6P09fXRzKZRFGUPCHKQvn8Ysf8SoIhmNne3k5ra6tpL7C5ucna2hq3bt0qai9QDdlYLp0W7jYscvk2hBGtXL16la6uLvbt28fY2Bizs7OcPn2affv21RRNGARVCcbgZVdXF+fPnwcgEokQCARYWVlhbGzMlM9vamqiubnZrPPsdeRyN4hMFEUaGhpMCRpN00wRzsLzk0s2uSRvuXRauFdgkcu3EYrNrqRSKV566SU0TePSpUt4vd6qt5dr0FUOmqYxOjrKwsICZ8+epbOz00zFNTY20tjYyOHDh/Pk8xcWFhgZGTEVjdPptLlg3kncDRIrtc+d2gsUko2h+KwoChsbGxw4cMAiGwt3HBa5fJugmIRLOp1mcnKS/fv3c/LkyZon7ashl3g8Tm9vLwCXL1/G7XaXfH8x+XxD9yuRSDAxMcHKykqeonGl1N0rCTu1FzDII5lMMjk5aZI7WC6dFu4cvn3uzG9jFNoPa5rG0NAQkUiErq4uzpw5s6PtViKX5eVlBgYG6O7u5tSpUzU/IecqGicSCfx+Py6Xi0AgkKf7latovBdSNPXEbtJvtdoLGJ1luTWbQuM0y6XTQr1gkcsrGMXsh6PRKL29vdjtdtra2mpKgxWiFLmoqsro6CiLi4ucO3eOjo6OXX0PA7Is09HRYW7P0P0KBAIMDw+TyWS2TcffDymfei3e1dgLCILA2NiYGdnk+u5YLp0W6gmLXF6h0DQNRVHyJFzm5uYYHR3l0KFDHD16lIGBgbzZllpRjFwM/TFRFM00WD1QbGAzV/erUIrFmI7Pbeuttu15L3EnGwcK7QXW19cZGhpC13XTXqBQ8Tk3zViKbCx7AQvVwCKXVxiKza4oisLAwADBYJCLFy+aaRRRFHe9uOUu+ouLiwwODnLgwAFOnDhR96ih3LEWk2IpHFgsNkNyLyyMe3UMRk3l5MmTAKRSKVOEs5y9ANw+95ZxmoVqYZHLKwiFEi6CIBAMBunr68Pn83HlyhXT0td4fTeRC2QJKpPJMDAwwMrKCg899JDpjVJP1Lpg/ePkLL0TU/z78w/w0EM95gxJIBAwZ0hsNptJNFOawHu+fpVMKMh+LcOKv5l3XDiH7Q7XcPZamy33PDocDjo7O+ns7AQoaS9QqPice9wW2VgoBYtcXiHI9V0xCrOTk5NMTk5y/PhxDh48uO0mr0fkAtDX14fdbufy5cu4XK6qP1erbEw1x6rrOv/x+Rv86/gUAJ9Y+Ar2dJKjTjuvP7iPd114gAuHDqGqKuFwmEAgwEdvjvL/LW2CroPDRQgXvzIwwa/0jtCiqTzS2sjbzpzg6ZPH7shCuVeLb6XzXcpewGh9LmUvYGy70KVTURQikQgdHR0W2XwbwiKX+xylZlf6+/tJJpM89thj5lBeIXYbuSwsLKCqKk1NTZw9e/aOFs+rWZBWE0ne9vlvsBAM5X0u43AxosPI9DJ/NLmIK53ilNfF6w/v58vhJDdWNopvULaxgY3Ph5N8/sV+hK9fpUPQeby9hR+/eI4H93fv+nvt9bBmLQv7bu0FYrEYIyMjNDY2Wi6d34awyOU+RrHZlbW1NW7evElbWxsXL14sOweyU1VjRVEYHh5mdXUVWZbp6enZk66scsf6xYUVfvYrL1UctBREkaTTRa8CvePz6KpK5tYo9pOV27F1m51l4B9euspEXy+f/rX31/oVih/TPRK5lMNO7AWMDkWbzWa5dH4bwiKX+xSFsyu6rjMyMsL8/Dxnz56lu7vyU/VO0mKRSIS+vj5sNhtXrlzhhRde2JOn73ILzgeuDvBXg2PZtFYN0BSFzNUX0WMRqIJcNFUlc+0l9EiIYFsL169fNxdSv9+/I4K9mzWX3aAaewEjKp6dnTW79YzWZotsXvmwyOU+g5EGu3XrFpIkceDAAVMMErJT8B6Pp6pt1ZIW03WdhYUFhoeHzVZm48bfqwWycD+RdIYf/erLXFtZr51YQgHSN74FW1FfxfdHI6SvvQhbzRI+r4+Ojg4CgQDz8/Pbntp9Pl/Vi+L9ELlUQjF7gYWFBaampsxuPUEQ8rr1PB5PRbKxLKHvX1jkch8hNw0Wj8eRJImlpSUGBwdNCZdanp6rjVwMN8qNjY275kZZuKC8uLrJj33peRKp1O0/SjKIAmhaWdLIzEyi3hrN/6Ms4xVFwpsbCJ78eRhlYRZlZDDv7aIksm/fPjNFlPvUPj09jSAIeZpf90Lb81757kD293K5XNjtdh566CE0TTNbw3PtBXJFON1u9zay0TSNVCpluXTeh7DI5T5Bof2wIAisra2xsLCw4/bfaiKXSCTCjRs3cDqdXL58GafTuW0bex25/P/6R/kfNwa371dVwOAUQUALBdAVFcHhQHB7sq3avVfRAkUK+IpCFBC9PvRMGi0eQ9c02gb6WEwloWABE7j978Kn9tyFtFA6P9dawPhOr4TIpRhy1bJFUcTv9+P3+zl48GDV9gKFIpzFXDotsrk3YZHLPY5i9sORSISlpSVEUeTKlSvbFvxqUS5yMfzdR0dHOXz4MEePHi3rRnmnIQgCaU3jrV/4Br2LK5U/oOuI/kbzn2o4RGagFxLxyvuy2bE5Nb7vk3/NE4tzxHWdOcnGiM/PtbYOln3+sp8vtpCWUjM2Wsj3AntNLpUUn+thL1Do0qkoCk6nE4fDYbl03mVY5HIPo9B+WBAEZmZmGB8fp6GhAafTuWNiMbZXLHIxJvoDgUDeRH+pbdRKLoIgkEgkEASh6uOfSmb4z8O3iOWmwaqEsrSAMnyz6rpM2+oSP/rJv+ZALAqAWxA4qSmcDG3yltAmEV1ndXSAr9vgzPd/Hy1Hj5bdXqF0fq6asaqq9Pb24vF48tSMczW/6oW9bnvWNK3qhb1e9gK9vb0cOnSIlpYWyxL6LsMil3sQuRIuRmohk8lw8+ZNIpEIjzzyCJubm8RisV3tp1jkEgqF6Ovrw+VycfnyZdOsq5ZtlIOhazU5OYmmaXi93ooS+n82Os3vDs/s6AlfmZtBGR+umljO3LzBD33pM3iU0vvyCQK+eIzA3/wN3/jrvyZptyMdPsyVD/0eXSdOVNxHrprx4uIiDz74IJlMhkAgwOTkJLFYLE/tOVeGZTcwWoPriYyi8Zf/9i2eeeQk3a2Nea9VayJXDLXaCzQ1NWG329F13ZyjsVw67y4scrnHUGx2JRAI0NfXR2NjI5cvX8ZutxMMBnct3ZIbuei6zuzsLGNjYxw5coQjR45U7UZZ7XGk02n6+/uJx+M88sgjyLJsLhhjY2N5ciPNzc14vF6e/fo1vj4zf3sjogji1kKrKiVJQ1dVlMlx1Nmp28fa0oa+sVb84DSNZ774Lzxz8wa1LDeCIJBOJHjh6lU6r1+vilzyjlPXkWWZxsZGU2DS0PwKBALbZFgMa4Gdtj3X86l9JRjjrR/+JzaCEX7vn67jJMPxDh+vP3+Ed77u4bqSWbX2AslkklAohNfrxW63Wy6ddxEWudxDyJVwMSKCW7duMT09zcmTJzlw4IC5OBi+LLuBkdIytMGCwSAPP/yw+bRYyzYqIRAI0NvbS2NjI5cuXQKyqY9cCX1jAnxzc5PrM3P89nKYcCqdvyFNy/5vCw6bjRRkayyqiqbraMkkymAfWnAz/1gliWJH6tZ13vV3n+DR+Zmqv7eB6VSKwa1UXW6RvxYULviFml+5k/GLi4vmZHxzc3NNbc/1JJeXx5d59o/+lXT6tulYCjsDqykGvjDMRz83iEtI09Ng523zMb73tRfwe6qXBqqEUvYCg4ODLC8vMzU1hdfrzRPhtNlsJV06wSKbesMil3sAxSRckskk/f39pNNpnnjiCXw+X95n6kEuRrrt+eefx+PxbBO2rAaVyEXXdaanp7l161aexpnRoJALQ27k+ZTG+2/cMqO3ckjlpMo0tgr3vVchk97+5iKH2ZNK8tOTY7QmE6y53AScLmRVpSMWxaNuP8ZcXI3FWMk9xh2s29UQc6EMS+5k/MxMlhAL50eKkUi9ai6f+MoQv/t330DXS19/giiSxMlYGD786X4+9Kkb+GSV7330EL/yo99dl+PIhWEvIAgC586dM6P7QCBQ1l4gl2yMh7tSLp0W2dQGi1zuMoqlwVZXVxkYGKCjo4OHH364aB1it7pguq6zvr5OLBbjxIkTHD58eEdPteXIxagThcNhHn30URobGyse03te6OVfxiZrPg5d11HnplEmxvIim/yDzT/ONyRivG1sCNvW+9sScdq2usk0YMnjhVgUl6riFUXkrfOT1jS+EYuRKPjewg4XnlrOe7HJeEPteWNjg4mJCSRJ2tb2bPxOu41c3veXX+Ofnx+q+XM6AmuTg3wuOntHyMWA8XBmt9tpb283W/RrsReAyi6dliV0ZVjkchdROLuiaRojIyMsLi5y9uxZU522GHajaJxOp81uMJfLxZEjR3b6FUqSSygUore3F6/Xa9aJclH4mbVkih957iWG1vNTWdVAz2TIDN9EW1vZNo+SC48kEwFswDtnJ3lVqfoLIAJdW91iSBKqrhNSVYKKwlAqRTH6uhsLjSAI29qeDbXnwpZeVVV3Fb388P/4Ii8OTNT8OU1Jk5i6Bkoam9S44/1XgpHqKhZd7MZewNi25dJZGyxyuQsoNrsSi8Xo6+ur2sFxp2kxoznA5/Nx9uxZxsbGdvQdDBSSS25jwNGjR6uKiP5tYZWf/cqLpI0UlyCAJGX/X1VLRyKAIxkjfP0qujG/UmbxjCkqLZLEe2du0VGGWIpBEgRWFYWxsq3QtS8slaKJzc1N/vIv/5LOzk5e//rX56kjFINhiNbY2Mjhw4fzWnqXl5dJpVK8+OKLeZFNtW3PfYtRRF8r6Dq6mkHPpEAp3xquJiIkZ3phK4Vmk++cP45xP1STuqpkL5DJZKoim2QyyQsvvMD58+ex2+2Wl00OLHLZYxhPlsYFCJiaXT09PRw/fryqm6NWcilW+wgEArvOw+eSS+58TLWNAb9+dZC/GBzNJwVdNzW8gNsdYgIIqoq+9b2V5UVSwzfNf1dCs6by/tEBGiLh6r8goOk6/aLIQqUZmzovJIODg/zpn/4piqIwOTnJN7/5TXRdp729nYceeoinnnpqWy2uELktvcZ8UXt7u6n3NTAwUFU7OOQQoSAgiA6wOdB1HSkVIRXLnlNBtpsLaia4QnppJG8bNtudW3JqIZdC7NReQNM04vE4siyj67plnJYDi1z2CLlh9csvv8wDDzxAQ0ODqdl1/vx5sxW1GtTaAnzz5k2i0Whe7aNeTpSGlMeNGzeqno+JpBXe/oWvM7ZWwkslFzkdYjpb3DM3hTo+Uv5zucfZ1sG+aIQjmQwrHZ2sJBLY02lakomyrcdJ4BvRKKkt8hMkCb1Eo4G4g4WjFLl/5jOf4Qtf+ELe60bef319nS996Ut88YtfRBRFuru7eeSRR3jyySfLnndd15Ekiba2NvNaS6fT5iKaW4swOtH8fn+OIdj2bQqCgOb0Y3NmVQu0TBItHiYTWiaztD0qtpWxgNgtdkMuuajFXsAgd2OGBiyXTgMWuewBihXto9Eog4ODuFwurly5UnExLkS1NZfcFuDLly/npUDq4URpWCmPj49z6NAhjh2r7Nb48soGP/C5r+aLTlYJLZkgc/MGgqNKZQKbDcHXgLa2gu52Y1cyHNhY58DWy1G7g1mHgxjgSaVoSt8+pklZZjwaRclN+5XrYBN334qsqip//Md/zOjoaJlPbO1uaxFdXFzkU5/6FP/wD//AyZMnee9731v0/cVScHa7fVs7uNFlNTg4mPfErlVxrYg2J2KDEzUeLPq6fQ8il3ov2OXsBdbX1wH4xje+kdex5/V6i5KN4dIJxVufX0lkY5HLHUbh7Apk00ejo6McO3Zsx11aldJiuq6bNscnTpygp6dn2352qwtm5PPT6fQ2teRS+PzCKj/53IsoOyAWdXODzM3roCgIbZXJRfD50VUVfXPd+Mu293g1lTM5emMbTicLNgfTqsbi2jJylZL8UPuiZpx743PhcJiPfOQjBAKBmrYDEI1GmZmZKWszXU23mJEe6urq2vbEXtOlUqJN2X6HI5e9EK7MFSptbGzkxo0bXLhwwTxPpewFcl06jf8Vks0ryaXTIpc7hGKzK0Z6Kp1Oc+zYsV11aZUjF8PmOJFIlLU53s2sTDQapbe3F1VV6enpqYpYAG6Go2heH4LHC5qGnklDMgHpInMpW9A1DXVmEmVyvOrjE1vb0TbXyzYDFEOLotCiKKzbnTURy24xPj7OJz7xiR1J+qytrbGykhXzLJcSqrUVufCJHapv/vB7PRRrmbDb66+ZZmA3cjO72ackSfh8Pnw+Hz09PTu2FyhnnGa8934iG4tc7gCKpcE2Nzfp7+8389i7EZw0tlmMGDY2Nsz9nD9/vmwn0E5rLouLiwwODtLT00MqlapJ90oWRHPfSBKC5AKnC13X8QoQicchkchKuwB6Ok1mqB+t2u4uUYTmVrT11W0v6Xf4vqx1YTMil6985St89rOfzYsijXOqaVrZ6HJmZoZIJLLtc6X2t5vFt5bAJRwtrj7teIWRi6qq2875buwFSpHNW97yFn7yJ3+SH/7hH97T77cbWORSZxSzHx4fH2dmZoZTp06xf/9+rl27VlddMLgtCDk1NbVNKqbcNmpJi6mqysjICMvLy6aHzMDAQE3bkEvUJQRBIAaIbg9sea/oiTipz38Ktm6winC6EOwO9I31oi/rO5RnqRaBYJBkMln1g4Ou63zrW99icXFx22uF6gRGRGOz2bDb7aiqysTEhJlSMVDPyGVXKJIWa2xo4P0/8c47tsu7RS6V9lmLvYBBOEZ60yCbSCRSNuV5L8IilzrBSINlMhnzCTGRSNDf34+iKFy6dAmv1wvUT7rFWNRTqRR9fX0kk0kef/xx/P7yfiO52zCOvdKiE4/H6e3tRRAELl26ZM7h1EpQcpVrmyAIYHdUTSxCYzN6PIYeDmajlyKHZNthwT0XxmaLbSkYDPLCCy/gdDrNbqtScySxWIyPfOQjZkG4EnKtq8PhMAsLC0XlcSpFLrshFwG9aoIubA8/0NXBb/zom1icmSAZCVRse94J7mZarBaUsxdYXFxkZGTEtBcIBAJ0dXURi8Wqti+vBl/72tf4r//1v3Lt2jWWlpb4x3/8R9761rfmvWd4eJj3v//9fPWrX0VRFM6cOcMnP/lJenp6qtqHRS51gKZpKIqSlwZbWVlhYGCArq4uTp06lXcB1pNc1tfX6e/vp6WlhYsXL9Z0sxoLTaUbZGVlhZs3b9Ld3c2pU6fybuDayaWGm7/MQuiSJYzqhNjWkZ3OrwC1huMsNuyn2AXGnvYQahOxryk0zGXovKXgjWa3e+zYcc696lUEg0E2NzfNOZJC+fzZ2Vk+9rGPkdpBU0MwGGR+fr7k63cycvm51xziSwOz3FpLkhTs5beVE7k8/eon+H9/6z2muGQgEODWrVskEom8c1M4qFgr7tXIpRLK2Qv86Z/+Kf/wD/+AIAh8/OMfJxwO89RTT5ndfTtFLBbjoYce4tlnn+Xtb3/7ttcnJiZ48skn+fEf/3F+67d+C7/fz+DgYE3pfItcdoHc2RXjxtU0jeHhYZaWlnjggQdMuYlc1INcDNy4cYPTp0+zb9++mheO3MilGDRNY2xsjPn5+ZLfpda6jVyntExSVUG24WtpJrJSQCwl9qHUUDTIKPlRQaJFZvQZN6lGCRFQeiQ2ehysX9YhquJYUfjk5Oc5EH8kT603Vz5/ZGSE0dFRhoaGduRNYzzZlkO5h4vdksvPvOkRfuZNjwAwvx7ib786yNdGFpkOpFGkglZ6XQcEfuIdz/Bb/zFbJyjU+zIkWAKBAMPDw6TT6bxBRb/fX9PCfb9ELpWQay/wv//3/+bDH/4wZ8+exe/38/u///u8613v4id/8if5+Mc/vuN9fOd3fiff+Z3fWfL1X/3VX+VNb3oTv//7v2/+7WgFU7xt32PHR/dtjkIJF0EQiEaj9PX1IcsyV65cKZkj3S25JJNJent7AXjkkUfM8LpW5EYuhUgkEvT19aGqKpcuXSoZktccudQhNQWgixI4HNuJpQTEtnamz13kPzx4kSemxrj08vMcC5Vu+XXkmIVFjtoZfZ0b1V7c5hmfTNon8+noc/zL//gyLs3FqdZTPH32ad762Fvp7Oyko6ODv/iLv6Cvr+/2MW21mhoPKSW/61ZbeSKRMP8mSVLRtNhe1Vz2tzbwvu+5zPu2/j00u8rffWOY58dXWIioOO0y7/2Rt/D93/maktvIlWApnIqfn59H07RtsyPljv9+jVwqoampiXQ6za//+q9z4sQJNjc3d9SuXi00TeNf//Vf+aVf+iWefvppbty4weHDh/mVX/mVbamzcrDIZQfInV0xpqbn5+cZGRnh4MGDHDt2rOwFJ4piVXLyxbC2tkZ/fz9tbW0Eg8Fd5WFLRS7GPjo6Ojh9+nTZJ7M7GrmUeKvY0pbN6RvCkhU+KJ08g23/ITR0Vt0ePnX2Ap86ewEpGqFraYGLMxM8fWuU9uTtDqfmeAwdWLnkYuZi9akAQRRIikmur13n+hev86GvfYhmvZkL0Quo8fzfvPC8Gec515JAVVXm5+fziMX4ezGU06S7kwX9Mz3t/OYPtpv7iSVTjAwOVL3wFpuKNwYVc2dHcjXR3G533ve5V7rF6o10Oo2iKKYaQG4K7U5gdXWVaDTKhz70IX7nd36HD3/4w3zuc5/j7W9/O8899xyveU3pB4ZcWORSA4rNriiKwuDgYFV+8wZKPXWWg6ZpjI+PMzs7y5kzZ+ju7mZxcXFXEZBxY+ZOEN+6dYuZmRnOnDnDvn37Km7D8ISp9jusLJVP6xQcYeEBIzS3om2sIbZ3lmyNFdFN1WL51Fmk7gMUq/CrXh/zx08xf/wU//y678QZ3OTCrVEuT44hL08z+Xov6z21t84qCQVRFBHdIr6Mj3Ob56r6vQvfo6oq09PT24il7L6L+OQY2KtuMUEQ8LqcaJq24/3lDioeOHDAnB0p1s5r/O+VkhYrRDSafYgyGoLuNIw15S1veQu/8Au/AMD58+d5/vnn+fjHP26RS72h6zrhcBhVVc2e9GAwaCoM12K0VcuCDLdTVIVdZ7vVBjOiLkPdtb+/n1QqVdScrBgC8UTVabFEIsHnvnWV/3dmDU3REOwOsNtBtlW3AAkiiIJpU6zFSw8baqoKNjv2hx5GbGisvG2yXiyp5lZefKyVwaPHEQB7IoA3NIkiTpPwrlV1nEpYQfJICJLAvsQ+jgWP1TYgsoV4PM7MzEzNv2+lhW4vh/DqaXOcOzty6NChvHbepaUlRkdHzcn25eVlmpubaza+2wn2gtBisZgZ2e0FWltbkWWZM2fO5P399OnTfOMb36h6Oxa5VAFjdsUwYjp58iRTU1NMTEzkuStWi1pqLqurq9y8ebNoiqpeVsebm5uMjY1V3XEWSWd4y2e/ysjyKq5knKM2iXclFN554QEcRdpu19fX+Z8vXOV/rYbNp3M9k4EYIAjoNjuC3YHd6SSTc6PKRt1DkkFTQc35rqkyLcr+RhwPXqhefywHrXPTBDq6Ue12oB04CYAjFqVxfRIhNUnUM40sR/I+p+s6SljB1pD9/icjJ+mMbG+AqAYrKyusrdVmCWDgTrYi14rdRC6VUNjOa0gqRSIR5ubmGBoawuPx5HXpVWstUAtUVb0j282F0Ya8V7+d3W7n0Ucf3aZvNzY2xsGDB6vejkUuZVA4uyJJEplMhqtXr1aUVimHakjB6NSam5vj7NmzdHd372g75WBMAQ8NDXH69Gn2799flejkD37+q8STKRAEEi4PA8Cv9I7wK1cHaNUVnuho5QcePMNrjh1mYmKC/9I7wjcDJeojug7pFHo6RSoaBlHEabORSafJ2B1gs0ENUZ7t4UvgsKNnMuiAWCXB6JqGFgqwfuBQ0ddTHi8rngeBB7N/iK0jRiaQM1PYmYZ0AluDDVETeTTwKM5Udr/VFu1hZ2mwQhiqvc3NzUVrEvdr5FIJsizjdDqRZZmTJ0+abc+bm5t5Nse5ZFOPdNZeFPSj0WjdySUajXLr1i3z31NTU/T29tLc3ExPTw/ve9/7+P7v/35e/epX89RTT/G5z32Of/mXf+ErX/lK1fuwyKUEikm4pFIpVlZW6Ojo4MKFCzseAKtECvF4nL6+PjRN4/LlyyWL9rt1o+zv70fXdc6dO1eUvArx//QN85GX+0t7p8sy68h8ejPKp7/yMsLnvwbJBKoOeDyItirSFJpGMpVCS6fIfOv56olFknC85ju23YB6JoO+pXQs2B0IJZ4y9WgEqalyvcyEpxXN00pyuY3UdJLmE/O4Ii4eDj2MqN5ebLb9ziJIgmQ+uBjHm0gkmJmZKVszqQZut5v19XUmJiaQZTlvmBP2Ni2212SWuz+bzZZnLZDbEl7oPNnc3Fxz23PuPu90zSUej9d1gBLg6tWrPPXUU+a/f/EXfxGAH/mRH+HP//zPedvb3sbHP/5xfu/3fo/3vOc9nDx5kk9+8pM8+eSTVe/DIpciKLQf1nWd0dFRlpeX8fv9PPjgg7u6acp1ixkDi8WGLwux05qL4UbZ0NCAzWarmMtNKQrf94Vv8q35WorxoDuc4HCiDPSCIGI/+2B1HwwFSfdeNfXFKkFoaMLx+JWsa2XhazZbHqHoqSQ6QlZmRlWyjpe6juivPQLVxr5FenYZu0OnW+/O1lcq/RwaqGylBrfMpeLxOIuLi1U/KOzfv59AIFBU5LKpqYkLFy6gqirhcJjNzU0WFhYYGRkxr1lZlu9YmigXexm5QPmFvtDmOLfteWBgAEVR8tqefT5fVff4XkUuhVHobvHa17624vX27LPP8uyzz+54Hxa55KCY/bBRTNc0jUOHDpnFtd3AcLDLhaZpjI6OsrCwwNmzZ0371XKohxvlV7/61bIX2XAgxNv/9SuE4sWFCMtBS6dJf+t5SCYQ26urP2TGR1BnpwCQJQmlQpeVdOwUtkNHixJLMQgOZ7YHTVV4IiTwqpUUww0yg1qQ6XYfehVPoZqmkbn+EnooCILM4/4eumdrX6hFUcyRs6/CK0UUOX78OK2trWxubhZ9j7G4SpKUF7FkMhmuXbuGIAh5aSIjstntdHwx3I3IpVrCLHSejMfj5vzIzMwMwDbJ/GLfZS8il1gstmedYvWERS5bMGZXct3sFhcXGRoaYt++fZw4cYLFxUXC4doscouhkBQM3S6Ay5cvV90VUgu5ZDIZbt68STgcrtqN8k9HJvnQy31EVRVkOd96uALUjXUy/dduS94LQtlt6LqOa2aS5BaxABWJxX7p1dkIpFSargREXef7F+H181nCPBlI81bsxGdijEgJBn0w3O5htXn7Da0lElnCzGQFI59u8tKo1Z6aVDWN8dlplGi8qidfm83G2bNnzfSI3W4nXoTwSy10hnR7d3c37e3tZppoc3OT4eFhMpmMOR3f3Nxc9ZN7OdyNyGUn+8u1Fjhw4IApFGlI5huNPAbRNDc343Q6EQRhT2su9xu+7cklV8LFuDhVVWVwcJDV1VUefPBBU66iWMSxE+SSwvLyMgMDA0V1u2rZTjmEQiF6e3vxer1cvnw5r0WzWN1G13V++Msv8KWJme0bk+Ss46KmZYmiyAKUG32YUNXbxCJJIIq4BIFEOo2eyZAZvkmqCn2wrYPGduGxbJuxqmU7yaqET4GfnlQ5GdjuH+MWZC5qPi6GgBCs6wGGbSmGGiWGO32EEmEy/dfz/H57GnxbX08lnU5X1WKeyCgMz8xi3xrajIkirjK/o9vt5ty5c3k1vlK6ZNV2i+WmiQpNwWZnZ4Hsk7sR2ewkLXM3utPqEUUIgrBNMj8cDuepGBvCkoYC+p3Enai57AW+rcmlWNE+EonQ19eH3W7nypUreUJtu5msz4WxnaGhIRYXF0vqdlVCpRkTXdeZm5tjdHSUI0eOcOTIkaJulLk3x2wkxnf/63OshiOFm8tCVdgqGSAB6WAgW7NwudBtdjLXXkKPhIodTM42VFBVEoAWi5C5NYZexH+l6Hd2urA9eBHR579d7BdFEKXbx1finBwOafzMdIbmZHW/Yavg4FWKg1etw62VAF4F5rRD9KoBXhZDJMTbTpKGXa3pw6El0VP6tgL9JjozExPYc+Rl9JJingKtrS2cOHGi6kW6XFqo1GJfzMa30H/EZrPlPblXsuU2zsNeRy53gsxEUaSxsZHGxkYOHz6MqqqmAGcmk2FwcJCpqam8gc561rOstNh9hmL2w7Ozs4yNjXH48GGOHj267UKtV+SSTqdJJBKEQqGa0mCFKBe5KIrCwMAAgUCAhx9+uKRcRG7k8o9T8/z8cy9U3bGkCgJSYzanr0VCpK+9lHWVLIYiC76ysoQy1I9QZTFdbGnFdvYhhMKuM03Lc5zUM2n0VApBtmWHNUWBV80o/OBKGluNGSxN1xlVQ5yUGhAdAp2OBh6lh2c1jZVUiHHyJfONwVS36AYZMiJsOP0oikIgGCA40IdNqRzdqILAQlM7V04eK/p6qYeKesy55D65Hzp0KE8SfmFhgeHhYdxutxnVFGsOuFN+9uWwVxP6kiSZwpKGQK2iKKZMzcDAAF6v1yTihoaGXVkLRKNRi1zuBxSTcMlkMgwMDBAKhSouxLuNXJaWlhgcHEQURR5//PFd3QylyCUSidDb24vD4eDy5ctlnzKNyOU/fuMq/3eoehvhXChz0yhjw1W/X1dVlIkx1Llp4ygqfkY6dBT5yPHqFkeb3SQgKaPzPcNpDic01mSBzoxOtWc8oSvMa3FOy43bj0cU6XY1cYvyfiw2DTrj2TrdRkZBLJo2y/9OKUlmrrmDVJnW7TtJLsW2matnVThDUkw63zi++6HmshuoqmqmyIy253Q6baYYx8bGSCaTZtuzofZcS/ouFovtaJ7ubuPbilyKpcECgQD9/f34/f6KEi67iVxUVWV4eJiVlRWOHz/OxMTErm+EYuQyPz/P8PAwhw4d4tixYxUXk7Cq8a4X+hkJ7qxRQVmcRxkfyf7D4Sw9Ob9VdNdTSdI3e9FzFYnLHaIkYzv7IFJb7f4V/oTOzw6nOJbZOkcqxGwiy14bqgCtMYXmVPGHhXUtiYLGcak647VqoFehAxO1O5lvbkfdSvPd8jbRHg3ir1JDZi8m9IvNkBidVkNDQyiKYhrWRaNRGhoa9iSC2YvOrVwY9drC+9hut9PR0WF6ruS2PS8uLqIoSp61gM/nK7sWxOPxqubQ7jV825BL4ewKYNoCnzhxgp6enoo3wE4jl2g0Sm9vL7Isc/nyZVRVZWxsbEffo/B4DHIxajirq6ucP3/evPHL4csLK7x7bJFMbhost2Bf5rvqqopjcozk7PTt4/H50UqQi67rqMEASv919ExhMb2E9bHHi3T42I5mUI6tqfz0VJrGgid8T0bjaOB2MXxNSLMhKMgIdGl2PEhMCkk6RBseJNalCN8SxkknUjSrXo5IXXTLLTtaLG2R8gS+4fax3NCS1yTxfHsPtPfgCAdpDm3QnYxxRFB3HLncCTgcjjzp/Hg8ztraGsFgkP7+foC8eo3L5bojZLPXkYtx71UitGJtz7nNE7qu5zVPFLY919uFcq/wiieXYrMrqVTKFGms1Ra41shlYWGBoaEhenp6OH78uDk7o2na7m1ntwr6ueRV2IRQCr/+rX7+d+/Q9lpITsEeQcDndBDJqHmFci2RINN/PSvXkocyi5fdQebaiyW+yPY/ie2d2E6fQ9jKVWvxGHoyCZKE6PUiSKUv3ddOJfn+VY1qSqptup02PRutKujcECM4dJF1ARZsa4yxgI6O6LERJMV1pnk5PY4tLdKhN5JOK9gd1Qkk2uLFJXB0YLGhhYCn9HWY8jey5G9kCei/8TJdilL0+1Uq6N/pxddoDhBFkcnJSZ588sltasZGc4CxmFZqDqgWe00uuRmQalGseSIajZpt4ZOTk6ZuWjwex+12173mUo3FsYGf/umf5o//+I/5b//tv/He9763pv28osnFKNpfu3aNtrY2Dhw4wNraGjdv3qS9vb1mW2AjLVYNKSiKwvDwcNFIohbv+nIQRZFQKMStW7fyyKscIukMb/vsVxlaqUIYUdeJJHIiEVFCDQXIXH+p+LxKMW6x2xE8PgS9NPUICLdfE0VsFx9HKlAzFt0ecGef3nRVRVcUBJcLNC3734KAqKj8YP8ar83UnspKoTErprig+dDRueqcZFkrbsgk223odlgmgp7QCYaCaJqG0+nE5/OVfJItGjkIAokHLhCowvRM11Rs3/wKkXSaUkmSe0W40iCyQjXj3OaAYgKTTU1NOy5+363IZTf7FAQBn8+Hz+ejp6cHTdPMTr2///u/5w//8A8RBIFUKoXP5+N1r3sd+/fv39VxV7I4NvCP//iPvPjiiztOyb0iyaWY/bCiKIyMjLCwsGD6odQK48atlNs12pltNlvRSMK4GHdzMxiS44lEgvPnz5uzOOVwdW2Td372q8STZRSFS0DXNJTJcbRgoPQgZMG/BX9DVtsrsIFQpmbiliWigM3vR3zkcsUFUDDOvVEcz2TwbYR422yKBzQ3VVfst5BS0ijoHJddpMjwTecYMa068UhBEMwnb03TuHnzJufPn6/uszY7S2//ISKKApXIJR5HfOErRLfCPFEQKaY1cydtjmtBqX3lNgccPXq0bHOA0WlV7T1yNyIXQ5i0XhBFkYaGBhoaGvit3/ot3ve+93H58mXa29v5n//zf/Lss8/ypje9iU996lM73kcli2PIZlx+7ud+js9//vN813d9147284ojl8KivZE6mpmZweFwlLXsrQTjwi3lPqfrutmqWc6RMpdcdgJjoj+TyZgT15Xw52Mz/OrXXsw6ONYIPZ0iPdiPvrmO0FTaAc8pChhLsrezi+jKSlXT83FVRTpwCMepsyg7OL5j6zF+ZtZGo+ABEdZECAoiNh06NI3iZtNZxNJxHJIdhySzKUZ5yT6OUsNQpoFUKsXExET1v6mvgZkf/ClUrxfmiwyr5kDeWCd9/UXS4u1rrtTvWIlc9grVLvSFzQHJZNJMEQ0ODprFbyOFVk454G5ELne6gcDj8SBJEu9+97t55plnCIVCzM/P39F9aprGD/3QD/G+972Ps2fP7ng7ryhyKZxdEQSBhYUF1tfX8fv9u279zY1cCqEoCkNDQ6yvr3PhwgVaW1tLbmc35GIIWxqRV7VPTf93aR1a2hA0LVtQj8ehinkLZzxC8Pq3wJgIL7M+pVUNRBGhuZXo8lJVxwUg7j+E3Nq2I2J5zcgKPxD0IOcMIrZp0Lb1VK8Ac2SIJRN4RZlumwtx65yFk1G8Dg+iIDBpW2VMXkTbwQIcCoWYm5sDsqdnMK1zUtaRC641Y3FXDhxm7h0/kh3+zL5QctsNywtsDPSiiIWL2PbPiKK4oyHKO4Gd7svpdG5rDjA60aanp/OsjgubA+5W5HKnEY1GTfM+I6q5k/jwhz+MLMu85z3v2dV2XhHkUmx2xeieWl9fp62tzXSP3A2MAbnCjrHCuZJKBfVcB8hqkevv8sADD9DV1cXo6GjV3Ws2MbtPJAlBcoHTlV3sFAVXJk08HssfRNR11IU5gmMFRf8yC6EmCAheX9XT9kgyjsuvQbDbQRBw2+3EjS61CudGyij8+/51XqX4y7Yyy8ABbODMLrqKphJLJVA0FbfdiSDAdccUC/rG7UYG8h8kyj3xLy8vs76eM+siCFw7dZ6rmTRSJExrNMSZZIQeWQBBIPrwJdZeW5CSKLH5x5r9SCM3cKIzr4NacpIf81jLXeN7SS71mJYv1Pwy6hGBQIDV1VXGx8ex2+00NzfT2Nh4T6kw1xN7Kf9y7do1/vt//+9cv35917/ffU8uxWZXwuEwfX19uFwuLl++zOzsbE22wuWQO+ui6zrz8/OMjIxUPVdioJa25mQySW9vL4qi5Pm71GKXbC9y0wmCADYbSZsNweXGgU46nUGNRcj0XUNbLiKxX2KhFZqyLbR6uIj0S7H3NzZjf/jx27yg68Rz9bJEMSupAiTT+a3LjeE4/2E4zmFqL9xrmoosyficXtIofMUxRFTfXl/J/W0EXSC61enlcDiQZRlN05iZmSkqew/ZeorW3MpqcyurgLq2guehZtLnHy3y7vxzKgLPdDbjS6egwU8P2YUsnEiyls6woIJQ4ne4lyKXei/0ufWI3OaAzc1NM3K8ceOGWdNpbGzc1WR8JZRKj9cTuq7vqfzL17/+dVZXV+np6TH/pqoq/+k//Sc++tGPMj09XfW27mtyMeyHc5/YZmZmGB8fz9PSkiSJ5A6K2MVgkEKuvMrFixdpaanBaIrqBzLX1tbo7+/ftc2xTaxQJBcE0gjgcCCKQnFiAYo+Zvv82aL9lhRMMdhFAeMXsB09gXT4WNkoCE1DSacxWgdsikIyEqIxpfH+aRttQu2SOZFUHLtswyU7CYoxXrSPk9EqS93ogm4SunGzz8/PV03sysIcysgAsQcvFm+PzjkNLlHkTW0NyOl8YUpRFGn0uGn0wHFAafQQjUaJxWJEo1HzWILBIMlksmj0vNeRy52OInKbAzKZDF//+tc5dOgQoVCI8fFxksnkNluBeh7TXqTFjLEFIy12p/FDP/RDvOENb8j729NPP80P/dAP8WM/9mM1beu+JJdC+2HjCf7mzZtEIhEeeeQR08cCshdhPQQnjW1FIhH6+/vNyGgnffqViEHXdW7dusX09DRnzpxh3759NW8jF7YKKZV8lFmAcve3lWZjazhQj5YQuwSULVl626OXkPyN5YmlCDKyDAiE21v4lVYVXzDKiWCG10RsnElXPv+RZBSPw40oiMza1ukXZ9B3IJUfj8eZnp6uujieGRlAXcg+VWvx4lGOwS6dLgev9joQtg2Zbodh+GVYJ6yurrK6ukowGOSFF17A6XQWfYK/12suO4VxH7S3t5sisMlk0qzXGJPxhkdLc3MzXq93V8e4Vy6UQF0jl0oWx4UPyjabjc7OTk6ePFnTfu47ctE0DUVR8tJgm5ub9Pf309jYyJUrV7alBupFLgapDQ8Pc/To0aIqw9WiHDGkUin6+vpIpVI88cQTJZ9aclWRPzW9wG985Xna1AzfdfwwP/roeRpct/uk7BUil1zoydLGYLZMmjSYDo55bcll1lsVcLz2jbfbiGuEU8mQNDrVRJFIaxPXWuEaICQStAfiPLQJT8VttOm3L2tN14im4/id2ZtzwD7HFCtlj7UUNoMhFhcXQNfRBaFEaup2cTlz7cVtaUJ16hZaJg2yDamze8uPRudMg49zsl616VkuFhcXTfOwc+fOcfDgwaLtvQDhcBi73X7Hn7jvlsVx7vdyOp10d3ebk/GxWMycjJ+enjbVjo3IplblgL3ychFFsarB6GpRyeK4XrhvyKXY7Eru0/3Jkyc5cOBAyd763ZKLIW6ZyWQ4duwYR48e3dX2SpHLxsYG/f39NDc3VxzyNFJ0P/+Na/z9UFZOZgWBgZFpPjw4QaOa4dG2Jn7wobPINZBLucglnVHAZivhbV9ixZZtyGcfQuzoQs9kkFIJ1GrTlIIIOSm1YtBdLlZcLr7QDV/QNDqDMU4GFB4M6RyO6fgdXhQ0nneOEtKy0YPRTVipYG8gdwEHkMvUzLRkkvTL3zQNxXK+TFbSxjjucAhleZGjK3M8ZANtB5HU1NRUXt1HkiRkWaa1tdXsWEwmk2xsbBAOhxkdHWV4eLis3Eg9cK8ZhQmCgNfrxev15jUHbG5ubvNoMSKbcjqDxj73woWy3r9PNRbHuailzpKL+4JcCiVcBEEgmUzS399PJpMp+3QPuycXw2zL4/Hg8/lwucpNTlSHQnLRdZ3JyUkmJyfLEmUuIorKT40tsBQtEmlIEkFJ4ouhBF/82lVIJdHSKXA4EVvbEZ1lvkOZ/Yo9h9CmJyp+P3NTPj+O1z+D6MrWLASHA93hQPDpoKno6TRSMoFajKwkOWsEptbQoiyKLDf7SEkxXt5nQ5VETq5scmzzFpp6O8rKPfe5T7yF14mmaUxPTxd1fSwGzW4n/fxXq3PH1HXOTQ1zTEma45DVdqkpisLExMS2uk+xgr7T6aSjo4PR0VEef/xx0uk0m5ubZmQjy7K5oFbj1VIN7kbkUqvRntEcUOjRkqsckGsrUPigt1eRy27Td3cL9zy55M6uGIvAysoKAwMDRYvcxbBTwUlj+HJ8fJyjR49y+PBhrl69Wjc3SuOY0uk0/f39xGIxHnvssar62L+6uMqPfPUa6Wq74BxOREc2tNYCm6QnxnA++VTx9xa7YSQJ+6NXELu6SVZJLlLPIWyXXlP0Bsy2RcsILhnd5UbQddy6Riweh0Q8a4m8ww6/tvUNNpoa0SSJg4E1jmyMVaxv5V4fxvWmaRpzc3PVdxq6PSy8+fvh688VfTl3fZCTCR4evkZnwZR97nHogkg8GkEQBOx2u7m4JRIJJicni5JPqW6xXAl84wnekBsxOq6MAWBDjmU3HVf3WuRSCbkeLZC9BoxhTqM5IFc2v6GhYc9qLjv1e7rbuGfJpdjsiqZpO3Jv3Enkkk6nGRgYIBwO5zUI1MuN0ugWCwQC9PX10dDQwOXLl6tysPutqzf54xuDNRfFAbRoJGvqVQ6FT0kuN86nnkFsaEDKZMqmqIAtG+JHsZ04U/VxCYJAQpAQvT40twcB0DMZSMZvD3BW2oam0bERZbktu0BcXJjgwOpC1cdgwGazkUwmWVhYqN44raOL2Xf+RJmiPeZ5dQfWeXxyEH+lDj5dy+tSSyaTRKNRlpeXi75fFMWKumaFT8CGSKJxfRuLaiAQyFtUjaimkjy8gXs9cqkEm81Ge3u7qX6RK5u/sLCAqqrYbDZcLheRSOSORRd3Ii22V7gnyUXXdUKhEKFQiPb2dkRRJBaL0dvbiyRJNbs31urDEgwG6e3txefzbfOcr5cbpSAIrK2tMTQ0xIkTJzh48GBVF9CPfv0qXxid2BGxKPOzKKOD2X+IIvLCDOm2LsSC3LKQ01kmdnRjf/XrEbeeXpVy+9UBuwPHa78DqaWy5H8pGIuE4HCAw4Gka2RCQfRUClFT0KUiqZ9kGncyw3KbH1HTeGriJt5odTM3hVhcXWdzdbnqxSpx9jzLz2wJAG6bpM+FQPPCNI+tzOCoqQaWvV6CwWD+wGYBNE2rWCeodI2VWlQ3NzeZn59H07Q8RWO32110m/db5FIJhbL5sViMkZERUqkU169fzyNpQzmgHrhfXSjhHiQXY3YlGAwyOTlJR0eHGa5Xq/xbiGojF13XmZ6e5tatWxw7doxDhw4VfdKrR3NAJBJBVVUeffTRvLbpSuiLJhFa2rY6tTLoiSSkKosspvuvo63liyOmbQ5YX4V4jIyuITY2Z025xOw0uXz2IeznLuRvqFw9prkF+2u+YxtZ7RaqICI2bnWK6Rre+DLOUBg95WbTKeOPJUnbZDYbPXhTCZ6cGMCtpCFHxboaaJrG4OIyBDcRgKQgYS8iDmlCEAg+9Z0ELjxR1fbb1pe5oidN+ZlaMDc3RyhUmSxLpbBKRS6VULioFpPPN4gmtwh+v0cu5WA0BzidTtrb29m/f3/J5gDj3FQi/VLYywHKeuOeIZfC2RWbzYaiKPT19bG5uVlRr6scDHIp13ufTqfNOZlHH33UnB8otq3dRC5GcwDAwYMHayIWAFnYUmEVBLA7EOwOdN0Pmoo3nSa8uYGQk1rTUinSV5+Hwu4sY72VZTR/Q7aDSddRZqZQN1axP/U0ckfX9gMocf6koyewP1pZ0XjXEERinm5inqy2mh6LIUST+KNJ9oU3OLM8AZqWq+Ri1up0XUfVtKK9cKqi0jcziz1xO62llRv3cbhYfvP3k9h/MP+FIkQmAm/qbMGTThLVdOKahgT4ZRFbhfOlqioTExOk05VnX6B0zaUenva58vAHDx7Mm5CfnZ1laGgIr9dLc3Mz6XT6FUsuhfss1xwwMzPD4OAgXq/XjGxqqWPFYjGr5rIbFJNwSSaTJBIJPB4PV65c2VUHSyWpfKPuYVgdl6t77KY5YG5ujtHRUY4cOUIsFtvRzVespdgojsdcMtI+N1o4hBYJo4dDZPqulehcKv40r85Noc7N4Lj4ePEDKNy/KCKfPoe8vwc9FgW7HWz2bd/NJYokqiRlYWuOpBx0Xc8ObSbiBBrcPLQ0xaHluZLvzf3NRFFEQcKWyKDaQYmnmZuZxa5V1x4ddrpZfvhJbIXEUgReWeKZZh9SOrttryTi3boENV0nqKjoNhstwnYh00Q6w9St8ZoeZspFLvVe7HMn5OG2d7wR2aiqSiqVyqvX3CnCuRvkUkr+pbA5wDgvhXUsI7Lx+/0lj92KXHaBYvbD09PTjI+PIwgCDz/88K4vSOMCKLwYctt/q7U6liSpZp0yRVEYHBxkc3PTlIoZHBzcUQQkV3EuRH8Dor8BRVWra4kFNEUhc+0l9C13SS0YRCwWveVO+juc2C88iujxZocpFQU9HgNBwONyERMlJIcTTZKqJhbISvzjKD00pmsaeigImTSCpvGaqUEawsWNvbYdPlsLERqqA1LrMRZWlojr1RHLmreBVV8TUhU1k31uJ0+67SXVp0VBoFGWQNfQ9KyCczCjogFKOsXq3BxyHep7Bu50JJHrHW+z2UilUjQ0NJh2vkBey3O96hJw98ilmn3mnhfIr2MtLCygaZqpHNDU1JTXHGCRyw5QzH7YSE0ZTmk3btyoy76KzTCkUilzX9W2/xrbqiVyKVRMNiKwnUZAlTTC8lCuTTInfaNFQqSvvZy1MjZeTiUQZjZxqgop2YbSuQ/RfjsiEZpasD30MGKxfeg60a25ECUaAVFCV3Wkxhawi2XrNrA1A1TqsDOZLLFoKq50itfd6kNO7Uw3Ljy/yVxwEUcVhsgaAouNrYTc2RtdC2yiT4yjd3ZlybUA55p8nBGzszzVQgZabRKzwRBLa+t4qrBEqBZ7LcdipLb379/P/v37Sw4tGkTT1NRUVadkKdyttNhOWpGLNQcYMjVTU1NmA9Pw8DALCwscOXKkbsdczuI4k8nwgQ98gM985jNMTk7S0NDAG97wBj70oQ/tyFzxrpBLsTTY+vq6OZl++fJlswBZj15yQ7zS2N/m5iZ9fX00NTVV3f5roJaay8LCAkNDQ0UVk0VR3Nbmqus6zz73Es+PjnHG4+IdZ07wfRcewJbz/WvRCBNbKteolPkZlNGhbX/XdR3V5caoQOjrqyixKLqqIBw8hv1odQrQuq6jTt9CW9/A7XoETQC520Oy1YHuk83mgVwIagps2wugejKBHg4DOpKm8qapmyg7IBZVVZmZmTEHIzOyAGU6jjOixGxzB0n77dSs6HSi+3zokTDKyhK6kkFweRDcHl7T3kynktqRxMzMyirhtVWw10/uA+4OueQu9oV1CUVRzLrE1NQUAwMDeSKTjY2NNZHFvRy5lEOucoAxdxQOh3nuuef45Cc/yc2bN2lsbCQUCvGGN7yBp556Ks8yvVaUsziOx+Ncv36dX/u1X+Ohhx4iEAjw8z//83z3d383V69erXlfd4VczKffLQmX0dFRZmdnOX36NPv27cvzTKmXrLWxmN+6dYupqamqp+CLbadSxGHoj62srHD+/PmiF4MkSXlF2sVYgn/36S+zHAqDZOOlpMJL14d430t9dAk6r9nfwU88dqGmyEWoQETFOshyvkTeMKUgy+h2O4Jmw3GsFT2RQE3GQZQQPR4EeTtB64pCZmQAbWUJsTGbfxZ10BZi2BeytKU7RWhQSTbIiE1ecLqQRJ3CM6wrCno8jrFi2zQVj82G7s/K7iuKQiaTqZiyTKVSTE1N5RG7ppb+TNzmYK65HUUqfqsIoojg3VKHUBXO9b/IPl2BGmerciX8BaBBV8vxXc24G0KS5e7bQomaVCplpoqGhoZMkUmDbCrNkdxPkUs5GHpnb3vb23jb297G937v97Jv3z58Ph+/+7u/y3/+z/+ZmZmZHf+W5SyOGxoa+OIXv5j3tz/6oz/iscceY3Z2Nk+GvxrctbSYEfr19fWhaRqXLl3Kyy0a2k+Kouy4ja9wf8ZF+/jjj+P31+4FApUjl8J5nFJ55Vz5l09NL/BzX36eTLGBPZuNJeD/LAf423/+EkIygaYoCD4/Qktb8bSUgQoXYEliga10zm3CUENBRLfH7EQTXC6kre+ma1q2gUDJINjsCB4vjnSKyI1vZYv8UNoHJqlBUsC1ogIhnO5pEGMkUzI8dBLRk92HIMsIzS2mwZkWi2x9RWHrNNmw2Wzoup61DkinTDsGA+Fw2JzVqAZ6UwvTsgO9imjRFo/xyMh12gW9ZKdaWtOK3nCZTIapqam8h41SNsa5YqXbjuEe8XIx9lfLYu9wOOjs7KSzszPPgXJzc9NMFeW2PBcKOd6vkUslpNNpHnnkEX7mZ34GyEYXe/k7hkIhBEEo2T1bDneNXJaWlujv76e7u5uTJ09uewIoTGXtBhsbG6TTaTweD4899tiuDITKRS5LS0sMDAxw4MABTpw4UfbCM8jlF5+/zv8ZGKOaHIogCOByY2xVm5lCCQewFzWgoji52GygVFHozzFE04ObiI3NJS9qQRQRfLfJWk+nSAQ2EXx+XLEEcdSqhz4TITdaQsWOjv5vo6ipCJpbQPiOxxAcdtPgjBJFTkEQcAA4HDgcDlKplCm9vrhYyqNmO9LHTrFw5Q3oX/zX4m/IOReejVWemB7GWySqzO1UE4EQAlIqiV0QsNlsJBIJZmZmqrrOBUFg//79pjFWIcqpCdyNyGWn+yvmQBkOh9nc3GRpaYnR0VFcLlfeHMkrJXIpRKEL5V62JSeTSd7//vfzAz/wAzt6GL+rBf1z586ZHRTFsFtyyVVNdjgc9PT07NqZrljkomkaIyMjLC4u8uCDD5b9TgYiqspPDs+xGC0jF1IGysoSymAfQnOZukphLaOlNVsM1zWyfVPlNPLVbPE8HkNsqs0ITbA7kNo7eeuqyJs9xwikIoxFwgxrm/R7GlCL3JC6rqOn4+ip2wKRgighuxpBByWlQV43enULiWOLZKoZQMzuVCB86Sk2Lr0WIRSs+Pa2uUkeXZurKl0pAg3osNXUsbm5yfLyclWRlCzLnDlzZsf3w70euZSDkSoynp4VRTFbew1LAUOKJRgMlm3trRcMlfa9UEW+G91imUyG7/u+70PXdT72sY/taBt3jVz27dtXUbdJkqSqtZ0KkUwm6evrI51O88QTTzA0NFR3wUnIPlkYQ5HVytJMR+O87YWBqpV2C5EZvom6OJ/9h5JBT6XAvn22xCGJJAAEAVtbB5nVXE2q8pGEFosiSTJiQ2PNx+dMpPmJgQDntay/fYvTzyX8XAIy4RiLmTijIlz3+FhwebI3aiIMSnWDgkC5ufmiqCZuEiSZ1e/+fqJHDFOk8p86PNLHA/Hgjibul5eXWV9fr2rBdzqdnDt3DrvdTjBc2pANslF6Y2PjtkXvfopcKkGWZdra2sxaZjKZZHBwEEVRuHnzptnaa3SilZKo2Q2MteROkpjRSbZXLpQGDGKZmZnhy1/+8o5LCHd9zqUcZFne0ZPa2toaN2/epLW1lYcffhhZluuWYsuNXFZXV83U3qlTp6q+0CaicZJeP4LHl50NSSWhnODhFrRMhszVF7KzJAYUFT2UnfGwO52kZVt2cl+WSWl69r89ngJi2YIo5jtL5kB3ONEFIavnVcMAa+d6hP94K0OnUPyGsEkyByU/B4E3ZiAS32AqHeemoHHd4SBhLoo6jzmW8KY3CaQ0VoZDLD5wHsVo+63xpo4U0SPLg9vD3A/8JBlDZqYMJOCBWJB9ShpRru04DKXlSCRLEpVIz+/3c/bsWfPaEit8YmRkhEwmQ0NDg7m4er3e+zpyqQSn04nT6TQ7rqLRKIFAgI2NDdNSILfluR6WArmdrncS8Xh8TyMXg1jGx8d57rnnarZvz8U9TS61EoKmaYyPj5udZ/v379/xtkrB6DozOtweeOABurqKyKSUgU/OLqBG/UCw2dA93qzDYTqNLRImU1AT0QKbpHuvbp+byHlfKpkEkkAEXZQ4tDBLx8wEV5vbiBW7oQSRbTHAFuFI/gbkzmxvuxaPoYeC6Jk0gmxDKJFavDC5xrOrDlxC9W20PpuLB20uOiPr2OdHee7gGWwovNo5l52Yt0l02iQ6g4uc+/oCUVVlw9vI0v4jdcuzpzr3sfB9PwZFOt4K4bfJPN3kRVQyIGdVB6KqjgD4JLGsIKWiKExNTZHKUXkul5zs6Ojg2LFjeX8rVcw3GmAuX75sFsMNx0VJknC73SiKQiqVqsviWgl3S1ssV6Km0FKgWp+WarBX5GKoItcL5SyOu7q6eMc73sH169f59Kc/jaqqpgJ3NeZphbhr5FLNhVdLWiyRSNDX14eiKNs6z4xt1YNcjJbXtbW1ovupBh7b9tNu6IUJTieq0wmxaHZBVzKoSwuok+NFt1VqsXny5jXe/oV/QVZV3rk0z6ogMOr2cq21ndHm1mw9RhIxWpsEhxOcLjMKyiUQ0e0B95b0u6ahhYPokQigI9gdCLrOW2+u8u+S/nImliUxsjbJ6Pokis1Bk5jgcdscQpHhQ1EQ8Msy/mSUw7f6CWz9FrIs4/P5yi6aQpED04DlhhZir34auQpi6fG4uOSS8ybuXaKIa2t90XSdsAZNNglV19G3PIgge31OT09vuwaL/X6CIHDw4MGiDy2F7ze2b+T/ixXDQ6EQCwsLhMNhvvnNb5qLq+HXcifqBveKKnKuWvHRo0fzfFrGxsZMFQGjOaAWSwHjfN8paJpW95pLOYvj3/zN3+RTn/oUAOfPn8/73HPPPcdrX/vamvZ1T0cu1abFVldXuXnzZlnzsHqoGa+vr5v1lUuXLu34pvRW8aQkerywlQJSJsZKv7EgwpFTKb73X/6eS9O3n04kQaAL6IpHee1slMTMBNOyjYHmVl5qbSfS0QWppEksQMnoRBBFpMZm2EoftQZj/MDLc9hjGiExTYNY29PN8zPXWYtn7YOdrQ6esM1U3Vkmy7L51BmNRpmamuLUqVNVfVYRReaa2ok7XNir2N355gZOopRMI8IW+Qm3n2p1XSedThOPx1lcXKxKnVkURU6dOlWVoGmhm2mxhc5YXBVFIZFIcP78eXNxLZVCq8eCudeRS7VtwcUsBYwoz+jCy63XuFyuot9jL9qQ4/E4uq7XteZSyeK4FvvjSrinyaVStKFpGmNjY8zNzXH27NmyEgW7iVxyu86OHTvG6Ojori4sv602UhLKkViO73rz6jI//k//hwPhYNntuQSB06rC6bVlvmd1ifXhfsacbv6p5zBho6ZRRfPDY8sJfuLaOmh2kO1ous6iFieopfAIMvtED3KJGZGkkuKrUy+TVLIpIvmID80n7sinxnBmLKu0kLM+JGUbs80dZLaiFXVpHj0WQXB7Ebv2IRZs53UdzbRlqjMsy4UoioRCITY2Nqq7aR1Opl//ZiYEkdZogHPJCPsKajq5jpKFDSrlFnOj5pK7uOq6bi6um5ubTE9Pm/Mku7U83uvIZaf7c7lc7Nu3j3379qHruilRs7a2xvj4OHa7Pa9ek2spsBdtyEBd02J7iXs+LVaKEBKJBL29vUUHMEttq1rZ8lykUin6+vpIpVI88cQTOBwORkdHUVV1x23N/lo/5ygn8JddbE4P3OCH/+0zNetRiYJAg6aRWluhy+Ui7Mnm+HWt/GL4w0NBnpzY3LatbsFNt5jtmEvoCsFUHJQMbpsL95akyVpskxfnbqBtLZTO0y1kHNqOiCV3fiUpyfS17ePk5jLOEtdN2OlmobENLVd9wO1B2mrp1tdWsjI36EiizFs6m3GmaycWgMGFRbTAZvmHgy1oDY1MP/MO9K3Fa7W5hS8BeiyKM7jBvliYh8j+tqrDCUVkbwoHC3NRKv3mdrtxu92m/pcxT5JrebyTFNr96OciCAJ+vx+/38+hQ4dKSuc3Nzcjy/Id/36xWAxZlvekRnYncM9HLsVqLisrK9y8eZOuri5OnTpV1QW/Ex+WXA2yixcv5qXpdtPWLNV6E5R7v67zzOc/xTM3r1c5+ZGPtUyGq4kEGiDmEIpQYshS0jR+/YV1ujajFbftEmRcDq85nxJLJ1iPbbIYWSW3lO1odOHcekKvVsYFstptgcDtVJ4G9Pla6fO1Igc3aYuGOZaOcRgFhNuKxuWUCwRZRmhoRItEyAzcoL3dj2a3kclk8grx5ZBWVQZn57DFoghAXJRwl4ma0/sOMvfUm4oel+DxkvJ4mQRuKQpcfR5HQws9BfbNNpuNX/3VXy25j2q6xXLnSY4cOZJXnxgdHSWVSuWljMql0O6VmstuUEo63xjmzGQy3Lhxw4xq6m0pEI1G8Xg8ez4cWi/c0+Qiy3LeDa1pGqOjoywsLHD27NmaurRqSYvpus7U1BQTExPbNMiKKSzfcUjFL672VJqfnxglCtxqaqY1Hqe5BiHH0WSSWznRnJhDmHa2azl2RhU+8Pwy9lQaXVcRhNrSAolMggONXRxs2oeqqWzEg6zGNtjg9sKXK+OiaRrBSAzUTF6UqGkak5OTJEsZoAFKYzNLjc0sAV+LRZEXN4j5S7QZFzzVK8uL2QFVUUQQGpAkCUmScDgc5sR9EBFbPLqtTSCq6YxNTGKvItrRBYHw6QdZf/hKxfdqySTpl78JmTSFz7Fer5c/+qM/4sCBA6X3tYNW5N2k0O7VmstukCudv7S0xNzcHG1tbXnno55Wx/XuFNtr3DdpsdxhxUuXLtV80qslF0P2PxqNFpXiN7SidkMu6XS6KkMsc59FfNkvh0P86NQYaBq5sphrLjcBpwu7otAdDWMvkg7RNI2XEgk2C75DLrmkFIXcvWbrKyugaTjEKfzynxFJpQmnO1B5CLvtEpJY/GZSNY1YJk6r5/biLokS7d4W2r0tPC9NoLC9fiBJEi2N2QGueDxOMpk0dbiKn/8i3zUcIn3tRVJVRpqZ8RHU2amirwmCYP7+bUCipZWQ3YWiKDhCm4QVlflbY1URiyKKzDZ3oJ58sGLEqYUCpK+/nD336LTlnKuuri4+/vGPV0wL73bOpdYU2l7Lsez1/nRdx263F7UUWF5eZmxsDKfTaUY1O7EUsMjlDsJIiy0vLzMwMFDzsGLhtioRQjAYpLe3F7/fX1aKfzdWx6FQiL998Vu452eIOtwI7Z2VP1SQ9nv38gKPLM0XfWtbIk5bIlsITIkSASWNpuu4BAG3JBHXNL4Zi5EuZseb8zeZrN20kar5niWdbk8LaJ9GVT6JpoPPAT7HErCEon2OQNJNQjmMJF3CJh9HEARSShpN1/A7yix+VZRajIUtFotVTezKyhLK0M1sc4LdARUW/fT1l9ECG1VtG8ClZHBt1bh0l5Op+SXkZGXVhdyGAluFOpOytIAy1G/+2yaKPNregtLcQDqd5uGHH2ZpaYnjx4+X3U69hygrpdDS6TRjY2O0t7fXtQutFPY6DVcYKVVjKZDrPtnQ0FDxeA1y2csIsJ64q+RSTuHVeD0SiTAwMMADDzxAZ2cVC3EJlCMXXdeZmZlhbGyM48ePc+jQobI/6E4iF13XmZ+f53e/1c8/b0TAkS16C7PTuJQ0imwj1d6FWKwouxW5uBSF35i5RXO4Op0sh6biyCGmmVSKoVSqpHSKqKsgSQhNLbxW+RyXWOJr+lNMiOdQcSLp/51kprfoZ2UR2txxYBAYJJoWCKZayGgP4HK8CihdbC42g1L6zeXqT7f/MzMxhjo9kfNa6YcBPaOQ/OZzUJhmqwECIJRkydvfL+JwMd/UbjYUiI3N6IAei4AkIeb42GRujaLOTBbdotGGPTw8zODgIJlMho9//OMlj+9OT+gXptC+9rWv0dzcTCgUqmsXWinsdeRSyQqkmKWA0fJsSNXk1q+KkUg0Gr1vXSjhHo5cYrEYExMTKIrCk08+uWs10FLkkslkGBgYIBQK8eijj1Y1X1Br5KKqKr03b/KfhmcZi+TLvGhOJ7GthVcPbGBLJUhnFNSGRqS2juwFJ4ocS8T5TxMjSDVaLBu4mckwW6EgLQoSuL3o66uoukgny3wff4uU/GsOBjWS6SrFHwGvXcdrXwe+wmTgy4Qy383+xlfv6NhzoZTVOsvWaTL919E31qraXpPDxtHpYeYSKVYEqaJNQTnIsSjl+hE3PH6W/c15+xAcDkSvD7aM3bRoBD0cJDN5C21uets2Co/O8CiqtFjvpfyLsZ/Ozk48Hk9du9BK4V5PwzkcDrq6uujq6jI1w4xIb2pqCkmS8iygHQ7HNkXk+w33JLksLS0xODhIS0sL4XC4LjLTxcglHA7T29uL2+3m8uXLVcsbFJsxKIVYLManX77Kr82uE02Vb4UWJInUlo2uCGhz02jJBKdmJvj50YEdDThlgH+VbdjCYQCSLjfORPHUjagpEMkSiKJtRUvBNB3XI2R26Fx1dVFhfFPnYFO45HtqWfLKvVcXRdIvfaMqnTaAwz43jzkk0DSOepxkFIVAIslSRmVGE0nWuFjJJdNuOksNLWx6iggAFiz4otcHXh/KTIm6T85/J5NJJiYm0HW9bBsy3F3hymq60IxBzpaWlppTaJqm3ZW02E4JMdd9stBSYGFhgeeee44PfvCDpm9NOBzesXhkLspZHEP2GvmN3/gN/tf/+l8Eg0GuXLnCxz72sYop11K4p9JiuQ6ODz74IHa7nRs3btRlX7mpLF3XmZubY3R0lCNHjnDkyJGaLuZqmwNWVlb4g5eu84nV8I5qNLrdgTp0k82NdTrErGRhSteJa1rZJ2QD66LIlzXwbN6uIyRFsWSCSlBufydFE2nYSNPZHyG+A2JRNY1/m1LZTGT/fdWrMOtNcTEm0aQXXna7X/TSdgezTR1VE8sjLY0c1TN5w6I2Wabd56UdeFDXiadSrKysmKKIlRaTouQvCCRPP8jmeolaTimPnFLmalv/Hw6HmZ2dNf9eaWHdS3LRdb3sYl+uC21mZsbsujKe4isR514oFBfb527tOwwUku+xY8fQdZ0/+IM/YGpqipaWFh5//HHe8IY38P73v3/HXWjlLI4Bfv/3f58/+IM/4BOf+ASHDx/m137t13j66acZGhqq+BsUwz0TuUSjUfr6+hBF0XRwjEajO5bcL4SRylIUhcHBQTY2Nrh48eKOVD8rRS6GcsAv9Y1xNbQzvxYtkSB99XlIp1HY6lQiO13v2nI2VIAYAmFNw1ZQUxiSbQxHI3gKBkf1Egu5IgnMXpRwSPOkkh2ouh1/XKHVnX0AUDSIZyCSqix3H0lpfGFSJZ3DvxsemS+dbeL/aDotmxGObya5GBV5MO1CqCEgK3b0Uaeb+aY2VFmGKq6X7+hsoTldvr4iCAKenBsqFAqRTqcRRdGUDql4rJLE6pu/n6DsgPWvlNpR0T/rJeo3gpBV/V5ZyXcRTSaTZm2y6Pb2mFygusW+XBfa4uKiaQyWOyVfSPJ3g1xUVa2LQ24xNDY28q53vYuBgQE0TeP9738/X/rSl3j++ed3VasqZ3Gs6zof/ehH+cAHPsBb3vIWAP7iL/6Cjo4O/umf/ol3vvOdNe/vniCXxcVFBgcH6enp4fjx4+ZFYkQI9bgxjG298MILOBwOrly5suMfqlzkkkql6O3t5euRJNdkN/gkSMSrWvQMGEZgxvxFsU8KgoANaARcssS0w0NYEPGkklwHYhsbOIsVsYucxkiDg4Hvbkb0J2liGV1dYmxV5Lpdp8fYlwQNEvgd2WUvqcjMhTI45fy28rmQxjfn1G1Lo6hvRY2iwHqrn/VWPy8A3mCEjnAzLakoB/Q4ngpXpFBA6ptuH0sNLdlVt8I5tgkC39XRhKMCsRSDJEmsra2RSqVKkkte5OJwMv/OnyDd2g7zs0XfD5RuUChBuGIywUoRe2pFUfjQhz7EX/3VX5U8tr0ml53sr1wKLVdo0iAbn89XE5nVC3tlFNba2srBgwd59tlnefbZZ+/YvqamplheXuYNb3iD+beGhgYef/xxXnjhhfuPXDRN4+bNm6yurnL+/HnT/MeA8ePV44dcXV0FoL29PY/AdoJS3WLGRH9zczPn9h1CuDqE4HKDy529ATIZ9FQCEomS286MDKAu5NvYqhVuUoeuczJ5e5vfDASQSqRVCmdrFo40MPt6O6L99oIrSAJ4dRbTMpBfRzAiKLdN5WSrSCytsxbXSWZgfFNjaL14XCMWifQ8wTBph52Jni4mgJd1nYZghK5QgH3pGJ1iGqlQwn7r+HVRZKmhhYCrum4alyzz75rciDuQctE0jYmJCVKpFDa7veJCrTc2M/uun0JzuvKOuShKvVbkwcCdSiCU0DjTNK2sgsBekosRSdRjf4VCk4adQG4KzahHpFKpHaVvdoK9GNqMxWIcPnz4ju7DgCGtX+ii29HRYb5WK+4quQwMZN0Yr1y5UvSiMHKaiqLsmFxy6zgAhw8f3vVFUZgW03Wd6elpbt26xYkTJ+jp6SGxEcz7jCAIWbdIux3d68edThJZWUaQZASbDU1RskZgse2yKpXIpRCCIJTU6cr969DldsIPKYhi8Sf+dBX79dgFPPbs+/pXS9ehBD3/tc71MGtNXtRc9QFBINTkJ9TkZwSQ0xncSppWUefE+iLt6QSCAKrTxfy+w0TLkHQumiWR17hlZE1D2EqPVtsckU6nmZiYMB8mYqrKX04vcvLAfg4IOi26giMn957pOcL89/xwgWRP8X29rqMF1799kg2Xj+UDh1k9cgokedtHBF3HnkkRd7hwlOkWVFWVlZUVmpubt81o3atpsVpRmEKLRCIsLS0B8MILL+Sl0Hbq1VIN9kq40uoW2yFOnz5tTjwXgzERvdNp+FgsRm9vL5IkcenSJb72ta/VzY3S2I5hrWq0Mhs+3+Vk9QVBIOFwIfcczhY/w0Ey118uSixgWq5UDUEU0UvVhASBjCTS++860fYnypbSM7UW2oXS1lemP4um07URZqmtoej7cqHYbYTtNsLA5P4TiIJAYzjIemcP6SqJpccu8ajHgaxruQLSedddOpMpqvcWi8WYnp7eRkRJBAabOxk/8yDoOq0rCxxcnGbz/OMsPP6aisckAt/V0Yw7kwRZxptJcHByCGX8JmFE1prbWFeSzAOipmJTFFJbop9SmXkdURRNgUWfz0dLSwvNzc34/f77NnIpB2NwURAE1tbWeOKJJwgGg2VTaPU6pr2KXPZqzsWYIVxZWcmT1VpZWdnm7VIt7iq5OByOsgV7QwJkJ4RgTPXv37+fEydOIIpi3a2OI5EIN27cwOVybWtl9hUxBCsGQRAQGpoQHI6SI3g195mJEsUrNZByyVx9aweir/LiXKuGdLDjKASKm5qJuoY9reCPJasilmLIbG6wNDaEXqW69QMuG2ddxYuuhkYYZNWck8kkiqKYKrSGOGFRCAJacBN1fRWxqYX1zv2sd+4v/t7szsz/9Egi39nqRyqS3pIliWagObTOSSDhkdlMKCwIInOahlJhMXM4HDz22GPmwN7m5qbpKW+323E4HCQSiV1rXlWCQWR7SWaiKGKz2WhrazPT6/F43KzX7KQLrdI+96LmsleRy+HDh+ns7ORLX/qSSSbhcJiXXnqJn/mZn9nRNu+Jgn451OJGCdkffWRkhMXFRc6dO5eXQ6yn1bHRCnro0CGOHTu27UZqqJJcDAheP7BY9LVayUUUxaLRTsjjJXjcge6zo2RsiFIcUSx9Pmod1xRLCGwCyBkNe0ZhvWlnT2LKwhzK6GBWxqUCJOBxr4MD9uoJPnehmZubIxQqNTCadQzVFuZIzUyBJCPu24/ctR+xoytr8laILW5pd9h5rd+JUOUgrMvhYJ/DwT7gTDTK1UAQrYxWjnENFg7sRSIRxsfHSSQSvPjiizidTjOquROpo3tFbt9Ioe3bty9P+2tpaWlbF1qt5+F+jFzKWRz39PTw3ve+l9/5nd/h+PHjZityd3d33ixMLbgvyKVaQojH4/T19aHrOpcvX942fFkPN0pN09jc3CQSiXDx4sVtTQgG/HJtTzWi11cy/VXr6GSxG3u9tZ3m9TVsigdnc3aIUtckMjE3SlJE0FLItvwuqkw5qZVi+y1xsy31vI5vPfF2vIk0vtUQMZedsK+6p2dNVVFvjaLOz2z9pfzZcIkCr/I6aKrx/MOW2vL0NMl4BX0wTQObPdudpipos9OkZ6cBEBqbkLr2IXXtR2xp23L01Dnu93DRJsAOrr9gMMj8/Dyi24smlr5liy12hkeJz+ejoaGBQ4cOmU/z4+PjJJPJXQ0wFsO9KLdfqP2VyWTMFFrheagmhbabIcpqYEzx19OFspzF8Z//+Z/zS7/0S8RiMd797ncTDAZ58skn+dznPrfjCO+eJ5darY47OztLerxUu61SMAzKUqkUra2tJYkFdlDMLPPU5HK5meg+QPf6Kq4qup1yF3lVFAl6fbSuZ7vlBP12XUQQdey+JPat61fNuFCDcbSMhmgTqbWvqtjN+NVHf4ylk4+DIJBy3C4yuxNp/NEkmigQ8LvIFIn09HSaTN9V9FwttTLc0iiJXHDbaCgTQZVCWlUZmJnFvkUsOhVGO9Xi0bQejaCuLCM/cAFEES0S4tz6IsftZepgZbC6ump2OuoIZfTLqnOilGV5W+qosPvKIJrm5uYdzXLcK5FLORSm0HIHOY3h1FwttMIF9n4s6FeyOBYEgd/+7d/mt3/7t+uyv7s+oV8J1Vgdj4+PMzs7W9HqeDeRy9raGv39/XR2dtLR0VEmbbJDlLhQxdZ2Uok4RxfnUESRqc59qGoGdyhEdwmiMc5rwu5AsdtpyVmcBaX0xSXZFKS27GKiazpn5yI8F4T9DjhexTUu5LTCJmxuPv/6XyTZVtxjJO6yE9+qhwiaRlMwRsxlJ+12gqqiRaOk+65CsrA2VPz4D24V7iVBIKXpRBQVHR2fJOEsbGcuQDiV5tb0NPZM7U6lhRAPHMLx+JNmx96Tt27StLqYJaucJoJqrsPZ2VnC4duyOXqF26WcpHupBb+w+yoUCrG5ucnc3BxDQ0N4vV6TaKpR8oV7M3KphFy742pSaHuhZbaXBf07gXs+cilXc0kmk/T19ZHJZKq2Oq5VhkXXdW7dusX09DRnzpxh3759zM7OVrU4OESxah+RbVa4ggCShLa+irYV1ciaxuHl2w6E67KNZbsdm67Tk0riMrp0RIGgx4srlcQXjeRvVq2cZJM0jd+YXaM7mskWMBTo24Q1VcBrhzMeHb9cZKVLZZ/6Vxp7+Orr3oPmqS6k10WRQOMWe6kq6sY6mZvXi6eQijx5Pdjg4XTO6XOIAo4tJWld1wmrGpLNjg9t2++/KsosTg5jr+L3VAUhKzxZDIKA/MB57A+cB0BSFF738pdwRm4Te24TAWQjzEg4jCRJOJ1Oc/EvaYaGUFIWBqj4JF2NE6XhPXL06FHS6bT5ND84OIiqqjQ2Nppk43K5im7zfohcyqGYfH5hKlHXdRYXF2lvb6+7AyVkv1M8HrfI5U6iVCprfX2d/v5+WltbeeSRR6q2Oq4lckmn0/T39xOPx3niiSfM/Ge1JKXUQGR2UbjdnSVJoOnmxLle4phblQytW34iGeCW00VClIimUvjXVoqaUJWp3wPQnlb4zelV7On8Y2+SoEnKLmxrUehVQOk8SQ9BjinZGSJRFBg+dIm+J94FNRojwdbiOzuFcmu09JtyHjRkQeCJRg/7yujHCIKAXxJAy9qRKaJE2NeALogEw2FiQzeRq7gmMqLETEsHKVuRhgJRRD77EHJ7J1pwE4+m8lTf80gVUpi6ppmLh6qqpFIpFEVhcXGx6AOVpCqoRYzjzO2VIZ6dtCLb7XY6Ozvp7Ow0awAbGxusra0xPj6Ow+EwiaapqcksiN+PkUs5FKYSI5EI3/rWt8xRByBPnqYe3XixWFY2qp41l73GfZcWy40kTp8+zf79ZVpAK2yrHAzjsIaGBi5dupSXcqg2vSYKAmoZAcLcVzJbFxM2GxR0E1VT0LcBx7ZSSP2qTslGY610NeHRSIKfmtuo2J5mE+CQTYeNEQBu4GJN8tPne5CBk0/vjFhUlczIANpy8Y65QrgliVc1uGissd1B1lSaQ5sMKxALBnAqlTu3EjY7s80dKFKR28Vmw37hMURfdkq8fXONS5MDNRfuJUlCFEXm5uZKkkTR/eegmprLTpGr5Hvw4EFUVTWf5icmJkgkEvj9fpqbm+94LaIQey23b8hGnTt3DqCuXWgGDHKxIpc7iFxCSKVS9Pf3k0gk8iKJnWyrFHIVk48dO1bUOKzayEUSBDLlJuV1HVc6SRwBTRCKEov53hrgFIWS5FIqcnnXapDXrUZr3heAlzR/rz6CHw9vGnqZdcnOitfPalMH0abKwqBaMknm5vX8wn0plQFdp9Vp54rbhnMHR6uoKreWV1ADmwjtXRXfH3K6WWhsQy+2eLk82B9+HHFrsTm6ucwDs+Ml1RHKYTORZG52BlEvJS0KuiCWHaIst6jXe4hSkqQ8M6zcgvjGxga6rjMwMGBGNvU2B8vF3TAKg9tD3pVSaA0NDTQ1NdHS0lJ1Ci0Wi2G322u2Rr6XcF+Qi6Iopm5XU1MTFy5c2NHTQCVyMRSTNzc3efjhh2luLp5frzZykSpdRFuT+gLZFEkxYoHa16rmWJRAqV0WRC6SpvGrc+v0RNI7IpZlzckn9SdxSdmaiQi0q2naQ+sQWic+LbLidLPS0MJ6aydqwZyKGg6R6bu23YK4BLkc8rg47JCJASIatfQypVIppqamzJSTa32lbJC25m1g1ddUXP/L34j9oYfNRe3C4hQ964tIW4rVtdT25kMRNubnkPRyUyy3H0hKodwCe6cn9HML4svLy0xPT+N2u7eZg7W0tNDQ0FDX6OZuGIVJklT0fBam0HJJd24uqxmYO8hZKoUWjUbva4tjuE/SYuvr6ywuLnLy5EkOHDiw4xNejhSi0Si9vb3YbDYuXbpUtre76shFFKrWbpGdrhIz9VBr7FLuNrNpNnRNQxCz23wmFucSaZKurJx+uoZ+h161mReEK7ik0jlmNxqHk1EOJ6OoKzNsehtZbelgxdNAIBjIU3/OQ5Hf+CGfi1M2ESNvpwFBRNIIONHwlzlPkUiEubm5qn43XRBY8DUR8pZWEpAam7ILmq7z6qkhmkJZv5bcn9tYQDOqWvI3GV/bILGyhLHUlkpa6kBatmFLl76g7ia5FMJut5teSZlMxlxgh4eHyWQyeY0Bbrd7V8d2NyKXavdXqgtteXmZsbExXC6XSTa5datYLFYXk8S7iXs6ckmn0ywtLZFIJHj88cdpaNiZbIgBWZaLKscWk4oph2ojF7mGG6ZU0d6AClT7rFfqfWpLG4Pv+FnU9g7ktZexxQdIq0NIooDHDh57dhFKq1veLWU6cz+jHGJBehiHUP0TqAS0RYM0R4No8TTrKaX0k3jO32XgktdBty3/dxGBxpzYI4lABBFZAL96Wy9sfX29emVXQSD0uu8iNDJUPmQUBWRF4Q23+nAkinv2mPIyZB+kwl4/KgK+aBhJ1xjK6GgrSwXEs12fTRUE5pvaiTrdeMrYBdwr5FLYLWaz2ejo6KCjowNd14nH42xsbLCxscHExAQ2m82MapqammpOBd0NctlJ5FWuC+3WrVskk0n8fj+f+cxncLvddzRyUVWV3/zN3+Sv/uqvWF5epru7mx/90R/lAx/4QN32edfJpdCN0oBRULfZbOYPslsUkoJh6jU/P88DDzxgirdVQrWRi63CfEUuiub0c5ASJdxadWGQWOTiCD34MC//zC8iBxbRHF7U/a9D5XUE174GkT803ycIAg4ZHDI0OnX6Y82EMjqNQpBGQUfR4a/U82jyiarJLhcJQWR0bQN5eQFh/9HSHU5i1n7YY7fxKqdMg1x58XCi40QFPRt9pNNpcxGrBoIss/y2dxHvOQojQ2Xf680ovHHkKmKVszG6ruPbaktOSzKDqog42lvkIMjjlowoMdvcQdLuoFFXEe+Rmks5lOsWEwQBj8eDx+Ohp6cHVVXNSfmpqSlTdNMgG5/PV5E4NE3b09pEvQYoi6XQFhcXuXr1Ki+88AKZTIZ3vOMdvPGNb+SNb3wjhw4d2vU+DXz4wx/mYx/7GJ/4xCc4e/YsV69e5cd+7MdoaGjgPe95T132cdfJpRC6rjMzM8P4+DjHjh3D4XDk2bnuBrmkUDgjU8skrEFS5W5YXddvKwFXd3BlX/7Lx57k0tggxzbXqRQs596KgiAw+bZ3cuuNbwYgpcp5pJASS1ctBEHgIe/t6s1MRuRvkg8REbtxaRpijfIw66LM/PQ0cji4tYMybxYE2ltbuayncJRZUEtB13Xm5+fLepzkweVm9gffjdJYYo4lB112mVfH1vIskqtFAoHR1TUykkyxZGIu1SZlG7PNHWTk7MJ5yO3kWGMPsViMaDRKJBIhk1OnK7fA3s3IpRwkSaKlpcV0hE2lUmxsbLC5ucn8/DyAWQwvJTZ5N2oud2J/LpeLo0eP8s///M/8+Z//OX/6p3/K+fPn+au/+iv+w3/4D9y8eZNTp07VZV/PP/88b3nLW/iu7/ouAA4dOsTf/u3f8vLLL9dl+3CPkUsmk2FgYIBgMMgjjzxCU1MTq6urdRGbhNvNARsbG/T19dU0I1O4HSh9wxqNAXqmhuMuM78A8IUrT/Hl7/5e0HXO9l/jysvf5Oz8DO3p1LZIxWgkEGx2rv3c+9k4cfr2i3L+ApQWq3/iO2jTkbUWuh3dpLU0wXSQTCaDXbVjF8qX1mcUndDkEHKeonHpBehQZwePxgOIO+i8SqfTTE1NZRdelzvrBFoGWms7sz/wbvQqpE7sksRr/W60Wh4cthASZaZmZ5GDm2T2Hyz73pjdyWxzO1rOdSGQVQn3+/2mQVYikWBmZqai59G9ErlUgsPhoLu7m+7ublN0c2NjY1ubb0tLC42NjeYD4/2QFqsFqVSKzs5OPvCBD/CBD3yAcDhc15mXy5cv8yd/8ieMjY1x4sQJ+vr6+MY3vsFHPvKRuu3jrpOLkRYLh8P09vbicrm4cuWKqWlULyVjyEYc8Xic69evc+rUKfbv379jK1YoXtiLxWLcuHEDm83GwQYfK8FIsU1sw7YJ/UKsLuEIB9B0uHn0JIMPPQJA4+Y6r/rip3l4+haHgwGcgoAkgNrcwjd+5YOkt+YvTGj5bQOpGsgFoFnViAF20U67sx2cW1PwSphYOgYquHQ3Yg5xDCugjA5tI4qip14QEFvbedApk/LvJxMM4IhHcVT5M8ViMWZmZswIVUqnSvdUCALpY6dZ+O53lneLNCDbeLTBjdebjR1VVSWdTudFD6WwIthYvjWGHC9en8lF0OVhsbFtm2to4RGm02mmp6fN+6PSEOVeoV4T+obopt/vN8UmjRrF6Ogo6XSahoYG04Fyrwj0bigiGw8T9cIv//IvEw6HTR1GVVX54Ac/yLve9a667eOuk4sxVzIyMmJ2l+ReILIs1yS5XwqZTIbZ2VmSySRPPPHErmo4ufbLuVhdXaW/v599+/Zx8uRJkl+7Xv1GK1ysuiCQ2JJT0aMRlNVldCXDureBf3r6LfxLYxOoKhevvYh3YZavvbX4gmmX7XmLbUqsbf7Ao6cpXB4FQaDB1kCDLXtOU5JM0OEmoyhMTk4izUyUiFGKWBg7XWhrK8i+A7TGU2CX0Gx+gukM0XQGSVNw63rRupIxyFbVQioIBJ94NRtPPFX5vWDOIMk5PiWyLCPLstl6nM4oKJn0tutiWtEJ3xpAqmJgc9PjL9n+nFvCSyQSTE5O5n3XUCjE6Ojots4j2Nup+Tu1r1zLY13XSSQSbGxsMD09zdzcHMvLy3likzsR3awGeyFaGY1G7+gA5d/93d/x13/91/zN3/wNZ8+epbe3l/e+9710d3fzIz/yI3XZx10nl8HBQZaXl7l48aKZd81FPSIXIyqSZRmXy7Xr5gBjccl9YjRUAx544AHTyc1RpqAvAmo6jWDcAJUuViVfk0rwZolGWVlCW0wiPXIJJInrj10BrpTcTFpV82ouyRrJRayiLdqhKnTEs4KLMzMTJd8nKBlMgjEWo60UlppKwZYfiygINDvsNDuy5yqhqkSSKWxbszGiKLK0tFR14R5RZP1N7yBy8oHq3i8XH241v8eWqZ1LktCdDkJONzFRQkjEmd8Mkh69WVV6b7WxlTV36dSHwTehUMicmciF3+9HEARzYr6hocGsVeyl3tde7EsQBFN0c21tjY6ODlwul6lqPDQ0lNcY4Pf760Z4exG53GmL4/e973388i//Mu985zuBrNrAzMwMv/d7v/fKIZeuri6OHDlScq7EIJedhrzz8/MMDw9z+PBhmpub6e/v3+0hm4uJpmkl9ccAHGUIQwOQJNTNDcikK7or6kUk3jNjw6hz04jt1XW5bR183j/LFfSLfrzG4roulBFb1PTs47gs52mGAehlSMwlSbg8bvC40XW9po4wJInJ5k6SU5NIGQWpcx9iczNCsZqXIGRJr4qIw/wI0JiM07j17+mZybJikwCiJBFp72JNsOEUBZJa8feLZNW5V1ZWir7ucrk4ceIEgPlUv7m5yfT0NJqmMT8/j6ZpNDc339HuqruhLSbLshmxAEXdOHMbA3aj/7VXLpS5Rof1Rjwe3/Yb7UTYtxzuOrm0traWjUyMH1FV1Zqd4oaHh1lZWeHChQu0trYSDofrWr8Jh8OMj4/j8/m26Y8BOCvcYIIkITVnozUtWGqmfgtafgt15tqLplyKXmXaUIBt5BIVnWR0AVsZ8cdciDX6YoqUHgEVoKTkTYn1dfs2BKHqhVK32Rlt7kSVJAhsoAQ2UG7eAIcTqXs/Utc+xPZORJf7diRZh5RsiSMHwGazs9TWycpWPCkUmXMxENzcJLqxVnKLuQuey+Vi//79ppT+iy++iCzLzMzMMDg4iN/vNxdaI+KpF+4FVeRCN85oNMrGxgYrKyuMjY3hdDrzGgNe6S6UhXjzm9/MBz/4QXp6ejh79iw3btzgIx/5CM8++2zd9nHXyaUSjB+9FnKJx+P09vYiCAKXL182n1Lq4USZi4GBAY4ePbqtTmTAWYtpVQX7XmPIUovHSF99IX9BrvJpQwcaQzF8wQRL7Y3objebjmZe+/Cf8cbZz/HU2vM8qMzTaCu9PbFKEjJQao5JB3SbXDLdVAuFFRa+iyHj8zPmaSpe29JU1KlbqFNZC9gzrU006inmNVjQRdSc7Uut7ZCKVn9sZaKWVFMLc04v4dzm8RJfxZ1KkAkFy96wpZ6mRVFEFEW6u7tpaWnJa/edm5tDEIS8WsVudcB0Xd9T8cpK3WKCIODz+fD5fBw6dKik/le1bpxGpHQncafJ5Q//8A/5tV/7NX72Z3+W1dVVuru7+amf+il+/dd/vW77uOvkUukJxxCHq5YUDEfKrq4uTp06lXfRGWHfbrpKNE1jZGSETCbD8ePHOXr0aMn3umohl0rHo6ooq8soA73bJ8drSFU1ODz88agNZjS+4VjihYZVBtoa+NSRt/KpY98DwNm1Xt409wUeiw1xUIpmZWy2UG6IrxiKnmdBIPzqN6KurkIoWPRzteyl0lmOeBuYP3Ia1oqkk2RbHjlf8rvp0dLQ4OcA2YeaUCLJclph6fzjCGqC2iw6i5NL2uFkUZDQ1IJvWni+dB1HJk3cUTmNU20rcm67ryFJsrGxYeqA7cQgLBf3QuRSDsWGFw2yzXXjNMimsDFAVdU71ixgIBaL3dGai8/n46Mf/Sgf/ehH79g+7jq5VIJR36hGzXh8fJyZmZmSjpQ7TbEZSCaT9Pb2omkaHo+nYt+5qwYfd6ECEamb6zA5XvzFGvKkas5N+GTKx5OrPliFNXGDL/hWueFt5lb3Sf7rxfMANP/z3/JsZpTLvhXa3FXWNXJQuMgIsszyW99F/OBR+Mw/lfxcuZpLDXtnydfEmtuHUOwc2R1ZwUzJBqg83eShsWBNlCSJZq+HZuDM7AipdJplVcXpdOLz+SobdGnbv0mo5yiLvka01e1klxsYCpqGQ0mTtDu3vk157GSIMleS5MiRI3kGYQMDA2aNppLQYjX7ulPY7ZxLYQrRcOM06rVerzdPdHOvai73s5cL3AfkAuXdKCHb79/X12e2GZf6UUq1EFeDzc1Nent7aWtr48yZM7z88ssVCc9dywVYZtpd6jmErmml6zI1fJ9MCRJr09y8K3SId4VAmc/wsi3A130qB9MHOO54jPW0wFpKx8si9nSUmDOD7LJXFXma8HizU/D+xuy/ywyO7rquKErMHThKWMnql+mxnFSWUajf6jazCRrf1eLFUUVHlyPniTUUCpFOp7HZbEU7HWF7PWz96ClWEinEErsStqhI0jQkVTGJBajYGFAPP5dCg7DCWoXL5TKjGmOIsRD388R8NW6cxr7i8XhJN87d4k5HLnuBu04u1fwwpdwoAQKBAL29vVVJ8dfiX24gV44mV5W5ms6Kmsil2KIvCNjOP4rt1FlS114sc4w1RC5SFedbELms+LkcgHUPuG1ONuJBkmqaBrGDJ9R9EINoNMmkuMymPYbmFouee7Ntu7Ob2e//8XyFgFKt2oJAQrZVvWhsu4YcTmafeTsZfyOOTAYtsIG2uY66tpot0Ou6aebVKIt8R4O75nSfsd/FxUVkWS5NLrqWLdGLIktHThGIJ8zvWHSbCPhkiURKIW2zF7xWHvWe0C9Vq9jY2DBTw4aib0tLi7nQvpKcKIu5cfb39xONRnnppZdwOBx5opv1qMUY4p5W5LIHKJYWy130jx8/zsGDB6t6iq5lbkZRFAYGBggEAjz66KM0Njaar1XTHPDmrmZeuDVBbyxF3FH+CWdbK6zNjv3Vr0c224zLfLdqW6sAxWEHqhNbBEDUcNtduO3ZdIiqaWzEA0TSMURB4EHhEKRAS2r8Y1eCsL5ORyqGR5az9TJRJHH2PMvPvH37toudD1HE/sSruH7wCH3pNAdnxzmwtkibksJZRVeY1tDE9DPfY0q5CDYbUnsnUnsn8kkdPRpB21hDXV+jKxHhVT5nTTUrA4qiMDExQSaTQWxpY8PjpzkW3vYrCYAqSswfOUU0niNDU+In2ycLCKkkkztYLO+0/EturaKYurHdbqelpcX0mN8LGAOse0Fmhhun3W6np6eHlpYWgsGg+f1z3ThrMQYrBity2SMUEkLuom9okO10W6VgyLjY7XYuX768rYOmmsjleGMDf//mNwAwsr7J/7o5yldWN1mR7NnZjkKIEmgqgq8Bxxu+E9F5O79driYj1CB9odls1EIuEvkLuiSKtHtbaCf7pB5JxdiMB8loCrq3gxdOZ61fPeEAh2fHWXvNM2w8cLH4cQsFI5k2O7aHHoZ0mvRAH2JjExNHzzB57CwAzWtLHJ6boCOwSqPLZS4oxvdO7z/E3Gu/s3RUIAgIPj+iz4+u67jX0ng9HhRFIZ3ePllfCqlUiomJCfP9MaeLz567hCOVpHtjma6ZcfbpCg5RJCNKzLR0kIoX6JsV6bq76HVyzCYheByc0zSiyRSrqTSzGqwhUcnXZy+1xUqpG29sbBCLxbh16xbr6+umKOWdko83SGwvu9OM1Fih6GahMZggCHmRXS1deHe6W2wvcF+QS64ETDQa5caNGzgcjqKLfiVUQy6GjEs5f5da25pPtTbz/zx1CV3X6R8e5hM3R/j/4jq605mdqwCQJaSO/dguv3b7PkvUJ4SmFhyve8a8cW9baRWHqtU6t1F+QfM5PPgc2SesN44vMDnZz9Lxg8T2dTPwwGPlN11Qj7FffAxxqyXb+Pba/AxaIgGyzHpnN5sXnyTx+U/jPXyOQ8uz9ESDOFSNyAMXWb3wRFXfKD3Qi7ayBG4XkiQhSZLZ/WPohaXT6aKLYSQSYWZmpvCLAJByOJnqPsRU9yFQVZoXpllumUcp2v6cf15f0+ChM+cnFkURv9uF3+3iGJDOZIiKnUQjEaLRaFEivJvClbkLbTQapaWlBUmSzCFO43WjMaBeQ5zGedjrBoJi57qYMdjGxgaLi4uMjo7idrurcuNUVZVkMmmRy25RrRulqqosLS0xMDBAT08Px48f31EoXI5cSsm4lNpOrY0BmUyGvr4+EokEv/1db+TLX7nGuqKhJeLoyQS2hx7BduxkqR1u/9Ph49gfv5J3DnOPyCEIqICSk6LI1PiAV0t2wyVInByc5OTgJDqw0tnCzKnDBA7tR2ltRdhGmFvqza1t2M5dLPp7Cg4nkiNb1NbDIWwTIxza382aqjC+7wgl+ueKQtM0MldfQI9kpWly+7gK9cJsNhuxWAxFUcynVEOdtypIEps9R1HkbxTvTjCUq4Fnmr1lXTQB7DYbzU1NNDc1mSmpaDTK2trtocpy+f69VkV2OBx0dnbmdWBtbGwwMzNjSrMYZLSb9JFxD95rTpSFXXiG6ObGxkZFN85oNNt8YpHLHkAURZaXl4nFYjz00EO0t7fvalvFyKWcjEst2ymFSCTC9evX8fl8PPHEE9hsNv7gwWN86CsvMGlzEmloQmoqXhTO7jDvsRbbxcexHS/v7ZAymEHXcUcXcClhko4mdL38kFg+qmcXl3j7chKAzuUNOpc3gKuEnXb+7YnjyIePIfobERwOEEWkg4exHavOo6JpdYHHFyZxigLMQ8zpZrWpjRVfE+sub16bdSG0dIr0S9+ACjI7Bmw2m1ljM1S7qyaWKiFKEm9pdGGvsT4hCAIul4uFhYW8v1dsi75Lkvu5HVhAXYc47wa57KQVuVB0s5Qb58LCgrm+3UlyWVhY4P3vfz+f/exnicfjHDt2jD/7sz/jkUceqds+7nlySSaTrK+vA1kPgt36SheLXEKhEL29vSVlXKrdTikYEdfhw4c5evSoeZO/umcf6oEWzp8/T0yU+ZObI3xxaY05JCjsFDJqLnY79te8Ebm1rap9Zz8sEPftx8j6v3vl7/kOeR+PODvpcbcgl2kJrmXZE8qMMzrTGeSDRxB0HS24ia6qSAcOInmrkxLvnhzhYnAlb6DTk4xzeGmGw0szqKLIekMLS2mF1fZ9JHJMv7RIiPTVF7dFENV+N0EQSmrfbb2h9GsliEOWJF7T3Y49Fq7yKG4jk8lw69atbdffveLnUqnAXs8hTmNfe5kW2638S7F6lRHZ/c7v/I6pLvLBD36QZ555hscee6yuNaVAIMCVK1d46qmn+OxnP0tbWxvj4+M11a6rwV0nl3IXxcbGBr29vTidTvx+/66JBbaTgjEodfToUQ4fPlz1RSqKIulKYpO6ztjYGHNzcyUjLiO9tr/Jx28/+Si/DWRUlX//b9/kawurCA4HoscLooTgb8wW+h1lFroqMCnG+Vh6FNKjuEMi32Hr5oqjm9Pudry2nQv6FZPBh2zhvv/M/qzApqpCOoUQjxVvaiiArmmcHL7B6XSs7CIuaRodgTU6AKYCRDSdZbubKaeXwOz0zr5Q/reowzay8Hq9PGEHXbYhimJN6dVkMsnExETRbqxST7q6ru95WqyW+2g3Q5x3Y6am3vI2kiSZ3+8rX/kK//Iv/8K73/1uRkdH+aM/+iM0TeOTn/wkr3vd6+qyvw9/+MMcOHCAP/uzPzP/dvjw4bpsOxd3nVxgu/6UrutMTk4yOTnJ6dOnSaVSxGKVTZaqgbGYa5rG8PAwy8vLprDlTrZTCoWDnaVu/GKLi02SeKxnP99MbEn6JxMIXh/ON721LguEJsgYHWNxQeOflXn+WZmHKLxTXuZB2wV6nKfpcjWh1ZCyKXpskszn2wQifjtOIauALMgyusudHW7MZNCjEYQiqs9CJs3Fwasc0GsXj/SJAhtrS7iCYQINZdKNVaPMeSj3kxScv5bmZl5l03FEs6Kjxi+vyzZEXcs6Spb4jYs3E2Rx+PBh3vzmN5c4hOwx3A+S+6WGOJeXl4sOcd4NcoE7253W2NhIc3Mzf/u3f4umaVy7do1jx47Vbfuf+tSnePrpp/ne7/1evvrVr7Jv3z5+9md/lp/8yZ+s2z7gHiGXXGQyGXNI6bHHHqOhoSHPbW+3kCSJZDLJSy+9hK7recKWtaBczSUcDnPjxg0zzVZpsLMYSdlzbhjB6ULuLH2MEpR2Wyz6ARGK6UUKOt902fk/0QVILtEc9/JatZGn1AMcc7fjlMvrKRUuKBmXg083qygiiAXfURAEEIRs7cXhQIvH0IMBdCWDYLPjSCZ4bPQ6LTtcD0eWV8msryK4Suet6zWJoUnV3Ub7Ozt4XEkgF7G/FpQMOlmLasPd0kjHiaLI5uYmi4uLJbf98MMPs76+TlNTU8mF736wOc5FsSFOI6oxhji9Xi+qqt7Raflc7EWNx2hDNubyHnusQtdljZicnORjH/sYv/iLv8h/+S//hW9961u85z3vwW63183LBe4xcjFqH16vl8uXL5u1j3q5UUKWvFZWVujq6uL06dM7fgIpFbkY9ZVirprFUIpcXDUcV620u22+JHsg2M48yFpHF45EAnVjjUgowP9dXeT/RucRU3aedHTzWrWBc65OWp3bayW51sabTT6+5EneTmVVSP2Ibg+4sy3Nuqpy7ptfQBIl4pqKu4b1QtU0BuYXkcLBOiayykOowub4xP79PJQIVmUaZrfbzdZoTdOqMkKTZdlU+DW6kFpaWnC73XclcrkTi68sy9uK4nNzc3nT8kZUU69p+UKoqoogCHecXO7kAKWmaTzyyCP87u/+LgAXLlxgYGCAj3/84688cqlkdVwPN0pd15menjaf7h54oEoXwhIoPCZN0xgbG2N+fr6mjrZS5OKuQvTSK0lEd3JeCm8MhxP7gxcR/VmHTsHlQt7fA/t7EE89gBbcRNvc4GurS3wtOQ2JPnoEN8/Y9vGos5ND7lZkcWsiH4HxTj83bAVDgzWoCAiShF8SOeDPRh3hjEIolQZVwaNrJdNGKVVlcHoGeyJ336X366xCCqcqqCrK3LQ5pIkvvwj9UFcHp+IV/HpKYGFpiVCg8me7urq4dOlSXhfS5OQkdrvdLNTW0wiqHPaivmMUxQ2fpocfftiU0b9165Ypo1/vIc5XgpdLV1cXZ86cyfvb6dOn+eQnP1nX/dx1ctF1ncHBQVZWVu6Y1bEx0R8MBunu7q7LRZZLCkZ9JZVKcenSpZqeOkql16qJXHZELJDX1iz4G7E/eDGbnioCQZKQWtqQWtqwHT+FFo2gra8xt7nGnwRv8SfpcZwhkdfLnZyQ3fT3eBnR49s3VOPwptDcAqHs07rfJuO3ZS/VtKYRcLrJ6AL2zTUcWyZq4YzCrZkZ7MlE1ftIqPWTKDGbLFIpSK+jOezoso3HDx/kUGh9R9ucnZ0lHA5no78KEY8R5RvWvwcOHDCn5ldXVwF4/vnnt0U1d4IE9tpS2ZhDam1tNWun8XjcTKHVc4hzrxSR69G8VApXrlxhdHQ0729jY2McPHiwrvu56+Ri9LgfPXq0rNXxTtNi0WiU3t5eU8Zlfn6eSCSym0M2j0lVVbO+4vf7KwpnltpOsSdKTw1y/YWQBVD0Mk+QW09eYuc+bKfOItRws4heX/Z/HZ2QyaAnYqTX1xhTkni0EA95JE6kZNaTKeYVnXkkNEGoKXKBrNBjMdhFkY50MvsPn5eAqhNIpZgbHcVeRXqqWoTCYZwOR3UzF4WnWNfQo1EyQ/2c88oEW9tJyHbEWARXJFQxXadpGtPT08S3JGNKe1PeRrEFz1hQfT4fS0tLPProo+YgnxHVGERTrlZTK/ZSuLJUCs4gWWOIMxgMmkSzmyHOV0Lk8gu/8AtcvnyZ3/3d3+X7vu/7ePnll/mTP/kT/uRP/qSu+7nr5AKYcgmlUE4VuRxWVla4efMmBw4cMCf66+VGabQiv/TSS1XXVwrxib5BHJtBHmto2PZaIlC7d4oBZWslEgQBPZlECwdBkhAbmhBkGUQR+dhJ5INHdrR9NRxCdLkRXG7wN/CokuDAash83eVwcMDhMM22AokES5FNVgLrJJqq68rTq6yYNEkCgt3G0k6IpcyK3eDP1pQSiQTpdLrsNVO4GT2VIt1/DT0SRvR20ZxJQSYFIsT9DQQVFTWTwZ1JbbsBFUVhcnKyYps75Ef0lWZcADweD/9/9r47Po7q3v7MzFb13qtlWe6SJduyTTOhGDcsE1MMhBIgkGACjxAC/CgmgZiS8ExLKEnwewk8MNjGVAdwwQEbFxWry+pdu6u20vbdmfv7Q57x7mqrtCutzZ7Ph0/i1ezMnd3Ze+79lnPCwsJsdjUDAwNOczWT6ZoPpMo0a/OvmTNnTqqJc6p2Lv4klyVLlmDPnj149NFH8fvf/x7Z2dnYvn07brrpJp9eJyDIxd3D4W1YzNo4bMGCBUhKShL+5ov8Dcdx6OzshMlkQlFRkeBo5ynMHIeNXx5GWfdYx7e4ugULI0/g+nl5uLZgHpobG6Hs7IV7j0X3oGQyMLKx+ycWC9h+FUSZ2aDDxxOaJ2CHBkFHRo1JuXAcVrbWIHLEeU6AYRjEhYUhDsD8Y/uhs7DoD41AT+ZM9GfluvB08Tw/IOGcf58uq4Q9qBeTy+WQy+UwGAwujrKS39FpYao4Aej1Di2VQyggRMwAYgYckcJwhrw4bqwMubW1ddwu3ZFVtP1z7E76hT+P9futRRcd5WomsqvhrzWVOxdvJ3tnTZzW5mDOmjinaufiz7AYAKxbtw7r1q3z6zUCglzcgf8heZIotO4vWb58+bgVwGTJxWQyoaKiAgaDQZAg9wYdo1qs/fQABjRnzavM8hCUmjiUltfh4WOnEG8x4MKMNHAWRhBy9AUokQhMXDwohgEdHQNuZBjcyAjAcaCkUtdmUxwHTj0kSNRIzSZc1ngKYqPnOQ6KohAqFiHUpEPYDwdBtTVB9RPHDzilUTt83RHsy5xtB+5qQB5fApwHtrbs8BDMp0oBi2e7KJqihPANALS3t3sU/nX0DH/wwQeYM2eOw34tT343jnI1E9nVTLWQ5GQr07xp4oyNjZ2ynUtqaqpfrzEVOGfIBXBvT6xWq1FeXo7IyEin/SUTEZy0P39UVBTy8vJw7Ngxr97/dWcf7vz6PzC7mkAkEqgkEuzpHwHhOFh0WoCiQcfEgo6MmtC4x4HVAIgBHREF+owrJDEawA0NgnBj5laU1WdHzGYQvU4glhjdKC5srgI1wTxYV1cXhoeHQWISnR5jJr5ZHZLkVMA4+VwMcaWKQAEWlQKWqnLvlD7Hncf9hOwsrFtXV4eenp4Jk4s1JrOrmY6diy+v5a6JUyweU1UYGBhw6sQ5WZwPcvtAgJCLuwefJwlX5OKpjMtEdy7d3d2ora0Vzm8wGAQpCE9+uNvKavBqaZVXkw9F06DCwsFpRmE49BVCNlzn9FhvGikpBx3vlFQGJikFwJldytAgiE4z1tRIM0KZcoRBj5+017kmSCfgOA6tra3Q68/sds4k+QlrAcWIQLFmEGasiofzYlvh7PMfXXYJVBk5wHcHHf7dV35WRokclsqy8ePy8jyujqcoChRFjVsYWT/Pzn4bky0N9mZXw4/hXNm5uIKjJs7GxkYMDQ25dOKcLM4HF0ogQMjFHXhhOkekwHEcamtrXZYyW8NbcuE4Dg0NDejp6UFBQYEQBuNXLO62ySzH4bqvvsfRji6Pr2kNi6IXluoKt6tar+jSjfMiRdNgYuOA2Diwij5QoaHg1MMAyyLUYkKIVAoikYAQArPZ7JHRlsViQVNTk03Yh+JDKGc63DlaBKIZBTGZYDYaQOgJToo0jYFVGzEyNx9Ub7f74ycIQtMwJKWBZRg4kjxgvGQvZ+6NDMMgJycH9fX14163fpadPYe+7Dtxt6vhS3wHBwcRExPj9xDSVMq/iEQiyOVyEEIwZ84c4d77+/vR1NTksyZOjUbj95zLVOCcIBfAMSno9XpUVFQAgMcyLt6Qi9FoREVFBcxmM5YvX27zhfMPtDtyueHwSRxVTqzyy3y6Dmxn29g/7OYdOU3DTIiNV4vH8OY9IpFQfgwA3KASULYJK2mpVCp0k1tYFurhYYjOWBzz0Ov1aGlpGT95kvGSMNSZ6xyRReJUYx3yZGKkh8oQHRLi0URFicXo3XQb9Cnpbo/15pMjrO1YObEEpuhYyHs6MJozx4szeQeGYTBv3rxxZfqOnmNnvRv+bGq039UoFArU19cLjYz+7quZam0xPqHvSNnYV02cwZ2LD+HJh24vATMwMIBTp04hISHBKxkXT8nFOr9SVFQ0bhVinQdy1ZDVZ+ZAR0SChEcALAtiNAB6nUs5FI7jYC47DqK2rsKynQr19lpdrAaEDvUobu8Vudj9cDkH98p/f2KRCHFxcTCZTILRllarHec7IrzPxQ4qRGTBCAFO6M04oTeDISPIkYqQLZcgMSwMMsnZcQjPT2gYOm78BSxn8khn/uj4AiIR5kd4Hte2tpm2hISBk0ohU/a6vIa306g9+UokEixcuBBSqdTm2XeWd5kOcrEGwzCIiooCTdNO1QJ83VfDcZxfZF5cXc9ZT5EnTZz8vbuaMzQajV/lX6YKAUEunsC6YqytrQ1NTU2YM2cO0tLSvD6Pu1wJn1+ZOXMmsrKyHB7nLAZuD16AkhIUgcNAQkIBQiCzmKFVKUBbebdwBgNMJ7732NSKR8TAX0CxozCErYRYNBsjVDQombOttTdKx7b/5lx4v/Cw1sZSq11Ufbn47HScbXUWS1E4bWJx2qSHOLcASRHhyO5qQbJuBDJCwMUloGPzL0A8qOqCSAxYzAgTufAJAQUHCmwwhUeA5ggkNn1Ijj/PeIkI3/cokRUiRXxoCCRedIXLZDLMnDnTZlXu7Jnj1SL8lXPxBtZ9J76qQHN3vaneuXjS3e+sibO1tRU1NTWIiIgQcjXWTZy8ZlowoT+FYBhGKANWq9WCYrK34B9ER8UBHMehvr4evb29Hsnwe7ILkjLjH3xeEdgokUKUmgFuRA1uRA2iGYW54qTbnIgjEIgg4kYROvIpgE8RQwCDeRYMonxw4VmgoqxKGyeRybZQ3v2QORc/fMpF1z7lZN0fJmIwt70BfckZOFGwHBQjglinhfniEM92bWIxcKbh0tWnYKZpqCUyQCRGhGHM7sEYnwTR8AAYu4ZNyn4XCSBRKoHKZEYPIagxWoBBDVJFNHLkEqSEyhHuIPlr3ey4cOFC0DQNQgiMRiOMRiPmzZuHmpoam/dYyxAFArk46853lqsZHBy02dV4m6+YDsl9b3dc9k2cBoNB2NVYN3EODQ0hMzPT78KV1njuuefw6KOP4v7778f27dt9eu6AIBdPH/yGhgZBMVniyQrVAZxVnvH5FYvFMi6/4gyeGD1JPXjw6YhI0BGRsHS0uiQWlz8kyvarpCkgRHIaITgNaAHzcDj07GxYQueD48Qeh2yI3XfjiiwcwWVS2xWJ0uNHmCSX4pJQCcAakd3VCHNbHYYIhd6YRPTMK4AlMmb8eazHb0Us7iDlWCScIRUOgEIWCsmAchyRAEC8Rg2laCzfxwCIlYjRZzRBYn1tikI3S9CtMQIaI2LMCswMkSI9RIbIiAiIRCIQQiASiWA0GoXvmc9r8V3j9g2R1s+fK3KZKnjane9sV+Ntrma6ci6TgUwmc9jE+eKLL+Ljjz8Gx3H429/+Br1e77Ez7kRw4sQJvPnmm1i4cKFfzh8Q5OIOfX19GB0dRUxMDBYvXjypVRj/Xusdx/DwMMrLyxETE4P58+f7NH/jzWMhlcngMhhmMQPOmiop12MWi0chFp8A2BMYqbfA0LgYyFwMOjkHlMxVIYTtZ+3Kp97hu118V659UGzfNysiFIvElE0oTSwSIQFAwmg/Fhz5GhqLBUp5GLpnzMZI9qyzxEJRoMLDQUa8txQGxnQSwlmzQ2KxHqmEphDGMFCazGf/4GReZ3RaaFQ94Ou/IiMjYbFYhNzKwKgGUaEhYBx83o469q2bMe0xlVpfE7nWZHY158LOxRWsmzh37NghqIoMDAzg2muvhV6vxyuvvILbbrvNZ9cExvI6N910E95++20888wzPj03j4AmF47j0NjYiM7OTkRGRiIuLm7S23vegIdf8fH9Ma7yK87gTqdscHAQOvUwPE3tmlg34TCLxSm5EC++Spq2gGr8Gmj8GhwAkrQQ1IwVoFLngoqMcfkZWDzIuVjD1bkYk9HVG4X/uyQmEjNgcRnOo2kKERIxIlgjZjaegqHmBAYIhZbIWPRQFES02LZYmKIAD02+PEEIQ4OhKAya3fT/EIKE0SHEa21zUda5KQJgV/8I5MpBLCJmJESEIzIyEhKJxOFuWS6X409/+pPT3fx05VwmCm92NVMhx2INf1+PrxL729/+hoiICFRUVEwo/O8O9957L9auXYvLL7/8x0cu9jbBjjSXJgqGYWA2m1FbW4ve3l6P+mOcncdRWIz3p2loaEBMeCQw7KFFs6sVEU2DM5udqo2J3OxcbE7FnB0zBYDqqwT6KgEAlogscLkbIEpJAx2XMC6P4UlC3xouJWV0WphrqkGFR4BOTQVtff9n3nd5QjRiLd4VNwCATCJByNAQwluagcR0cNZbCEYEKjISYC0AM/mQA0NR4AiBzr5c2e44ihCkjw4hXKMGoWmnOyGCMb20tP4+qC1mqBV9AMZIxP55i4qKwkMPPYS+vj6oVCph0o2JiRFW+IGQc5ko3O1qeD97hmH8ZhBmDX/Lv/B27qGhoaBpGoWFhT6/xvvvv4+ysjKcOHHC5+e2RkCQi/2D70jGxReCkzxomkZNTQ1omp6wzTF/Hvsx8U2dSqUSRUVF+KJV4Tm5uJq4OQ6UiwoylhJ5LnPp6kCdBmxDDdiGGoCmwczNBz0//2yMn6JA4HmZratJjaJpMPFjRROkpwtmnRYQicAkp4EhBGsSoyE3e08swFgotb+/Xyil5s6Mg5FIwclkIIMDIKne6cI5QmhoKLQEMDgqTmBZ4EwBBE0IsoZVkOvHngUGzqU5KQDZ/b0Q2WmUCcoGZ5Camoo333xTIB21Wo3+/n60tLSgpqbGZrc/VXkXfysi2+9qjh07Boqipqyvxt87F1600l8E1tnZifvvvx9ff/21U4sTXyEgyAU4G0fmHSntw1QikQhmH/h1DA8Pw2g0IiQkBEVFRZP6Eu13LkajEeXl5eA4DsuXL4dcLkd4l+dGUe58VbgBJSiRCJRUColMDrPVQ85581U6+b3JmXBoRVYOdRwH6HW2P1Avf6wuf9xWEx4llYI5k7TmFN1IUnYjRsLAyLovmrCHYLIF2OQ8qLBwUGYLyIh63PXdwsGh4eHhY95Aoa4b3sQch8xBBaQmV8rKY6BpGizHjSMWe8yZMwcvvviiUEVpHbvPzc2FXq8XekwGBwcBjBXE+Nq7xR5Tmd9hGAY0TSM9PR0xMTE+q0BzBZZl/b5z8ZeJGwCUlpZCqVTa7IhYlsXhw4fx2muvwWg0+uz+AoZcWJYVVvyOwlQMw7iRPXcPPr8ilUqRnp4+6Q/ReufC77Z4C2X+3FJvwkgOypZtwLKA2QRiNsGoGYVUIoZRJAElkYIzeaFO7KASazYTg0WWeHDmPgybWXTTEjSGREPjQs7eEUY0GoDjEBISMq5Tf9w4HEzu7OAAzBUnYAiRQxIWBckZmRmWZWEymVwuMDiOQ0tLi+PnhGFARg2wWE3aRi9IS2a3g4qIiDhLYE7YmgIgYy3IGOiD2AOlZD6f4m5aufDCC/HMM8+A4ziwLCv0bfFhY4qiIJFIkJKSgrS0NPT29qKtbUxV4fTp0zCZTIiOjhZW+BPduTvCVHq58NfjycxXFWjurudvcvFnGfJll12Gqqoqm9duv/12zJ49G7/73e98em8BQS4cxwkKw/yK3x6TcaPkOA51dXXo6+tDYWEhmpqafOInzu9cenp6UFNT47AoQO6OMKzhhoiIXQjOaDIDJjPmDFTjwZpDUBhZlIdIcSI7DLpQF7kEqyFRFFCMZGRbxsyxaIpCjESEGHBYYBrA6ZE+lHt+B4g40/zFcRw0Gg2MRhdJeztysXR1wNIw1sdh/ReKoiASiYRy3VGTGabREcHeFnCsXSa8PyoakhWXwPjJhzave1ImzoPmy6YpChHh4VbE4hwy1oLU/j4wbgjaUVmxM2zcuBH333//2JjOmN/x77X+zzpcSwiBRCLBrFmzkJubK6zwVSoVGhsbIZfLhUmX77CfKKZy5wI4rxbzV1+Nv8NifHe+vwg6PDwc8+fPt3ktNDQUsbGx416fLAKCXGiaxqxZsxAdHe30i5uoG6XBYEBFRQU4jhPyK21tbT7J31AUBYVCAY1GYyNqaQ13dsWUehgWowF0eIR7u2F2/MR5hfoE7m79F8QMi/gQYD4suLFZg24jg0pGgmOpIehNtC1RFUKNNI3LuHTEEOexV7lXClxnQdM0wsLCXMd1rcjFfLoGbGfH2T85eQtFUYiQSgBpHAgh0Gq10Ov1aGxsdJhXoGgasqs2eK14oAiPgtRkRKRRL+wkaJqGKDRsHLGYHVw3nHBI7+8D5SGxuMuJUBSFO++806lboD3RAGMTIcuyGBgYEMJnFEVBJpMhLS0NGRkZsFgsGBoaQn9/P2pra8GyLKKjoxEXF4fY2FjPbJ6tMJ07F1fwZV+Nv3cu50N3PhAg5AIA8fHxLlduE0noDw0NoaKiArGxsZg3b57wUPjC6thsNmNoaAgsy2L58uVOt7JhYje7kcgoMBibXNgBleuLWo2ZJhx+rvwM63u+GncYQ1PIkHPIgAHrVAYMdg2hjkhQFi3BqcwwgAJCGBFWWTIhc/MIMA4IzRvopc5DLnxYzFR2HJydrbMn6RCKosYI7IxSrUOcCc15S5GJo8M2/2ZZFjKZDLrR8TsWg14PiM/eZ5xRh4QBBWg313VUVuxI4oWmaTz88MO46qqrPBo7P9kSQlBTUwOdTof8/Hxhp2397NM0jdjYWMTHx9v4l/T29qKhoUFY1cbGxiIiIsLtRB4oOxdXcLSrGRwcHKeBZr+r4cOP/k7oT7Wu2KFDh/xy3oAhF3fwNizGFwbMmjULGRkZ4yxeJ0Muo6OjKC8vB0VRSEpKcvkwhHrYS0FRlGDG5QzkzIQTwhmwtedd5Kk8C1jFSAkugBEX6I0wVI/gY4UMnCUXtAf1ZerR0fHjgOfVYjJXC1/CwXjkWxC9bvyfvFj8enSog4O8IRyGYaDTjR/n2KnPnilJN4rYYfdFHI4quJx13T/77LMoLi72YrRji59Tp06B4zgsWbJE6PLmJ0hep88+VxMSEoLQ0FBkZWXBbDZjcHAQ/f39qKqqAiFE0MOKjY112FczlTsXQohPmiitdcBc7Wr4fpNzOecylTinyMUTQrAvBY6JGS8JMhlyUSgUqKysRFZWluB77grhbnYuNnD3I+E4JJsH8P9a3kS6rsfz856BycLhq2YWLGGBUJFL4UgAaBsYwiAml+w1wjG7sBQFNcs5JBbAd0Zerk5IyeQA8ew5cLuwIQTpmmFE2O14HIF//qwnKUe7GKlUildeeQV5eXkejZEHX7UokUiwaNGicdfhxwBA2MnwE7X9riY+Ph6JiYkghGBkZETwmq+vr0d4eLhANLz44lSrAVjfky/gblcDAI2NjYiLi/NLX00wLOYHeOJG6Y4QDAYDysvHVvPOCgOAiVkdE0LQ3NyM1tZWLFiwAElJSWhqanKdsAYQ7ibnYg2KosYIxsnYEsxDeLH+bwi3eNg3Y4UhPYdvWlhYCMDQLMLDwqCkRDBrtQg16sFYFR5wHIdGxQB0ZjOoCAe5CoryePZ39L2axWIABDLivIKKTDDXYw/ujOI0bdeHIl6yHBhRACbPyMVVToQiQJa6H6E6jdvzOFrYOCKWmJgYvP7660hOTvZofDz0ej1KS0sRGRmJefPmuZ147XM1/K7GujiAPy4sLAzh4eGYMWMGjEajMOl2dHSAYRjExMT4pFDGU1iPzV+w3tVoNBocP34cDMP4ra/mfFFEBgKIXNzB3W6Dz6/ExcVh7ty5LreuDMO4JQVrWCwWVFVVYWRkBMuWLRMkGjwhqTCxlx+xWAIYx5fS0vGJ+ImkDUxEPDqQiWjtAMJHFR6dsmOYw5Eu9ux0TQhEFjNSYAYkNDhxCDRGEwxmMyws0KRUwcL/cPW6MbFHK/E8IyOC3IPSWgCQMbbHGWRyiMxmiFgLNHLn/SHeUIurHzRt1IMzGmyKJSQXXgpaKhsjl0mCoiikSBioh9xXjzl6huVy+bjmyLi4OPzjH/9ARESEV2MZHR1FWVkZkpKSMGvWLK8nOme7Gp50+Gedr95LTExEcnKy0MDJ52rMZjPKysomZJTlDaaCXOzBMAxmzZoFYPyuRiwW23i2TGRXc754uQDnILnYS1lYS63k5eUhPT3d7YPsTVhMp9OhrKwMEokEy5cvt4kze1IYEO7tAyYW25ILRYGOSwCnUsAURmO2vv3MxYGu+ET0imLBDPUjWq8E4+C2T/WxqO23J0DbqZumKETIpEgJS0ZOyIXQJ5nQru5E49BpNA83IOfZBzE0vwij8wthycqBxIuQosnKl0UXEgaZTiv4pLj6lkRiiVe5HeegQIYGwem0YDKzIY5PBqS+6UymaRpz587FwNAQ1ENDLo919MxFRERgxowZKC0tFV7LysrCW2+95bXqN7+4yszMRHZ2tk8mc1e7GvvwGd/ACYyF5aKiojAwMIDW1lZh0uVDSb7KWfBjmErdNOuxe5qr8WZXo9Vq3Vp9nCsIGHLxJCwG2Erl842XKpXKaX7FETwll4GBAVRUVCAlJQV5eXnjVkie7FwixSIw8NzjXiKVwqQZS6KLpFKw8hBwqrEVtpGIbGbbNJMSaSYlIAVGRSIMjJqhtwASGhAzFA61WdCrcbQHGP9avCQbGSFFIIQgTCrGvITZmJcwGybWjJ7RXjT3NKOpfgeuulONNrIJzjRk9KBsypf571UbGo4Q7ahHZEFFx6IwMwWU2jN7aNfPDgFF06DCwkHPnA0A4PQ6EIMegxYO0YSAnsDkJBKJMH/+fISGhmLIDbEInfxWiI2NRV5eHkxWJdL5+fnYvn2715OlSqVCVVUVZs2a5bV5nqdwt6vhc1L87zM5ORmpqakOTcKsGzgn4xXPJ/Onilxc9bi4y9V4uqsJ5lymAda2wiKRyCa/smLFCq90ctyRCyEE7e3taGxsdOl26dHORSzymFgAwHKmuowKCwcNAsvw2YnL6KK6K5xhER51xgiNIzjWzTohlvHUkh2yCDHiGQ7zChJGjKyoDGRFZeBScgnURwZAJw85reaSg2CUsBhlacgoAKCgDQ1HqHZ81ZmjDn06MRniefmgle1O71VvsUDGMJ5NKg4+AloeAtPpOnwLoHz2XMxQdCFNp0YcTXkUypBIJMjPz3e7u2AYBjNnzsTAwIANuSQlJSEnJ8fm2MWLF+PRRx/1WmSyp6cHdXV1mD9/PhITEz1+32ThqIFTo9FApVIhPT1dIBuapgUyAWBjfdzU1ASZTGbTwOnNrmaqy569kX5xtqtpbm6GXq93uqsJ5lymAfwKhWVZDA4OoqKiAgkJCZg7d67XD5grUmBZFjU1NRgYGMCSJUsQFRXl9Dye7FzcTRShDA2ttZquSAQ6JhbciBomuwolE2E8ihMxNAWJVA7AWeL/7Iw7N/xSyOgYj3IcNEUjWhwPmqjBUs7fEU4xCD/zZKlBHBKLw3Fn5UCcMxbPdlUvIBeJYDKZoNfrhfJZZ7D/uDiOg/nEURDNCJiUNBgSUlAbHoVakxHgWKT39yFrWIUU1uSwgTAkJAQLFixwS0IMw2DOnDmIiIgYE9A8g1tvvRU333wzvv/+e5w8eRIKhQJr167F2rVrUVNTA4vFIoSQ4uLiXDYxtre3o7m5GQUFBRNS9fYVaJqGRqNBRUUFUlNTkZGRIeRo7EudpVIpUlNTBQIaGhrCwMAA6uvrYTabbUqd3S0YzxUvF092NYODgxgdHYVarfZbzmXbtm3YvXs36uvrIZfLsWLFCjz//PNeVyN6ioAhF09WawzDoLOzEx0dHR7nV5ydxxG52FebuXu4PW3GdOEZZUssGHOltPR0OTzWTLz4IREX5EIABgwWRq0GRbzrwPYWYWbHpcaA1c6FoiCaPR+ilLM7RHd9LhKJRNg5eFqhxJnNMB37TshpEQC0VApIpWMSKRyHzrAIdOpScXNzBUwmkyAKSVEUoqKiMGfOnHETmv2OTyQSYeHChTbVihRF4Te/+Q3WrVsHAFi5ciVWrlw57jyjo6Po7+9Hd3c3amtrERERgbi4OMTHx9uU+zY1NaG7uxtFRUV+8fvwBrzZXlZWFrKzs23+5kqWxr6BU6vVYmBgAAqFAqdPn0ZISIgwKUdGRo773M9VLxdHu5qdO3fi1VdfRVdXF7RaLYaGhrB69WrMmTPHZ2G/b7/9Fvfeey+WLFkCi8WCxx57DFdeeSVqa2v9QmgBQy7uwCfzu7q6sHjxYkRHR0/4XI7IxZtqM+vzuJvYvJU651zJlGh1gIcFRIyLnQUoEQqjN4DlJiDcRzivelBod9zLiCBeWATGLl9GvEjl0zTtNvnP6bQwHT/iUEIHGJv8zQwDOiwcJDQMx34YQoaEQUJoCMRiMViWxbx589yORSST4fWXX0ZZWRkaGhpgMBggkUjwxz/+EcuXL3f5XoqiEBERIST6TSYT+vv70d/fj46ODtA0jbi4OBgMBmi1WixZsmTaK4sGBgZw6tQp5ObmIj09fdzfnRUFOGrglMvlSE9PR2ZmpqCA0d/fj+rqaocNnOfKzsUV+F3NL3/5S9xzzz1YuHAhLrzwQhw4cABPPPEEfvazn+HNN9/0ybX27dtn8+8dO3YgISEBpaWluPjii31yDWucE+Si1+tRXl4OQgjmzJkzKWIBxpMCr5acm5uLzMxMj1cK7nYuFosFp06dcrlzGQcHZcg81EbPFQpETn5zBi4UXaYi3BKaAI4QGC0maEw6mDn35zazFmhMWtAUZWu+5QKuPksRRUGyZAVoBxMk8VmSloAbGoSp/LhXvTl1RhZVWgMwqEGGmEGOXILkUDlCZTKn98RKpChYvgJ5eXlCqMFoNGJ0dHRCFUC8sjHvtT44OIj6+npB9bm+vh7x8fGIi4ubVGJ8olAqlaiqqsLcuXM96sfxtoEzLi4OCQkJwo5uYGAA3d3dqKurQ3h4OORnZH+mygxtKnZKZrMZmzdvxsUXXwy9Xu+2WGQy4N1PPS2E8hYBQy7OHg7r/IqvEnj8zoXjONTX10/YjdLVzoUvYZZKpYJToUdwcX9mLzRRHO1cNGwsOoyLwFGSMbkZikKIRIYQiQwcITCzZmhMWujNpnHfh95sAMuxiJZHgiKee9S4gsRkcEgsgHd9LgBAUTRAxn8XJpEEprJjjt/kyUUoCh0WDh2jBmDUgESLETmhMqSFyAWtLd4N0cCyEGts80tSqdRr8UdH4DgObW1tkEgkWLp0KSwWC/r7+6FSqXD69GnI5XIhfDZZZWNP0Nvbi7q6OixYsAAJCQkTOoc3DZyhoaEICwtDdnY2TCYTBgYG0NPTA71ej++++87GgVMsnry7qCP4W7QSsJV/kcvlPrVDsAbHcXjggQdwwQUX+FwNmUfAkIs9rCu2Zs+ejfT0dBw7dswnasa8TtnJkydhMpmwfPnyCa38nO1c7EuYmd7/OFTOdQTKhey+IWIm9hm0mCdpQDqtdnocMN4aZsCcjl7zXAC0w+53mqIgFUkgFUmgNenQrxuGibVAyoihM+khFokRJh176CnQcO6jaHc/7vxcRKKxXh6zxWY3xHm5EnUUFtPLQ8Cyrsbp/Dtxto+z6HUYVvZAjbF7i4mJgdlshoVlIYN/ei5MJpPQa8XLuUgkEmRkZAjKxoODg0JJMsdxiImJEXY13vbMuENnZycaGxuRn5/vs0ICbxo4GYaxqYzLycnBwMAA2tvbhTwVTzZhYWE++06mYuei1WqFJm1/4t5770V1dTW+++47v10jIMnFumLLOr8yUdl9e+j1ehBCIBaLUVhYOGF9IIZhxm3LOzo60NDQYFPCzNCUp3Mx4GhlRNOQLLsQqaNhULYuhRIAJ2pBlPQ4ciU1mM0oxu1U+H8TAvSZZ2PAYpVodcNzoZIQhErGyNbMmtE9ooSFs8DMmiFmxKA4jPn0egC3P+wzMXcOY7sPImIAjoN7yyy769CUTTORViJFiF4Hg9h3E2usdgSJo8PCyAghGBgY68XhX/M1uej1epSVlSEiIsKpnItIJEJCQoJNCEmlUqGzsxO1tbUIDw8XiIYvCpgoWltb0dbWhsLCQpeVlJOFJw2cZrMZNE0jIiICUVFRyMnJgcFgEEqd29vbIRKJEBMT4xMtMH/vXEwmEywWi99Lkbds2YLPPvsMhw8f9ltfFBBA5MI/8Hx+habpcRVbk1UzBsa81Xkntvnz50/qYeMffn5FU1dXB4VCMa7gIAEErZ6e1P7hlUghvfRKMDFxGK3oBM4IQdKWGRixzECpFjhBDSBU/ANms6XIjeiBTMRCRBOwhEGnsQAabmJhCwAQM2LEhUQhTBoKjnAY1KlBXBUL2MFTm+Oxf3KAmQOxWFBnYhETFgWaEESMDkHixYpRK5Ei1OS5vI8j0Bx3dj1ACNK1w4gYGQbNMOBcPIO+JBeNRoOysjIkJCQgLy/Po3NbFwXk5OTAaDQKxmBtbW1gGEYgmpiYGI+ff/sKNW+laSYDR7sarVaLrq4uxMfH2xQFiMVioYGT4ziP+0s8Acuyfgu5AWPfNwC/kQshBPfddx/27NmDQ4cOjavs8zUChlyAs+GkpKQkhyWfk3GjJISgsbERHR0dWLBggWAgNhnwD7vBYEBtbS3MZrNDwczDay/GgbYu/KO2CSdGddBK5c4faityocIjIL18DWjZ2PlYJxMsTWKhN61FOdaifECPMPYYZGwlWgxyGMnkt9g8BdAUjbjQaIhpEUxOWkM5owUaow5yuRxisdjryZYbGYGp4gQMcjkSYsfCcCxFQWU0wcwRRIgZhDmZEAkAnVSOUKNnls8epVwIQaZ6AKG6sVyKu7vxFbnw5b0ZGRmYMWPGhM8rlUptigL4CqzGxkbo9XphVe+qKIAQgoaGBiiVyoCoUOMNAOPi4pCbmyuEzRwVBURFRSEmJkZw4LT3beFN0Txp4OQ9ffwFjUbjtm9rMrj33nvx3nvvYe/evQgPD0dfXx8AIDIy0i+5nYAhF7PZjMrKSuTl5Tndqk00LMafW6vVYtmyZcKPY7K7IJ78Tp48icjISKchNoqicFl2Oi7LHivVrO8fxBuV9TioGkK/SGojqsjnXOjkVEguvtyGYFmRBxMMLYeGXok+shhG8tlkbk/AON8RF1MsLRUhQhohGE9ptc4VnO079C0qBSzVFWNhMYYGMPY9MRSFeOnZ8JbabIbWwkHK0IgWi8aq12gGBooZTywuGCRsqB8RbacxlDZjLPdjB4ZwyBpSQmZwT1a8srEvyKW/vx+VlZVOy3snCr6vhJee0Wq1NkUBISEhAtHwRQG8hcXw8DCWLFnitwSzp9BqtSgtLUViYuI4cU7r/IyzBs6UlBShv4Rv4GxoaIDJZLKRpXF0n1PhQhkaGuq3vM5f//pXABjXX/XOO+/gtttu8/n1AoZcxGIxLr74YrdqxmazZ2q8PLRaLcrKyiCXy7F8+XJhW+uLEJtKNeYcmZCQ4FWz0+y4GGz/yQoAwP8rrcM/qutAcQRUaBggEkE0ez4ki5aMex9Lez5xiVxIxVCAV+Wb9mXHrshFOOaMS6TrxPzZ81o622BprBdCZa4k9yPFYkSeiU7oWRZqkwVmikKI2btQWIjFjAsbKmBqqMCIVI6BiFh05M6DITwSkjPd+hIPzulIMn+i6O3tRW1tLebNm4ekpCSfnNMZQkNDERoaiszMTFgsFgwMDAjGYHxRgF6vB8uyWLJkiU+q3iYDjUaD0tJSpKSkYObMmeOeX29LnfldGyFEkKVRKpVobGwUqu+sGzj9ndDXarU+ke13Bm977iaLgCEXYGxn4uoDYBhmnDy5K6hUKpw6dQrp6enjVjmTIRdCCFpaWtDS0gKGYZCWljahB2LYaML3HV2gaAaUXAoiEkGUPRN0iOOwA+usecUBaMr1sSZigZTyLH5M7Ep8vblTOXGx0jvzVZsaasF1tTv8m9vzMwzkcgbNTp4bT8YqARBn1CNO1YVZyk6odAb0KDshchOCdeQcOZmJoaOjA01NTdMi58JL6PPGYMPDw6ipqYHRaATHcTh16pSwq5lsUcBEMDo6itLSUqSnp3scJnTVwGlf6iyTyZCWlmZTfTcwMICamhqwLCsQrT/9as4nF0ogwMjFkfWrNTwlBEIIWltb0dzcjHnz5iElJWXC57IHy7Korq7G0NAQiouLUVpaOqEHrm5Ijas/PQDtmYY4oteNmXBJpCAGPSCRgrJbJXH29cUuQLkgF3NaMprDRGBFNNL0ZkSbXW/17b8T2gt6cdkMSQHGUydB+lXj3+fxFc6ey8kIvDrNoEYDZWcnRB5oxtl/LgzDYM2aNV5dDzhrRNfV1RUQci4WiwVNTU2QSqVYtmwZWJYVlALa2togEokEoomNjfV774darUZZWZlDeRlP4U2pM0VRNg2cGo1GqEBrbGxEb2+voP8WERHhM6LlvVymmrj9hYAiF3fwJOdiPfkvXbrU6Q91Im6UvPYYRVFYvnz5WIPkBEhqb2sXthw4Mv59hABGAwivfSWRgBseBh0bBzo8AqxX5OL4AdUunIP2DZcg69AwQigKAINhjQoa7SBk0lDERKSM186yP7c30ixOjiUUhZGQcIfEMhFQNO09IdlBqVRCqVS6PY5vnLSGSCTCnXfeidTUVK8mCUII6urq0N/fj8WLF0+7Ii7fUyOVSrFw4UIwDAORSITU1FShAosvCjh9+jSMRiOio6OFBk5f52T4woYZM2YgMzPTZ+f1poEzJCQEoaGhUCgUyMrKEkrQKysrQQixaeCcTE/R+aSIDJxj5OKuWowvY2YYRpj8XZ3LG1LgH/K4uDibfgNv4+3PlNbgL2VVnkmRmEygQ0IAvQ6WARVGVWqoTXGIlLgvAx23c6EoDFy2AorlC8ZOTRHwNSlRYfGICosHAOgMoxgy6SCiGcTIoyBmxocqvdm5ODqUZRiYxRKEG42Ak9+StzbHFBlPgixFwShyHvqzPr6npweDg4MeXcs+cS+Xy7F9+3aEhISgv78fzc3NkEqlQslvdHS0w1g9x3GoqqqCVqvF0qVL/VqJ5AkMBgPKysoQFhaG+fPnOxzzRIoCJoqhoSGUl5f7vLDBHp7uaiwWC0QiEaKjo5GUlARCCEZGRjAwMIDOzk5Blobf1XjbwKnRaKZFxsdfCChymYyDJC8Tk5iY6LCM2Ztz2aOnpwc1NTUOtce8CdVt/vp7HG7r9Oia9pCOqmHoqsdfTEbEG0KwEKmYIU5GjCzaYX7F2gCLYkTo3LQKI7PO/kAtTibvEFk4QmRj5csWzgKFZgA6sx4hYhlCJGOrUgkROW6JdwCLXZ7ILJaAgILMoIfRlSOkl9sQ+8MtjAgsI4Kcc//dtLe3jzPzcgRH33VUVBT+9re/Cdph6enpYFlWSI5XV1eD4zgbGX2JRCLozlksFixevNjnXfTegpcrio6Oxty5cz2eFK2LAsxmMwYHB4VqN35VHx8fL4hNegpeEDMvLw+pqakTva0JwdGupr29HSzLCt8df1x4eDgiIyMxY8YMoadoYGAAHR0dNlL7nvQUnU9GYUCAkYs7OAuL8V3xeXl5yMjI8OhcnpACIQSnT59GZ2cnCgoKEB8fP+4YT3Yuw0YTVn2yH51Dwx6NzR6m+hoYujsE3TEVrcN+NGI/24iQURHykYpcUTISZfEQ0WfMxnjCkcnRfNvVMMTbin06IxdriGgREsNioRhVQS6WYUCnhsFsgDHa7HGHvsUqlGeUysFYzBDzysQudm+isLAJ2xwbGREowkFqMsDsokOfAEJznTs4el6Sk5Px97//fdxqk2EYhx3zHR0dQse80WiEVCpFYWGhXxvzPAFfhZWUlDSu8MUbiMVim6KAkZERqFQqtLe3o6amBhEREcJuztWqnpexmT17tsN86VSCpmm0t7ejvb0dixYtQkREhEMHTooaM5pLSkoSeorUarVg9VxTU4PIyEhhkeGoKixILtMI+x84x3FCV7w3NseOzmUPfmXJ98Y4+9I98XR5qqoRXWCAkFBA57zvwx4cx8FcfgJk+Ey4xsFkrKMtOIp2HOXaIV+2DnNUJuR2GZBikAIxcWi4Yz1Y2fjwoCfkwmNQyiCRohAbEgkgEg208zwJY6FgobkxORZYKS+EhEGq14K2ugdnUxgVn4iZOTNAKZy7UY5/09j/GEQSiCxmiM7cnzPBUJoQhA2qJkwsc+fOxSuvvOI2mW3fMT88PIxTp04BGJvUjx07JuQrnIXP/ImRkRGUlZV5VYXlCSiKQmRkJCIjIzFz5kwYDAahKKC1tVUoCoiPj0dMTIzwOfJKy1NRiu0J2tvb0dLSYqNKYO/A6ayBMzIyEtHR0Zg5cyb0er2wq2ltbYVEIrGxPWYYJlgtNp2w/pEbjUZUVFSAZVmHXfHu4IoUrBWNrXtjnI3J3c6FoWlQYjEosRgkNAzgWBCjcYxonLyXM+phKj0O6J2bbdncT0Y2SFQ4aiQ61KZHgAoNBcX8dKwCzQHMjpIUTmCf/3CVc2FFBGYOGGTHHFnkINCGhiNEOzr+XY5sjtMyIMmbBww7JzATGEgNZhDZ2YmYAgWtWAqZ2c4M2sE1RByH7GEVQlkz3HVNOSKW4uJiPPfcc15PxBqNBpWVlUhISMDs2bMFGX2VSmXjQukvwUl78B5G2dnZyMrK8uu1+FLftLQ0oShApVKhoaFBKAqQSqXo7e3FwoULJ6y07Es4IhZreONVw9sn2Nsenz59Gg0NDXj33XdhsViwcOFCv97T66+/jhdffBF9fX3Iz8/Hq6++iqVLl/rlWgFFLu5+rHxYbHh4GBUVFYiOjsb8+fMnbD3qiaKxu5WkJzsXuXUHPkUBjAhUiAhEHgKaENBGA9iREfDeXZx6GKaKk4DFbupztAqnKIhmzIIoawag0YCSSkFJpSCgwI0MC82ZlN1E5U19mzcd+gAgoSnwa04t69zm2P4sopy8sfuAaydKCVgQGQ2LiYWStUBMU9CLJZAb1OPOKbYbu5RjkTnQB7HZBM7Nc+PoGVmzZg0efvhhl+9zBLVajfLycpsdAq/zxTsx8i6UvOCkp2GkiYDPi8yaNcuv4oWOYF0UwDcwtrS0oKenBwDQ1NQEtVqNuLg4hw6UUwF3xGIPbxs4eTWA3NxcpKamoru7G3//+99RUVGBI0eOYM2aNbj66qtx6aWX+uyePvjgAzz44IN44403UFxcjO3bt2PVqlVoaGjwC5kHFLm4A//FnThxAjNnzkRWVtaEf3COJg5HisaenMfdzoV1EgqjKAqEosDKQwB5CKAZBduvhLnsmNMdjQ1oBqL5+RDFn5EfZy2AzgKi00LMMIDJCBMjBqEolHz0T9TkzkX7jFyw4RFgvQiL2R/pTbWY1IHHytkTnzkzTUM0dyFEiWcNpzyR3BdJGKScSf7IWbND4WnrAuUQ1oyM/l4wnlhTO+hjufXWW3H77be7fa89+OT0zJkzneYE7V0ojUajUIVlrYPFh88m01uiUChQXV0dEKEniqIwPDwMlUqFwsJCRERECMUQp06dAiHEpqdmKgofvCUWR/Cm1DktLQ2PPfYYGhoaUFhYiPz8fHzxxRf429/+5lNyeemll3DXXXcJz/Abb7yBzz//HP/4xz/wyCOP+Ow6PM4ZcuFVWQE4bYz0BtZlzda5G28tlF3lbgghqK+vh3ZoEHAhx8KDDguHHByGPCEWsQSSwqWgwxwLU5pZdmyHBALL6Voo+3pxc8VJzGQtqE3PwveX3QazjsacEc5tbn4y5OLSzwVjfi6S/MWgo2w/c29sjvmzuUKE2YSU/h4wbkrA+fFay+NQFIUHHngAGzZs8HJMYyrcNTU1Hrs18pBKpUJvCa+DpVKpUFdXB7PZbOPX4o0sS09PD+rr67Fw4UKHBSpTDd4bpqCgQMiZJiUlCaW+arUa/f39QlFAZGSkQDa+3s0BviEWe3ha6tzZ2Ylly5Zhw4YNE3rWXMFkMqG0tBSPPvqozbguv/xyHD161KfX4hFQ5OLsQTGbzTh16pSQfPVFBzNPLiaTCRUVFU4Vjd3BWbWYxWJBRUUF9Ho98rIygdOelSDrTR5op4WGjRGLxP2kYm5pBNvahGOpaTgYGw+GY7FCpUR1Rih2yUMQYSZYOmBBcb8FhUMsZA54bVzOhfgoTEHRkCxdAVo+PonprZ+LK8QY9Uga6HN7RkffJcMwePrpp3HhhRd6fV1rU62J2Bxbj4GfUPmOcZVKZWP5y4fXXE241vIy/rK29Qb8RO7MG4aiKERFRSEqKmpcUYD1bo63D5isUoA/iMURHO1q9u3bh8rKSqxfv94v1+zv7wfLsjYmawCQmJiI+vp6v1wzoMjFEXhPi9DQUCxfvhzffvutz9woTSYTjh49ioiIiAmbhjEMA6PRVtyQLwiQyWQoLi5GW5f7rm+rE7r+e0wcJPlFHsWhTZVl4FSKsTEZxsbI0gz+k5gMOT22/xgRU/gmSYxvksSQsAQFQyxWNPahyCBDDD3Wh+KvnQtjNiHCNAqNA3LxwtEZACBmGDiSmGQoasLEEhERgT/+8Y+YO3euV2Phtec6Ozt9bqpFURTCw8MRHh5uEz6zlmax9mvhDe1aW1vR3t4eEPIygK3pmKfjsS4K4Hdz/f39QlGAtX2At4vEqSIWe9A0jQMHDuD222/HO++8g5tuumnKru1vBDS5KJVKVFZWIjMzU1BB9YWaMTBWUz40NIScnBzk5ORMeHttPykNDg6ivLwcKSkpmDVrFgghCPVCzRgubI4BQDJjlltiIYRA3lQPwxlicQhufHjIxFA4HifC8bg0gGUxq2sIxb1aJJltP29fkQsAaCKTINcOQU6JoQuJhOFMqYG3YTHKvvgBAM0wYDn3eyCxWDxObTs0NBSvvfaa18lua++TqZBzsQ6fWVdh1dfXw2QyISYmBhzHYXR0FIsXL54SC11XsCbeyYzHfjfHKwUoFAo0NDQgNDRUyFFFRka6fA6ni1gA4PDhw9i8eTNeffVV3HTTTX7TFYuLiwPDMFAobOcEhULht7xbQJGLdby7ubkZra2tWLBggc3NT8YwjD93S0sLurq6IJfLMXPmzEmN2Zrsurq6UFdXh7y8PKSnpwuJuzBvmuTc7VwiIkDFxoEYjaD1unGuiIRlYa6vhrGvx+VpCHEz6TIMTmfG4XRmHFiVAv8kLIo71Vg2wniSPhLgyY9FHxqNsYAnO1Y6zYigF4lhphmIPeiwB2wVCcaGP/a9UBTlsnQhPDwcISEhNj+6mJgY/OMf//B6x8FxHKqrqzE6Ojot3if20iwajQa1tbUYHR0FIQQ1NTVC+Gw6lI3533V3d7dPiZe3dwgLC0NWVhbMZrNQFFBRUQEANgoJ1q0F00ksR44cwXXXXYcXX3wRt912m1+/D4lEgqKiIuzfvx8lJSUAxp7X/fv3Y8uWLX65ZkCRCzCWq6iqqsLIyAiKi4vHfeGT2blYi1rOmjUL3d3dkx4vX4pcX1+P7u5uFBYWIiYmRkjY0TSNSPGYu4onCmSUm50LLBZQZ0qZqZBQSEFgNBgAnRZEp4OpqgxkeMj9hbzxdmBE6IuJxN6ESOwFUHx6CLnOZLgm2lZvNS5OM4LepkYwoTQGQ8IRM6gBaBaQuPCosfphelIeDkBwKGxtPWtCnZaWhr///e9ee5dYLBZUVlbCZDJhyZIl0y7nQghBW1sbLBYLLrjgAjAMI1Sf8d7yjpoY/Tme06dPC0Uz/mwWFIvFDosC2trabIoCzGYzurq6sHjx4iknlhMnTmDTpk149tlncffdd08J0T/44IO49dZbsXjxYixduhTbt2+HVqudUAWkJwgocjEYDPjhhx8gkUiwfPlyhz/QibpR2isaj46O+iS8Boz1MOh0OixbtgxyudyGWCiKQoiI8YhYAADulI+twj8EgBkUaJkcRCoD29fjGbEAnpU687B77o0yFzsxAqhH1KBpWnDVc2elYDMszShM5SfASCSgQ8MRoxsFZID9dsmR2ZkjfxVnSEpKQk5Ojs1rGRkZ+H//7/9Br9dDIpF4/IPni0IYhsHixYsnlLvzJViWRVVVFfR6PRYvXiwQpb3dsXUTo3X1ma8FNPlQoUqlwuLFi6dUnNFZUUBHRwe0Wi0kEgm6u7uFz8DfJAsA5eXlKCkpwRNPPIEtW7ZM2Q7y+uuvh0qlwpNPPom+vj4UFBRg375945L8vkJAkYtUKhUMe5zlFSayc3GkaKzT6SZNLnq9Hi0tLeA4DsuWLbMhPn5SBYAIseuPWWQ0wMKLOLrZuRAnIUGKosZ8YDyFFzsX+0efc2VERp+t5mNZFiMjIx6flx0agPlUKcCygJuVv5llYTYaQVEUZDKZVwS2YsUKhIaGYnR0VJhMVqxYgV//+tdQqVQoLy8HTdPCyt6VZwmvJBwaGooFCxZMS8OfNXjZIpZlsXjxYofqEvZNjHy+ore3F/X19QgLCxOIZrJ+JbylwODgIBYvXjztNskymQwsy8JoNGLJkiWwWCzjclT+IlkAqKqqwtVXX42HH34YDz744JSHJrds2eK3MJg9AopcaJp2K0PhLbk4UzSeiJ+LNXg58IiICBgMBptQDG84xCPSzUrWIpWB6LTgNCOAC4n4sYOd55u8iXQRL+7d/rysG5dLHgzDjE1ODOOUFMFxAE1D3teNoVorKwI3NyMRiSA587ny5ZzuYN+vwrIsjh8/DoVCIcShk5KSwHGc0NjHe5bwk058fLywE+AttGNjY72yufYXzGazYDnhafWjfb7CZDJhYGBAENr0lGQdgeM41NbWQq1WY/HixdNuKQA4zrFYFwWoVCqBZENDQwWicVcU4Alqa2uxbt063HfffXjkkUem/XnxNwKKXAD3bpQikcijhL47RePJFAZ0d3ejtrYWs2bNQmhoKKqrq2EymZyGUsLE7n+QVEgoGN7emGHGVu+O4GLM9s6VwvVZC27uaEW9SIQfktJgEIvBdbWDDgkB5UGvjD04L1fnrnY6nMUMc0UpDKNq2z94wZQ0TQuK0c5AURSeeeYZXHDBBcJrvO+Po/PFxMQgJiYGs2bNEiYdvgGRLwVWKBRIS0tz6Oc+1eCb5GQymWDyNRFIJBIkJycjOTnZIclGR0cLE66rXQhf3KDRaGxCc9MJV8l7a5LNzs6G2WwWSrz5ogBrpQBvlawbGhqwbt063HXXXXjqqaem/XmZCgQcubiDJzsXTxSN+fp/PjfiCQghaGxsREdHBxYtWoTY2FhotVrQNI3vvvsOMTExSEhIQHx8vE2+yOsHiXZOLsTVvTuYUFKNBjzeWAvGbEYhgOtUCnTRDKqaT+NwchpGZ8yEaGYe6LgE0HInsXC74bsMizkATVMOc04EgPmH70DMpvHvcfCay2u4+Bu/k7QmFk9hP+mYTCa0tbWhvb0dFEWhr68PLMtOm6oxMBaaKy0tRUREhI2R3WRhTbK8MZhKpbIp93W0sudN0HQ6XUB41QDeV4WJxWKBZPmiAJVKhdbWVlRXVyMyMlK4d3euo83NzVi3bh1uuukmPPPMMz8KYgHOUXKx70mwhqeKxtZSDJ78GPlqII1Gg2XLliEkJEQwD1qxYgV0Oh2USqXQNR0ZGSkQjdcJTIaBU7le1sVuy+4+FmlG8MvmBpvkvYiikEU4ZI0MYa16EKqGKtTGxuNEyQ3oSssCMRlAiSVjYpdOfgSsN307AIiDPBLLMDBJZIDR4HDXYfEyH+ZsrBRFjXOOnAyGhobQ2dmJ+fPnIyEhQUiM86rGfAjJvuTVX5jK0BxvDMaX+/Ire+scVUxMDHp6emA2m1FUVHROEos9rIsCcnNzodfrhXtvbm6GRCKxcR213jW2tbVh3bp1uOaaa/Diiy9Oe05uKhFw5OIuLMYwjFMPDm8UjfkHgGVZt7FpvV6PsrIyiMViFBcXQywWj0vch4aGIjs7G9nZ2TAYDFCpVFCpVGhsbBxb2cBzc0VXfvCcK3KxeqjXDPWjpK3Z5XVoikIigMQBFS79+6tQUzROp6Tjo5vuhF4kAqfXg2JoUHYayt7uXCjKVkDGLBKDoxnI9VpQUfHemk56DG8tqN2Bl3Ox1uXiQyWzZ88WTMF4HayoqCib1a2vMTo6irKyMiQnJyM3N3dKV8TWK3vr8FltbS04jkN0dDT6+voQHx8/rUl8f/SxyOVypKenC66jvPtmXV0dTCYTlEolenp6sGzZMvziF7/A6tWr8fLLL/+oiAUIQHJxB2dhMW8VjflQibsQ2/DwMMrKypCQkIA5c+YI6qbW57CHTCYTHj5+hUf3N3ouc+8iXk6NqCFrOQ2LRAJTQgpo6/DbmYf3TkUPlvZ4b6ccSTjImuox/3/fxMlf/QYEBDmjLXik+S9olclxPGExjiWvgZmivWtnoc8+ZiaJFBQ35hI5Bsdn8pZw7L8H++fE00oyR7CWT3Glg2VtCma/wAgJCREKAnyRHOYl/DMyMpCdnT2toRaaphEREYGWlhZEREQgLy8PQ0NDUCqVOH36tFfd8r7EVDRI2tsmaDQa7N27F++99x6efPJJxMTEIDY2FsePH8eSJUumpNQ5UHDOkYt9n8tEFY0pinLbbGddaZaRkSF03PPv9QT8Ci9K0ooBk4cFBC4eQAJAFzb2QyH9Cpi1WoCmwSSnARSFxzuakTHQ79l17PCDVosBloXIZAQkUlw0WoXf1rwIEIIE/TCKhz7FL09/ihNh89FDj0+EOwM/mRhkIRCbDGCsdhOUE5YSzczDJ811mCWXIjU0BGFymceTkqMFyER92PkeDf758lSuxHqBYbFYhAos6+QwX4HlbV/M4OAgKioqXEr4TyWsq9QWLVokVAlmZmY67JafzL17iunovOd136644gq89NJL+OlPf4qSkhJ88cUXWLNmDdatW4f//d//nZKxBAICjlzcTSDWVV6TVTR21pDJy/u3t7ejoKAAcXFx4xojvYXW4nkOgaIZ5yt364lZJAYTGQUAYPoVuOmbz5Ez0A8LvFv5WzgO32m10J5Z3S+MDMOzkjJoyl8YV7QlIkCmXo0eJ1EeM0VhyGxBDENDxH9ONAVdSBhkOo175RiKgrhwKaTpWeg7XYc+jRHQGBFBAbPlYqSHyBEdGuKU3ENCQqDT2bp3ZmRk4O2333Z35XHgOA41NTVQq9VYunTphMM7IpHIxlueDyE1NTWhqqrKpszZXbku7y+fl5c3YcL0JcxmsxAyzs/PH7cyt+6W533l+VxFVVWVTfWZr5orp1PSpb+/H+vXr0d+fj7effddiEQi3HzzzbBYLBga8rDB+TxBwJGLO/CrUj7ePBlFY0c7F5ZlUVlZKcjPhIWFTZpYRkdHHQpFCuMgxNYcy9XW2UEOQa4exp07/we56iGhDkCEsQ0BC9eyM3qOw380Gpv6gUXxLRj9/ITT9zDEOVGKCUGCiIGJECjYsVyLUSKHXO1Ymdjm46RpSFashCg9E8RgsDluhADHdWYc15khGdZiaagUmVIxpFIpRCIRKIpCWloazGazDbksXLgQL7/8stffG8uyOHXqlCDn4qtSWoqiEB0djejoaJsy576+PjQ0NAgNjI70v3hvmPnz5/utq9obmEwmQf174cKFHrm28veem5sLnU4nSNKcPn1aCB1OxoFyOollcHAQ69evR25uLv71r3/ZzEm8WvWPCeccuYhEIphMJvzwww/Izs6elKKxffiE77ZmGAbLli2DWCwWdkkTJRZ+pSmixU4JhgPADqgAlgUdEem6Z8OOXGJ6u/DLXe8i0a473zoAxwDQiiUwG/QIs7qPYYsFR3U6K/IhuPZiC+LDB1zeE+2CXHhIKAqJZziy3WKC04AgHxYTiSG59EqI4s7YrTr5qClCkD4yiLnpc8beTgj0ej1SU1MRFRUlGMoBwMqVK7F161a3Y7UHH+ahaRpFRUV+rfqyrsAymUxCFRKv/8UTjU6nQ1NT06S9YXwFo9GIsrIyhISETFiZICQkBBkZGcjIyLAJHZ46dQqA930l00ksarUaJSUlSE9Px/vvvz8llYKBjoAjF1cTOCEEfX19MJlMKCgomLRUtHWXvlqtRllZGeLi4gT/DneJe1cghKCjowPNzc2YO3cuJKdaAWdGYBQFJjZeeB9x9RlYkUtWfTV+se9jhLlpBmUByMwmyBgGBo6DlmWhsVhQbTrbS8LQHG650gJPIj+M56UJAAC5xYxRJ3+jQACpDLIr1oAOt/L1cDBZ0RyHjEEFYsUMkpKS0NPTA4qiIJfLhZAV/z1t2rRpQjIX/AKDnzSnMgErkUgc6n9VVVXBYrEgKioKJpNJaNidLvijr8Y+dGjfV+Ku8m46iWV0dBQbN25EbGwsPvroo4BoGA0EBBy5OAOvaDw4OAiKonziQcDvXPr6+lBVVYWZM2ciMzPTRk5kIj8cjuMETw/enElc2ebReymKAh0S6nz6PuNJX/DDYfzs+4MQe1kFJaNpdHEc6ljOJv9x8XwOOfGAzgKMGFyH0rwlF5dWx2ERkF11NWipfa7B9j0i1oLMAQVkFhMgDsXcuXNx0UUXCQ2zvAIwTdO45557cMMNN3g1RuBsz0hMTAzmzJkzraWjfAPj8PAwAGD+/PnQ6/Xo7OxEbW2t0MTH91FNVQWWXq9HaWkpoqOjMXfuXL9c11FfiUqlQn9/PxobGyGXywWiiYqKQmdn57QRi1arxaZNmxASEoI9e/YEhMRNoOCcIBdrReOioiIcOXLEoSqut6BpGn19fRgcHER+fj7i4+MnnV8xm82oqqqC0Wi0SQKLvWk8dNVHwnG4/Ms9WFdzyhtbFQF1BgNaTCZIKfs+TQoihkIEA4RLCDgCGCyA2ghY7JiG9hG5UDFxYNZsBOUghECsPi+JxYTMAQUkZ3p8RCIRiouLoVQqoVKpkJmZiYULFwqihAUFBV6NDwBGRkZQVlaG1NTUgJBz4eWL+vr6sGTJEkFlYsaMGYKyr0qlQnNzM2QymVCBFRUV5TdS1Ov1OHnypNDXM1WfkVwuHxc+6+/vR2VlJViWBSEEM2bMmPJ+Gp1Oh+uuuw4UReGTTz6ZUrXncwEBRy72D6y9ojEfqvKk+dEVWJaFRqOBxWIRJGImSyx6vR7l5eWQy+VYsmSJzfjE3vzgRc5DMSksi6L2VuhEIrfhMHuU6rTo46vW7DY81sVsFEWBoYBQCRAiJuBEMtRCDsvgMGJBwHDeXdfRZxkREYH05ETM/fZTjEbFoCtjJprjks+qQp95j9xkQMagAiKrcCAhRJBk4SdbvqdkcHAQR44c8aqnZHBwEKdOnUJ2drZb4dSpAK8kPDAwgCVLloybtOztfvlcRVVVFTiOE1b1cXFxPiv11Wq1KC0tRWJiImbNmjVt5GsdPmtra0NLSwuSkpKgUCjQ0tKCqKgogWj96RljMBiwefNmGAwG/Pvf//a74+i5iIAjF2s4UzQGxuRYJvrD4XdCHMchNTUVoaGhkyaW4eFhVFRUICkpCbNmjbcilnixc3FoGEZREBcVo6irA4sNY0n49tAw9NMMQo16RJuca3FZOA4/6HRQW0/Q9sc42YxQFAWGNWIBjEAk0GWm0WewwKAbgVTumZuh/TGxsbFITk4e+wdrQcSAEnMHlMi1WDAgkqI3JRO9s+YjzKBD+pAStF3oz74h0lFPiVKpFJLyPNE48utQKBSoqanB7NmzkZKS4vZe/A1rwcclS5a4DbMwDIOEhAQkJCTY5CpaWlpQXV0tlPpOplNeo9GgtLQUKSkpAbGrA8ZyLK2trTZGX7wsC1/mLZfL/bKjMxqNuPnmmzE8PIyvvvpqykNx5woCklxcKRrzk/9EvVj48EdMTIxQ6unIg8Ub9Pb2CirJ6enpDo+JobxxfmTG/Vty0U8gSk6DrrtjbKwAso0GZJ85pCckFEqpFImjIzbKyXqOw1GtFno3uRlP23DSxAQpIguOHfkX9JJIWOLnQhSTCVmYZz/epKQkp9VOYpEISWCR1NOC+JPfYWhw0GtTS+uVLS9LolQqUV9fD7PZjNjYWGFlz3eQL1iwICDKRPkyeKPROCHBR/tchU6nE3Z0fKc8TzSe+rSMjo6itLQU6enpmDFjRsAQi6Mci7Usi8ViweDgoM2Ojv/uY2NjJ1wQYTabcdttt6Gnpwf79+/3uGn7x4iAIxe+KcuVovFE3SgVCgUqKyuRk5ODrKwsnD59GkqlEhKJBImJiV4n4wghaGlpQUdHh9sS0f+7eDE+Pt2Kfza2oVJvhlnmYhVpTS5SKWSXrQYdOfYQm534vaSYjEgxGQEAeobBiMWCEZbFEb0OZg94LSQiBoBnnf28xrHIpIao+yjQfRRGRgZL3BxQsTMgj4iz2SHwpM2XC7tDZ2cn1Gq1U2LxVMrFXtVXo9FAqVSio6MDNTU1AMZsjf0ZPvEUFosFFRUVIIT4rPw5JCQEmZmZQqc8v6ovKytzu6MDzi7EMjMzkZ2d7eAKUw9Pq8JEIpHNjm5kZMRG980bVWMeFosFd9xxB5qbm3Hw4EHExsb68tbOOwQcufDGW+4Ujb0hF54EWlpasHDhQiQkJIBlWWRkZEAikQj6TxEREYiPj0dCQoLbCYdlWdTW1mJ4eNgm4eoMFEVhY94MbMybAQD4T2cP3q5pxPERPXQyue3DfWYHQIVHQHrFWptKKmfkYg05RUEuFsMslcFs163uCMk5OZhzwxVAzatuj+XvxV6Ik2ENYBTlQH8VTIU/g16th0gkglwuB8MwyMrKcvuZchyH9vZ2aLVal8dNRCeMl+YICwuDxWKBwWBAamoqRkZGcOTIkQmt6n0FfkElEokE+RRfw5nQJG9zbL2jk0qlQq4zUPJQwJjCcGtrq9dVYRRFITIyEpGRkTZWx3xBhFQqtVE1drQDZ1kW99xzD2pra3HgwIGA2OkGOgKOXCIiIrBo0SKXx3hj9MWyLGpqajA4OIji4mKEh4cL75VIJMLKzmQyQaVSQalUorm5WZhsEhMTERZmKz/Py84AwNKlSydU135RegouSh+L8b9UXouXqhpAMSJQYeGgGAZ0QhIkl64a96BbvFjRSkwGp3/jp+cV69fj9r/+BcPlH4Ot8Xz8NAWwdnM8Q1O49qGXsOs/dZBFy2CxWISJy92EybIsWltbYTA4HzMPd8+HM/DOiMPDw1i6dKmQKOf1r5RKpdBEa72q92dJsi+aEb2FMzM03i6Cl9DJyspCZmam38fjCSZKLI5gXxDBh8+qq6vBsqxAtDExMUIF4n333YeTJ0/i4MGDPmmD+DEg4MjFE3gaFjMajSgvLwchBMuWLYNEIhFKF+3zKxKJBKmpqUhNTYXFYkF/fz+USiVOnDgBsViMhIQEJCYmgmEYVFRUIDIyEvPmzZv0KrN9VIv/rW+GaFQNmcUCvUYNKioWstw5Do/3hlwYFxkLkVSCtb/4Ba5+5BEAQGhkHJy73Ts4tx25SMQi3PH8h8hedAl2f/c4gLHVslgsFpSkWZZ1SB5msxktLS0ufXp4XH755Xj88ce9GOkY+HyGwWAYJ+dir3/FNy/W1dXBbDb7zaOF7xmJiorC3Llzp6Wvxt4MTaFQoKqqCqGhoWhvbxdk812t6v0NXxKLPexVjXnbhI6ODtx9991QKpVgGAb9/f34/vvvA0LP7VxBwJGLJ+EIT8JifCIyOjoa8+bN8ypxLxKJhMmGX9nwq1qWZREeHo6UlJRJh06+7+vHz776z9ikKgsBHwxiDDrIW07DJJHCnJQK2qoqzpOwGA9no6MpCjc/+yyWb9589rWE2RiKL4aorxzhjHsXSOvit5CQENz7l2+QkDXHoX8KRVEQiUQQiUSQSCQYHR0VGh5NJhNaWlo8Wixs3rwZd999t9vj7GE2m4Wd5uLFi10SBE3TiI2NRWxsLPLy8sZ5tPii+go4W9obHx8/pT0jrtDf34+amhrMnTsXKSkp41b11knxqTJD8yex2MPeNuHll1/GL37xC5SXlwMYkxNat24dbr/9dhQWFvp1LOcDAo5cPIE7clEqlTh16hRmzJiB7OxsQSof8L7jnl/ZGAwG9Pb2IisrS8i3sCyLuLg4JCQkIC4uzqtdzD8b2/D/vjtpI+fCg0hl0PJ5FkUPZEYDWJEIxqRUWLwov2YcTFgSsRgP/OtfmHWhreWvKDweuQ98AgAYqj+M/oNvgO78AeHQgHZwHoYGwAIRkVG47b/3IS4jV9gduAL/AwbOqg67IxaKonDvvfdi06ZNLo9zBL7sXC6Xey3nYj/Z8J3i1tVXvNuovcikK/ALn0Bp2ATGNPAqKysxb948Iexjv6rnk+JtbW02ZmgTclv1AFNJLPbgOA5/+9vf0NHRgcrKSqSlpeHgwYP49NNP0dzcHCQXD0CRybgo+Qkmk8ll0raiogIRERGYMWOGzeuEELS1taGpqQkLFiwQylFZlp1wmTFfFt3b24v8/Hyh9JD/sSmVSiiVShgMBsTGxgqTjatV3RMnq7DjVJ3XY4HFgqzOZmw9dhjS3r6zkvZOMMKy2KlWC/8OCwvDY19+gQS7z80VNF21UOx/DVzTQURYBsdIBcBfTpgQmpCFKx76O4bUo4LPjUQiweeff+7x+Zubm9HX1+f07zRN4/HHH8dPfvITj8/JQ6fTobS01C9yLtbVV/39/RCLxcJE6yp8xCfKs7KyAqYCS6FQoLq62iu1ZWuiHRoa8rkZ2nQSCyEEv//97/E///M/OHToEGbPnj2l1z9fcE6SS3V1NaRSKXJzc4XX+FVwf38/CgsLERERMenGSIvFgqqqKuj1ehQUFDhdnRFCoNVqBaLRaDSIjo4WSiH5+D4hBDft/wH/affeJRIATDUVoFVK7L3vF+AMBsgrKjCw798QdXbCUdW+hmPx/vAYucQnJeGJA/sREhnp4EjPYBzqQe83r8NY8yWqzBn46TN7QFGUEOJhGAaEEHz55Zcen7O+vh4DA45VmKVSKZ5//vkJy7mUl5dPiQUwx3FC+EilUglJ4YSEBBtF34GBAZw6dQq5ublO+6GmGr29vairq5tUr4+1orFKpQJN0zaGYN7mJaebWJ577jm88cYbOHjwIObPnz+l1z+fcE6SS11dHSiKElYUJpMJ5eXlYFkWhYWFkEgkQihsMlIuFRUVkEgkWLhwoVfxZb1eLxCNWq1GREQEwmNicVdlM9qHhr0eC8dxMJf+ADKiBk1R+Pp3D9gUE7BmM5p37kTP7j1AYyNkZz47HcfhveFhzJw/Hw999ilEfoiR85M4r0wAwKuEuzNyCQsLwyuvvDJud+oJplPOxTp8pFKpoNVqER0dDblcjt7eXsyZMycglACAMQWM+vp65Ofn+6xngzcE4ysvjUajYIYWFxfntpdsuonlv//7v/Hf//3f2L9//4QWNUGcxfTJvrqAN26Uo6OjOHr0KKRSKZYuXeqyIsxTqNVqHD9+HJGRkVi0aJHXiUu5XI7MzEwsWbIEF110EVJSUrC3R4UORgJERAFe5E04sxmmI9+CjIztQAgh43IHjFiMWTfdhJW7PsIlpyqQ/PxzMBXkwySToviqVXjk3/v8QiwDAwM4efIkMjMzBb0pb+0JHB0bFRWFHTt2TIhYlEolKioqMGvWrGnpz+B7KmbOnInly5djxYoVkEgk6O7uBsdxgg3D6OjohPp1fIWuri7U19ejoKDAp82AvCHYrFmzcMEFF2DZsmWIjo5Gb28vvvvuOxw7dgwtLS0O73+6ieW1117DSy+9hH379vmFWA4fPoz169cLxUAff/yxzd9vu+02m98QRVG46qqr3J739ddfR1ZWFmQyGYqLi3H8+HGfj30iOKcT+ryxUGZmJnJycoT8CjAxqXzgrNZUTk4OMjIyJh1OkUqlSEtLw1xKAqqsHpRMBshkY74tJhOg1wJOdME4nRam40cA9mxPD4EbCXuKQuaaNchcs2ZS43aHnp4e1NXVYe7cuWd1wqzGMNGJMzk5GX//+98nlCDu7u5GQ0MD5s+fj4SEhAld39fgw2WFhYUIDw8X8jTt7e1CniYhIcGvasb24AmusLDQI8WEiYKiKIdmaHxRgHWeSq1Wo729fdqI5a233sK2bdvw5ZdfYsmSJX65jlarRX5+Pn7+85/jmmuucXjMVVddhXfeeUf4t7seug8++AAPPvgg3njjDRQXF2P79u1YtWoVGhoapv03EJBhMbPZ7LCklUdbWxu6urqg1+sxf/58oT9hsol7fuXkD62pA30DuP2E4y5FQgjQ1w3WYhG68dnBfpgrTmKciT0A1XvvjHttqsB/Tm1tbVi4cKHDVe/w8DC++eYb1NTUQK/Xu4y5nz59GiqVCsCY1/3zzz+PhISECcfp8/PzERMT491N+Qn8mBYtWjRuErcu81WpVOA4Tqg8jI2N9ZmasbMxFRYWInIS+bfJgmVZoZ+or68PFosFMTExSE5ORlxc3JSZoRFCsGPHDjz66KP47LPPcPHFF0/JdSmKwp49e1BSUiK8dtttt2F4eHjcjsYViouLsWTJErz22msAxsKS6enpuO+++/DImR626UJA7lxckQPHcVAoFNBqtSguLkZkZOSkE/d85/bg4CCWLFmC8PDwyQzfIcLEzj9qiqKA5LQx33uDHqbebpjLnXvY+8LLZiIghKChoQEKhcLlCjMqKgqbNm3Cpk2bYDAYcPDgQZSXl2NkZGQcafD3sWjRItx9991obm5GXV2dkBB3109BCEFjYyN6e3unZdXrbEzNzc3o6upyOiZHZb68OkRVVZWQp4iPj/eZARWvgxcInxPDMIiLi4NGowEhBPPnz4dOp0NHR8c4MzR/ab8RQvCvf/0LjzzyCD755JMpIxZXOHToEBISEhAdHY2f/OQneOaZZ5yGLU0mE0pLS/Hoo48Kr9E0jcsvvxxHjx6dqiE7RUCSizPwsit6vR5hYWE+qQgzmUw4deoUWJbF0qVL/eYkF+7Co8UaRCaHJDEZrnrVdUYjQqfY8Y53AtVoNDYmaO4gk8mwevVqrF69GizL4ujRo/jhhx/Q398PhmFA0zTWrFmDhx9+GMDYD54XmLRuXORLvK2/H47jUFdXh6GhIYe+J9MBnoCVSiUWL17skc+HtfYVr2asVCrR19eHhoYGhIeH22jeTcRyu7m5Gd3d3SgqKvLL4mki4HdR1rL5OTk5Nv48vHQ+TzRRUVE+WVgRQrBz50785je/wa5du3DppZdO+pyTxVVXXYVrrrkG2dnZaG5uxmOPPYbVq1fj6NGjDnfy/f39YFl2XPl4YmIi6uvrp2rYTnHOkItGo0FZWRnCw8ORl5eH5ubmSUvla7ValJeXIzw8HPPnz/erX3qEi52LPVg393K6uRVzZ86YMq9uvsOdEIIlS5ZMOGTBMAwuvPBCXHjhhSCEoLKyEkqlEldccYVwDC8wGR4ebtO4qFAohImWDx01Nzc7lHOZLtiT3UQ7+ENCQpCVlWWTp1AqlWhtbRVEFj31KLHf2QWKqZWr5L29Pw8fPjx16hQA2JQ5TzR8uGfPHmzZsgU7d+7EqlWrJn0/voC1NfeCBQuwcOFC5OTk4NChQ7jsssumcWQTQ0CSiz1R9Pf3o6KiAhkZGZg5cybUajW0Wi2qqqqEFa23DxlfrpqWljYlXdIRXoyPcjFhiEUiqJQK/Ke3G5GRkUIvjb8sXg0GA8rKyiCXy7Fw4UKfETBFUcjPz3d7nLXFLT/R9vX1oampCTRNIzU1FXq9HhKJZFo73TmOQ1VVFbRaLRYvXuyzHbBEIkFKSoqNHItSqURVVRUIIS4nWn4XpVKpAmZnB3hXFWYvnc+XOU8mfPjZZ5/h7rvvxrvvvou1a9f64pb8ghkzZiAuLg5NTU0OyYVXBVEoFDavKxSKgBDXDEhy4UEIQUdHB06fPo158+YhOTkZLMsiNDRU8FBvbW1FbW0tYmJikJiY6LY7HhirKqqvr8fs2bOnTIguTOzFpOzIiRKARCrFR48+hOWzZsJoNAq9NI2NjQgLCxN+hBMJnTgCv1vkPdOnQ7TQGhKJBLGxsWhvb0dsbCxSUlLQ399v4ziZkJDgdyVje7Asi1OnTsFsNk/I5MtT2Odp+Im2qakJ1dXVNhOtRCIRrJIXL1485f7yzjCZcmN7MzStVov+/n5hVxsWFibcvzM5nn379uHnP/85duzYYZNMD0R0dXVhYGBgXDUmD4lEgqKiIuzfv1+4F47jsH//fmzZsmUKR+oYAVktxrIsTCYT6urqoFAohGobZ/kVvjteoVBAo9EgJiZGmGitf+iEEDQ1NaGrq2taqoqyPvkWxINJn7As9Dv/1+a1iPBw7P/Dk8hKGG9IZjabhaa1gYEByGQy4f4n6k0yNDQk7BYDxYFQp9OhrKxsnIqwteOkSqWCxWKxKQjwV+UVYCuKuWjRIr9eyxV42XylUomRkRGIRCIQQgTJokD4/vzZx2IvxyMSiRAXF4fY2FiEhoYiLCwMBw4cwA033IA333wTN95445R/JhqNBk1NTQDGnpWXXnoJl156qWB/8PTTT+OnP/0pkpKS0NzcjIcffhijo6OoqqoSwr6XXXYZNm7cKJDHBx98gFtvvRVvvvkmli5diu3bt2Pnzp2or6/3WMrHXwhIcjEYDDh58iSMRiOKiooglUo97rjX6/VQKBTCjywqKkqYZBobG6HRaFBQUDAt7oN/r6zDBy1dOM0CROI8R0AIgf79HcK/05KScOiZJxDpQViDZVnhR6ZSqWw81j3tpeB7fWbNmoW0tDSP7s3fGB0dRVlZmaAE4OwZ4GXTeaLRarXCYiM+Pt6nuRmTyYSysjJIJBLk5+f7NWfnKTiOQ2VlJdRqNcLCwjA8PAyZTObzhLi3mMoGSWvbhO+++w4PP/ww8vLyUF9fjxdeeAG//vWvp+UzOHTokMPCgVtvvRV//etfUVJSgvLycgwPDyMlJQVXXnkl/vCHP9iQRFZWFm677TZs3bpVeO21117Diy++iL6+PhQUFOCVV15BcXHxVNySSwQkufT29qKtrU3oROcT9952fxsMBqHqRq1Wg2EYZGZmIiUlZVrDBCzL4sP6Zrxd3YAWSgxOPp40dO/vAAhB0ZzZ+PyxhyY0cfE/MoVCAZVKBUKITejI0Tk7OjoE4c9Acdvjd1F8ktubZ4CvvFKpVIIUD080k1lg8LmosLAwzJ8/f9pDhsDZvI9Op0NRUZGgVmGt+wVAIJqJ6H5NBNOtbvzOO+/gN7/5DdLS0tDR0YHi4mKsX78eDz300LTtNH8MCEhy4TgORqMRhBChmdJbYuExMjKCiooKREVFITo6GiqVCoODg0KOIjExccp3MWazGadOnYLFYkFBQQH2dyuwo74ZFTozTLIx0tN99C9cs3wZ3rzn5z65Jh+j53d1vAmWtV1AU1MTuru7sWjRomltsLOGSqVCVVWVT3ZRRqNRmGQHBgYQEhIiEI034UM+PBcdHY25c+cGRMiJtzswGo2Cvp49CCGCvTGv+8X7s/B5Gl9jOokFAI4fP46SkhI888wzuPfee9HX14fPP/8cx48fx5tvvhkQ3935ioAkF4PBAIvFIjQLTnRVqFQqUV1dLQgY8g+SfY5CLpcLRGNvaexr6PV6wV/EUfXVd509eKumCQs4A3675kq/jIHvJeF3NFqtVljlOuomny7wworz5s3zefyYV/JVKpVCzw1PNK4k8/kih4SEBOTl5QXE5MQXFFgsFo+18Hglb55sR0ZGfN64ON3EUlZWhvXr1+OJJ57Af/3XfwXEd/VjQkCSy+bNm1FbW4sNGzagpKTE6x8xIQTt7e1oaWlxOzFZWxr39/dDIpEgMTFxUslwZ1Cr1aioqEBiYmLATEwWiwXl5eXQ6XSQSqXQaDRCniohIcFvTaXuMJVyLnz4kK++4zhOmGStTeBGRkZQVlaGtLQ05OTkBMT3x7KsYOU9mYIC613d4OCgTePiRPxZpptYKisrsXbtWvz2t7/F7373u4D4rn5sCEhyGRoawscff4xdu3bhm2++QU5ODq6++mps3LjRrdc4x3Gor6+HSqVCQUGBV+EdPj7Nx+j51WxiYuKkE6F8eMdXgpi+gNFoRHl5OcRiMfLz8yESiYTuaKVSiaGhIaFpkS9x9jf4ir7u7m7Bl2cqYS3FolKpoNfrERMTg7CwMHR2dmLGjBnTorbsCPzCgKIoLFq0yGf5E2t/lv7+flAUJRCNs1ydNaabWGpra7F69Wps2bIFTz75ZED81n6MCEhysYZarcann36K3bt3Y9++fUhNTUVJSQlKSkqQn59vQzRmsxmVlZUwmUxYtGjRpFbdvAEUv5rlf2CJiYkuwyaO0NnZicbGRr+EdyYKXp3AvqzXGnzTokKhEFazPNF4Y+vrKfgO98HBQRQWFk5LRZ89tFotWltb0dvbCwA2u7rpLAoxm80oKysTFgb+SszzZd78rsZoNAqNm44EJqebWBoaGrB69WrccccdeOaZZ/xCLIcPH8aLL76I0tJS9Pb22ghQms1mPP744/jiiy/Q0tKCyMhIXH755Xjuuedc+vhs3boVTz/9tM1rfIXbuYqAJxdrjI6O4osvvsDu3bvxxRdfIC4uDldffTVKSkoQGhqKu+++G08//TRWrlzp0yoQ6z4KhUJhU3UVGxvrlGh46Y2enh4UFBQETC5DrVajvLzcKw936xyFSqWCWCy2KXGe7I+YZVmh0qmwsHDawnH24C2A586dKxSE8KGj0NBQ4TPwd67OGnwJtFQq9alqgjvwuTr+MxgdHRVUIuLj44Wm5ukilqamJqxevRqbN2/GCy+84LcKvi+//BLff/89ioqKcM0119iQi1qtxqZNm3DXXXchPz8fQ0NDuP/++8GyLE6ePOn0nFu3bsVHH32Eb775RniN79U5V3FOkYs1dDod/v3vf2PXrl34+OOPodPpMGvWLPz3f/83LrzwQr/94BxVXfFEYx2f54UeR0dHUVhYGDDSG3x4bubMmcjIyJjQOTiOE8ImSqUSAIRJdiLd8RaLBRUVFeA4bkLmbP4CX1DgqCzbvmmPJ1tPNb8mCl4JNyQkBAsWLJjWEmhrgUneTTQlJQVpaWk+z1e6Q1tbG6666iqUlJRg+/btU/a5OJLOt8eJEyewdOlStLe3O/3Nbd26FR9//LHQkHs+4Jwt8g4JCcHGjRuh0WiwZ88e3HPPPdDr9bj55pshkUiwfv16lJSU4IILLvDpZGUtQTFr1iyMjo5CoVAIEhxxcXGIiYlBT08PaJoW3DEDAbzszfz58ycVnuOlVuLj4zFnzhxhV1dXVweLxeKVLwmf95FIJD7NG0wWfCizoKDAYUGBWCxGcnKyIEnEiyvyml/+6CXhe2vCw8Mxb968ae+t4QUmWZaFWq1GVlaWUE1nLccTHR3t1++1s7MTa9euxZo1a6aUWDyFWq0W5g1XaGxsREpKCmQyGZYvX45t27ZNeAEYCDhndy4AcOrUKaxcuRI7d+4UlHXNZjMOHjyIjz76CHv37gXHcVi7di02btyISy65xG8TPV/a2dXVha6uLhBCEBsbK+idTSfBEEIELw9/Vl9Zd8crlUro9XobGRb7z0Cv16O0tBSRkZEBMVnyaG1tRVtb24TKsvmdLf8ZWOcoPNG9cwZetSKQemsACMZx1sUX1h3yKpUKZrPZY38eb9Hb24tVq1bh4osvxttvvz3lixN3OxeDwYALLrgAs2fPxrvvvuv0PF9++SU0Gg3y8vLQ29uLp59+Gt3d3aiurg4YiwRvcU6TCzCmmOwsLmmxWPCf//wHH374Ifbu3QudToe1a9diw4YNuOyyy3we1x8eHkZFRQVSUlKQmpoqTDCjo6OCJ0lCQsKUysPz1XP9/f0oLCycUsl1XvPN/jOIj48XEtKBVJbNV6r19PQItsSTPZ/1Z6DRaBAdHS2s6D19/vR6PU6ePInY2FjMmTMnID4rwDGx2MPan0elUtmUusfHx0+qKEKhUGD16tVYsmQJduzYMS27XlfkYjab8dOf/hRdXV04dOiQV3mo4eFhZGZm4qWXXsIdd9zhwxFPHc55cvEULMviyJEj2LVrF/bs2YPh4WEhRnvFFVdMOifC63Hl5uYiPT3d5m96vV6YYNRqNSIjI4UdjT8rjgIpSc77svAlzgAQExOD2bNnB0RVGCHEhoT9MSb+M1CpVBgaGvJIyVqr1aKsrAzx8fEBQ8KAZ8TiCPafQWhoqEC23lQg9vf3Y82aNZg3bx7efffdaZNxcUYuZrMZ1113HVpaWnDgwAGnbpKusGTJElx++eXYtm2bj0Y7tfjRkIs1OI7D8ePHBaLp6+vDlVdeiQ0bNuCqq67yasVq3bDpiR6XtVS+dR9JYmKiT5P+vGsnRVEoKCgImCS5SqVCZWUlEhIShAq06aq64sHbXKvVahQWFk5JiTGvEsEXBEilUuEz4JsWNRoNSktLkZycjNzc3HOeWOxhXRQxMDAgWArweRpnYdLBwUGsXbsWM2bMwM6dO6f12XZELjyxNDY24uDBgxPS6NNoNMjIyMDWrVvx61//2ocjnjr8KMnFGhzHoaKiAh999BF2796N9vZ2XH755diwYQPWrFnjsjuZ4zjB0nbRokVe/9BMJpONDA0/yfJ6ZxOdTPR6vY2oYqAkyXt7e1FbW2tTUOBIIYHvJ5pIZ7i34FWE9Xo9CgsLp8XR0l5ckk/+Dg4OIjU19bwkFntYqySoVCqwLCvonlnnaYaHh7F+/XokJydj9+7d05LLdCWdn5ycjE2bNqGsrAyfffaZTeFMTEyMMF576fyHHnoI69evR2ZmJnp6evDUU0+hoqICtbW1ASMg6y1+9ORiDUIIqqurBaI5ffo0fvKTn2DDhg1Yu3YtYmJihB+50WhEbW0t9Ho9Fi1aNOnVLr+K4ydZmUwmyNB4Ey7gpekDKZcBnFVbzs/PdxoisHZa5CfZiTauegKWZVFRUSFoqgXC7o7jOPT09KChoQE0Tdu4Tfo6Ge4t/EUs9rC3Tejr68P27duxcuVKfP3110hMTMTevXunLczrSjp/69atyM7Odvi+gwcPYuXKlQDGS+ffcMMNOHz4MAYGBhAfH48LL7wQzz77LHJycvx1G35HkFycgLeI3bVrF3bv3o2qqipcdNFFKCkpwaJFi3DHHXfg7rvvxh133OHzHzzvyaJQKITVvH3IxBEGBgZQWVk5IWl6f4EQgubmZnR1dXmltmzduKpUKsGyrE3j6mR3Y2azWXCwLCgoCBjpdbVajbKyMmRnZyMzM1NIhiuVSsGbxltbX19gqojFERQKBV5//XW8+eab0Gq1WLBgATZu3IgNGzagoKAgIJ7zIMYjSC4egC/l/eijj/Duu+8K3t0PP/wwfvrTnyI5OdlvDzi/mucVjK3Nv6wdBvmQ05w5c1zKTEwlCCGC1e5kkuTWel9KpRIGg2FS5b3T1eHuDrxvDa8/Zw+dTieEUXlvGp5w/VkUMZ3EAozd96ZNm0AIwT//+U8cPnwYe/fuxVdffYXTp08HjKRSELYIkosXOHDgAK655hrcdtttyMjIwJ49e3D06FEsXboUGzZswIYNG5Cenu43onFk/pWQkABCiOBCN5GqFH+AN67SarU+rVRzVt7raZm3wWBAaWkpwsPDA8bkCxhLUldUVHjsW2Odr7NWMfa1mvd0E4vBYMD1118PrVaLffv22YzBbDYHRCgzCMcIkouHMBgMmDt3Lp588kncdtttAMYmup6eHuzZswe7du3Cd999h4KCAoFo/Ok9TwjB0NAQGhoaoNFobHY0U+Uw6AwWiwWnTp0Cy7IoKCjwa9LVvsybd5pMSEgYV32n0+lQWloacP0i/f39qKysxOzZsye067RWMeZ3t55UXbnDdBOL0WjETTfdhP7+fnz11VcBo80XhGcIkosX0Ol0TsuFCSFQKpWCVcChQ4cwd+5cwZPGle/7RMBxHKqrqzEyMoJFixbBYrEIemcmk8nGZXIq8wnWvvILFy6c0mvzniT8at66xBkYM48KtLJevjR77ty5SE5OnvT5rLvj+VyVN3I8PKabWEwmE2655RZ0dnZi//79fvf0CcL3CJKLH0AIweDgIPbu3Ytdu3Zh//79mDlzpuBJM2fOnEmFY3ibZL7KyXpnYO0yaS/BMhn5EU/Al0AHQsjJvvqO4zhERUUhNzd3SkqcPQGvuDxZrTdn4HNVPNHw3jR8rspZCHG6icViseDnP/85GhoacODAAb+U4rqSzQfGPrunnnoKb7/9NoaHh3HBBRfgr3/9K3Jzc12e9/XXX8eLL76Ivr4+5Ofn49VXX8XSpUt9Pv5zAUFymQIMDw8LnjT//ve/kZaWhg0bNmDjxo1YuHChV5OwwWBAeXk5ZDKZR8lo62ojjUaDmJgYYTXvy3AVL1gYHx+P2bNnB8TkDZzNZSQmJoIQ4tOw0WTQ19eHmpoaLFy4cMr6GHhbY6VSaWNrbB1CDARiufvuu3Hq1CkcOHAASUlJfrmOK9l8AHj++eexbds2/M///A+ys7PxxBNPoKqqCrW1tU7zhx988AFuueUWvPHGGyguLsb27dvx4YcfoqGhQdg9/5gQJJcpxujoKD7//HPs3r0bX375JeLi4oTQ2eLFi11OdBqNBuXl5YiJiZnQ7ken0wlEMzIygqioKEGGZjIJd15TLT093a95Jm/BqxTnP8h/XAAAJcdJREFU5eUhNTUVgHNL46nMVfFS/gsXLpw2vw5HIUSJRIKRkREUFhZ65eDqK7Asiy1btuDo0aM4dOjQlFU92nfZE0KQkpKC3/zmN3jooYcAjJWIJyYmYseOHbjhhhscnqe4uBhLlizBa6+9BmDsWUtPT8d9992HRx55ZEruJZAQJJdphE6nw759+7Br1y58/vnniIiIwNVXX40NGzZg2bJlNhNdf38/qqqqkJGR4ZMJ3GAwCOZnfCKcb9r0piGUT0Y70lSbTvA7g3nz5jld/dorGJtMJr+p9/Lo6urC6dOnnUr5TwcsFgvq6uqgUChAUZSgksAbwU3Fzo7jODzwwAM4ePAgDh48OKVS8/bk0tLSgpycHJSXl6OgoEA47pJLLkFBQQFefvnlcecwmUwICQnBRx99ZLMDuvXWWzE8PIy9e/f6+S4CD4HROfYjRUhICK655hpcc801MBgM+Prrr7Fr1y5cf/31kEqlWL9+PTZu3IiWlha89NJL+OSTT5x2/3oLmUyGjIwMZGRkCKtYhUKBxsZGhIWFCUTjqn+C761xNYFPB7q7u9HQ0OA25GTtzZObmyuEENva2lBTU+PzEGJHRweam5uxaNEiREdHT/p8vkJXVxcGBgawdOlShIWFCSoJvDeNdUGAP3Z2HMfh4Ycfxtdff41Dhw5Nu4dJX18fAIzLgyUmJgp/s0d/fz9YlnX4nnPZqngyCJJLgEAmk2H9+vVYv349TCaT4Elz3XXXQaPR4MILL0RzczNSU1N9XtorlUqRlpaGtLQ0QVBRoVCgubnZqagkL+cSSL01AAQRUW93BhRFITw8HOHh4cjJyRFCiHwIi7fz9XZnx4P3lp+IR4w/4SjHEhcXh7i4OGFnp1Kp0NjYiKqqKpf+PBMBx3H4f//v/+GTTz7BwYMHfbZ4CmL6ESSXAIREIsGVV16Jw4cPQyKR4OWXX0ZdXR3uueceGAwGrF27FiUlJbj00kt9LgEiFouRkpKClJQUQVRSoVCgra0NMpkMCQkJMJlMUCqVKCoqmpbYvCPwKgqdnZ0+yRmEhIQIMjq8na9SqRR2du6k8q3R2tqK9vb2afOWdwZ3yXvrnd3MmTOFgoDOzk7U1tZO2peFEILf//732LlzJw4ePOi2EmuqwO/CFQqFTXm4QqGwCZNZg7c4VygUNq8rFIqA2tVPJYLkEqD48ssv8e677+L777/H7NmzAQCvvfYavv/+e+zatQv/9V//BbVajdWrV6OkpASXX365TyX7AUAkEiEpKQlJSUmC3llTUxN0Oh0kEgn6+vqEEt/pTOITQtDY2Ije3l4sXrzY54ZovJ1venq6sLNTKpVobW0VCNdRZ7y1rlpRUVFAOQp6WxVGURTCwsIQFhaG7OxsG8I9ffo0wsLChDyNJ7YJhBBs27YNO3bswIEDB4RnPBCQnZ2NpKQk7N+/XyCTkZERHDt2DL/85S8dvkcikaCoqAj79+8Xci4cx2H//v2C8vGPDcGEfoCC71FwtgLnOA7Hjh0TPGkUCgVWrVoleNL4eoLlmzZHR0dRUFAghI149WJrvbOpLO211i8rKiryOcG6Ak+4fC+NSCQSJtjIyEi0tLSgp6cHRUVFU+oA6g6+Lje27ymSSqU2BQH2REMIwUsvvYTt27fjwIEDyM/Pn/QYvIUr2fyMjAw8//zzeO6552xKkSsrK21Kke1l8z/44APceuutePPNN7F06VJs374dO3fuRH19/Y9S/yxILucBOI5DeXm5YBXQ2dlp40kzWa0pXs7FYrGMa9q0L+0lhNiU9vqTaKwJr6ioaFqdNjmOs7ELsFgsAIBZs2YhJSUlYMQx/d3HYm+bAADx8fGC42RISAheffVVvPDCC/jqq6+wePFin4/BE7iSzd+xY4fQRPnWW29heHgYF154If7yl79g1qxZwrH2svnAWHSBb6IsKCjAK6+8guLi4qm4pYBDkFzOM/CeNB9++CF2796NxsZGwZNm3bp1NkrKnsBkMqG8vBwikQj5+fku5UMIITYy+RaLBXFxcUhMTPR5pRHLsqisrITRaERhYeG0mEY5Ar+TUqlUiIuLw+DgIMxm87TJ8VhjqhskrZ+Hd955B2+//TbS09PR1dWFjz/+GFdeeaXfxxDE9GHaycVbuYQPP/wQTzzxBNra2pCbm4vnn38ea9asmcIRnzvgfeE/+ugj7NmzB9XV1bj44otRUlKC9evXIy4uziXR6PV6lJeXIzQ0FAsWLPBqF2Itk69QKGA0GgWimewEa7FYUFFRAY7jAsbkCxi759raWgwNDaGoqAhyudzG+MpagoVPhE8VKU535z3Lsnjqqafw2muvISsrC62trVi5ciU2bdqEu+++e8rHE4T/Ma3k4q1cwpEjR3DxxRdj27ZtWLduHd577z08//zzKCsrw/z586fhDs4d8MllnmjKysqwYsUKlJSU4Oqrr0ZSUpIN0fhSzoXXO+OJhp9geXUAb8iBN/liGAYFBQUBE27iOA41NTUYHR11aTFgbRcwOjoqVFwlJCT4Law33cRCCMG//vUvPPTQQ/jkk09w6aWXoq2tDXv37kVHRwf+/Oc/T/mYgvA/ppVcvJVL4H0dPvvsM+G1ZcuWoaCgAG+88caUjftcByEE7e3t2L17N3bv3o0ffvgBxcXFglVAY2Mj/vCHP+Avf/mLX3TC+AlWoVB4pXdmNBpRVlYGuVyOBQsWBBSxVFVVQafTobCw0K2nDA9eJUGpVGJ4eBjh4eE2Jc6+QCAQy86dO3Hfffdh9+7dwVDYjwjTRi4TkUvIyMjAgw8+iAceeEB47amnnsLHH3+MU6dOTcGozz/wnjS7d+/Grl278J///AcAsHLlSrz88svIzs72a5kx78eiUCgEvTNHK3lecTkyMhJz584NGJMvjuNQWVkJg8EwqdyPI/Mv/nMIDw+f0Hcw3cQCALt378Y999yDDz74AGvXrp2WMQQxPZi2PpeJyCX09fV5JckQhHtQFIXU1FTcd999SEhIwPHjx3Hdddehu7sbhYWFmDdvnrCj8bUnDQDI5XJkZmYiMzNT6J1QKBQ4ffq0YPwVHh6O2tpaxMXFBZTiMsuyOHXqFMxmM4qKiiaV+5FIJEhNTUVqaqrQvKpUKnHy5EmIxWKBaDztKQoEYvn0009x99134913350yYsnKykJ7e/u413/1q1/h9ddfH/f6jh07cPvtt9u8JpVKYTAY/DbGHwuCTZRBAAC+/fZb3Hnnndi1axdWr14teNJ8/PHH2L17N7Zt24bc3FzBKsAfTo7WzYq8CkBPTw8aGxshkUggkUig1WoDomeEZVmhqKCoqMinFWD2zat8ae+pU6dAUZRQ6h0TE+NwBxcIxPLll1/ijjvuwI4dO2wiE/7GiRMnwLKs8O/q6mpcccUVuPbaa52+JyIiAg0NDcK/A2Xxcq5j2shlInIJSUlJQXkFP+HCCy/E8ePHMWfOHABjP7DY2Fjccccd+PnPfw61Wo1PPvkEu3fvxksvvYSMjAyBaLytJPMEEokEYWFh0Gq1yM7ORkhIiCAqyYeMEhMTPeoG9zUsFgvKy8tBURQWLVrk19Ji3nsmPj4eHMcJpb11dXVCqbe1y2QgEMv+/ftx66234q233nI5qfsD9kKlzz33HHJycnDJJZc4fQ9FUcE5xA+Y9oT+0qVL8eqrrwIYi19nZGRgy5YtThP6Op0On376qfDaihUrsHDhwmBCfwoxMjJi40mTkJAgeNIUFRX5hGh4ky97KX/rkFF/fz8kEolANJNtFvUEgVKtZl3qrVQqYTAYIJfLYTAYplXO//Dhw7j22mvx6quv4tZbb53WXYDJZEJKSgoefPBBPPbYYw6P2bFjB+68806kpqaC4zgUFhbij3/8I+bNmzfFoz3/MO2lyK7kEm655RakpqZi27ZtAMZKkS+55BI899xzWLt2Ld5//3388Y9/DJYiTyO0Wq2NJ01UVJTgSVNcXDyhyZc3+Zo9e7ZLwyiWZTEwMCB0gzMMIxCNP/TOzGYzSktLIZVKPXIBnUqcPn0anZ2dkMvl0Ol0iI6OFnpppkq54Pvvv8dPf/pT/OlPf8Jdd9017eGlnTt34sYbb0RHR4fT5+jo0aNobGzEwoULoVar8ac//QmHDx9GTU0N0tLSpnjE5xemvYnSlVzCypUrkZWVhR07dgjHf/jhh3j88ceFJsoXXnjBbRPltm3bsHv3btTX10Mul2PFihV4/vnnkZeX5/Q9wUSf99Dr9YInzaeffirYCGzcuBErVqzwKHzEe8R46ytvLb+iVCqF3ERiYqJP9M5MJhNKS0sREhLilzDgZGAfCtPr9UJhBG8ExxcE+Et77fjx49iwYQOeffZZ3HvvvdNOLACwatUqSCQSm0iHO5jNZsyZMwebN2/GH/7wBz+O7vzHtJPLVOCqq67CDTfcgCVLlsBiseCxxx5DdXU1amtrnfYT7NixA/fff/+4RN+PUYBuIjCZTDhw4AA++ugj7N27FxRFYd26ddi4cSMuuugihyW7vEvjZO1/rXMTSqUSLMsKk2tMTIzXOw6j0YjS0lKEhYVh/vz5AU0s9uALI6ztjB3580wGZWVlWL9+PZ588kk88MADAUEs7e3tmDFjBnbv3o0NGzZ49d5rr70WIpEI//d//+en0f048KMgF3uoVCokJCTg22+/xcUXX+zwmB07duCBBx7A8PDw1A7uPITFYsG3336LDz/8EHv37oXRaMS6deuwYcMG/OQnP4FUKsULL7yAGTNm4LLLLvOpS6O1lbFCoRB0vngZGndEYzAYUFpaisjISMybNy8gJk4e3ibvefVilUplk6/iVZwncm+VlZVYs2YNHn74Yfzud78LmM9n69atePPNN9HZ2elVwQXLspg3bx7WrFmDl156yY8jPP/xoySXpqYm5ObmoqqqymmuJpjo8w9YlsV3330nWAWMjIwgKSkJXV1d+PDDD7Fy5Uq/Xdta50uhUMBgMNgIStr3qej1epSWliImJsYvpdeTwWSrwuzViydim1BbW4vVq1fjvvvuwxNPPBEwnw/HccjOzsbmzZvx3HPP2fzNPo/7+9//HsuWLcPMmTMxPDyMF198ER9//DFKS0sxd+7c6Rj+eYMfHblwHIerr74aw8PD+O6775weF0z0+R8WiwU33ngjvvjiC0RGRmJkZETwpFm1apVf+1kIIdBqtVAoFFAqldBqtYKFb3x8PCwWC0pLSxEfH4+8vLyAmTiBs8TiKwMyR2FEa9sER7u7hoYGrF69GnfccQeeeeaZgPp8vvrqK6xatQoNDQ02EvnA+Dzuf/3Xf2H37t3o6+tDdHQ0ioqK8Mwzz2DRokXTMPLzCz86cvnlL3+JL7/8Et99951XJBFM9PkWhBDccccd+Pbbb/HNN98gMzMTZWVlgidNV1cXrrjiCmzYsAGrV6/2u52yTqcTiGZ0dBQAEBUVhfnz50+rT4w9fE0s9nCmZs3L8URHR6OpqQmrV6/GjTfeiOeffz6gclBBBA5+VOSyZcsW7N27F4cPH0Z2drbX7w8m+nyL119/HRs3bhxXJsoLQfIKzk1NTYInzdq1a732pPEGGo0GJ0+eRHh4ODiOg1qtRmRkpBAymohXvK/Q2tqK9vb2KbNM5nd3SqUS9fX12Lx5M+bNm4f29nZcc801ePvtt4PEEoRT/CjIhRCC++67D3v27MGhQ4eQm5vr9TmCib7pAW++xRNNTU0NLrnkEpSUlGDdunVuPWm8wcjICMrKypCRkYEZM2YAGKsU48NFQ0NDgnJxYmLilFoqTzWxOMLBgwdx4403Qi6Xo7+/H8uWLcM111yDW265ZVLVfUGcn/hRkMuvfvUrvPfee9i7d69Nb0tkZKSwEg0m+gIfhBA0NTUJRFNeXo4LLrgAGzZscOhJ4w3UajXKysqQnZ2NrKwsh8dYKxcPDAwIZb2JiYkIDQ31224qEIilt7cXq1atwiWXXIK33noLKpUKe/fuxe7du/HKK6+47BkL4seJHwW5OPvRv/POO7jtttsABBN95xp4T5pdu3Zh9+7dOHbsGJYtWyaoA6SlpXk82Q8PD6O8vBw5OTnIyMjw6D18WS8vQyOTyQSimahEviMEArH09fVh9erVKC4uxjvvvBNQygRBBC5+FOQy1di6dSuefvppm9fy8vKcWgkAQfvmyYAQgu7ubsGT5siRIygsLBSsArKyspxO9s40zLwBy7IC0ahUKkEiPzExccL9I0BgEItKpcKaNWuwYMEC/Otf//KrSGcQ5xeC2Tg/Yd68eejt7RX+c1X2fOTIEWzevBl33HEHysvLUVJSgpKSElRXV0/hiM9dUBSFtLQ0/PrXv8ahQ4fQ2dmJ2267DQcOHMCiRYtw0UUX4cUXX8Tp06dhvZaqq6tDRUUF8vLyJkwswJhycWJiIhYsWIBLLrkEs2fPFpST//Of/6C+vh6Dg4PgOM7jcwYCsQwMDGD9+vXIy8vDP//5zykhlq1bt4KiKJv/Zs+e7fI9H374IWbPng2ZTIYFCxbgiy++8Ps4g3CP4M7FD9i6dSs+/vhjVFRUeHR80L7ZPyCEYGBgAHv37sWuXbuwf/9+zJo1Cxs2bIBcLsezzz6Lffv2YfHixX65PsdxGBoagkKhgEqlAiHERobGWaVVIBDL8PAw1q1bh9TUVOzatWvCDpveYuvWrfjoo4/wzTffCK+JRCKnBQNHjhzBxRdfjG3btmHdunV477338PzzzwfFbAMAwT2un9DY2IiUlBTIZDIsX74c27ZtcxrPP3r0KB588EGb11atWoWPP/54CkZ6/oKiKMTFxQmeNMPDw/jkk0/w+uuv48SJE0hMTMTnn38OsVjsFzFKmqYRGxuL2NhYEEIwPDwMhUKB2tpap42KgUAsIyMj2LhxIxISEvDhhx9OGbHw4M3SPMHLL7+Mq666Cr/97W8BAH/4wx/w9ddf47XXXgsuzKYZQXLxA4qLi7Fjxw7k5eWht7cXTz/9NC666CJUV1c7nDCC9s3+B0VRiI6OhlwuR01NDd577z0QQrB7925cccUVSExMxNVXX42NGzeisLDQ50TDXz86Ohp5eXkYGRkR7JxNJpOwMh8YGMDixYunjVg0Gg02bdqEsLAw7NmzZ1oaSIMLs/MDQXLxA1avXi38/4ULF6K4uBiZmZnYuXMn7rjjjmkc2Y8bWq0WjzzyCD766CPhO7rxxhuh1Wrx5ZdfYteuXVi3bh2io6Nx9dVXo6SkBEuXLvV5dRRFUYiMjERkZCRyc3Oh0WjQ0NCAoaEhUBSF5uZmQYbGXu/Mn9DpdLj22mvBMAz27t07LQ2jwYXZ+YMguUwBoqKiMGvWLDQ1NTn8e9C+eWoQGhqKuro6SKXSca9v2rQJmzZtgl6vx1dffYVdu3bh2muvhVwux/r161FSUuKxJ403oCgK/f390Gg0WLZsGSiKglKpREdHB2praxETEyPkafwZntLr9bjhhhtgNpuxb98+v+q6uUJwYXb+IFgtNgXQaDRobm5GcnKyw78vX74c+/fvt3nt66+/xvLly6dieD8q2BOLPeRyOTZs2ID//d//RV9fH95++22YzWb87Gc/Q25uLu677z4cOHAAZrPZJ+Oxz7GEhYVhxowZWLZsGVasWIGYmBj09PTg8OHDOHnyJDo6OnxuWGc0GnHzzTdjZGQEX3zxxYRUlv2F4MLs3EWQXPyAhx56CN9++y3a2tpw5MgRbNy4EQzDYPPmzQDG1AAeffRR4fj7778f+/btw5///GfU19dj69atOHnyJLZs2TJdtxAEAIlEgjVr1uDvf/87enp68O6770IsFuPOO+/EjBkz8Mtf/hL79u2D0Wic0PndJe9DQkKQlZWFpUuX4sILL0RCQgKUSiW+++47HD9+HG1tbdDr9ZO6R5PJhFtuuQV9fX3Yt28foqKiJnU+XyO4MDuHQYLwOa6//nqSnJxMJBIJSU1NJddffz1pamoS/n7JJZeQW2+91eY9O3fuJLNmzSISiYTMmzePfP755x5fLzMzkwAY99+vfvUrh8e/8847446VSqUTutcfIywWCzl48CDZsmULSU1NJZGRkWTz5s3k/fffJ/39/USr1br9r7q6mnz++eekr6/Po+Ot/xsaGiINDQ3kP//5D9m7dy/Zv38/qa6uJkql0qvzDA8Pk2uuuYbMnz+fqFSq6f5YCSGE/OY3vyGHDh0ira2t5PvvvyeXX345iYuLI0qlkhBCyM9+9jPyyCOPCMd///33RCQSkT/96U+krq6OPPXUU0QsFpOqqqrpuoUgziDY53IeQKVSgWVZ4d/V1dW44oorcPDgQYfmW0ELZ9+BZVn88MMPgvlZf38/Vq1ahZKSEqxatcqhjbYvy43NZjNUKhUUCgUGBwchl8uRmJjo1sbYYrHg7rvvxqlTp3Dw4MGA+e5vuOEGHD58GAMDA4iPj8eFF16IZ599Fjk5OQDGyzQBY02Ujz/+uKBu8cILLwTVLQIAQXI5D/HAAw/gs88+Q2Njo8PJJWjh7B9wHIfS0lJBWLO7uxuXX345SkpKsHr1akREROCZZ55BZmYmSkpKfF5ubLFYbGRopFKpQDQRERHCs8CyLO6991788MMPOHTo0DjLgyCC8AWC5HKewWQyISUlBQ8++CAee+wxh8cELZz9D47jUFlZKRBNc3Mz0tLS0N3djffffx+XX365X90bWZbFwMCAQDQmkwm7du3Cxo0b8dlnn+Hw4cM4ePCgx0KdQQThLYLkcp5h586duPHGG9HR0eF0RRq0cJ5aEELw4IMP4s0330Rqaira29uxcuVKwZMmNjbWr0TDcRzq6urwhz/8Af/+979hsVhwww034Pbbb8fKlSuDYpRB+AXBarHzDH//+9+xevVql6GO5cuX45ZbbkFBQQEuueQS7N69G/Hx8XjzzTencKQ/Hrzwwgv45z//iaNHj+L06dOorq7GypUr8c477yAnJwfr1q3DW2+9hb6+PvhjrUfTNObMmYPs7GzExcXhH//4ByIjI/Gzn/0MiYmJqKqq8vk1gwgiuHM5j9De3o4ZM2Zg9+7d2LBhg1fvDVo4+w87duzAokWLkJ+fb/M6IQRtbW2CJ83x48exfPlywZMmNTXVJzsaQgiefvpp/POf/8TBgwcFlWGO43DkyBEsWbLEbf9PEEF4iyC5nEfYunUr3nzzTXR2dnoV6ghaOE8/CCHo6urC7t27sXv3bsGTpqSkBBs2bEBmZuaEiIYQgm3btuGtt97CwYMHg3m1IKYMwbDYeQKO4/DOO+/g1ltvHUcs9k2bv//97/HVV1+hpaUFZWVluPnmm9He3o4777xzqocdxBlQFIX09HTcf//9OHToEDo6OnDrrbfim2++QX5+Pi666CL86U9/QmNjo8ehM0II/vznP+ONN97A119/PWXEsm3bNixZsgTh4eFISEhASUmJTdm7I+zYsWOcj8t0iGYG4TsEyeU8wTfffIOOjg78/Oc/H/e3jo4O9Pb2Cv8eGhrCXXfdhTlz5mDNmjUYGRnBkSNHMHfu3KkcchBOQFEUkpOT8atf/QrffPMNenp68Ktf/QpHjx7F0qVLBaXg2tpap0RDCMErr7yC7du3Y9++feNCcv7Et99+K5Q6f/311zCbzbjyyiuh1Wpdvi8iIsLGYK+9vX2KRhyEXzCVHZtBnLv49ttvybp160hycjIBQPbs2WPzd47jyBNPPEGSkpKITCYjl112GTl9+rTb87722mskMzOTSKVSsnTpUnLs2DE/3cG5D47jyODgIHnnnXfI+vXriUwmI7Nnzya/+93vyNGjR8no6CjRarVEo9GQP/3pTyQyMpIcPXp0uodNlEolAUC+/fZbp8e88847JDIycuoGFYTfEdy5BOERtFot8vPz8frrrzv8+wsvvIBXXnkFb7zxBo4dO4bQ0FCsWrXKpcjiBx98gAcffBBPPfUUysrKkJ+fj1WrVkGpVPrrNs5p8J4wt912Gz755BP09fXh8ccfR2NjIy677DIUFBTg8ccfx9atW/H000/js88+w7Jly6Z72FCr1QCAmJgYl8dpNBpkZmYiPT0dGzZsQE1NzVQMLwh/YbrZLYhzD7DbuXAcR5KSksiLL74ovDY8PEykUin5v//7P6fnWbp0Kbn33nuFf7MsS1JSUsi2bdv8Mu7zGaOjo2Tnzp2kpKSEUBQ1bmc5XWBZlqxdu5ZccMEFLo87cuQI+Z//+R9SXl5ODh06RNatW0ciIiJIZ2fnFI00CF8jSC5BeA17cmlubiYASHl5uc1xF198Mfn1r3/t8BxGo5EwDDNuErzlllvI1Vdf7eMR/7igVqunewgC7rnnHpKZmek1SZhMJpKTk0Mef/xxP40sCH8jGBYLYtLgXf+8cQTs7+8Hy7JBF0E/IFD8WLZs2YLPPvsMBw8e9Fr5QSwWY9GiRU59XIIIfATJJYgggvApCCHYsmUL9uzZgwMHDiA7O9vrc7Asi6qqKqc+LkEEPoLkEsSkwbv+eeMIGBcXB4Zhgi6C5yHuvfde/Otf/8J7772H8PBw9PX1oa+vz8bYLNh7df4jSC5BTBrZ2dlISkqycQQcGRnBsWPHnDoCSiQSFBUV2byH4zjs378/6CJ4juOvf/0r1Go1Vq5cieTkZOG/Dz74QDgm2Hv1I8B0J32CODcwOjpKysvLSXl5OQFAXnrpJVJeXk7a29sJIYQ899xzJCoqiuzdu5dUVlaSDRs2kOzsbKLX64Vz/OQnPyGvvvqq8O/333+fSKVSsmPHDlJbW0t+8YtfkKioKNLX1zfl9xdEEEH4FkFyCcIjHDx40KGVMm/XzDdRJiYmEqlUSi677DLS0NBgc47MzEzy1FNP2bz26quvkoyMDCKRSMjSpUvJDz/8QAhx3bRpMpnIww8/TObPn09CQkJIcnIy+dnPfka6u7td3sNTTz01bvx5eXmT/myCCCKI8QgKVwYRkPjyyy/x/fffo6ioCNdccw327NmDkpISAGNNeZs2bcJdd92F/Px8DA0N4f777wfLsjh58qTTc27duhUfffQRvvnmG+E1kUiEuLg4f99OEEH86BB0CQoiILF69WqsXr3a4d8iIyPx9ddf27z22muvYenSpejo6HDprigSiYIFA0EEMQUIJvSDOC+gVqtBURSioqJcHtfY2IiUlBTMmDEDN910Ezo6OqZmgEEE8SNDkFyCOOdhMBjwu9/9Dps3b3bZQFhcXIwdO3Zg3759+Otf/4rW1lZcdNFFGB0dncLRBhHEjwPBsFgQ5zTMZjOuu+46EELw17/+1eWx1mG2hQsXori4GJmZmdi5cyfuuOMOfw81iCB+VAjuXII4Z8ETS3t7O77++muvZU+ioqIwa9asoMSIE7z++uvIysqCTCZDcXExjh8/7vL4Dz/8ELNnz4ZMJsOCBQvwxRdfTNFIgwhEBMkliHMSPLE0Njbim2++QWxsrNfn0Gg0aG5uDkqMOIC3dghHjhzB5s2bcccdd6C8vBwlJSUoKSlBdXX1FI88iEBBsBQ5iICERqMRdhSLFi3CSy+9hEsvvRQxMTFITk7Gpk2bUFZWhs8++8xG/DImJgYSiQQAcNlll2Hjxo3YsmULAOChhx7C+vXrkZmZiZ6eHjz11FOoqKhAbW0t4uPjp/4mAxjFxcVYsmQJXnvtNQBj6gnp6em477778Mgjj4w7/vrrr4dWq8Vnn30mvLZs2TIUFBTgjTfemLJxBxE4CO5cgghInDx5EosWLcKiRYsAAA8++CAWLVqEJ598Et3d3fjkk0/Q1dWFgoICG4mRI0eOCOdobm5Gf3+/8O+uri5s3rwZeXl5uO666xAbG4sffvghSCx2MJlMKC0txeWXXy68RtM0Lr/8chw9etThe44ePWpzPACsWrXK6fFBnP8IkksQAYmVK1eCjClI2Py3Y8cOZGVlOfwbIQQrV64UztHW1oatW7cK/37//ffR09MDo9GIrq4uvP/++8jJybG57uHDh7F+/XqkpKSAoih8/PHHNn+/7bbbQFGUzX9XXXWV2/vxNn8xnZiIHUJfX1/QPiEIGwTJJYggrODOzhkArrrqKvT29gr//d///Z/LcwbtnIP4MSJYihxEEFZwpQzAQyqVetXl/9JLL+Guu+7C7bffDgB444038Pnnn+Mf//iHw/zFdGMidghJSUlB+4QgbBDcuQQRhJc4dOgQEhISkJeXh1/+8pcYGBhweuxE8hfTjYnYISxfvtzmeAD4+uuvg/YJP2IEdy5BBOEFrrrqKlxzzTXIzs5Gc3MzHnvsMaxevRpHjx4FwzDjjneVv6ivr5+qYXuNBx98ELfeeisWL16MpUuXYvv27dBqtcLu65ZbbkFqaiq2bdsGALj//vtxySWX4M9//jPWrl2L999/HydPnsRbb701nbcRxDQiSC5BBOEFbrjhBuH/L1iwAAsXLkROTg4OHTqEyy67bBpH5ltcf/31UKlUePLJJ9HX14eCggLs27dPIMmOjg7Q9NnAx4oVK/Dee+/h8ccfx2OPPYbc3Fx8/PHHmD9//nTdQhDTjCC5BBHEJDBjxgzExcWhqanJIbmcy3bOW7ZsEXqE7HHo0KFxr1177bW49tpr/TyqIM4VBHMuQQQxCXR1dWFgYMBpl3/QzjmIHyuC5BJEEFbQaDSoqKhARUUFAKC1tRUVFRXo6OiARqPBb3/7W/zwww9oa2vD/v37sWHDBsycOROrVq0SznHZZZcJne3A/2/nDm0YhKIwjP6OHdgGwxpoLCswBAL19kFhWIMRKpo0bU3NVc057omnv+Te5D73F/u+p7WW67oyz/PH/gL+kbEYvDmOI8MwvN7LsiRJpmnKtm05zzOttdz3nb7vM45j1nVN13WvP9+XAX7tL+AfuS0GQDljMQDKiQsA5cQFgHLiAkA5cQGgnLgAUE5cACgnLgCUExcAyokLAOXEBYByDzUiQzWh7Zw7AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAGKCAYAAADALgxIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZwkaV0njr+fOPOsu/q+z+npOXp6rj4AQecLCijiiuIXUZl9wQqsgOwix4Kr/EBBdnUEXAZkAf15rS6iqMghwsAww5xdVV3V3VXV3dXV1VXVdR95x/E83z8iIyoyMiIzIjOyqnqI9+vFi56qrCciIyOfd3yu95swxhgiRIgQIUKEEMFt9AlEiBAhQoQXHiJyiRAhQoQIoSMilwgRIkSIEDoicokQIUKECKEjIpcIESJEiBA6InKJECFChAihIyKXCBEiRIgQOiJyiRAhQoQIoSMilwgRIkSIEDoicokQIUKECKEjIpcIESJEiBA6InKJECFChAihIyKXCBEiRIgQOiJyiRAhQoQIoSMilwgRIkSIEDoicokQIUKECKEjIpcIESJEiBA6InKJECFChAihIyKXCBEiRIgQOiJyiRAhQoQIoSMilwgRIkSIEDoicokQIUKECKEjIpcIESJEiBA6InKJECFChAihIyKXCBEiRIgQOiJyiRAhQoQIoSMilwgRIkSIEDoicokQIUKECKEjIpcIESJEiBA6InKJECFChAihIyKXCBEiRIgQOiJyiRAhQoQIoSMilwgRIkSIEDoicokQIUKECKEjIpcIESJEiBA6InKJECFChAihQ9joE4jwowXGGHRdR6FQAM/zEAQBPM+D4zgQQjb69CJEiBASCGOMbfRJRPjRAKUUmqZB0zQUi0WLTAgh4DgOoihahEMIicgmQoRbGBG5RGg5GGOglEJVVZi3m6Io4DgOjDHr94wxi1RMkjEjm4hsIkS4tRCRS4SWgjFmRSuAEaXMzMxgcnISbW1t6OzsRCqVAsdx1uvdyEZVVSQSCUiSZKXRIkSIsHkRkUuElsGMVnRdt6KO4eFhTE5OYufOncjlclheXgZjDB0dHejs7LTIxny9STZPPvkkjh49io6ODiuyMdNoEdlEiLD5EBX0I4QOs2ivaRoopeA4DrlcDv39/SCE4NSpU1ZdBQCy2SyWlpawtLSEsbExEEIqyCaZTFqEwvO8FQ2pqgoA4DiuIoUWkU2ECBuPKHKJECoYY1a0YmJ6ehoXLlzA7t27ceTIEQBGzcWtjkIprSCblZUVcBwHXdexY8cO7Ny5E4lEoiqycabRIrKJEGFjEZFLhNBAKYWiKFa0ous6Lly4gPn5edx5553o7e2teJ2fIj2lFJlMBgMDA5BlGfl8HoIgoLOz04pu4vF4BdmYRGPCSTb2qClChAitQUQuEZqGmQYzu8E4jsPq6ir6+/sRj8dx5513IhaLWa8PQi4mfvjDH+LIkSPo6OjAysoKlpaWsLy8jJWVFUiSVEU29nMzycYtsrF3o0WIECE8RDWXCE3BmQYjhODatWu4fPkyDhw4gAMHDoSycRNCLOIyazEAoOu6RTbT09MYHh6GLMvWazo7OyHLcsX5mo0GJsFxHFfVIBCRTYQIzSEilwgNQ1VVFItFq6ahqirOnz+PTCaD++67zyIAJ8LcuHmeR1dXF7q6ugAAmqZZZDMxMYELFy4gHo9bRNPR0VGTbABgaWkJvb29kGU5IpsIERpERC4RAsPs1pqdncXQ0BBe8pKXYHFxEQMDA+jo6MDZs2chimLNNYJu1mbkUg+CIKC7uxvd3d0ADLJZXl7G0tISxsfHMTQ0hEQiUUE2kiRZ74sxhsHBQTz44IPQNM2KbJwNAhHZRIhQGxG5RAgE8ymfUgpCCCilGB0dxfj4OG677Tbs2rVrU228giCgp6cHPT09AIxoyySbsbEx5HI5JJNJi2za29utvxME4+th1ohKpVJENhEi+ERELhF8wZ4+MrvBNE2DoiiYnZ3FqVOnkE6nW3Z8v5FLPYiiiN7eXqtzTVEUi2yuXLmCfD4PABgbG0NPTw86OjoskjEjG8YYSqWSlUaLyCZChGpE5BKhLpxFe47jMDMzg/Pnz4MQgtOnT4Pn+XU5j7AhSRK2bNmCLVu2AACKxSKeeOIJ6LqO0dFRFItFpNNpqxOto6OjYpjTTjb2yMYuwhkpPkf4UURELhFqwi7hwnEcKKW4ePEipqencfDgQYyNja0LsazX5mwW+w8dOgRZllEsFq225+HhYZRKJbS1tVlk097e7ko2xWLROm+TbCJ7gQg/SojIJYIrvCRc+vr6IAgCzpw5A13XcfXq1XU9p/VGLBbD9u3bsX37dgBAoVCwyObixYtQFAXt7e1WVOOHbJyKzxHZRHghIiKXCFVwm125ceMGLl26hL179+LQoUPgOA7ZbHbdNvzNsvnG43HE43Hs2LEDjDGLbJaWljA5OQlN0yyy6ezsRDqdriIbSqlFNgsLC2hra0M6nY7IJsILChG5RKiAOWlvL9oPDQ1haWkJ99xzj9V1BYRXZPeLzSYmQQhBIpFAIpHAzp07wRhDPp+3yGZiYgKU0gqySaVSFWQzMTGB3bt3Q5IkFItFcBxX1SAQkU2EWxERuUQAUO27wnEcVlZW0N/fj2QyiTNnzlQMHwLrSy63wuZKCEEymUQymcSuXbvAGEMul7PIZnx8vMpewFQdEATBimx0XYeu654NApFxWoRbARG5RKhoMTYxNjaGK1eu4NChQ9i3b5/rZmaSi6nZ1Wq0mshWxvogde4MbT1CCFKpFFKpFHbv3g3GWJW9gK7ruH79OkqlkmUv4Gx9NmtfkUtnhFsJEbn8CMNpP0wIgaIoGBgYQD6fx/3334+Ojg7Pv290Q6OUYnZ2FolEosIYrBZavXnO/t/3YPrxv4JOdRA9hmeevBO997wK+176S5AT7aEcgxCCdDqNdDqNPXv2gFKKp556ColEAgsLC7h69So4jquIbBKJRBXZmF42XmQT2QtE2AyIyOVHFGYHk1lbIYRgYWEBAwMD6O7uxj333GNtal6wWxP73fzz+Tz6+/tRLBahaVqFEKVTPt/tnMOGXljB9U++GqtTlwEAPCHoEkrA7LMofuNZDP3r7yLLt0HYcSe23PvT2PeiX4Agx+us6g+mYOaWLVvQ09Nj2QssLi5ibm4Oly9fdrUX8EM2kUtnhI1GRC4/gjCjlWeffRbbt2/Hzp07MTIyguvXr+PYsWPYuXNnoGjCJKh6MAcvt2/fjhMnTgAAMpkMlpaWMDMzg5GREUs+v7OzE11dXVadpxWRS+HKD3Dts78MpVT0fA3PAe1sFZj8AXKTP0DfP7wPeaET8sEXY+vdP47dp34OfB0dNb/gOA7t7e2WBA2l1BLhdF4fO9nYST5y6YywWRD5ufwIwTm7cu7cOXR0dGBubg6UUtx9991IpVK+19M0Df/2b/+Gn/iJn6gpVEkpxfDwMCYnJ3H8+HFs27atIhVnwi6fv7S0hEwmYykar6ysYOvWrdi7d29T18DEwtd+D1Pf/BRowLtfowxLBYbepLFBKzpQkHsg770XOx78D9hx3ysDDZU+9dRTOHTokCW0WQv267O8vIzV1dW69gJ2PxtN07CwsIDdu3dHZBOh5Ygilx8RuEm4KIqCq1evYteuXTh69GjgSXu7+6MX8vk8+vr6AABnzpxBIpHwfL2bfL6p+1UoFHDlyhXMzMxUKBrXS905QZUCpv/3r2Dh0uMI+lSVVRgog0UsACDxgKTNA1e+gcUr38D0/5+gGNuK+P4HsPPM67D9xE+EFnU1ai9gkkexWMTVq1ctcgcil84IrUNELj8CcNoPU0px4cIFZDIZbN++HbfffntD69Yjl5s3b2JwcBA7duzAbbfdFvgJ2a5oXCgU0NbWhng8jqWlpQrdL7uicS2CLN0YwLU/+XkU8xljfQ7gCcAYoFDPPwMAzOco2mMEIl9745V5Blm9CYx8FXMjX8U1jUDvuR2Jnbdj94t/CVuOna54fTOJg6D2AmZnmb1m4zROi1w6I4SFiFxewHCzH85ms+jr64MkSejt7Q2UBnPCi1x0Xcfw8DCmpqZw5513YuvWrU29DxOCIGDr1q3Weqbu19LSEi5evAhVVaum401CW/7uZzDxj/8/UFseTKOAZlufF2OYWspD5IC0bBAJZQxzOYatqeCpo5zCoFGG9uUhYHkI00N/hys6DzW9G+kjL8Kel7wBQHj1JD/2AoQQjIyMWJGNPZ0ZuXRGCBMRubxAQSmFpmkVEi4TExMYHh7Gvn37cPDgQQwODlbMtgSFG7mY+mMcx1lpsDDgNrBp1/1ySrGY0/EdbWkkv/c7yF19pu4xdLVokYhOGeZyFIoOxEXjv3nO/6a6kKdISQRJqfJvErwO5K8Bfddwo+8voGs8+tv2oOv4T2DfS38Z7buO+j5GPTjtBebn53HhwgUwxix7Aafisz3N6EU2kb1ABD+IyOUFBrfZFU3TMDg4iOXlZZw8edJKo3Ac13R7r33Tn5qawtDQEHbv3o0jR46EXiiuda5uUizL1wcx87lfQC67HPhYqyWGlEQQF42NU6MMiwUKVQdkAWiPcXDbUhljmM0x9CYJOB+bbkrQgfwY8MzncfGJP4US7wVJ9aLj9p/Avpe9EektewKfuxfMmsrRowaBlUolqzmglr2A+b6AyDgtgn9E5PICglPChRCC5eVl9Pf3I51O4+zZs5alr/n7ZiIXwCAoVVUxODiImZkZ3H333ZY3SpgIumFlnvs7zP3db0EplgIfa1GLoSNWhD1QETiCrvjaDzRwWMlr0CgQFwjSMqBSIFNqLIW2XKSQeYJ2bR5Yngd94iIu/+BTyLE40HsEnXf+Pzjw0l9GvHNb4LVNOLvzZFnGtm3bsG2bsaaXvYBT8dlcC4jIJoI3InJ5gcDuu2IWZq9evYqrV6/i8OHD2Lt3b9WXPIzIBQD6+/shSRLOnDmDeNz/gGFQ2Rg/58oYw82/+E+YffafrJ+ZhXvKDALwBsF8XkdPwnvuxVoTFN2JNRJZyFNoFCAwuspSkv/3NZuj6I6TqrQbRwjSpAgsDED77gAufed/IIskuK3H0HPip7Dvx94AOdXh+zj1rreXvcDS0hKmp6c97QXMtZ0unZqmIZPJYOvWrRHZ/AgiIpdbHG6+K6VSCQMDAygWi3jggQesoTwnmo1cJicnoes6Ojs7cfz48ZbOS/jZkLTVGYx/8tXIzt2o/LmjcC9KMXB6sUw2BACDQACdF9GTCE62szmKrjiBYCOHgsqQVRgYgPakDBlq1d/plGGhwLAl6e+6cYSgDXlg9jks/POzmP/G/wAlIvjtd6D35Kuw7yWvhxhL1lwjyMberL1ALpfDpUuX0NHREbl0/ggiIpdbGG6zK3Nzczh//jx6e3tx8uTJmnMgjaoaa5qGixcvYnZ2FoIgYM+ePesyiFfrXHND38D4F99szW/UgqrYIxMGudy9zDgOKmO+aiWAEQllSApbktmq38XFtXoNoCKnMORUBgIgJREwGAOYfonFjsUCRVIkkEkRQBGYfhL5f3kSA//0QeT4Doi77sbW+34Ge87+Bwhi5VBloxt5I/YCZoeiKIqRS+ePICJyuUXhnF1hjOHSpUu4ceMGjh8/jh07dtRdo5G0WCaTQX9/P0RRxNmzZ/Hkk0+ui+x+rQ1n9u/fh5uP/VngoUgAkHmgpJf/Qy9Cp8BSiUJnQIw3ailuxy5SDkVFR0esmljckLR1ji0WKAgMcpnPM6QlAlnwt6HOZKlns4DAAe1sGZh4DJmJx9D35f+CvNgNec9JbH3w5xDffyq0jduPvYAZFV+/ft3ysjFbmyOyeeEjIpdbDGYa7PLly+B5Hrt377bEIAFjCj6ZrJ0aMREkLcYYw+TkJC5evGi1Mptf/PVSEKqapymsYOrzv4zM1WcDEwsHQzfMIpYyRJ6gO7G2mZU0hoxCQSmQkAhSEsFigSIdF9ARC55SdCMHyhhWigxFnSGZTEHWc1XDmqbsTJBmAZED2vUFZC99E1OXvwMBGla5Tjz91BnsPP067Dj58lDJxmkvMDk5ibGxMWvOhhBSoficTCbrkk1kCX3rIiKXWwj2NFg+nwfP85iensbQ0JAl4RIkPeU3cjHdKBcWFjbMjdK5oRSuPIlrn3sDlGLB+pnIAZyPwr0Yi0MvFeoU9w3IQmVUMZ2h4DmgABmqoiLhs3CvUYYsi2Frqrp7jSME7TGgHQRAHpQDlosMJY1B5GHVcnobSKEt5CnSMoHEG1WnXiwBo/+C+dF/wY0vEpQS25E4cAq7XvSL2Hr8xaGSTTwehyRJuPvuu0Eptbxs7PYCdhHORCJRRTaUUpRKpcil8xZERC63CJz2w4QQzM3NYXJysuH2Xz+RSyaTwblz5xCLxXDmzBnEYrGqNdY7cln4+scw9fVPgjqOaycLQgCRGP+vE8Fqz5Z5oGQjJL9QdYblIsP2tLnB5wCJIKsw5FUGQoC0RBBzSW8VqABVVdEh+2uL5ghBRwwAjChJ5ICixjCTZZAEoF32N0Mzk6PoTXi/NsYzxEpTwMW/x8zFv8c1nYOS2oXEobPY+5L/F71H7vN1vl6wq2VzHIe2tja0tbVh7969vu0FnIrPbi6dEdlsTkTkssnhZj+cyWQwPT0NjuNw9uzZqg3fL2pFLqa/+/DwMPbv34+DBw/WdKNsNQghYFoJ1z/5Kixdeb7u6xkDFOu0NHAAxHLhnhdF6D4K/yYyJWMht8ghVU6VGcdkWC0xFFQGoSwhkykxtCcY4nLwDc+eQltrDjCIbqlEISTagGIGaRkVBGKl0AJGOnGeAqvjyD8zjqnzf43LOg+1bS/ajr4Ye176y+jae0eg9Wo1EIRlL+B06dQ0DbFYDLIsRy6dG4yIXDYxnPbDhBCMj49jdHQU7e3tiMViDROLuZ5b5GJO9C8tLVVM9HutEZRcCCEoFAoghPg+f27xCpSvvhPZQi7QsQBAIACDvXCvgidGzQUANB3wit/mchQdPgQrAeN9tclAm0ysSX1ZIMghDr2wija5sl3ZCxplWFF4bPWQfVurC2WBGFmrCzFjnkfgGkuhLRUp4gJBe8w4xwSvA7mrwPNXMfH8n+GSLkLvPID221+KfS99I9q2H6y5HqXU98ZuN40DKu0FpqenMTw87Gov4CSbvr4+7Nu3D93d3ZEl9AYjIpdNCLuEi5laUFUV58+fRyaTwX333YfFxUXkcsE3WjvcIpeVlRX09/cjHo/jzJkzFf4gfteoBVPX6urVq6CUIpVK1ZXQX/7+50G/+uFA0YYJiQdUHVUFf50Buq2YLwgiIMi4ubBqiVausgR6k/nAx1R0I4JZK75ngTgH3SYh45XeMlNo3QGaBcy60FKBWhHOXI6CAUiK1fpmbvAa5LQjyavA6jDYD4dx9clHkWMx0K5D6D7xSux98euR7KnsUPRrIueGoPYCnZ2dkCQJjDFrjiZy6dxYROSyyeA2u7K0tIT+/n50dHTgzJkzkCQJy8vLTUu32CMXxhiuX7+OkZERHDhwAAcOHPDtRun3PBRFwcDAAPL5PO677z4IgmBtGCMjIxVyI11dXUglk5j54hsxP/SYtQZXfjIHakccgEEsil7jBTZomgpoKnqSHAqqIVoJZLHAAe0xfxEHYKTQCAF6EtWbFu+QkDHTW6aEjEobT6E5ycFe+8kpDJqQgFLIVeilAWhY9ZkQApkWsTp1HuryEEa+8wfIsQSw5TZ03/Vy7H/pL1tzLmHAr71AsVjEysoKUqkUJEmKXDo3EJET5SaCXcLFjAiuXLmCa9eu4ejRo9i9e7e14Y+Pj2NhYQEnT55s+HhTU1O4fv067r33XkvY8u6777aeFv3ghz/8Ifbu3WtJhnhhaWkJfX196OjowB13GLl7832aMCfAFxcXsXrjEtof+2/Q8qs11xUkGbxeAmOAyjgwRsETY/PTgtpMwtD4kniChG0D1inDasmISCTeIBu3InmQFJoTM1nDL0YVUihkM1bbcz0EnfIHYDUhAEZtqlE7AcqMupL7eQEZJFBq24+9L3od9v3Y6yEn3JUiwoBpLzA0NARZllEoFJBKpSpEOJ32AnaXTiAim7ARRS6bAG4SLsViEQMDA1AUBadOnUI6na74G9P0qxmY6bYnnngCyWSyStjSD+rVXBhjuHbtGi5fvlyhcWY2KNhhyo2kpx7H+DffDU2vH3ZoSskm7UKtaXtnJ5kfCLEU0jRTlRriOYLOOICyDrKqM+T5BHLZLOICQUoGljUZvUkl8DGd8ysx5JAu/zuvMuTKEjIpqZLwAKDEOOQVPfCUf0oiYMzopEuKqGpCkOqQo6UQUGPwk+eADuSB7BCKXx/C4Nd+Bzm+DeLJX8bpX/lQoPP1A9NegBCCO++804rul5aWatoL2CMb8+HOy6UzIptgiMhlg+GWBpudncXg4CC2bt2Ke++917UO0awuGGMM8/PzyOVyOHLkCPbv399QobMWuZh1otXVVdx///3o6Oioe043//KtmH3mHwOfB+CYtodBBUJ59kVnhsaYFyQeUIpZX54tIk8gIo9UikNJY1jIMwBFzChAUiBI+Uxr5RQGnXkX3xNiJaGYEQdHjPeWTojobGCQc6EAtEmwIiyzCQEwSHlV5VFQVIgcqpoQ/NRm3MCB4ukrCyAr/9oScjFhPpxJkoQtW7ZYLfpB7AWA+i6dkSV0fUTksoFwzq5QSnHp0iVMTU3h+PHjNVNNzSgaK4pidYPF43EcOHCg0bfgSS4rKyvo6+tDKpWy6kR2VE3bZ+Zw43O/hOyNoeDnAINEnNP2DJWzLxzHQ+AYiJSAVshCL3dXEeK/NmPHStEYcnSSQ74sWklgyL44Iw7AZibmU/YFWGt7NoUyVXCYyVIIZRLwk44z2ps5z9kXjhC0iTraxDXTtKUCg6IzqBTYngpOLEWN4uuXdRQ0YFsNrbtmYaa63KKLZuwFzLUjl85giMhlA+A2u5LL5dDf3+/bwbHRtJjZHJBOp3H8+HGMjIw09B5MOMnF3hhw8OBBXxFR7sI3Mf6FN0NVjbQSwdpMik6NqMMLopyAruR9TdtTqkOhADRDD8wSrIQhBxPkaq4iiaSUdS30OyOOIiSsZIvgOWPQclXl0BPnEHQfchbfBZQQL/+bMlYx1e+MOHQGLOZp4PoKzxEkJQamGLUZVWdYsZmmtdUZ6FzIU3x7TLc+Q14QPV/bLMzvg5/UVT17AVVVfZFNsVjEk08+iRMnTkCSpMjLxoaIXNYZlFKsrq5aNyAAS7Nrz549OHz4sK8vR1Bycat9LC0thepEaZ+Puffee301Bsx95QOY/u4XK1qFTcVgExUdYoyAlgv1Eg8oSqG6z9gHJL460uEECTdXiuAAtMXcaw9rBfQc4PMJPgYFsfLGvFxkkHiK2RyDwBvtyH460UqaoarsRQ72qX6g0jmTJ0A8EUdvMrhxWk7jwKiOrrhxXJGv7HhTdIYcFaCUFMRFgrS0JtUztqzjhzcq71FeCFbTC4Ig5OJEo/YClFLk83kIggDGWGScZkNELusEe1j99NNP44477kB7e7ul2XXixAnL69wPgrYAnz9/HtlstqL2EZYTpSnlce7cOd/zMXoxg/E/fjVWJ4frHoMyO9kY3isCD1AKEBCwAOxCAHCSDEWp3mippljFcUtM0hYJKLpBSI3I5DvrK+1lErCnnYxONK6Ks1ZLDDyBtcH7gemcaTpcikS1DM1M58x6G91CgSItMUg1utYkvqxbVk6jFTWGbIlifEXHyGL16zdL5FILQewFzEYbc4YGiFw6TUTksg5wK9pns1kMDQ0hHo/j7NmzdTdjJ/zWXOwtwGfOnKloxwzDidK0Uh4dHcW+fftw6NChul+Y/JUfYvTTP18hOukXPAFAgKLVIkZ9C1aak/q6C7E4USkmaaSUKIw03XKRoT3Gwe+2kEUcIpd3ra84O9F0cFiw2ScrOkNHgodAGjMxWyu+VzpnljSG1ZIxaJkQq9ue6+mSeSEmEPxgQsesx3yvILY+cgl7w65lLzA/Pw8AePzxxysUn1OplCvZmC6dgHvr8wuJbCJyaTGcsyuAkT4aHh7GoUOHGu7SqpcWY4xZNsdHjhzBnj17qo7TrC6YKdGhKEqVWrIX5r7xPzH1Lx+HogavoFvT9o5TrhCsBCDGEoCaB6WAxhx/G/iowFyBoDvOg7Nt8Bp4LOdV6AxICMRz3mMmS7ElVQDxWbjnyyRgyse0xwiW8zoojOP46UTzMxgpCwS9tnOy2p4ZwMsJbE3Wt3p2QtGBb1ylyJa8rzIvtjZyWQ/hSru9QEdHB86dO4d77rnHimy87AXsLp1OS2gALziXzohcWgS32RUzPaUoCg4dOtRUl1YtcjFtjguFQk2b42ZmZbLZLPr6+qDrOvbs2VOXWKhawtinfgaLo88CCFa0B6rbjL3AACjFNckWAoNYgLWWZL8w6hbuA4oC9IopfLutcUokkAQE9l8xoeoMKzb5mJiDBMxOtPakCAmVF0XRGTJK8OMmRAKeAHkV6BSLa2rPMGZf3NSe7VgqUPzbVd0icznZhlKuegCWF4JF6EHQjNxMM8fkeR7pdBrpdBp79uxp2F6glnGa+dpbiWwicmkB3NJgi4uLGBgYQGdnJ9ra2poSnDTXdCOGhYUF6zgnTpyoSIM50WjNZWpqCkNDQ9izZw9KpVJFF40bilNDGP2jV6OYXdts3Ir2YjwFVspWRBhepl5+4Pa3PAGEeApgDEoh5xnJ5BUGlfqffLfbGmcVo3DPUJ7aTwgQib/rXGQSVK3kKh8DODvRdGRKBgnwnPHeJIFDdzz4BmTWdTrLf1tL7dnZ9nx9heGJCb3iWroRC2AoKrQKG0Euuq5X3f/N2At4kc1rXvMavPnNb8av/MqvrOv7awYRuYQMN/vh0dFRjI+P47bbbsOuXbvw3HPPhaoLBqwJQo6NjVVJxdRaI0haTNd1XLp0CTdv3rQ8ZAYHB2uusfjYZ3Htbz8Ivc77pQwo5dcsg4XyZgk0RiwiZ0QpzhqMzgDd5ThGvYYAYNYEekJqwJyrQNEmC0hJ9s+GYqVIUdTKVsQeWmULeYr2uI5YAG2xtGyk5BbyFAmRoKAxzJTc25E9zzlPa87J2NWegcq25+mMjosLvk8XUqx2i30z2ChyqXfMIPYCJuHE43EAsMgmk8lYP7tVEJFLSDDTYKqqWoNchUIBAwMD0DQNp0+fRiplaKiHJd1ibuqlUgn9/f0oFot48MEH0dbW5nsN89zrFuHzefT19YEQgtOnT1tzOF4ERXUdE597PWYH/j3I21o7N1JJKiJPwIHVnbQHAgpWUsAuRDO5agwl5omxQQcpaK/5r1SeICFGF5iZnDQ6xCgUmzryXI6V/zY4k9p9X2QBgK0TzWxHTqUSiLNC1ftxs12uB7Pt+bvXdExn67/ejvmFBYyOjtZUwW4UG5kWC4Ja9gJTU1O4dOmSZS+wtLSE7du3I5fL+bYv94Pvfe97+MQnPoHnnnsO09PT+MpXvoKf/dmfrXjNxYsX8d73vhePPfYYNE3D7bffji9/+cvYs2ePr2NE5BICKKXQNK0iDTYzM4PBwUFs374dt912W8UNGCa5zM/PY2BgAN3d3Th58mSgL6tJKPW+IDMzMzh//jx27NiB2267reIL7EYupflxjP3xTyMzPxnwXRlwIwfVViwhAEQ5BjAdlHHQ1FLNv/ULIRbHTqzVa1SdYbFEoVMjHeVVtA/qb290iK3No8zljHTTXI4hnZSRIP40yuoNRlaqMBehUlgqzDGBoKQ3VhNSdIpvXNGRDS6lhs7uHlBKcfnyZRQKBaTTaWujdQ4qBsVmjVzqoZa9wBe+8AX83//7f0EIwaOPPorV1VW87GUvw9atW5s6Zi6Xw913342HH34YP/dzP1f1+ytXruBFL3oR/uN//I/43d/9XbS1tWFoaChQOj8ilyZgn10xn/4ppbh48SKmp6dxxx13WHITdoRBLibOnTuHY8eOYefOnYGLffbIxQ2UUoyMjODGjRue78WZnlt55v/g6p+/A5qmVQw/+unUEqQYmFqsSw4MgFJa62biiJEGI2iMWEwJGK1Y6d0i8gQ9ibVrai/atyclyNDq6oPVQl5h0MBha8p+ZRQUNYZMidX0YymoDEyIBRqMNE3GCipDSTfSXKbvi1s7shtWihTfuqpb6UZCDCVqv2hr78TRo0cBrEmwLC0t4eLFi1AUpWJQsa2tLdDGfatELvVgtxf4/Oc/j49//OM4fvw42tra8Ad/8Ad4wxvegDe/+c149NFHGz7GT/3UT+GnfuqnPH//3/7bf8MrX/lK/MEf/IH1s4MHa5vDVb2Phs/uRxxOCRdCCLLZLPr7+yEIAs6ePeuZI22WXIrFIvr6+gAA9913nxVeB4U9cnGiUCigv78fuq7j9OnTniG5GbkwxjD552/B9A//3vpd5fBjub4hx0FLhapaiMQDqqpUtRn7gcAZxzH/VCBGIZ8SHqpOq3uX7cfljLqMn+Pai/aAhumMbogZEkARUFdN2A7T2KtNqD5wTCBVfiy5cudWm2zUVWSeIEGCT9yvFg1lgI6y26TbcWKJFEQtV+H7AgA3Vikev15ZuAchgfq7RWntydcuweKcir9x4wYopVWzI7UeoG7VyKUeOjs7oSgKfvu3fxtHjhzB4uIilpaWWnY8Sin+5V/+Bb/1W7+FV7ziFTh37hz279+P97///VWps1qIyKUB2GdXTLXUGzdu4NKlS9i7dy8OHTpU84bjOM5KoQXF3NwcBgYG0Nvbi+Xl5abysF6Ri3mMrVu34tixYzWfzAgh0LMLGP6dk8jMXq95PI0CWmFtcFLgOXCMglj1leCEG0ukUcxnKo/DDCMxlNt0vYYs/bY3u2EVKWxNZaxahTXRrzOInFFH8RJ4nMlS9CT8C0AmpbXoZTZHIfFGd5cmJBCjed/+MfX8ZtaOkwdEUtGJNrVCMbTgwiIBG9ME2f2By20q3hxUtM+O2J0nE4lEBdlslm6xsKEoCjRNs9QA7Cm0VmB2dhbZbBYf+9jH8JGPfAQf//jH8fWvfx0/93M/h+985zv4sR/7MV/rROQSAG6zK5qmYWhoyJffvAme5wOTC6UUo6OjuH79Om6//Xbs2LEDU1NTTUVA5hfTPkF8+fJljI+P4/bbb8fOnTvrr3H9SSj/9D5oDVgQU50CnEEEhixLDIJehOZj7oXAiFicxOIG55CllEiBlLJ1GwPcoFEj6uhNZmFXnnRO9Nu1vdLJOGIogjFgocHZF8oY5gvE0RpdgE7gkI9xL86vIIWeRCZQ6tTsRPv+uIYbGfcPRJLiKBX8V/XtkUst2AcVd+/ebc2OuLXzmv97oaTFnMhmjetrNgS1Guae8prXvAa/+Zu/CQA4ceIEnnjiCTz66KMRuYQNxhhWV1eh67rVk768vGwpDAcx2jJNuvzCTFE5u86a1QYzoy5T3XVgYAClUsnVnMwNN7/8fqz+2+camnoXuXIkUz59Q5alaI0E8mZqS4hDLxUqjiFw9aVevMATQFMVmNzO8TyE8lFVJoDRahMzEzmFgYL4qq8IFcX0EjIlIKdQcIQgqzBf9Q0Tim7UYLYkqv/GzcjMbp2ckIDlAkOPgwz9QKMU37isY7VG4V61NVPwggRdM6fNeVBa/QAlxhprp7XPjuzbt6+inXd6ehrDw8PWZPvNmzfR1dUV2PiuEawHoeVyOSuyWw/09PRAEATcfvvtFT8/duwYHn/8cd/rROTiA+bsypUrV8DzPI4ePYqxsTFcuXKlwl3RL4LUXGZnZ3H+/HnXFFUYjQGEECwuLmJkZMR3x5lezODqH70Sy9cvWCknPy3CJvx0dOkMBgHoRhqN5zkI5bRZo6ksSwJGXdstqa5j7b+0ilRQm82VcaFAkRLNVt9gyDEZAlfEtvTaZ2eftHf62tuRVQxa7fYYqnTCLNoDRtF/pTzMuYoUeCXj2hzghkyJ4ptXyhYFPmESCwBXYgH8Ry714GznNSWVMpkMJiYmcOHCBSSTyYrZkVoDxY1C1/WWrGuH2Ya8XtP5kiTh/vvvx/BwpajsyMgI9u7d63udiFxqwDm7wvM8VFXFs88+W1dapRb8kILZqTUxMYHjx49jx44dDa1TC2Yh/sKFCzh27Bh27drlS3Ty8p+8DqWC0VlVpevFG/+vMQLd4WFPAIiSZGkpBYGuU/BlUjJTYoQAOpEqNjUv+K2vmKkgYG1YMFMyhiqFBh5Q53IUXQkFvIM8nJ4vJqnF4wnEUYDIG4ORfmyH3bBcpIhLArpF8wPKAhKpaA7wknWZK4n49mjeV0RKiP+LwvECpFh4sxp2CIKAWCwGQRBw9OhRqKqK5eVlLC4uVtgc28kmjHTWehT0s9ls6OSSzWZx+fJl67/HxsbQ19eHrq4u7NmzB+95z3vwi7/4i3jJS16Cl73sZfj617+Of/qnf8J3v/td38eIyMUDbhIupVIJMzMz2Lp1K+65556GB8DqkUI+n0d/fz8opThz5oxn0b5ZN8qBgQEwxnDnnXe6kpcTc//6cVz/p094+tNXSroYciJEioPTCkYUQtAQsfAEIBwPpfxZVDpMKpV+L3plW4BJRI1EO5QZaabd7cYmpOoMy2XZ+nQqjjgren7hKWOYz5vyMfU/ozVSK0Kna8OcOYWBlxHI/XEuR9EZJxC46nvM3hxgl3Xhy00IlxcpBuap71RnkPuP6hrEgOrfQUAptT4PURTR29tr2ViYNsdLS0tVzpNdXV2B257tx2x1zSWfz4c6QAkAzz77LF72spdZ//3ud78bAPCrv/qr+NKXvoTXvva1ePTRR/H7v//7eMc73oGjR4/iy1/+Ml70ohf5PkZELi5w2g8zxjA8PIybN2+ira0Nd911V1NPEbW6xcyBRbfhSycarbmYbpTt7e0QRbFuLpeqJVz79M9iYeTpQMfRGYBSATJvbPg8AWRJAlUV3/USszbDajRAOFuezXoNYERPjdRm3OZX7CknoISibqSPAJTlYozfmcZejfi+UAYsFhh2tq39rZ3UnIZcdphKyn4bBpyyLj+Y0HB9JdjDStCvgdhi+Rev74vT5tje9jw4OAhN0yrantPptK/v+HpFLs7OuGbx0pe+tO6DwcMPP4yHH3644WNE5GKDm/2wWUynlGLfvn1Wca0ZmA52dlBKMTw8jMnJSRw/ftyyX62FMNwoH3vssZo3WXFqCJf/6KdRyK74Po4ddsdHjQJaac3KWDDrNYSHplWTR6OtwjoDeBiFcMAwqOKhg1Hqi2jM+ko9f3vnPEpWMWocHGG+ayR25FUGysvoTVZGd5WkhvKQJYUYS0LS80hIpEpJOQg0SvHta8BinpXnVoIQTLDvQqu1xfzWP5zOk/l83pofGR8fB4AqyXy37/16RC65XG7dOsXCREQuZZizK3Y3u6mpKVy4cAE7d+7EkSNHMDU1hdVVd7XXIHCSgqnbBQBnzpzx3RUShFxUVcX58+exurrq241y8Xt/ihv/+BGwUhYiF6w7i+c5EEY9C/eVqS29QhVZ0xtXQgaqSUnXVKsLzd7yrNv8XkzM5oCeBkyyAKOAviVJIPJchZNlMmHUUWqltpaLFDGRR4KrnzZcI7UCUK7NKHo5/acxyD69YwCjg+0bV/S16xU4zRrs9a2quQCNd27ZzcB2795tCUWakvlmI49JNF1dXYjFYsaM1zrWXG41/MiTi13Cxbw5dV3H0NAQZmdncdddd2HLli0A3COORmAnhZs3b2JwcNBVtyvIOrWwsrKCvr4+pFIpnDlzpqJF061uwxjD9c++HrP9/1a1lp/uMGPqnQXap0xVZIGsDX3LfLCWYz/y/M6WZ7NeQzkZlBOwBTkEfRo301FbksR6uq2cezFmd8y5F6fN8FqNJHj9bKlAkZQIugXHMKdmTOK311BGvpmleGxcB/VxWMILECUZSsFhMRnwlKVEa8kljCiCEFIlmb+6ulqhYmwKS5oK6K1EK2ou64EfaXJxK9pnMhn09/dDkiScPXu2Qqitmcl6O8x1Lly4gKmpKU/drnqoJ5nPGMPExASGh4dx4MABHDhwwNWN0v7lUBau4/L/fAVyS7Oua9o3eo7jIRAdlJdAVRWUMVvUEHyjlBMpKPms8ZesUq1YkOPgtYInqXlJ7NcDZUbHGdFLoGrJ6tpy8y1xg6IbRfF66ajKuZe11FZJZ+iMcb6k8Z1Y0mJokysjIucwp6nATOQUoGTRJhtR2fCCjuenA6RUdQ1KoXoGiOM4BPlGtDpyaUW7Lsdx6OjoQEdHB/bv3w9d17G8vIylpSWoqoqhoSGMjY1VDHSG2Z4cpcVuMbjZD1+/fh0jIyPYv38/Dh48WHWjhhW5KIqCQqGAlZWVQGkwJ2pFLpqmYXBwEEtLS7j33ns95SLskcvKc/8XV7/0dqvmVA+UlmdEdMWYfC/vrxKHQPMRQDmVlfee9NZKBYtsKlqeiQiBqQ2n0MRYAlpxre3W2Yq8VGRQNPfp96xiZJG8jL1qgSPG/3a18eW1DFKTY3HEWLFmaosyhoUih954EfWirDUF5jwQ46DoDM9PqxhbDnzKrtBt8yxiLAG1VARqCFnK8c2XFgsKnuctYUlToFbTNEumZnBwEKlUykqhtbe3N2UtkM1mI3K5FeAm4aKqKgYHB7GyslJ3I242cpmensbQ0BA4jsODDz7Y1JfBi1wymQz6+vogyzLOnDkDuUb7JyEEjFLc+PNfx80n/67haXudVROKnxQaB4ALWF+xtzzLcQlaUTWsjOUUVDPy8QE5FkPJoYRccW6EoDMGVE2/M0CMpZDicw3NoLgNRq45P5ZAGazUlshX6pSZ0/q9ieCflE4pvnNNx2Kh/mv9gtnuP9VuL83xYC6DlK0cBNwobTEzRWa2PSuKYnWijYyMoFgsWm3PptpzkPRdLpdraJ5uo/EjRS5uabClpSUMDAygra2troRLM5GLruu4ePEiZmZmcPjwYVy5cqXpL4Ibudy4cQMXL17Evn37cOjQobpfZq60iqUvvA6lqYsNEUutji63FBohHDSdQmdrpNSIxpdFSuUagK4DKEc+lrsk4aG6dKGBEEgCh1KxWP27GjC7tmayFJ1cHgXNKMTXm7K3w89gpJdOWVFlEDiC3mTwDbqkA18b1VH0F5T6BiHE9b5xIxaOb+12sx6dW3aY9Vrn91iSJGzdutXyXLG3PU9NTUHTtAprgXQ6XXMvyOfzvubQNht+ZMjFObsCwLIFPnLkCPbs2VN/I24wcslms+jr64MgCDhz5gx0XcfIyEhD78N5Pia5mDWc2dlZnDhxwnqKqnleF/4N0t//KrI2nbMgci5yIlUzlWWHlUIrjzjGyrMvAgAlIKs5dcmcWHOX1I0UmjnNTwEmSCCEg6IEIxZj3UpTMPuUvdNn3s3KeCZH0dtAJ5qxjtHeLAsEJY1htUQhSDFIrFRX0mU+R/H9aQlFzZ+enRxP+Raj5KUYqM/XUkqRz+cRj8dbEsGsd+RifvfqEZpb27NJNtevXwdjDB0dHejq6nJtew7bhXK98IInF7fZlVKpZIk0BrUFDhq5TE5O4sKFC9izZw8OHz5szc5QSn3ZC9eCWdC3k5ezCcELN7/8Adz49merOroqog0CiPE0WClTMfkulLu5/BKLExIPFB0cLXIAH2+DXsq5RxtlBJ19YVhL14mxOFAqgI+nwelFXwZmJuqZgjkHEu1WxomYiEJJxdYGhioBYDZL0WOzIpYFgl6BAFAAkCq/F3u95sqijqenKABbLqzOLEsQlWO1RlqxGgxPP/00RFG06hGdnZ0107ZBsN7kYs+A+IW97XnXrl3W93dpaQmLi4u4evWqpZuWz+eRSCRCr7n4sTg28eu//uv47Gc/iz/6oz/Cu971rkDHeUGTi1m0f+6559Db24vdu3djbm4O58+fx5YtWwLbAptpMT+koGkaLl686BpJBPGurwWO47CysoLLly9XkFctGKKTr8Ly9aG66xvtwWuS9jwxSIC61Ff8QCAAI+6ilSoF1JwxQ2QW7AEj2jDl96UGhyoBs75ibLCa7T1ZKbQanWaLBUNbrN5QpR1mIT2vMlDCoSNGMJ+noGXL5JSHZbIdloRMnU40u6SLvRV5YkXHqJunlAuxCKIMwnFQSwELMgH6zQnh8OIXv9hSM3YTmOzs7Gy4+L1RkUszxySEIJ1OI51OY8+ePaCUIpPJYHFxEX/3d3+HT33qUyCEoFQqIZ1O48d//Mexa9eups67nsWxia985Sv44Q9/2HBK7gVJLm72w5qm4dKlS5icnLT8UILCDH/r5XbNdmZRFF0jCfNmbObLYEqOFwoFnDhxwprFqYXC2NMY/dTPW3WKoBC4yohDiiVA1LzrMKITliKxj72oUqOsnKoTY2BaEQTBm5wlkfesr6yl0AAQgsU8haozyELZBjjPGkplAUY9RuYJUrwKoNIy2Yw2OAKkJVLVHdaohAxHCNISxTNTOuYCBBWaGtzV0kAQciEVfvEHDx6sEpgsFAqWwKTZaeX3O7IRkQvHcaGm+DiOQ3t7O9rb2/G7v/u7eM973oMzZ85gy5Yt+F//63/h4Ycfxitf+Up89atfbfgY9SyOASPj8hu/8Rv4xje+gVe96lUNHecFRy7Oor2ZOhofH4csyzUte+vBvHG93OcYY5icnMTFixdrOlLayaURmBP9qqpix44dvohl/lt/jGtf+XBDNsJew4mKLSXCEUNOnTEdmqJWiEf6kdj3gmVDXFojBz/RBgDwogSiK1BUnwdnrDyLQgyNL0UABwXzeYakCN9y9YDhGNkV9x5g9Io2ZEkEoRpEgUNXPPiHVdIo/vWyDpeRlMZRTqOJsUTANJhjGZfvglNgslgsWimioaEhq/htptBqaX5tROTS6gaCZDIJnufxlre8BT/5kz+JlZUV3Lhxo6XHpJTijW98I97znvfg+PHjDa/zgiIX5+wKIQSTk5OYn59HW1tb062/9sjFCU3TcOHCBczPz+Oee+5BT0+P5zrNkIspbGlGXvWemqimGqKTwz80ZlHK8yGqQz3YC1IsCa2UqzucSBlQshOAKIGnRgk/LBkXE/ZogxAOIjGsku0OlmIsDr1UrOto6Ya8yqDoQE9MA+S1+yWnAlmFgidAR0Kw/GXsoIxhLoB4JFDZHbasGJ4xeVVHpmhIvbTJ/lp4FwoU376qN/Sea6L8RNIMsQD+5PljsRi2b9+O7du3V2l+Xbt2rcLquKurq6I5YKMil1Yjm81a5n1mVNNKfPzjH4cgCHjHO97R1DovCHJxm10xu6fm5+fR29truUc2A9O50dkx5pwrqVdQtztA+oXd3+WOO+7A9u3bMTw8XLN7rXRzGKN/+EoUMssAqtNNvCl9IsRdc+0yD5SKjaXQOI6DqsGSFjE7tqiPFJopaumHlBijFd1mPMdBlGOgSh4sqME71lJZHbHqv02KQFIs18tAsVxkKNkGLDVq+LI0Ih4JADNZit6kBo5UCmIWNYaMQsGo0fKccImgri1TPHmjefWIZkAIB1ZjgDLo98+p+WXWI5aWljA7O4vR0VFIkoSuri50dHSAMfaCi1yA9ZV/ee655/DHf/zHeP7555tO993y5OI2u7K6uor+/n7E43GcOXMG169fD2QrXAv2WRfGGG7cuIFLly75nisxEaStuVgsoq+vD5qmVfi71LJLXnr8Cxj7m/dC172/7FVuj6IMnirQdRZ4sNEOiQeUUmUO39mF5uW/YnaiNSKTDxDwPEGxYD5hM98pNAAQYgmkac6XdwoBygRkvDaj8siXVIAgsI2xThkWCt6k5Ka+nFcZBEFAStBxYR64NB92uBIcJrHwggjdpe2ZcM1txPZ6xL59+6DrOlZWVrC4uIiJiQkAwLlz56yaTkdHR1OT8fXglR4PE4yxdZV/+f73v4/Z2Vns2bPH+pmu6/gv/+W/4JFHHsG1a9d8r3VLk4tpP2wPh8fHxzE6OlqhpcXzPIoBB+a8YJKCXV7l5MmT6O7uDrSO34HMubk5DAwM+LY5Zoxh4nNvwEzfNwKdDwDoasnw5yjPuUg8wMlpKPmMrxQaYK+veG92Tv8VkwCIZMxXNLJNcoIEjlbXVypSaOVjcYl26MVshcy/EaXlA5lymTAGIxnSNnIoaASZkjFn054QIBH3K1jUGAoqAhXu16b5Kf59TMdMzv2KSfFktdDkOsCNWIDwhyjtzQGqquL73/8+9u3bh5WVFYyOjqJYLCKdTlv1miDNAX6wHmkxc2zBTIu1Gm984xvx0EMPVfzsFa94Bd74xjfiTW96U6C1bklycdoPm0/w58+fRyaTwX333Wd5awPGTRiG4KS5ViaTwcDAgBUZNdKnX29mhjGGy5cv49q1a7j99tuxc+fOumuoixMY/Z+vQG5xJvD5ALaOrvJ/KzqActtuZQRQ3bPFl9WMGyncaxTgeaBYyBp1oVgCRC1Ap6xuCg0ABEmGrpRQr4ZtRURlbxqOAGKZTBttOJjNUVeJ/rjAEBfWUmirJaCgUoi80YUmcASrJcOtszMenNAUjeKb1wgyRe8LZCeWWLINxZw/uwhBikHzOWQqJ9IV7eq1IMr1568ahfk92LJliyUCWywWrXqNORlverR0dXUhlUo1lfpZLxdKAKFGLvUsjp0PyqIoYtu2bTh69Gig49xy5EIphaZpFWmwxcVFDAwMoKOjA2fPnq1SJA2LXExSu3jxIg4ePOiqMuwXtcilVCqhv78fpVIJp06d8nxqsasirz7/FYz/9X8FKywH9l4B6nd0VUYA5XRTvA1afhUcKXd0NRByOOsrDNVdaAIHQIxDLRaqopogm6YTHIz6j5k55EUJU0tFzwl7OyiMyXc/EYcx3Ai0lZsDdEYwuaqB5wgSAgk877RSpPjmVT2QbI79GtXr+vJLLAB8EwsA0JAe8FzXLisi2yOJWCyGHTt2WJPxuVzOmoy/du2apXZsRjZBlQPWy8uF4zhfg9F+Uc/iOCzcMuTiNrtif7o/evQodu/e7XpzhEEuprilqqo4dOgQDh482NR6XuSysLCAgYEBdHV11R3y5DgOVNcx+Rdvw/QP/k/FxmulgBxdVE7wBIAgQVH9e9ubEYCaW4XMG/82hx6DTL0LXP1aiJVCK9eFrAiKl0Go2jCxOKM0ANBVxap7mHpebv4reZUBYhxbko2lWudzOnakecsiuKQTrBZ1MADpGI84730FJ1YofjChN5Q6NOFFLLwoQ2943qU+uBY+5dfrFCOEIJVKIZVKVTQHLC4uVnm0mJFNLZ1B85jr4ULp5YLZKPxYHNsRpM5ixy1BLk4JF0IIisUiBgYGoKpqzad7oHlyMc22kskk0uk04vF4w2uZcJILYwxXr17F1atXaxKlHaS4AuHv34Sppamq3zmL4rxgSNNTwkHVGAC2NkMSgFisYwMQ40lrILOihiKKEKQ49MKqJ3E0amGsUYCJEohWgkYBSY6BaO6ukl4Q5ASUUu22Wi//FY0yxAWCDrF5bTITMs9ssjIMWcVwiHR6yvTf1HFhvnXGVK0kFgDgWyhcGbQN2d4c4PRosSsHmFGNW3PAekUuzabvNgqbnlzssytm2DszM4PBwUHXIrcbGhWcNIcvR0dHcfDgQezfvx/PPvtsaG6U5jkpioKBgQHkcjk88MADvvrYs5f+HQufeQNUxR8xrFn9rglHMhjDkUFViQXOSIF5FYs1VYVW7mIzhSNB1qRcZElESWmse0+SE1BLa/4rim22xt6F5hVBSRzqEosbYgIxpO6ThrFXATJWswVfKTTAsEAu6d7aZHakJCBVNsehDFgqMgzOaLjhPwMVKkTZvVU9KLgWdm41O+Ni92gBjEyFOcxpNgfYZfPb29vXrebSqN/TRmPTkovb7AqltCH3xkYiF0VRMDg4iNXV1YoGgbDcKM1usaWlJfT396O9vR1nzpzx5WA385UPYeJb/6upGoddxoUQDiJnMIyzNdiJoNP2duFIDmWiAYEkEKg6qTkX4YQoijWJoaoLTRDAMw2UGfM1II1pojEAKzSB3uTaseMoIV6OQOwilaZsTIWpmC6Ag+o6O1MPOqV44gZQJCkAjQmFNoswiAUAeD48d0Ynwh6gFEURW7ZssdQv7LL5k5OT0HUdoigiHo8jk8m0LLpoRVpsvbApyYUxhpWVFaysrGDLli3gOA65XA59fX3geT6we2NQH5bl5WX09fUhnU5Xec6H5UZJCMHc3BwuXLiAI0eOYO/evXVvIL2Uw8Sjr8f8pScayrl71TgYo460lgQeOqiuV7y20VQW4LAhtqIttjZcWVPin0CKxSsK/X6gaRq08rEZWRsa1TnZt5aWac7VnfA+9prbo4FSOYVGWdmpMqWDb8BUbLVE8c0r5mewMcRSC4TjKszC6oETbh1yccIpm5/L5XDp0iWUSiU8//zzlpKxXTkgDNyqLpTAJiQXc3ZleXkZV69exdatWy29Lr/Kv074jVwYY7h27RouX76MQ4cOYd++fVUbfhiRi6qqyGQy0HUd999/f0XbtBcK489h9JOvRSlvpKL8bcprkBNJ62/rQVMVm7wKgUSYldZqBH4NxQhXlnLBmjyNpQ/WoPSI/dimWgD0ktGGHEuCKTnPFFpWYWCs0jHS1zEFAokHZnMMW1IERcZjNaeA5wxXSdEH0UyuUnz/uv/CvZxsQ6nB5oZG4SQWjhdAdc2zG43fxGmxIDCbA2KxGLZs2YJdu3Z5NgeYNZt6zQFeWM8ByrCxacjFObsiiiI0TUN/fz8WFxfr6nXVgkkutVo+FUWx5mTuv/9+dHR0eK7VTORiNgcAwN69e30Ry/y3/gjj//BRULq21VRsyjC6tbwGHiUevonFCVGSoColmG+5oq7B3K1sq47tVzeSUtgrSHIiDZTK76eOB4kbZFlGqeQeoVCGCnVogQOIlMTMUgbtMsFykdV1jPSCzoDlIsHWlPG3caI5UmgMik152TkjMzSrY2A22D3mRiw8L0LXw1Gm8AOqG48knt1oQmMbrK9jb4DFsXnMWs0B4+PjGBoaQiqVsiKbIMoBuVwuqrk0AzcJl2KxiEKhgGQyibNnzzZlKFRPKt+se5hWx7XqHs00B0xMTGB4eBgHDhxALpfzJTo5/ievxfylJ2uvjcqBR04QITIVlBpP/40OCMo8qjbnyrqG7imvIogSoCuNHzsWq5yhIDaXzDqdYRzKFsgexOIGjQIo5tAV53AzSyFywHKBIS4CaR/eKybyCoNKgW6PwUgjhVZ+QzDSbqvlFFpSJOifBcaXw+kIsxML4TiDm/3UuAIQuSDJ0BR/1zmRrv8g1Sg2gly85F+czQGKolj1GmdzQFdXF9ra2jzPPYpcmoCb/fC1a9cwOjoKQgjuvffepotZ5g3gvBns7b9+rY55ng+sU6ZpGoaGhrC4uGhJxQwNDdWMgJSZEYz8z1eikHFze6oNqqlg/NoGLHEAkePQigXfirl+Iw6nvIpYVl2mhGtYH0wSXfztGYNqO3eOAAJPQOQ01NyqFa2ZtZ2gHXAmZnMU2xytwnmVIau4Oz3asVykiAkE7QF0xSTe8HnRKMU3r2hYaVE3sD2FJSfTKOVqtJ4FiBD9EgsAzM0Zit6mZEtYdQlg48jFzzElScLWrVuxdetWAGvNAYuLi5icnASl1FIO6OzsrGgOiMilAbjZD5upKdMp7dy5c6Ecy+7DYqJUKlnH8tv+a64VJHJxKiabEVitdZYe/yLG/ua3aopO1oKzxqFQAIWyOCUx2o+Nn3NVT7KmcGQjEQeDQSwlHYBe9GwM8EIQ/xXKAEVjgGakg+wRFA2WPQPK581JMragerNMiAQJsSzrXvZeQSwNvbCKdpmA5wjmyv4tjWiTZRWGb1zWG+pkawQ1iaWF6Ow0JFfsdQmTaDo7O311Snpho9JijbQiuzUHmDI1Y2NjVgPTxYsXMTk5iQMHDoR2zrUsjlVVxQc/+EF87Wtfw9WrV9He3o6HHnoIH/vYxxoyV9wQcnFLg83Pz1uT6WfOnLEmSMPoJTfFK83jLS4uor+/H52dnb7bf00EqblMTk7iwoULrorJHMdZxGqCMYaJz78RiwPfhAAKEnAGheON1ttaEYelhAwAMNI/hBdANQ0cF2zC3gnRoaRsbwwwf08IQIkIzSFuKMoJ6Gqx4aYBjqwd21InkGLQVQVanUXNLjrdx1O46b0CZIE4B1VnuLmqG7MvmjGjEgQ3MxSPXdcNQmygrhQmCOHBWOskWuR4Evv378f+/fuhaZpVlxgbG8Pg4GCFyGRHR0cgstjMkUst2JUDTJvj1dVVfOc738GXv/xlnD9/Hh0dHVhZWcFDDz2El73sZRWW6UFRy+I4n8/j+eefx4c+9CHcfffdWFpawjvf+U78zM/8DJ599tnAx9oQcjE3WVPCZXh4GNevX8exY8ewc+fOCs+UsGStzc388uXLGBsb8z0F77ZOvcjF1B+bmZnBiRMnXG8Gnueh2AYg1eVJXP7EK5BdnK48no/BQKCcDkJwTTGVAqBaczIuPmXy136vWu+LcQIYA9QGBhsB4/PgUdlKbZ1LObVW6xq6ycD4haozrJYYdrat3Z9mCs3LvtiOS3M6zs3YLtoGEotxePf7WooloTTo62OHYOuYEgQBPT09VpNOqVSyUkUXLlywRCZNsqk3R3IrRS61YOqdvfa1r8VrX/tavO51r8POnTuRTqfxe7/3e/iv//W/Ynx8vOFSQS2L4/b2dnzrW9+q+NmnP/1pPPDAA7h+/XqFDL8fbFhazAz9+vv7QSnF6dOnK3KLppOkpmkNt/E5j2fetA8++CDa2toaWqde5OKcx/HKK9vlX1af/wqufOmt1lS7Hc7BQFGOgdOK0IgAvRz5rA02Bve25QBwPIdS+em+SsZFEKGX8p7E0ejmbLwvo81Z1YzGAE6QwDTFN0EKnNGw4Mcls/IaxkHUAghpfG6nBBGKplS1Kbul0HReBtGKaJPX0mZPTmi4tuLvqhHCQU6kGtZRaxYmsXj5tPiFIHo35ciyjG3btmHbtm0VDpSLi4tWqsgkmq6uriohx1s1cqkHRVFw33334a1vfSsAI7pYz4HKlZUVEEI8u2drYcPIZXp6GgMDA9ixYweOHj1a9QTgTGU1g4WFBSiKgmQyiQceeKApA6Fakcv09DQGBwexe/duHDlypOaNZ5LL1F/+BqYe/yvfm7NqyZ1oxsR7+bJx8GdbbIdV/PZIG1XJuDgskmPxhM2YKxis+krZU0WzDVfaj+UlurlGqMHzaKpSglQmFnO2BgA0IoL62DxziEOGWreLbC2FpgCikUJbzOk4N02xEECajDG6YcRih5NYgvrFCKK/h0Q3B8rV1VUsLi5ienoaw8PDiMfjFXMkL5TIxQmnC+V6tiUXi0W8973vxS/90i819DC+oQX9O++80+qgcEOz5GJXTZZlGXv27Gnamc4tcqGU4tKlS5iamsJdd91V8z2ZIMVV8H/3q5hcmmzoPMxUVMkRaXBUNdJMdfbcoNP29iI/gbG5s/KEfWB5/3gKag1TsCo7Zo4DL8eBUg4KbU4pgCcAEUUo5fpK5WyNipzCkFMZOABtseo5l9kcRXe8MVMxVWf4/nXa8Lm7olyn4UUJVNMCyek0CyexmGTDcTyoy/yTIDUmG2+misynZ03TrNbeK1euoFAoWFIsy8vLNVt7w4Kp0r4eqsgb0S2mqip+4Rd+AYwxfOYzn2lojQ0jl507d1YVtJ3geb7ua7xQLBbR398PRVFw6tQpXLhwIXTBScB4sjCHIv3K0uSGH8PKZ38ZpQanzr1SUfa0GoHh20G0IjSdVjz9BxlsdMISrdRhdaAB/mdQYrEYioVgUiY6pdALOUsEkzKDYIIoIZvnqFGA1SjcJyWCpLSW1louMpQ0Y+CxpMHTirgeZnMU37mmN9TJVhPlOo3egLJ12DDJxo1YgMbJpWodQUBvb69VyywWixgaGoKmaTh//rzV2mt2oiUSidBTSeZe0koSMzvJ1suF0oRJLOPj4/j3f//3hksIGz7nUguCIDQUuczNzeH8+fPo6enBvffeawgYhpRis0cus7OzVmrvtttu83WjzfzDfzdEJym1tK78+LubiCXTKPpoJXWabvEcgUCMjahRYqlVX7GfP0cAMZ4CK2VtryeQBK5hu2lBioGpxarrxHGcsWmpBag684yGGol2OELQETOINKswdMYJ5vPGwGN7UoLss8Y1lpXww2vrbze8LvDb4UYIYqnWbJKxWAyxWMzquMpms1haWsLCwgKuXLkCQRAqWp6bGcg2Ye90bSXy+fy6Ri4msYyOjuI73/lOYPt2OzY1uQQlBEopRkdHrc6zXbt2NbyWF8yuM7PD7Y477sD27dvr/p1eymHskVdj6drA2s9sbcF2cy+dE6uK++bUuR9icQNPGBQbMfiNNEwE2ZwpA0r5tehETqaBYgZ6HakYL0g8oKqK6x5GKa0gUTfFgGYitaxiHLQrbmwiPQnzCVhDVmHIKaymZtjTkxquLFV+loSrL5vTSgStldSE3w43xsBxrdcWI4QgnU4jnU5brb0rKytYXFz07dPiB+tFLqYqclioZXG8fft2/PzP/zyef/55/PM//zN0XcfNmzcBwJd5mhMbRi5+wtQgabFCoYD+/n5omlbVeWauFQa5aJoGVVUxNzfnehzXc7t+Dpf/+GdRzHungypaeXUVHEfAC4YpFqUAJY1PnbsRgzPSEHjjCdQZmXAwhi4bjnZiCSi5jLUmgbG5MSVXV96/8tz9vXm7YgDPCxCggcGQxPFTrLdjsUCRkrz1xVISQaqcQrPL7scFgqTE8O0xHQsuavVhEEuQzi1ekKBra2mzWsTSSuITQ0qLucGroG9XKz548GCFT8vIyAhKpRLa29ut5oB0Ou2LMMx6Sys7tyiloddcalkc/87v/A6++tWvAgBOnDhR8Xff+c538NKXvjTQsTZ15OI3LTY7O4vz58/XNA8LQ814fn7eqq+cPn3aVzFv/luPYPwfPlIhOukHlDJQpQSJNzZL0UyhBZCLN6OhesRgTbuXYT79m40Bjcm4lOsrjroSQ7VgJE8AKlYr6UpNkJrAORseVEudgAoJaHXmamZzFD2JalFJL9hl9wsqxTeu6AGkXAgIR0A43jcBBmkJthNLLQhSDJrSWNrSD8RYeHIvTvhtC3bzaTGn4ycmJgCgol4Tj8ddCWQ92pDz+TwYY6HWXOpZHAexP66HTU0u9aINSilGRkYwMTGB48eP15QoaCZysXedHTp0CMPDw3VvLKqpGP9f/wHzF3/Q0DFNYjC7ptaimrJcvFlY99j4zcJ7I8SgUYDjjbUJADkWB6MqNEXzGT8QYy4jXz+FZ0Uaen7NtRKVJmNBsVYbqox6rTSkbhCLlRq0aZHpjGFZlbEl2ViBfD5P8e9jum8NNwMMjLJA3iitgBexOCOfRtHKyIUx1tBmH4/HsXPnTuzcuROMMUs6f25uDqOjo5AkqaJeY6aG1qsNGUCoabH1xKZPi3kRQqFQQF9fn+sAptdaik9LYDtKpRL6+/tRKpVw6tQpyLKM4eFh6LpeM1e79BcPg137QUOFZFGOgSrVxWsTlFWuaW2SINB01lSrLlDpNskAlIpruR0vFWQT5vxKyQexOGHuxyotWzCbOmgMUFi1Dpobgrx3Z2qQkxK4MZdFd7wEU7U4CK4s6nh6qhmCIPAaR42lOlDMrWzIFL9JLNW1Gu/zdUMrI5cw5lwIIWhra0NbWxv27dvnKZ3f1dUFQRBaPsyYy+UgCEIoDQgbgU0fubjVXGZmDHXV7du347bbbvP1BNGID4tdg+zkyZMVabp6axE1W25rNZ6qFB0oaECmVPvrKPOAopQC7SFrm6RBLAyNTc6bTQO1RCsrVJCJMW9Dyo0BvGykthrd/mSBQ8lWWKrUQWOukYYdzaTROABUV7GrzdigMiWGvMog8EaxXqgz1/LclIaRxdZt/MXscsvW9gtnrcZQV/Y/3CnJm5tcnPCSzjeHOVVVxblz56yoJp1Oh0o42WwWyWRy3YdDw8KmJhdBECo8OSilGB4exuTkJI4fP+6rS8tEkLQYYwxjY2O4cuVKlQaZm8KyG4i4lgIghEAWDH/1dpmBMqCo88iW9IrNcK2rKfgmZXmYOE5L5IxzoboKTfM+Z1E0CsRBmgYYgyWDL8ky9FIeEm9GNcGeaiUeFcTicrTqJgRDuwa6qoNwjafRrPkXWx0jLRNrAl+jDAt5Co0a8i7OyfzHZ+KYWAxhgj7YJQNQ2agQ1Ha4WZQqGlQIpEQSSo2mFTHWuuny9aiB2KXzp6enMTExgd7eXiwuLuLatWuhWx2H3Sm23rhl0mL2YcXTp08Hvuh+ycWU/c9ms65S/IQQX80BRHS/sQgh4AmQ5CiSoiHcqepAUUPDXh7m5ui2N6sUQFkyhrPNutijGpkHSgE9atZAIAoESvkhwGqtLkc19dqd/URLbjD1wkTCwIjR5SRLYs10ohv8pNEEjqA7sXa/5lUGlU+ikFvFU5MMeZfiOiHcukzL2xsA1rtmQzgCZossTWLhOAGUVmccpHjrNsr1ln9hjEGSJOzatQu7du0CpdSq19y8eRMjIyOIxWJWVNOIpUBELi2EmRa7efMmBgcHAw0ruq1VjxCWl5fR19eHtra2mlL8vlJsHuTiBCEEkgBIApAuRzWK0IbV1VVfKZ5A8yeUVdgIC+Wn/2DF5zWY9RXVhTmYw9yL5wgEOQFWykFlxsbbrLGXbIt2qKZbkZmlTSYloBXznu+v0fmXhEiwqpbw/Qnmee6NEAsBgfcY6OaDcb7VcCMWwnEQ5dZFLo0W9BuFM1JyWh27WQrY3Sfb29vrnq9JLuspVBkmNpRcTMn9Wr/PZDIYHBzEHXfcgW3btjV8rFrkwhjD+Pg4RkZGcPjwYezbt6/mB+oncuHE4F8kM6qJ0wziqXJUQ4ECl0RmNVfVqdVMjYEnAAhQNCMNjodIyiKSPuZPpFgCainvuzakUwbdytkzxMq1IYbGzL1qEYOlTVYW1TSVEJhU1r4q+940asE8vkzx9E3/pOicHeF4wfKbX18Yebewur8IV/Z58AFGKa5N3IDGx9HV1RV6kXq9I5d6ViBulgJmy7MpVWNveXYjkWw2e8u6UAKbOHLJ5XK4cuUKNE3Di170oqbVQL3IRVVVDA4OYmVlBffffz86O+v7fPuJXIjU/FMaIQQSD0jIo62t3CUGCdmCAlVvolW3LDZpJwZG9cqopkZXmByLNayLBgAxR5uyVT8hPNQ6LbnOFm0/sBoDCjkjVSfFACULgQTTJgOAc9M6Li1Q+N5VUT006UUshOPAfLql8aLkW09MlONQSwWYidBaxCLGqueNvBB0JiLd3oXJyUlcvHjRmpLv6upCR0dH0229600uQY8nyzK2b9+O7du3W5phZnPA2NgYeJ63ohqTfJ2KyLcaNiW5TE9PY2hoCN3d3VhdXQ1FZtqNXFZXV9HX14dEIoEzZ874ljewe7F4gYScAjCjmgRUJJJrUU1eBbIl/8LzftNolV1hBCLHQKQkmFas9rf3CUvCxtGmvOa3YpyYF7H5NSXzgkmqmk04024kpjAOqPG5fueahpvZ1qStRDkBxqjviCaIUKVBLPUhJ9KBWsiDpmuOHjsOQkjFlPzw8LA1Jd/V1YXu7u66xmBOUEo3JC3WKCHa3SedlgKTk5P4zne+g49+9KOWb83q6mrD4pF21LI4BoyHhf/+3/87/vRP/xTLy8s4e/YsPvOZz+Dw4cMNHW9TpcXsDo533XUXJEnCuXPnQjmWPZXFGMPExASGh4dx4MABHDhwINDN7Kd+Q6TWhrNWVMMD7TGACXEU83lkNR5FFw96AmN+plQKTgyMMeicBFLKQaNoSHDTfL2fVFIFscGon3Dxdqi5lYbrQ16kWmkkRrFSZFAgICGLSKAIQgBFp/j6ZR25xn2y6kIt5QGysS2n3sTSQBub2yrl75h9Sp4xZk3JLy4uYnx83Oq6Mp/incZgTqyHQrHbMZu17zBhtxQ4cOAADh06BMYYPvnJT2JsbAzd3d148MEH8dBDD+G9731vw11otSyOAeAP/uAP8MlPfhJ/9md/hv379+NDH/oQXvGKV+DChQt1PwM3bJrIJZvNor+/HxzHWQ6O2Wy2Ycl9J8xUlqZpGBoawsLCAk6ePNmQ6me9yIVSipmlLNYroCUAiFZAQiJISNSazC+oxlwNV37iVxogFsCwuVWLOWt7cQpuipzxD72usVdwsPIxitkVAEbnFk9YIGILUrhvjxEYEZQORWeYzjL0zYvIuxB22DAettx/J8YShvabzygkXBgnZcy1NCac6gVCCBKJBBKJhNV1ZT7FT01NWcZg9il5Z8SwEeSi63ooDrlu6OjowBve8AYMDg6CUor3vve9+Pa3v40nnniiqVpVLYtjxhgeeeQRfPCDH8RrXvMaAMCf//mfY+vWrfiHf/gHvP71rw98vE1BLlNTUxgaGsKePXtw+PBh6yYxIwTGWNMdE+ZaTz75JGRZxtmzZxv+oGpFLqVSCX19fRCLejByIf4m0H0tZYtq2mQGvfx0nmMxFArBCMaor3gLHTplWkxpfybIUEql5tUCHE0LGmWOqMZ4qnYjNo4XwDVRuJ/JMjw5oYMFqK80A0K84wO/dZBWwkksPC8ESM/5+/46n+K9hCZNskmn01b2Y70jl/UwCuvp6cHevXvx8MMP4+GHH27ZscbGxnDz5k089NBD1s/a29vx4IMP4sknn7z1yIVSivPnz2N2dhYnTpywzH9MmB9eGB/k7OwsAGDLli0VBNYIvLrFzIn+rq4uHDp+AtlwMnpVMJ/m/YAQYrUcJ1ACEyujmlqlc0ngAtdXdGpsxYQqFcZeXnbFXuDLk/+1mhaMrrC1RXkOEGIpsGIWZl280TbngRkdQ3P+/1iUje655hD8AYoTJNAQOr8aQWV9iECKxSvsD+xo9OHQKTSZz+erUmhmPaJUKjWUvmkE6zG0mcvlsH///pYew4Qpre900d26dav1u6DYUHIZHBxEPp/H2bNnXW8KM6epaVrD5GKv4wDA/v37m74pnGkxxhiuXbuGy5cv48iRI9izZw/UsTp+GVISUHIAJwBUCxS1EDEBqAE2MiEGaAZJOKMaU6cso4koKUZRwelvHxQCARjHQXUQME+M9A4jnGO6uxLWxHzANL9OAT2fNVQCAIiCCB4aaEDHyu+Na5jMBDu4k1g4XgTVW1ikKcOLWDieBw3BYqIWKj8ftkYsblF4SLMazhRaJpPB9PQ0AODJJ5+sSKE16tXiB+slXBl1izWIY8eOWRPvbiCEgBDSsJpxLpdDX18feJ7H6dOn8b3vfS80N0pzHdNa1WxlNn2+SayOTLZSJh+XgbO6UAPWTjT311sdaByQEDWwOIHKG23Cqw3ui5ammct11hmgF9Y2YTfDMknkoTRR37Cn4RRbfcLsCiNSAkqp5OpZQhnD10Y1ZEIIBBoilhCH5VpNLAAA4kHALg9Kohx+RGEOLhJCMDc3h1OnTmF5eblmCi2sgcT1ilzWa87FnCGcmZmpkNWamZmp8nbxiw0lF1mWaxbsCSENS+WbU/27du3CkSNHwHFc6FbHmUwG586dQzwer2plJnITrYOCDGg1tGBqJeebAAEg6VlIMkFaWotq8lRCvlh/xw1aX6nQCgOsiKNRjaxahXurK6zgLrev6gxP3hSRUfyRfWDvE5sdcBCjrzDRiGFazfU4ATr8rddKaRpz5kQURfT29lrp9Xw+b9VrGulCq3fM9ai5rFfksn//fmzbtg3f/va3LTJZXV3FU089hbe+9a0NrbkpCvq1EMSNEjA+9EuXLmFqagp33nlnRQ4xTKvj1dVVXL9+Hfv27cOhQ4eqnoi4eBPkYiMWBoDIaaBkK6aG0xlaExVRDVQwydiE8yqQVTnojs1CbEItgMColxR1WG1o9RSQ7WhEn8xObAWV4blpDZOr/u8zv4ZtAKrSRF7E0iqRD1MRwA+xBJl1CfK9DNOEygmvgUYzhbZz584K7a/p6emqLrSgKbRbMXKpZXG8Z88evOtd78JHPvIRHD582GpF3rFjR8UsTBDcEuTilxDy+Tz6+/vBGMOZM2eqhi/DcKOklGJxcRGZTAYnT56sakKwEGt3/3lAEKCSWACA8AgyIR7KeRACkQfaeaBNpobPiwZkdRGKojY82Og1GOlUQBbjKbBStspGIMj8jBsWCxTfvaajPWjjYJDN0kc9jRACOZFGfnXR15JrU/f14VemRYoHHKIMoIRGWrgR+5mWd2p/qapqpdBGR0dRLBYDpdCaGaL0A3OKP0wXyloWx1/60pfwW7/1W8jlcnjLW96C5eVlvOhFL8LXv/71hiO8TU8uQa2Ot23b5unx4nctL5gGZaVSCT09Pd7Egha3Ra6D2m4tEEJAAMRFIB7nwVTVimpqd6BVwq/nDGWV8u6iKIKjKsCAUhOX4vqKjidvUFAGMDEOYCNmSAwwxlAqeDc5OBFk3sVvu7BSCDbDEiQaaeX3oRHpF2cKzT7Ief36dQCwiMYthXYrFvTrWRwTQvDhD38YH/7wh0M53oZP6NeDH6vj0dFRXL9+va7VcTORy9zcHAYGBrBt2zZs3boVKysrDa3TOhi5MiInwUp1OtVCBGOOqCYGQEygWCwhW9RQ8MicNDP/oqqq8fd0bYIf8G+ORhnD0CzFoK3VmGg1NmtCIIhyS/3l60EQZTCwQLIvYcOZMgtCLoRr3UYchq6Y3e7YTwptPbTM1rOg3wps+silVs2lWCyiv78fqqr6tjoO6kbJGMPly5dx7do13H777di5cyeuX7/uj6RsLcCth/FFX09iAYyN2r5tEABQ84jzQLysgaZRw4VztWhENXI8iVKh8fO0D1ZaCshlCBwgxNugF1ZdU3WqzvD0XAzX5/1HCWDMlVjCNuciNaougWo8LUJ1yixI5LK5ycUON/l8szHATKExxjA1NYUtW7aE7kAJGO8pn89H5NJKeKWy5ufnMTAwgJ6eHtx3332+rY6DRC6KomBgYAD5fB6nTp2y8p++SSpAOyrjjdkSf2jsRiaxdrBiuBEXz3E182BmVCPyQFoyiEaXeGQRQz6gWoCfwUqNAlrZepdwHERivFjTgZzK8L1xDYvFAMRSAxXEQkhZ1biJWlgDH2sQdeTQYY9cCDG64DzOhWthCqnVUYQgCBUptEwmg2eeecYadQBQIU/TrAMlYEQtAEKtuaw3brm0mD2SOHbsGHbt2uX7eEHIxTQOa29vx+nTpyuMw3yn1zjObgLvQGXLF2mlv0e5WylsYjHWDvBSQiCKAkQ9g5gEMBFWVJMp1Z7gF2Nx6KUCfCrSAzA2f3OrWypQDM7qWGxVIMlYBbEEKbg3A6/NfN1JhxkpOy8HTo5v3Vaz3nL7pmzUnXfeCQChdqGZMMklilxaCDshlEolDAwMoFAoVEQSjazlBbti8qFDh1yNw3xHLoQHPOYAzH2UiUlwag7+y+AIXtDnxdpzMwCYmAAJMvVvrS0FHOpcu5bOqIYBUEgM2XwRedtlk3k0LPMPADdWKX4woWPLOg47N0Ys4aVWNiqa8XLglOOt2yQ3wigMWBvyrpdCa29vR2dnJ7q7u32n0HK5HCRJCmyNvJlwS5CLpmmWbldnZyfuueeehp4G6pGLqZi8uLiIe++9F11dXa6v8xu5EI73zEqbBrFEbaD2EHRmoA6xGOfRoC5W0El06jHjUe5Ai6GEWIKAgUDTKQoqkFWBRgZ7GGO4OE/RP2NseIYNgndKTOAJtEY1/X2A8DyYrofmBBkUvCSD6XpoLpiCKPuuBeWLBYyOjqK7uxvt7e2hdlpthFEYz/OuJOFModm70CYmJgCgYpDTK4WWzWZvaYtj4BZJi83Pz2NqagpHjx7F7t27G77gtUghm80aasaiiNOnT9fs7fYduXBNXF7CA8yLwNbXZ50KcXC1uqlaAAIGkTcim7TMwIQ4SsUCcioqohovaDrDswsxjM3ayKTkTSwSB6TjEpay/jZLKZ6CEqB1GFiTxPEklhbvI7pS/71JccMK2td6AUhKFiVomoaLFy9CVVV0dHSgu7sbXV1dSCQSTW2iGxG5+D2eVxfazZs3MTIygng8bpFNZ2en9dCcy+VCMUncSGzqyEVRFExPT6NQKODBBx9Ee3tzg4mCIKBUqv6CuUnF1ILvmkszeWY7sfCiI0JYX3KpIBYxbkRC6zhrQwgB0YuIiwRx0Xj3upBEIZdFRqkeoCyoDI9PaJh3imN67F9dcWNocynnvyMrKLH4AS9I0FXVVffMCTmRqin+aYc/wiDlNf3Puvg5T+sc5BiOHTsGxhjy+TwWFhawsLCAK1euQBRFy4Wys7MzcCpoI8ilkcirVhfa5cuXUSwW0dbWhq997WtIJBItjVx0Xcfv/M7v4C/+4i9w8+ZN7NixA7/2a7+GD37wg6Edc8PJxelGacIsqIuiaH0gzcJJCpRSjIyM4MaNG7jjjjss8bZ68Bu5EE4MhwacqScpBSjhb26+oDoimGaiswZBAAhaDmmZICUxMMKjpOrIq8BUhuK747qv6AYAtqcI5nIM3e0JAF6pwXXQ2wGgKu6Cmm7wSywAfEYizJ1YbJpozYATxPJyBMlkEslkEnv27IGu69ak/NjYGIaGhpBOpy2ySafTdYmDUrqutYmwBijdUmhTU1N49tln8eSTT0JVVfz8z/88Xv7yl+PlL3859u3b1/QxTXz84x/HZz7zGfzZn/0Zjh8/jmeffRZvetOb0N7ejne84x2hHGPDycUJxhjGx8cxOjqKQ4cOQZZla2K2WdhJwTkjE2QS1iSpWiZmjDFojKAlz1NuxMJLgO9W5hDRiKpziDBqNdSKagZmmG9i2d1GMLFa3jhr1pwYCMdBEGMheLZ4g+c4z7YOc6Ym7NmaurARS5BoyQlBcN/8eZ5Hd3e35QhbKpWwsLCAxcVF3LhxAwCsYriX2ORG1Fxacbx4PI6DBw/iH//xH/GlL30JX/jCF3DixAn8xV/8Bd7+9rfj/PnzuO2220I51hNPPIHXvOY1eNWrXgUA2LdvH/76r/8aTz/9dCjrA5uMXFRVxeDgIJaXl3Hfffehs7MTs7OzoYhNAmvNAQsLC+jv7w80I+NcB4AnuZiNAZ0UaNyUNCDKxELkNJhTi6ylqPFUG6K7ZpjgOILtSawRiw8wSqs9W0JWGa4luW8SyroSiwN2YhFECVqAjjTeZ2QhyzJ27NiBHTt2gDGGTCaDhYWFqjbf7u5udHR0WA+Mt0JaLAhKpRK2bduGD37wg/jgBz+I1dXVUGdezpw5g8997nMYGRnBkSNH0N/fj8cffxx/+Id/GNoxNpxczLTY6uoq+vr6EI/HcfbsWUu+PiwlY8CIOPL5PJ5//nncdttt2LVrV0P5RfNGdivs5XI5nDt3DqIoItG7B/r4dCjn7hfrSyxAzSr0BhALkeIAvNNAMR5oS8cxudx8BOIkFsLxgeoQoWCDCNxJLIRwIISAerx/XgjuN08IQVtbG9ra2iyxSbNGMTw8DEVR0N7ebjlQhmGH7gcboYhsum2Ghfe9731YXV21dBh1XcdHP/pRvOENbwjtGBtOLuZcyaVLl3DgwAEcOHCg4gYRBCGQtLcXVFXF9evXUSwWcerUqaZqOHb7ZTtmZ2cxMDCAnTt34ujRo1h6OsBsRlCpmKCbCuFBpCRYadX/3/hBA/l4Eu8AKyz7e7Hp2OkTtbraZJ5A4hlmQyAWN9iJJYh0vYmGtkWPe2C9hjit02AUjHkPb/qNXGrBbnnMGEOhUMDCwgKuXbuGiYkJ3Lx5s0Js0u6vFCbWQ7Qym822dIDyb//2b/GXf/mX+Ku/+iscP34cfX19eNe73oUdO3bgV3/1V0M5xoaTy9DQEG7evImTJ09aeVc7wohczKhIEATE4/GmmwNM8jPPy64acMcdd1hObkSoIVXtbDUOqkEWZFMvb9C+iaWeWZkdJOATnJjwTyxAIGIBvDNLW5IECmVYXaeyVFBiCRvrSSx2eA1vhj1ESQix/Frm5uawdetWxONxS9X4woULFY0BbW1toUUb6xG5tNri+D3veQ/e97734fWvfz0AQ21gfHwcv//7v//CIZft27fjwIEDnnMlJrk0GvLeuHEDFy9exP79+9HV1YWBgYFmT9lyyKSUeuqPATA2aS+UiUXnJPC0kR0vALn42KApHwNHSwZp+SUWIHhKpt6wppQAdC3U5oRdbQSTqwxbO2IANk7Z2GQ+bw2u1qZ0OF4AJ4jQQiKeIEOUpMXaYoIgWBELYNQszOHF8+fPg1Ja0RjQjP7XerlQ2o0Ow0Y+n68iyEaEfWthw8mlp6enZmRifoi6rgd2irt48SJmZmZwzz33oKenB6urq6HWb1ZXVzE6Oop0Ol2lPwYARKxvsuNNLOvT/mqC0xvddEM+R6W5lJX960IIsDNNcKNcuOfqkGZCEpD3aXPcEMrRpqc0S4vLBVTX6k7nB7Fv1gKoDAgN1Fz8wq2gL8sytm/fju3bt4Mxhmw2i4WFBczMzGBkZASxWKyiMeCF7kLpxE//9E/jox/9KPbs2YPjx4/j3Llz+MM//EM8/PDDoR1jw8mlHswPPQi55PN59PX1gRCCM2fOWE8pYThR2jE4OIiDBw9W1YlMELHxpyMGtrbXbHTXlZyqMd2+TgRYNUjqDvOaiRzQ25HGjcVM9S9dEBN5rATglSCT7H7B8YLvWg0viJ52yU74URMgHA9BkqEWA0Q1AVKzgri+5GIHIQTpdBrpdBr79u3z1P8yySaVStXMkpiRUivRanL51Kc+hQ996EN429vehtnZWezYsQP/6T/9J/z2b/92aMfYcHKpl+oyxeH8koLpSLl9+3bcdtttFTedGfY101VCKcWlS5egqioOHz6MgwcPep97E+RScXYb3c5rEQspz9PYIoD1Cq4qiMU7qiMESIqGy+XUor+6x7Y2ESVGUCx5ycWLoA5i808s/iNQxjwGGV1f6/Pw8KcmwKgOtVgdNQYhsVoQpMascv0gaCuy2/CiOVszPj4OjuOsFFt3d3dVY4Cu6y1rFjCRy+VaWnNJp9N45JFH8Mgjj7TsGBtOLvVg1jf8qBmPjo5ifHzc05Gy0RSbiWKxiL6+PlBKkUwm6/adG22xLcCGRTKsklgAaBAhYL2HNx07q605QhYIGAOWfGb5dncnMLGQx9Ya32OTWAjHg3BcwNmWYLM09WB2YznJrlWwE0sjemomNhO5OBGPx7Fr1y7s2rULlFKsrKxYQ5wXL15EKpWyiKa9vX3dai63spcLcAuQC1DbjRIwNMj6+/utNmOvD8WrhdgPFhcX0dfXh97eXtx+++14+umn6xIekVr05OEgFoay4u8GSMLw1FHHWFf3zTJsXXeqDuQ9bhVi97YCsKs3jYk5I1LwE8gyqle0G3O8EJrCsHlO9eCs13j5p7QCdmIRY0moRf9pQVFu3ThxmEOUHMehs7MTnZ2dOHjwIBRFsRoDhoaGKuot+Xwe8Xi8JbM1rY5c1gMbTi5+PhgvN0oAWFpaQl9fny8pfvvwo1/Y5Wjsqsx+OiuItD6qpgSwEQuHQN4wzR7bmfWxE8sGEI2RivQg2fKtJgocetoSFrE0CjdiaSqN1MAetV7E4oSTWDheAKPU83w2c+RSC5IkYdu2bdi2bRsYY8jlchgYGEA2m8VTTz0FWZYrRDfDqMWY4p5R5LIOcEuL2Tf9w4cPY+/evb7qN0HmZjRNw+DgIJaWlnD//fejo6PD+p2v5gC5ebHN4FjnzaZW8j8MYgkakWm1u82SEiDFYphebE2UZxKLGEu41jDWC3I8hVILlJu9YBKt1xClKLeGXBhj6yb/QghBKpWCJEnYs2cPuru7sby8bKk7FwoFtLW1VYhuNhrVRJHLOsFJCPZN39Qga3QtL5gyLpIk4cyZM5a1qX2depEL16qaC1qsIcbLVbUVbwSs6ItJwzDM7xxLwFQfqfH4L4kCmEKxtNr6Tb8xYgkvvbKexGKHV5u12KIo3lRUb3UNxA4zNeYU3XQagxFCLK+W7u7uqj2kFlrdLbYeuCXIxS4Bk81mce7cOciy7Lrp14MfcjFlXGr5u/iJXIhc58lDiIFpxYa2lEDE4rON14KHW6T7iQQkl0acNwPA60Fxe7sEhRHkS+tTCPcC4Tjjkm2E7hrhIMWToakHBKk5jV0bR/riRasLKyyJfPMBbz0dG70K+m7GYAsLC5iamsLw8DASiURFY4AXIeq6jmKxGJFLs/DrRqnrOqanpzE4OIg9e/bg8OHDDYXCtcjFS8bFa526NRe5Ts60QWIJDB/EwgBwcpshERNo4wu3F1kXEuC0IkiD6T2367mnJ4nr8znsTPu42iH5l3hhI1WNGaN1iYXjeE/xSSeCNDPsO3gIoihifHzckmYxn/qbSR+Z38HN5kRpNwY7cOCAJbq5sLBQ140zmzWizohc1gEcx+HmzZvI5XK4++67sWXLlqbWciOXmjIuAdapeI3c+M1B5BRYDVvesEGA8EUtGwBfp2ZSD/YtiiMEO3pSuO6ncC/E0J0mWMj4GyIMu1MMKEu5izKoroZKQoIkQ6tjcUw4HqIkQwkyRBkAHd29OHToEIBKzxYzfWQXnAySjdgIcmmkFdkpuunlxjk5OWntb60kl8nJSbz3ve/Fv/7rvyKfz+PQoUP44he/iPvuuy+0Y2x6cikWi5ifnwdgeBA06yvtFrmsrKygr6/PU8bF7zpOkFjjMtkVxCKngXWX0rchaFqtBWAwiIMSARyod3RVZheJBzo7UrjhsyMsQRSMZ93XdPVt8fmkHaRVmOcFlFzMyNwMwkQ54du4rB6xAEabteJSJxJj8WBT+x6QYmvfW7tniz19NDk5ac2VmE/07e3tNYnDLOavZ1qsWfkXNzfOlZUVLCws4CMf+YilLvLRj34UP/mTP4kHHngg1JrS0tISzp49i5e97GX413/9V/T29mJ0dDRQ7doPNpxcat0UCwsL6OvrQywWQ1tbW9PEAlSTgjkodfDgQezfv9/3TcpxHBSlTlG6CXKpgJNYOGF9HSA3mFiAtYiEY7XfNwGQlgk4QcLMgj9i2d1GkFModI9smJ1YBEmGrqm+BymDtAozjxSjnVgIx4OxauOyVsFOLM04Ucox9++uM31knysZHBwEpbQiqnEKTm6ECyVjLNTNnud56/1997vfxT/90z/hLW95C4aHh/HpT38alFJ8+ctfxo//+I+HcryPf/zj2L17N774xS9aP9u/f38oa9ux4eQCrBmGmWCM4erVq7h69SqOHTuGUqmEXC6cQrBZK6GU4uLFi7h586YlbNnIOl5QFAX9F69gT7Mn7IYNthaugJior3TcYjAQkPLGLIoCNKahkKv/tM4Rgh0pw5Fym8+uT3sUELblsJ8HG6cZGScIoCH4HfmBnVhiyTSKOf/RtBj3d4GdcyWm4OTNmzcxMjKCeDxuRTUdHR0bQi5Aa7vTOjo60NXVhb/+678GpRTPPfeclVIMA1/96lfxile8Aq973evw2GOPYefOnXjb296GN7/5zaEdA9gk5GKHqqrWkNIDDzyA9vZ2XLt2LVSr42KxiKeeegqMsQphyyCoVXNZXV3FuXPnkE6u3xCUmTZad9iJhROMswjSbRYCiO2JX6VAQXH/XOzXRxI4dMoUNzLVv/MLL2LxU+NwXzB4I8F6EYsTTmIx1JRL8Grw8IpcasFNcNKMakx9v1QqBV3XWzotb8d61HjMNmRzLu+BBx4Idf2rV6/iM5/5DN797nfjAx/4AJ555hm84x3vgCRJoXm5AJuMXMzaRyqVwpkzZ6zaR1hulIBBXjMzM9i+fTuOHTvW8BOIV+RidrSZrpqzf88D62B9uyHE4oQjotI5uVoeJihqKjJXg6+RNjO3vVRchshKmGlRV7SmlBqb1A9xYwwqz9IsTJl+1/oUACnW/ECgIAhVRfGJiYmKaXkzqglrWt4JXddBCGk5ubRygJJSivvuuw+/93u/BwC45557MDg4iEcfffSFRy71rI7DcKNkjOHatWuYn59HZ2cn7rjjjqbWc54TpRQjIyO4ceNGZUdbEGIJZOkb0O+Flw0Nrlak1DxqQK7EIrcBQbrSQuyYY7yIroSOgqYh6yyXhczOjUnAhNcC3XJi8WjZdiMWwnG+02L+D28UxU2fpnvvvdeS0b98+bIlo2+2OyeTyVCimheCl8v27dtx++23V/zs2LFj+PKXvxzqcTacXBhjGBoawszMTMusjs2J/uXlZezYsSOUm4zjOCtyMYUzS6USTp8+XfnUEUTBOIilryAHk1exJu59aI8FraMEIawWtzvX+mhjnI7Zgg7NZQ9fP1u2Wmh9/MlJMmgjKTsHnHXSWmAtVBE2ay48z6Onp8eqnebzeSuFdu3aNWuavtkhzvVSRA6jeckLZ8+exfDwcMXPRkZGsHfv3lCPs+HkYva4Hzx4sKbVcaNpsWw2i76+PkvG5caNG8hkmm/rNQnPrK+0tbW5C2cS4r1zcQIoOBBGQep0QVUhiBVxBXwQ3QYX6JuB1/a8q41AUdyJpWqNkAv1frEe7bRexEI4vqpZoBYIOLD11rFzgVdBP5FIIJFIWDL6y8vLFtE0M8T5QohcfvM3fxNnzpzB7/3e7+EXfuEX8PTTT+Nzn/scPve5z4V6nA0nFwCWXIIXaqki18LMzAzOnz+P3bt3WxP9YblRmq3ITz31lGsqzwLhAXgcj2po+DZtxSS5zRdlw8BL/nXHXOD8BAgBdqUJJlYZdrV5pxKLXApAFhIPKPrGbJoGoRFI8USoLpd+Zm0YNQY4ddXfQwvbFEU+g1zqEYPd/OvQoUNNDXGuV+TSSnK5//778ZWvfAXvf//78eEPfxj79+/HI488gje84Q2hHmdTkEu9myNoWsxuHHbnnXdi27ZtDa/lBkopJiYmoCgK7r33XsvRzhUc58kttWBvr3VFrYioUWw0sQDexOKTTO23kijw6JZ1TKzW/7t8NguZB0oul4AjAHUsIcUSrkOHzYAQDgCrIhY3X/sgQ5R+Z23ciEWKJaG41G/q3J2Vr21hRNbIZu81xGk3B/Ma4lyvyKWVaTEAePWrX41Xv/rVLT3GpiCXejAJwY89sd047PTp01VPAM2Si6Io6OvrQ7FYtOxSa4EQviEOqPzqutVJNuDRMdYGFDdIIoYxI6qhWs0alnlVkjIPWZJw06ecCyHuxGIcu/I/Y7EYisU8eEGAXiddywsSdM1fJOY1RFlFLOso579GLASCHIdWJrRAhEFatxk3O+cSZIizu7t73SKXnTt3tvQY64FbhlyA+vbEKysrOHfuHNrb23H69GnX1/oRnKy3fkdHB44ePYqnnnqq/h9xYVxil/MlPIB1nnFwJZaAXWvNwDOqsaXzxBi6EiWUVA2LPoiFABA5/xnGuCSgUDQ2e+KjkcEvsRjwdxJ2YiGcALYuQ7XMIhYAILwA+HxvrY5cwowk6g1xiqIIjuOwsLCAjo6OlhDNC0FuH9gk5FLv5jNJoha5+JVxaTRymZycxIULF6z1i8WiJQVR8/z5Fl1i29M7A8CEGLj1the2jm7+K0iyJMxTKH+eUhJEzyFT0KC6nAZx/Iwjxv8UCkh19icCQJYlFEr1N1SO58HxQgODlME34fUhlmpQhyRQrbkasokjl1pwG+IcHR3F0tKSNcRp92sJa4jzheBCCWwScqkHU5jOjRQopbhw4ULNVmY7gpILpRTDw8OYmprCiRMnrDSY+cRSL0wmnNii7XZtVQKA2Ikl0LxMeHASSyiqAWLSvweMkgNhuiuxAJVFaJ4Yysaqjy5EjgC8JKHog1h4AoDq4KEHjitJiA0aohyHWmqNwjFQ/UBYa66GtLBGsZ7yL4IgIB6PgzGGY8eOWcrG8/PzuHz5cmhDnNlstuU1l/XALUEugDspFAoF9PX1AYBvGZcg5FIqldDX1wdVVXH69OmKD9y8oeuSS6oHyNz0dbxAMzG1tu31JhYh5jpzQ1y6zygR6opPViBEc7EinwawCpEDNIrKegnHAS7pUoEDeFFGqVQ/CjHXZajxxarRmBBmB1YriSUopHjKKlKHnSJbb20xs6Dvpmwc1hBnFLmECD8X3SkBs7CwgP7+fmzZsiWQjItfcrHXV+69996qpxB7HajmQJYa4EvOi/7nVzjia2TFghnNSAlAqVMMDuxb75GOc3afiXFwQa5HA6h1K62urpZbjV1+6UIsiUQCxVIJ1AexONcVE2mUXOapCGMQvc5hXTKKYdXI/JOEUirgmWeegSRJ1mbb2dkZSr2CUtoSmZdax3M7b79DnOZ7r7VnZLPZlsq/rBc2Bbn4gb1j7Nq1a7h8+TKOHTuGXbt2BV6nXq3ErK8cOnQI+/btc30dIQSEkPrNAbzk/TvnE3+QwcigsxhmNFOPWIDAvvW+0WJiAWpveRwBij6DJok3NggA4D2iGhNuLcyqi+Oj2TzgoasJbl08SdyJRZRiUBX/NTuOF3zPxAiCgBe/+MVYXl7GwsICRkdHUSwWLSfG7u7uhqOajYhc/Ez3ew1xjo2NYWhoCG1tbVatxj7EaWqmRQX9dQTP81Yb8MrKiqWYHBTmjejWHEApxaVLlzA9Pe1Lht+XYZhQg1zKxNJYbSLcx1xKeHC8GExSJmzIKTC16KsLywte11Hi/XeExUQORdXWMOFBLITjIRPdtYXZeSizeUCt8Uygl7vxYpKIorK+ytKqUgw0O+PXzwYwrJPtT+4ArHrF4uIirl69akU1QesVGyG5HzTicg5xFotFK6qxD3EuLS1h7969LReutONjH/sY3v/+9+Od73wnHnnkkVDX3hTk4veJZXh42FJMlqQam3YNeHWemfUVTdOq6itesOuLeYEI7pI2Fa+p+Ruv6nS45MIxHdA2eIiylG2+AcCxAMdxiMViyOfzkH3sCXFZQKHkj9w45k4sTvDlc9Jo/YcImUcVschydc3H7/xMEFkXN2KR4kl3tQBn610NcC6bsflkv3v3bui6bkU1Zr3Cb1SzUTWXZhCLxVyHOD/xiU/gH/7hH0Apxec//3kUCgXfzriN4JlnnsFnP/tZ3HXXXS1Zf/0+lSZw8+ZNZDIZpFIp3HfffQ0TC7BGZPaIY3l5GU888QRisRhOnTrlu1PDT+RCuWZujPIXWIy7DKKts0QJae3gmB8wHy2t9i2IJwDHqJXe4mpFkQSIyZIvYjHTW17OlYBhWQwYDQGU1X6tCQ7ug5zUkX6KJZL+BzObtHuwiIUQCKJNFiVA9wFXZ9bLjGqOHDmC06dP48EHH0RPTw+WlpbwzDPP4Mknn8Tw8DDm5uaqNAZvhcilFswhzgMHDuBLX/oS+vv7ARg15de97nXo7u7Gl770pdCOZyKbzeINb3gD/vRP/zR0e2MTmyJy8QKlFKOjo5iYmEB7ezt6enqa7jYxDXjMiMOcj6lVX/FCPZ2yxcVFLGUKaNrs2KVWse7mYJtAGob46KQrCWkAy8amTiuVd6jHhsxzBGIs4cvtlCfGdVepQRxe0HUN8ZiMYknxnLw3QVAmobpHL6fs8uvfZg7GoNlJLsDNxwnBNuMgUc16yLHY0erjmV1in//859HW1oa+vr6G0v/18Pa3vx2vetWr8NBDD+EjH/lI6OsDm5hc7DIup06dwtjYWGiGYTzPQ1VVXLhwAdPT077mY7zWcUuLmf40w8PDON7eBcyHcdZO+JDOXw9sBrFLIQ6m5kEIQWZ1FRJnDEb6+lPOmDb384TvJCxelKB5zL5wAArF6oK3U3HZXouRPPZgcx+PSwIKSv3vgCjJUEOQ1a8FZx1KiqegKUVQvfr8uCYGievVakw/e57nW2YQZker5V/MB5xkMgmO43Dy5MnQj/E3f/M3eP755/HMM8+EvrYdm4JcnNGCm4xLGIKTJjiOw9DQEDiOa9jm2FzHeU7mUOfs7Czuvfde8Mv/iFaUyImDWDZ8Op7w5VbqkN+txwxNBbQCKOGwlNeRV5lvYhE5QAcHqqogdayZRa66GK+r7sQi8/7aLSRJAqM6VB+1rpgkouCoxbhV5CQeUJQSeI5Ad6pthginl4tS8O4w5ENUqXBGNU899RQIIYFrNY2i1ZGLOQ/UKgKbmJjAO9/5TnzrW9/ytDgJC5uCXIA18yHTkdKZphIEAarafAfN8vIySqUSEomEsfk38SE6I5dSqYRz586BUorTp08jHo9jVW46KeYLFcQiyE34vTQAkwCcm2RQ0zE3+CQrHgw9CQ5JicLP1r42l1KfiZKpFDJZf+3ZZluyZ/NAObUncICqKBVnKsYSUHKV14sAkOJxZHO127jN1JrZ5sw8iCWIkGYt+DUKA4Bke+2uy0bB8zw4jsPu3bvR1dUVWgdaLei63vLIpRWkaOK5557D7OxsRUSk6zq+973v4dOf/jRKpVJo72/TkIuu69YTv1uaiud5FIvNPRWb9RVZlrF79+6mL6I9cjGjLdNC2VybCN7eEFXgRUAPQKAe9sKuxBJE0ZgIQJApei8icxKL1/mGCCmRBrDi+jtzO5QFgpIf1zAYJJHzQSzm5u6ne8wtCgJQpXQs8JwhUVNniJMA4B1rEp6rmoXiCcDpSiMOEFXgOA7U56xV2NYEdtgL+mF1oNU7XqvJpZVtyD/xEz+B8+fPV/zsTW96E2677Ta8973vDfW9bQpyoZRaCsPmE78TzbhRUkpx8eJF3Lx5EydPnsTly5cbVkZ2nhOlFFNTUxgaGnJtCiBSAI2gIMQCBNuoTWLxEU0wpgVsFvD5FGs/3xYRjdvwogmCYK3GUjkK8UqCGIKMxoQ4xxgUW4rU64rYo4sq2P6IJ0YbsaIoSKVSKLkQHCFr56Y5bmdnTcSsF3k1eYmyXJfEKo/tPzXEt6iVFvDuFmvVXE2r02LmdH6rIpd0Oo077rij4mfJZBLd3d1VP28Wm4JcOI7DkSNH0NnZ6fnBNepGWSwW0dfXB0qpVV+5du1aKPUbQghmZmaQzWYrRC0rXiPXeQrhBGhEgKCv0/CijzRV0Nu6oc61FkUwXl9KQgjibZ1YXlqsvwYqSYB4jBsxRsETgOkaFB/8KnvJvjggcsZQq5kG9qpncMQgDLfHJHvWyh4peW6LuoaYJKDoo2HAeLn/1BovrD+5OBHmXE2rI5cXwnQ+sEnIBQB6e3trRhONFPSXlpbQ19eH7u5uHD9+3LopwrA6VlUVS0tL0HUdp0+f9gxliVTnRqEahPX2ZXEFB8gJoBRc+iWcZ6zyDt4CRWeOAKIkoph1T5c5X+ucpGceYpMcAJW5RymEFwBb55RZi+HqGGpKHKAyUrd7TSx3uWl1SNrZOVcronLrRAujkaZiPiZkNDLn4hbVLC4uYmFhoWZUY8pGtbqgv966Yt/97ndbsu6mIZd6CJoWMxsDjhw5gj179lQ8iTT7hclkMjh37hwIIdi2bVvNm6Fu5FIDRE6BNbDZNwbaELEAYXWqlf++SWJxEp3RaiyiVFJqTuhL8TSgFKGpalWKqcrjGMamTT2IBQAEXkSp/NAg8QSl8hRlrVrFmhtm7WtpEkYtdWmGajFNL8giB0V1fyEtf09EDtCYQYxm841ftCotxhgLZYjSrgNWK6ox501u5ZrLeuKWIhc/hOBsBe7q6mp4LTfMzMxgYGAA+/btA6W0LuFxscals9eIZR3dHr0QbweKmQCWAOGBAciwBJRCDh1xDkIN6RF7NsPealwPWiEDVffZQlzetAUOnn+gKgVbes1mqOYRnccEAk6KAfnaXWF2wqgVMcZjsuucjZ0TCCEQeaCkUkuixg3OBoSgdyMfpKklAEyCCzOSqBfVAMDo6Ch6enpaMlcTpcVaAD9ulPUIoVgs4ty5cwC8GwOAxqyOGWO4cuUKxsbGcOedd2Lbtm24fPlyXZ8PEkorsstXWU41HGk0hIJ3SokQrmWDlBQcOFC0kTyQINApxWKRQaVASuaRFNy3uSCtxhJvyLN4bZi8KFoE5aaA7AYCoyhfS6jSRDrdhkxmFTKpTYJ+jy3z7gOc1okxY0PmCYWZCfMKRES3gVQHu5jNB7wko1SorumJTcg11YL5HW5lmsoe1WSzWTz99NPgeb5lczUvFEVkYBORSz3UizbM+kpPTw9uv/32mqErz/O+zJ9MaJqG8+fPY3V1FadOnbIkGvyQFIm16EapIBYCnRPB0+bnFxoCIQDqFBPs4HjAp+ZVRiVot2VVeI6gK25+gRkyJYa8yiCLHNokQE6kEY/lUSj6uxbmhu01HQ8AeplY4rKIQql+FMQTI8Dz0+0ck0RkMkYnn9t0u/M8K44jStCVyvcp+SAgQRQh+Gjt90yr2T5nvvyx67oOzsPOgRdvXXJxgud5HDlyBEB1VCOKYoVnSyNRzQvFywW4BcnF6cNil1o5evQodu/eXffpIUhaLJ/P4/nnn4ckSTh9+nSFaKafxgASC18XqBqsglgoJ4Oj6zlEKfnziTERQEyRaqrx+OyBtEyQlo3Pu6QxZPOFwMRSD4QAEkEVsfCiDM3xkGK6UfI8UGughACQZRHFOmRFCEE8lcbKSvWMklMhQKrV5lyGHItDKRZQdKQKCc8Dtnu51rUxv11CeZSmFofyPIfYjuO4dOmSlUoKq2Zhfvda1bbrhLNTzG+tJkhUk8vl6lp93CrYNOTiJy0GVErlm4OXc3NznvUVN/gll4WFBfT19WHHjh04evRo1ROSr/Sa3B5MfyvIIKXHJL4rsQTWAAuQWffqWBLjTRuEBdk3ZIEgUYOIxPjavIjzCV+MJaG4CFdyZaFKN0kZp1pxMpXyNXDJEYAXhPrEAkAgDMWs+/Cr2SJt1Xbq3YpyDMVCwfVTpbbvQzqdRsbFRdMOr0HQiteIAh7+2N+hbfftFSZhnZ2dFZtuozCL+etFLrVmXOrVavxGNVHNZQNgtxUWBKGivnLmzJlAOjn1yIUxhvHxcYyOjtZ0u/QTufDxdLBNPcggZSAZj/IX0Lc0TICSrddL7cTCy4De+mjKS/nYOJ0sOGI8vRcKlaSnFquJxSxye0l08XIcankd5yS/FE9BcSEajgDgxbpSRvape68uN0GKgakqCNPrbvSxWAylYtHzozJ/LvGoSyy8R4Rk3+JlWcJ//J9fxY7DJ8BxXNUwo/mEH4vFrE23o6MjUFTT6rZgJ4JIv3hFNVeuXEGhUPCMaqKaywbAfELRdR2Li4vo6+vDli1bcPvttwe+wWqRgq7rGBoawsLCAu6//350dHR4ruOr5lLvqUpKgim5BmdFghBAObpoieaYj7N3EovPeRZejAHwT6L1LjcBqogFAAQpDsX2c3vKx+vu0ktrxOJMIbkNPsqSCF4QLX8ZL3DlyfuqlmgHNKUIsOrajjPmjMerydQNzhqLmxleMplEqZiH271n/iQej+Ntf/Jv6Nx5EIwxq6OSEAJZlrFz507s3r0bmqZhaWkJCwsLuHTpElRVtax/u7u76z4w3ipeLn6imsXFRWQyGaysrLSs5vL7v//7+Pu//3tcunQJ8XgcZ86cwcc//nEcPXq0JcfbNOTiJ7TleR4TExO4fv267/qK1zpu5OLsNqt3c/sfxqyRYgp5YLBhyGlDJDKoBA3Q2BSl7X1TcMjoEuIoQHL0xFK1hJp9sj5heq94mXZpytrmm0gk6hIAsDZL4ldPTFE1CHUeRswCuT3RyEsxoFBZfBc4g4DclAHscyiJeBz5OsRCAPCojkaqZPV5I21TI/OIdDqNd37+B2jfuhuAsSHb/2f/vpgRTW9vLxhjyOVyWFhYwMzMDEZGRpBIJKxNub29vYpIblUvF7eo5m//9m/xqU99Cjdu3EAul8PS0hJ+6qd+CseOHQst7ffYY4/h7W9/O+6//35omoYPfOADePnLX44LFy60hNA2DbnUg1nMv3HjBu67776m3NPcyCVIt5l9nXqRC2OsrjyK5+/WU924VDsV0kpwoGjni6AMWCpQKDqQlAhSEgnMW26vN+sDfh46JR5VxEI4UpUbM+ohQNEHsaxFBKzm5D1HjGjFyRe66t404BVSrRFLzBexCD7qJ34GMnt27MNbPvUtJDvWCtIcx1kbsjnhbn6XnVFNPB7H7t27sXfvXksBY35+HoODg2CMVUQ1kiTdMpFLLZhRzVvf+lb8+q//Ou666y686EUvwr//+7/jQx/6EN74xjfis5/9bCjH+vrXv17x31/60pewZcsWPPfcc3jJS14SyjHsuCXIpVAo4Ny5c2CM4dixY03bcjpJwVRLPnz4MPbu3ev7SaFe5KJpGvr7+7Gz0TkQk1iEmFE0b7GicE0QrsYAZThPVhwh6IyvrZVVGDIKg8YYOmIEnI/PxRBUXLvWfqfUAe8OKad8PSFGhOHHutivArPIAeBFMLfI0db6a5dz8boahCOISyLyhdqtxmb6zYtYTNUbP111PVu24W2f/R7khPfQsEkE5gZtRjLmpL0zqunp6cGWLVvAGLN85icnJ3Hx4kWk02nE43GLpNajqL8ekZKqqvilX/olvOQlL0GhUMDS0lLLjrWyYsyu+W2ECopNQy5eN4e9vhJWAc+MXCiluHTpUsNulLUiF7OFWZZlEK6yzTMwXDxN1t0cbAMm81MSAWNGu7GiM6wUKThBRFpkkDhvCRUTTiFGKdmG0qpH5xVqtN7a2nR5YtyrGmWIx9cK+m6IiTyKHrIqdlgT/5p7SpJwRgHIv5yLgHyddmyeABzPQ9X0mnIufohl+669eMcXnoIgBZvE94pq7Gk083XJZBKpVAr79++HoihYWFjA1NQUCoUCHn/8cSui6erqgtgiuZlWi1YClfIv8Xi8YSPDeqCU4l3vehfOnj0buhqyiU1DLk7YO7Zuu+027N69G0899VQoasamTtmzzz4LRVFw+vTphloivSIXZwvz3Fe5mjMPjWBDXCe9EPChUSExSCyYCrTEE/QmCQAdlDEsFQzHyYSwNucCwCJBiUeVwq+SqyYWAiNqqHU1zVSWZXNc3oi1kjexCLyIvFK/fuWHMBhjiMdiKPjwM5IFDqU6xzXrOpYDpgexSJx72s/+ce89dAxv++z3wYXgjQRURzUm6ZhEQwgBz/PYunWr9bcHDx7EwsICxsfHceHCBbS1tVlkk0qlQotq1iNyyeVy1pB2K/H2t78dg4ODePzxx1t2jE1JLvaOLXt9pVHZfScKhQIYYxBFESdPnmxYH4jn+aqw/Pr16xgeHq5oYSacsJmoIHwQEeCZ71bjQqEAKebvC++2L1Slz0oMOZVB5I19UvRqlXUMCpoKyEoN/3oAAPM312GcL0EimTQ24DqbvN8hTjDmSiyCHINaTn1ZOmGat06Y2d7sHHwkHFdVvI/HZCPt5/aZltc/fOd9ePMnv9mSlFStqMbcA1RVBcdxaGtrQ0dHBw4ePIhisWi1Oo+Pj0MQBHR1dYWiBdbqyEVRFGia1vJW5P/8n/8z/vmf/xnf+973PMcswsCmIRfzBjXrKxzHVXVshSH/ffPmTcuJ7Y477mjqZjNvfvOJ5uLFi5iZmalqOCDxTv/qxuvg1ugLQZoJmO6xCbnXaYIQrXGNa/9FSiZIlaOXm1nvmQ9mu3d4DuA4AaoPpW3RJwmY0v65bBZSnQdcty4zt4l/mfd+91rJIBae5yHLct0ON8/Cve0zMgv8hWLJ6rBzw52nfhy/8rEv1zxeWHCLanK5HG7cuIHe3t6KpgBRFLF9+3bs3LkTlFLf8yV+oOt6y1JugCH9AqBl5MIYw2/8xm/gK1/5Cr773e9i//79LTmOiU1DLsBaOmnbtm04duyY60R8o26UjDGMjo7i+vXruPPOOy0DsWZg3uzFYhEXLlyAqqqugpks0JR6gKdA3x71pDxXEkDoMlCXmsf2V960dPAo6gRJXqv5cjdwvIhAcy4+XmPOsOg2Eud4CdCrj+PX4IsnACcY0v61IMpxiB6RiK5UXnOpbJvsNURJUFauoFoFsfCSDL1UvVa9uRm/nWP3vvwX8XPvfbT2i1oI0wCwp6cHhw8fttJmbk0BHR0d6OrqwuHDh119W3p6enwPcOq6HmhYOyiy2awR+TahWlALb3/72/FXf/VX+Md//Eek02ncvHkTANDe3t6S2s6mIRdVVTEwMICjR496hmqNpsXMtXO5HE6dOmUVzJqNgkzye/bZZ9He3u6ZYiO86L2fOp/uaYA5E1/EAgDMIpaGXCObBA8dSR7IKQxZhYEyhjTlwHP1z4SqJUPYyyfqzqx6yKRQF2JJJpPI5XKoFzsJHABO8DV1T5VC3SjIr5yLlEihkMtWda05Scp6HzXGrep1jpl48Wt+BT/zm39c+0UtRC6Xw3PPPYetW7fiyJEjFZGHvT5j/ts5wLljxw5rvsQc4BweHoaiKBWyNG6b7Xq4UCaTyZbVdT7zmc8AAF760pdW/PyLX/wifu3Xfi30420achFFES95yUvqqhnX+wI7kcvl8PzzzyMej+P06dNWWBtGim1ubg4AsGXLltrDTnyNUJpRUCEOTmtEgyuos0YtYgm+lgWff5aUCJISwWKBgjJgMUfBALTLBLJQo1AQAFI8DWDZc6mSV9uto6PPHBgEAGIWKlxgecbU8/Upb9612pd5SQZVFXBgdTd5WZahFqqJBai0Zba/D54XXM/TdMd0m/S34//5f38DL3/Lh2ufWAuRzWbx3HPPYceOHTh06FDV9y1oq7NZi2GMWbI0s7OzGB0dRTwet6Iac4Cz1QX9XC4Ximy/F4IYvIWBTUMugBGZ1LoAPM/7krEwMTc3h/7+fuzevbvqKacZcmGM4erVq7h69Sp4nseuXbtq3hCkFrkADRIL1gYRQgFrvN7TwHdBtLq/UO7+Kg9PyjxS4tp7CjxE6fE51KpdAADHGTLGVtRguzWYB7FwBChRUrdN2z51L9Z4Q1Qtgbhs8s7zNnXCxDoP0VUNAy7XRhKN2ZpaozgEwIlX/hoOPfRrWF1dRTqdXjexSBOZTAbPPfccdu/ejQMHDvg6fq0BTmercywWw65du7Bnzx5ommalz4aGhqDrOrq6ulAoFJpOpdfCC8mFEthk5FLPPtUvITDGMDY2hitXruD48ePYsWNHw2s5oes6BgcHsbS0hAcffBDPPfdc/RuOb42fhUEuIa7XYCOBrusIkiwwyNbetWXv/mIV3V8xr4jGA0qhut3YHGSsZXOsa4rVPeanK0ziASbIQB1fID+y9ObrKHXvWJcTaShlMUm/OmFunWjUMaApcEbKmOe9o1aOAK95+0ex9/RrMD8/j2vXrkEQBPT09FhP9q2e/VhZWcHzzz+Pffv2NVyEDtLqTAipGODMZrNWB9ro6Cimp6fR3d2Nnp4etLW1hUa0ppfLehN3q7CpyKUe/NRc7Jv/Aw88YPleO9GIG6WpPUYIwenTpyHLsi+SIi2yeV236gknGPL5HhIxPMf5MXy0QDUVtdqp7N1fGYVhLmcs3h4jVdpjThDHv0UO1oS8lGhDKeM9RElQv+gNADGRQ1GlEJk3sTC4ty8LcvXgpSnn4lUTUfLGdU8k4sjXsUEGasjS2NY2j8kA7zmXWByvffcf4e6HfhEArA4sU5ZlZGQEpVIJnZ2d6OnpQW9vb+iF4eXlZZw7dw4HDhzA3r17Q1s3yABnIpFAMpnEzMwM9u3bB8YYFhYWMDAwAMZYxQCn1ITr5gtJERm4xcilXreY2cbM87y1+ddaK0jkYt7kPT09OH78uHVjuinHOkHEFnWYEB6VEoctAtVC1R4LEmxJHJBOljcBxrBYoFBt2mNOmD+xz7CYUPLuxCJwZTdFP86RooCiWv+aC6KEgkvnmHPw0s/8DMcLSEhCFbHwYnWHm8R5vw+zFuPnmALP4fX/7XO47eyrK8+lLDbZ3d2No0ePIpfLYX5+HnNzc5bYpBnVdHR0NFWjWFpawrlz53D48GHs3r274XXqwW9Uo2kaBEFAZ2cntm3bBsYYVldXsbCwgImJCUuWxoxqgg5wZrPZlnWKbQQ2Fbk04yBpysRs3brVtY05yFpOTE1NYWhoyFV7zNc6rYpczFw/xxtE49LxtB6gQhyqokD2kGRpBsbkd/kpktgtjoGcxiNbVCEJBO0yLO0xM7jxE4XIogBF0yEnEq5mYSYIDMn8oo+pe5kHVMX9syBcOf+F6ul8r4wwz/PIuuiE2Z0oCQHicUPNWRK8baT9KAKIAo83/48vY/+JH6v9QhidaMlk0hKbXFxcxPz8fMVTfW9vryU26RcLCwvo7+/H0aNHsXPnTt9/Fwbcoprx8XHoug5JkqwHXI7jkE6n0d7ejgMHDqBUKlnps+vXr1dI7Xd1ddWdqXshGYUBm4xc6sErLWZOxR89ehR79uzxtZYfUmCMYWRkBBMTEzhx4gR6e3urXuMvcmmNPpAFqqMqW+82txGkAUBOAT4HP/PZDJI8RZbKyBdLiPEMbXI4KTtGdU/J/aSgI5kyNoGixpAp0XKrs7/oSOKBUjkKcTMLM0EIIIkSih6EYYdZ6xA9+pdZ+YEgnkig4EPWPy6LUJXadR0C4xKZsy5eyss8cR8GtV9dWRLxtk99HTuOnqx7bk6IooitW7di69at1lP93NwcxsfHMTQ0hLa2NvT29tZ9qp+bm8P58+dx2223udZL1xMcx2F8fBzj4+O455570NbWVhHV2FudBUHAtm3bsGPHDlBKsbKygoWFBYyNjWFoaAjt7e1WVOPWFRaRywbCSQiUUmsqPojNsdtaTpiKxuZsjNeH7svTRfLfAaLzcfC6z+4xjveei6killqqxi7wqygAo1BMBIIUKSGVAACCgs4jqzLwTEO7TCpnWggPv8kxvxQVEwhiAsFKiXmubLc59iu9IooieF5AsdhYEb0KZZVhP8QSk3gUSmrNIUo3YzExloDqWD+dboOilGpK9MRjMfzGZ7+L3r3Nm0cRQtDe3o729nYcOnQIxWIR8/PzmJ+fx9jYmNUU0Nvbi66uLislNTs7i/Pnz+P48ePYtm1b0+fRLMbHx3H16lXce++9aGtrA4CKqKaWV017ezs6Oztx6NAhFAoFK6oZGxuDJEkVtsc8z0fdYhsJOyGUSiX09fVB13XXqfh6qEUKdkVj+2yM1znVi1w4wX86wDexAJ6pD1fYiYXwjVkAeMBtFjLO64jzAMBBYxyWVAGaUkR7nCtfD38KAEEbZ2qlVk13SL8GX2bApPggFnOavvI8qmmO84gejD8y/oQQAlnkLeHNWtbEBNWty2qxklhkHshkVmuafKVSKbzj8z9A5zZ/kX9QmK2+u3btspoC5ubmMDw8bDUFyLKM6elp3HXXXdiyZUtLziMI3IjFjiBeNZIkVQxwmrI0IyMjGB4exl/+5V9C0zTcddddLX1Pf/Inf4JPfOITuHnzJu6++2586lOfwgMPPNCSY20qcqlXczHTYsvLy+jr60NnZyfuuOOOhq1H/Sga16vd+IlcaqfFiBGBgAUjCxhOgQ0ln0IkFmO92r8WCEWnqAAiBwZAowJmc0UkRLgW5e0I+v6MeRX3gjuBf38XkQMoMYZ2ve4AMZaAXiiAJ6xqmt4otjskWPgqz7EKMGbcTzxohaKzW+Fe4Iz34zpEafu3n2iqe8de/KdPfROpzvXZ0O1NAeYA49WrVzE1NQUAuHz5MlZWVtDT0+PqQLkeqEcsTgQd4DTVAA4fPoydO3dicnIS//t//2/09fXhiSeewCtf+Ur8zM/8DF72speF9p7+z//5P3j3u9+NRx99FA8++CAeeeQRvOIVr8Dw8HBLyHxTkUs9mB/cM888g0OHDmHfvn0N94S7kYuborGfdepFLpmSXuNCsyaEKkMacuFEgGkND2QG+QgIAJQy2FLuAMszEbmiBpFQtNmK8g3Dg6C5ciThh1gkDlAZqekaCRgRgpdkimark9gHM2tFD5IsQ1dLVevZC/fA2uyM5zNV+RL6idC6e7fi7Y8+hljKvWW/1SCEYHl5GXNzczh58iTa2tqwsLCA+fl59Pf3gzFWMVPTTKuvXwQlFjcEaXXetWsXPvCBD2B4eBgnT57E3Xffja997Wv4/Oc/Hyq5/OEf/iHe/OY3401vehMA4NFHH8W//Mu/4Atf+ALe9773hXYcE7cMuTDGcPnyZQDwHIwMAntbs712E9RCuVbthjGGS5cuQV3JY6vrK/wcQPYtZd8wguiZucCHRJgnEkRFIg4ABArjkSkRMF1Bu0wg8iSUgTKjLsFcveidsFsS14JhGubd0mvK4fsdzBRFEVqpVNf2x95GLMSSKLl1uDF/Edq2nXvwG1/4ISS5xQ0nNTAxMYHR0VGcOHHCqplu27bNavVdWVnB/Py81RTQ3t5ukU2YXi0mwiAWJ/y2Ok9MTODUqVN4zWteg9e85jWhHNuEoih47rnn8P73v7/ivB566CE8+eSToR7LxKYiF68bRVVV9Pf3W5PJXoORQWCSi6Io6Ovr81Q0rgevbjFN09DX1/f/tXfmcVHV+/9/ndmHfUdBQST3hU1B27S0FDfQLLVFLevaotW1bvXtV2m3urZdr5XdtnvTbsstF9Qy8+aCWqmZAgKiiCggKjPDzuwz53x+fwznODPMCjOAep6PB49yOJz5zDCc1/l8Pu/36wWdToeRyUNhPNfJgdIGgLNOtM9x7x6vILNACpPJCLnQv88noWhESgFAABpAKwKh17YhWEJB7so3xQr7j5CIsixFmQEIja6FxdNIYnbmIHBxqNmgt9j6C0UwWfXFOHoVEqnFat/dM9sLBm3qeNNBwfIeuKsK6z9wMB7/5FeI/Ggh7w72Qp6eno6wsLAO36coCmFhYQgLC+tQFGDtahwVFWVTFNDV8fhSWBzhaFaza9cuFBcXY+bMmX55zvr6etA0bROyBgCxsbE4ffq0X56zV4mLI9RqNQoKChAYGIjx48fjwIEDPkujNBqNOHz4MEJCQjodGiYUCmGwswBhCwJkMhmysrJgKqj0wjTeEU5uewWiLs86PEHEGCASAi16Ar2ZQC6mbEqNhUL3mSvWeHKkEEAINAgJFIAQeFzmLJTIAVgaPm260N0gDwrlMsVd4WlomICy+GCa7JY8xfIgGDVXKvFYnzBvhQXoeDNGwdKjIpTIAK2DGU374TeMSMef1u3pUZuR8+fPo6qqCunp6R7fLFoXBbCuxvX19VxRAGtEGRUV5fVNYncJiz0CgQD79u3Dgw8+iPXr1+O+++7rtuf2N71aXJRKJYqLi5GYmMi5oPrCzRiw1JQ3NTUhOTkZycnJnf5Ds5+5NDY2orCwEHFxcRg8eLClckTsp/JCa2HxJtyrk4TKKIS2X6G0RgK1iUAkAALElHdrY15OgAgIggRXypz1RIw2AwMhMXUoc2aMltmtpxv3ACCTiGByM6vx5pzszMaRBrEVawAQEBgEvU7j9u0QwLGdC2O+8vvnHAnMNECc9+yMzJyAhW9t7TFhYU1fL1y4gDFjxnQ60lcoFHJCQgjhnAIUCgXKy8sRGBjIlTqHhoa6fL09JSwAcPDgQSxYsAAffPAB7rvvPr/9XqKioiAUCqFQKGweVygUfiv57lXiwr6xhBBUVlbi/PnzGDVqlM2L70pgGHvuc+fOoba2FnK5HDfccEOXxmwtdrW1tTh16hSGDBmC/v37cxt3Apn/M7E9ERYiEIPycKajEQQjkHFu+RIgoRDQXumlM13x/wqTC1xuWncGYhdCI6NMsGQ2CWAiFJoMQojEEgQQjSUXzYkI2F/EKQBSqRh6gwkSofPPlEAkQoBUCrXd/oZEHgiT3WPszMZZEyV77QiQy6DVqO2+19G4VeqmwgywiIonvmj9Uyfi5qXvoq2trUecjdm/64sXL2LMmDE+axikKApBQUEICgrCgAEDYDKZuKKAoqIiAOCaF6OiomxaC3pSWA4dOoR77rkH77zzDhYvXuzX34dEIkFGRgb27t2L3NxcAJYlub1792LZsmV+ec5eJS6AZa+ipKQEra2tyMrK6vAL78rMxdrUcvDgwbh48WKXx8uWIp8+fRoXL15Eeno6IiIiuA07gUAASh7iRROjc4dar4530MtCeVGVpm5rQWCgZyohEQLRnP8X0KhjYKYtBpQBHu6VdBYxRRAlNQMwgyEUjIIAGGn3y1sCypJvoje4F1sBY4Za0/G9M+rsxMaDmQ0lECJAIobWQWGBvbAEyGXQ6vQuI5NZO393fxHjp83HuPtf5jrmnTUx+gvW7YItmvFns6BYLHZYFFBVVWVTFGAymVBbW4sxY8Z0u7D88ccfmDt3Lt544w0sXbq0W4R+xYoVWLRoEcaMGYPMzEysXbsWGo2Gqx7zNb1KXPR6PY4cOQKJRILx48c7LDvsbBqlvaNxW1ubT5bXAIsluFarxbhx4yCXy22FhaIgkAR70R3v7aa5s4hhmyAPOCoIcAXlxTCs/y4EFBAhv3I1bNUT6MwEMhEQKrM8Lg0MAeC5A4CnQxFQgIxx7Q8GWC7IQrEYRg99wpwJBlsRxh7nSWOmSCyGRuvZEhwrQGJ5oFPfM0dWN/aXqcnzH8OUR/8GAJw1iX0TY0REBGfN4usoX0IIysvLoVKpMGbMmG41Z3RWFFBTUwONRgOJRIKLFy9y74G/RRYACgsLkZubi5dffhnLli3rthnkvHnzoFKp8Morr6Curg6pqanYtWtXh01+X9GrxEUqlXKBPc4apzozc3HkaKzVarssLjqdDufOnQPDMBg3bpyN8LHCAgCQubkrEooB2p8b83aXH7EcMLnuOheIJfDUcdlVb0qIjEIIriyftRkIjHQLgoM9izkGfJeHJhBJICJGQCDySFjYPhFno6QN3gmLXCqGyeBaWNiYAHczIInIMhN29dZQAKYv+T9MeOA5m8ftmxjZ/YrLly/j9OnTCAoK4oSmq3klhBCcOnUKjY2NGDNmjF+y2r1BJpOBpmkYDAaMHTsWZrMZKpUKp0+fhtFo9KvIAkBJSQlmzZqF5557DitWrOj2pclly5b5bRnMnl4lLgKBAAMGDHB5jLfi4szRuDN5LtawduAhISHQ6/U2nfps4BCLQO5GXPwqLA6wExaTQAad3oBgMXNl38tsBKSeb54whLhtgJSLLSXFCjUDBhTaaBlMeq1HOS2e4moIjNkIxoNIYuumR1cQOG9UtM9tkUlE0BlMkLi4Meae1+5jab/8JhYARjODwMAAGDSOPcooCpiz/G8YN+cxl6/Bfr/CaDSioaEBKpUKNTU1EAgE3PKZt8FgDMOgrKwMLS0tGDNmjF8u1t7iaI/FuihApVJxIhsYGMgJjbuiAE8oKyvDjBkzsHz5crzwwgvXTCiYM3qVuADu0yhFIpFHG/ruHI27Uhhw8eJFlJWVYfDgwQgMDERpaSmMRiMkEonDDwwl7cKGvreGk51AzOghlgBaE6A2MhBS7jeR7bHfdHeFQCSBWGBGGPRAoMAmpyVIQiHQzhLGFxMXiRCQBATD0Oa4SIH1AmONIK3LjZ2ZSbvyCTO157ZQFIWAADk0TkTA+lwU3Jc5W+/rmPWOzykUiXHvM/9A6p3el7VKJBL07dsXffv2BcMwXPe8dTAYe8F1NQthGAalpaVQq9UYM2aMy2yl7sLV5r21yCYlJcFkMnE9NWxRgLVTgCu/QUeUl5djxowZeOSRR7By5cprXliAXigu7vBk5uKJo7FQKOS6Yz31LiKEoKKiAjU1NUhLS0NkZCQ0Gg0EAgF+/fVXREREICYmBtHR0Tb7RV36IBHGsjkvEgMm92v1XSFAfGUDXqFhvEqAJF1IxbTPaWk1EOhMBDIRhZD2psquuChLRYDBDEDrOvBMLBaDoigY7az1KTt1YWcY7pbrBAIBRBRjIyxCcUfHBVZY3IWVeVIwIBQKMP+lf2PYLV1vxhMIBIiIiEBERAQXDKZSqWzKfR3d2TMMg5KSEmi1WowZM6ZbLFvc4W1VmFgs5kSWLQpQqVQ4f/48SktLERoayr12d9HElZWVmDFjBu677z68/vrr14WwAFepuJhMzpeRPHU0trZi8ERczGYziouLoVarMW7cOAQEBHDhQTfeeCO0Wi2USiUuXryIU6dOITQ0lBMaywamt1VgVhAaMPnYbNINQgqICrBLgGSAEKkQclHH18F4MXVhzEbAqR0kECK90qSpNRG06GkEBgUhgGggcrNPY/93y0YSu4MCAW0yOexNYRhbYRG2lxu7quKSyAJg1Gs7iIF9V71EIgEhxOVnGnC8r2P/WxCLhHj47c0YmD7R5bk6CxsMxpb7snf2hYWF3PJZREQELl26BJPJhIyMjKtSWOyxLgoYNGgQdDod99orKyshkUg4oWHt81mqqqowY8YMzJkzB++8806PmHD2FL1OXNwtiwmFQs4Gxh5vHI3ZDwBN024783U6HQoKCiAWi5GVlQWxWNxh4z4wMBBJSUlISkqCXq+HSqWCSqVCRUUFAgMDcQMo39u1OAoE8wO2MwtiVQFGIVTG9ib557kDxBREIjEklBYmBqjXWDaxQ6QUpCIHS5BW/y+TiGzchZ0hbg+HdCZBAgEFmiEQiYQATbvtJxEKRTDptB2s8O0RCSyJlW6bKF0sv7FIJGI89t5O9Bs2xs3ZfIP1nb318llZWRkYhkF4eDjq6uoQHR3do5v4/uhjkcvl6N+/P/r37w+aprn0zVOnTsFoNEKpVOLSpUsYN24c/vSnPyE7OxvvvffedSUsQC8UF3c4Wxbz1tGY3XR3t8TW3NyMgoICxMTEYNiwYZy7qfU57JHJZNyHj73Dsyzce/giPcVLYaEpEYTEs30mVzN36wowtlOfAhAhgMcVYN5Am02A2GJkGRXYvvRCCJp0DIw0ECihOOt+sSwQFNUKqUQIvcH9a2WXmpwFcgGWmYuQAhgzbSNA1pHF3PkkFmdj4mai6qmNTGCA3GmeDPtOy2RSLP84HzEDhrk/oR8QCAQICQnBuXPnEBISgiFDhqCpqQlKpRJnzpzxqlvel3RHg6RQKER0dDSio6NBCIFarcb27dvxzTff4JVXXkFERAQiIyNx9OhRjB07tltKnXsLV5242Pe5dNbRmKIot1ks1pVmCQkJXMc9+7OewN7hNQSEgWgaPPoZiGSA2cP9FWdlxeJAwGRbZdSkA6I8LNjx9M+f7dTXmQhoAjSynfoyixg4QiCRAV10WxNQFMKt9mnaDARaE0GrQQ2JRAy9wfNIYnewQmCvFcSu0MLaJ8zBpKrD+axx1p2v0eogEQsdRgkQWJaqnvrXrwjvO8D9C/ETJpMJhYWFEAqFSEtLg1AoREhICBITEx12y1tXn3XGz88TeqLznqIoBAcH44477sCaNWtw1113ITc3Fzt37sS0adMwY8YM/Oc//+mWsfQGep24uLursa7y6qqjsbOGTNbev7q6GqmpqYiKiurQGOktxOC8ua8DngoL4LxfxUpYjAIZWjQGmMxGQOaZKArYADMPsZTlUohun1nQDNDKyKDXaTu4GjNGvesNCwfndkewlEKwlIJQIoXB4HjjXiIPgtHbmGMHpcGOkMvl0HtgQCkAoHd0PjthsS5xZpzcAEXExuNPH+xBcGTPxQGbTCZuyTglJaXDnbl1tzybK8/uVZSUlNhUn/mqubInLV3q6+sxc+ZMpKSk4Ouvv4ZIJML9998Ps9mMpqambh1LT9PrxMUd7LJYW1sbCgoKuuRo7GjmQtM0iouLOfuZoKCgLgtLW1sbaGJx+nWIj2OH7ZEwekTLAYUaaNEz0NNAgMhyMXYKYeBNDqT9notQAIRA3+5qTNCsZ2AwW/ZQvH0HvdnPoV1U1LGmkUGBAVDblQY7KlNml8zclWIEyOXQ2u0DOloy88QnzNMem4ioaDz+yS+QB3s2U/cHRqORc/8ePXq0R6mt4eHhCA8Px6BBg6DValFfX8+VOgcEBNhUn3Vmj6InhaWxsREzZ87EoEGD8NVXX9lck0QiUYd2iGudq05cRCIRjEYjjhw5gqSkpC45Gtvv3+j1ehQUFEAoFGLcuHGWAKf2WVJnhUWlUqGkpAQjhWKAdnLhI3S7fX7nDTk9JVQmAGtwrjYSaIwE0vaSX+smSJFECm+Wrlx2ilMUwmRWS1hGBgo1A4mQQqjMg/RJb953N0okEaKDsADo0FjpnU9Yx9kjoW2FJTgoCG1qNWQSEeCkyIAVlg57MXYvKTauH55cf7RHQ74MBgMKCgoQEBCAUaNGdUoIAgICkJCQgISEBJjNZq5588SJEwC87yvpSWFpaWlBbm4u+vfvj2+//dbrPphrkV4nLq4u4IQQ1NXVwWg0IjU1tctW0dZd+i0tLSgoKEBUVBSGDx8OAG437l1BCEFNTQ0qKysxfPhwCI9IQFxdq7tBWOwJstoI15kI2owMxCIRQiQMGJMBcDWzsYMSiuGpXYxIQHExxwYzQYuBgUQWiCBKB5GDa5Q3MxdnvyYKlnAvh0tSAMzGKwIhl8ugc5NYCViWfNQe+IRJhUBb+3IcoZ0IC+VZYmWf/kl47ONfelRY9Ho9jh8/jpCQEM5OqauIRCLExsYiNjbWYV9JWFiYTV+JPT0pLG1tbZg9ezYiIyOxefPmXtEw2hvodeLiDNbRuLGxERRF+SSDgJ251NXVoaSkBDfccAMSExO5dDgAnfrDYRgG5eXlUCqVyMjIQGhoKBqEnbyTYX3HPPADc3sqaQAAxxdD1poFYGCiCTRGBgYz5bk1C+X5+2R9NqmIQoyIAqCDmSFo0FoKA0KkFGQitszZ8x4aR0exWSeMq1XA9v9KhOggLI469OVSMYxufMKAjns7YgfRxGKxGCKhADq969iEfgOHIutP/8Chw4e5Jj62j6q7KrB0Oh2OHz+O8PBwDB8+3C/P66ivRKVSob6+HhUVFZDL5ZzQhIWF4cKFCz0mLBqNBnPnzkVAQAC2bt3aKyxuegtXhbhYOxpnZGTg0KFDIIR0+YMtEAhQV1eHxsZGpKSkIDo6usv7KyaTCSUlJTAYDMjMzOSKDCiBuHOVyKzvWBeFBQAYoxaehK2IhRSCJQIESSmugdLMWGY6ziz0zV7OdBwhElCIDOhYamyZzXRy6bP9x8wMXPp6AS5yYOyFRSJ06xPGns++aMBksF2Ss5Q4m+CuanpYxk148N0fQFEU5+yrUqlQWVkJmUzGVWCFhYX5rZ9Cp9Ph2LFjiIqKwtChQ7tN0ORyeYfls/r6ehQXF4OmaRBCMHDgwG7vp9FqtbjnnntAURS+//77bnV7vhrodeJi/4G1dzRml6o8aX50BU3TUKvVMJvNnEVMV4VFp9OhsLAQcrkcY8eOtR2f0A+dyn50U2Zfvr01Cxt1HCC2LQjwdROldalxm4HY7A+FSimny18CsRTs8pzITXMkC9X+5Un1mFQsgK5dgYQSGeBg+YxCeyqko/NZvVHW43PVHpR62yzMe+UL7t/2cb/sXkVJSQkYhuHu6qOionxW6qvRaHD8+HHExsZi8ODBPWZhYr18VlVVhXPnzqFPnz5QKBQ4d+4cwsLCOKH1Z2aMXq/HggULoNfr8b///c9nwWfXEr1OXKxx5mgMWOxYOvuHw86EGIZBfHw8AgMDuywszc3NKCoqQp8+fTB48OAOd4+UyA/i0i4sDCw9LDTDINRJ5zrg3b2/s4udddSxnkjQotF77WgsEHvX50IABFvtD+kZCq1aGkLKMh5rSxjSnsgpFgJmhgKxmi+KJDIY7Ze8YKlsc6eNFEVBLAAMVpsitINoZHZT3l1VGBuF7O55x2ffgznPf+L0+0KhEDExMYiJibHZqzh37hxKS0u5Ut+udMqr1WocP34ccXFxXNx4T1NdXY3z58/bBH2xtiwqlQpnz56FXC73y4zOYDDg/vvvR3NzM37++eduX4q7WuiV4uLK0Zi9+Hc2i6W1tRUFBQWIiIjgol4dZrB4weXLlzmX5P79+zs8hpKFOnzcIV7sr2gFwQhg2hApBwCBjQ9YsItlLHdQHnTayygjZEGWP1ilmoFSY3EVDrO74NvjbRO//axIJiCQtRcEmGhiYwlDwXp5y/YHGTt5ZR2Q3S2ZiaVSELPBbfWYgALEEikMBgNEwnb1cHQ+D7vzb7/7T8h+4i33B7Zjv1eh1Wo5GyK2U54VGk9zWtra2nD8+HH0798fAwcO7DXC4miPxdqWxWw2o7Gx0WZGFxkZyTVvdtbzzGQyYfHixbh06RL27t3rcdP29UivExe2KcuVo3Fn0ygVCgWKi4uRnJyMAQMG4MyZM1AqlZBIJIiNjfV6M44QgnPnzqGmpgYpKSmIiopydbTnJ/Zif0VnNCHA6rfobBlLLna+lOQIAbzw0AcgEl5JoDQzBPVaBoQ49gCjTXqP9n48wd4SptXAOBUBxqoiTCwWg2FomJ0IAItIJAJjMLitg2MnbwZD+6a8i6wgd8JCAZi66Bnc/uBLbp7VNQEBAUhMTOQ65dm7+oKCAggEAk5onCUwsjdiiYmJSEpK6tJYfIWnVWEikchmRtfa2spFPLNRx566GrOYzWYsWbIElZWVyM/PR2RkpC9f2jVHrxMXNnjLnaOxN+LCisC5c+cwevRoxMTEgKZpJCQkQCKRcAaTISEhiI6ORkxMjNv1WpqmUVZWhubmZowdO9btmisl8k95olmvBYKcX6itl7EUaoJ6vRASkQBBQqPL/pKuNDqKBBSirDbmG3UMiFAGucCEAAeOyu4QSuVwVuVmjYCi2qOU3QiGADCbTDZyL5TIAbt+FYlEAtpkdLtnI6Isy2DWxwnEEsDOuj8oOBiEpmHQduyzYd9vigJyH/8rbrx7uZtn9Q5nRpNszDF7Vx8VFQWpVMrtdSYlJbkN8OsuqqqqcP78ea+rwiiKQmhoKEJDQ22ijtmCCKlUauNq7Gj5jKZpPProoygrK8O+ffuuu4bIzkARVxbEPQAhpEOehj2//PILhg4d6tEvmKZpnDx5Eo2NjUhPT0dwcDDXGGndv2I0GqFSqaBUKtHQ0MAtIcTGxiIoKMjmzoa1nQGAlJQUj+raW758AKbTPzv+JiUAJAGAwfNceRalmkGMC3GxGYNJhFCx5bXrzQStBoshY5iM6mA4STPEKxPKZrMEYSL3+yitektfS6hMwNnquz23HgjzcFLZqGPwWYHjeYZEaBFBRzMH+0oxiUQKs9EA1qfA0R+JpL3j3tHeiZCyzWdhS5Kd2c4IKUsmzj1/+Qcypi1y8yp9h3UCo0qlQmtrKwICAqDVajFgwIAuNSn7ks4KiztYV2P29dM0zQltREQEF4u8fPlyHDp0CPn5+YiPj/fZ81/L9LqZiyd4uixmMBhQWFgIQgjGjRtnuRNtL12031+RSCSIj49HfHw8zGYz6uvroVQq8ccff0AsFiMmJgaxsbEQCoUoKipCaGgoRowY4bHLKSV2sZlKmE4JC+Bd87pQdKXRUSa60kdioglnOMn2tXi7L2I26uGwA9KOEBkFE7HktWiMliowidDyvM5nUl3rc2Fx6utlh7UBJeA8BoIC3NrvA575mElkAZj3/DqMmDjb/Ql9iH0Co0KhQElJCQIDA1FdXc3Z5ru6q/c3/hIWoKOrcVtbGxfxvHTpUiiVSgiFQtTX1+O3337jhcULep24eHKX5MmyGLsRGR4ejhEjRni1cS8SiTizPfbORqlUoqCgADRNIzg4GHFxcV7d0VGirtXgMxBCgK75j5kNGofGlWIbw0mCBi0DmgBBEnS6IMAV7BkDrSKNDWbLfgnloCDAq7m1k9+JVOg+6RFw3J3vSFjYWZA7PBEWkVCIhX/9AjeMnez+hH6kvr4eJ0+exPDhwxEXF2dzV19aWmqzKR4VFdUtFif+FBZ7KIpCSEgIQkJCkJycjPfeew9/+tOfUFhYCACYOHEiZsyYgQcffBDp6el+Hcu1QK8TF09wJy5KpRInTpzAwIEDkZSUxFnlA9533LN3Nnq9HpcvX8aAAQO4/RaaphEVFYWYmBhERUW5nsVIutjgRcxo1BOYaIsDcGcu+p5YRgqtGhlpQqFZT8Ngts1McTg8byxaHDwmFVGIFrHPC9RrGTDtBQHeIJbIANj2/rAXeFcVYUIh6xPmQde9WAiDibYUgOidH+/RjEUswtJ//ICEkePcPq8/UalUKC4uxogRIzj3C/u7enZTvKqqCidPnuQsWa6krfqW7hQWexiGwb/+9S/U1NSguLgY/fr1Q35+Pn744QdUVlby4uIBvVJcPEmjNJs7rqsTQlBVVYWzZ89i1KhRiI2N5YSl01b57WXRly9fRkZGBld6OGTIELS2tkKpVOLs2bMoLS1FZGQkF21sf1dHSbr2x+esCozx4qru7ctnGAZhVjMdNjPF0sjo2SzTEUI3fS4dI5YJTGpiM9Nxhtmu94TdP3A7JpEEaq37Kj2pEDC0R04zLhyYhXAvLDKpFE/8czf6JI9y+7z+RKFQoLS0FCNHjkRsbKzDY+w3xVlLFrYYhnU09lUgWE8KCyEEr732Gr799lvs378fgwYNAgBMmzYN06ZN69axXM30SnFxh6M9F4ZhcPLkSdTX1yMzMxMhISFdbow0m80oKSmBTqdDZmamzd2Z/R+bRqOBUqlETU0NysrKEB4ezpVCSqVSUBLfdguzVWANWsaue935Rd/rkEiBCLBaimMzU4B2o0sDA5EQCJV6F+DMmD3bnwEsoioTEa7MudVAoDPZRixbY/2IRAgbYRFb5blYI5dJYDJ4KCxWHzuhWArQtn5gFAVIpTKYjAaX07mAgAA8+dkviIwf6PZ5/cnly5dx6tQpjB492qsKKEeWLCqVCoWFhRAIBDaBYN6mL/a0sLz55pv4/PPPkZ+fj6FDh3br819LXJXiYr8sZjQaUVhYCJqmMX78eG7jvqtWLkVFRZBIJBg7dqzL9WXrTdGBAwdCp9NBqVSirq4O5eXlCAkJQZzaAE+7aGgIIHRbAGtBIgtAkEB/xd3YDGiJFJRZhzC7TXJv3wWaNkPspNv/itElYKQJTBCjySRAkMDoNIHSF4RIKW6pTGsk0EEKIcwIFtEQCiy9PGyXvH2/i0nnQFikIuj0Rpcxx4DjJS7GzuGYgqUsWa/Xw5V0BoeE4M+fH0ZwVJzrJ/Uzly5dwunTp5GSktKlng1rSxY2EIxt3DQYDIiIiOD2adz1kvW0sPzjH//AP//5T+zduxcjR47s1ue/1uj+0g8P8CaNsq2tDYcPH4ZUKkVmZqbLijBPaWlpwdGjRxEaGoq0tDSvNy7lcjkSExMxduxY3HLLLYiLi4Pa4Pm9fZvJ81+L2c4IUS4CIsUGRMgFMNGASsOgXsvAzBCvZy7uLExYJEIKUiEQLjaBooAGLQOlhoHe7PgEXseFOXFcDpBQiJQYESaxFCCoNAwadYzjTBQHyMQC6NodI8Vy531KIsrxEhexih5mbWTcPW9QVBzmvrYVkAa7XPr1N7W1tTh9+jRSU1N92gzIBoINHjwYN910E8aNG4fw8HBcvnwZv/76K37//XecO3cObW1tHV5/TwvLunXrsGbNGuzatQupqak+f46DBw9i5syZXDHQtm3bbL6/ePFirj2C/Zo6darb83744YcYMGAAZDIZsrKycPToUZ+PvTNc1TMXNlgoMTERycnJYBjGpiKsMygUCpw8eRLJyclISEjo8tqxVCpFv379oB88Auoiz36GmI0ed7C7Gp71JrmZIWgxELQZCcI8tNHvzLXPkbOxibatDPP6HfVgHGzEssxAYHKQN299HoqiIBYCeislcDSrASxpzO4Ew9pGxhXRsX0xb/V2NLdpuBJ3tmnXn27G9rA5Q+np6QgLC/Pb81AUhcDAQAQGBmLAgAEwGo1c82JVVRX3+qOjo9HS0oLq6uoeE5ZPP/0Uq1evxk8//YSxY8f65Xk0Gg1SUlLw0EMPYc6cOQ6PmTp1KtavX8/9210P3XfffYcVK1bg448/RlZWFtauXYspU6agvLwcMTExPh2/t1y14tLW1oaioiKMHDmSy+fu6sY9e+c0atQon3fgUjLXHfwayGE26Nr3TDw/r9sUx3bYi75YABsb/dAACaSU46ZDb7SFNptgPxG2djYGruyXUABCvJAYhjAdzu0Md2+HQGBZcnQSBnnlPACkMlm7YwQF4mQax1n6u3mz4hMGYtm/DkEkkSIRts17rPcVW3kYGRnpMzdje9jPeHp6OkJDvfC78wESiQRxcXFcmXNTUxNXpWY2mxEREQG1Wg2ZTNZp7y9vIYRgw4YNWLlyJXbs2IHx48f77bmys7ORnZ3t8hipVOpVVtWaNWvwyCOP4MEHHwQAfPzxx/jxxx/x+eef44UXXujSeLtKrxQXV+LAMAwUCgU0Gg2ysrIQGhra5f0VhmFQVlaGxsZGjB07FsHBwV0ZvkMoqWtxCYQOkAI6s6W5kBDiUQSw2Is4Yqq9GdG68owQE5r1xGG5sa9Xbdj9Ei2RQGM0tDdQehh17APE8kAwOo1nM5H2vRMAToWFguU9crcClzRkJB79534IrDa2HZX5KpVKVFZWoqSkhNuniI6O9lkAFeuD1xOzA3uEQiGioqKgVqtBCMHIkSOh1Wq5ghjrMDR/WecTQvDVV1/hhRdewPfff49bb73VL8/jDfv370dMTAzCw8Nx++234/XXX3e6bGk0GnH8+HH83//9H/eYQCDA5MmTcfjw4e4aslN6pbg4g7Vd0el0CAoK8klFmNFoxIkTJ0DTNDIzM/2WJCeQefbHLBcRhMpFCBITGBgKLe3W8o4sWgBY4ojdlOdyY3BwWId8+/ZyY5nIO6NLb9a6GJMBQXYNlC0GxiNHZXcIRRLY97kAgFgsgVmvcbt05WiJSygSdSh9l8nkEAoFHVIl7RmaNg4Prdnp8rNpXXnIuhlbF4QEBwfbeN51JnK7srISFy9eREZGhl9unjoDO4uyts1PTk6GXq/nypxZ63xWaMLCwnxiR0MIwcaNG/HMM89gy5YtuO2227p8zq4ydepUzJkzB0lJSaisrMSLL76I7OxsHD582GHFXX19PWia7lA+Hhsbi9OnT3fXsJ1y1YiLWq1GQUEBgoODMWTIEFRWVnbZKl+j0aCwsBDBwcEYOXKk1yWTXuGF5b6AWBytpALCZc2bGKBRazGxCpMLuC0Zb67DAooCQ1z/jHW5sUrDQGkmEAnQofKsA17MckRiWwG4EnXc7qjcbqF/JWLZiyU0c8dZnFQqhclgcJvELKQsMxH7FTPaTljEAkCv17lNoky56Q7c/8ZGD0ZtS0BAAAYMGGCzT6FUKnH+/HnOZNHTjBJCCCoqKrg+rd4SauVq814mkzm0zj9x4gQA2JQ5d3b5cOvWrVi2bBk2btyIKVOmdPn1+IL58+dz/z9q1CiMHj0aycnJ2L9/PyZNmtSDI+scvVJc7IWivr4eRUVFSEhIwA033ICWlhZoNBqUlJRwTYvefsgaGxtx4sQJ9OvXr1sCkAQyz+8WHQ1FLACi2xsLaQI0tIeDyZ2UCjuDOLVh7Ig8IABBlGVpyEADWiIDbdR2eXZBm4xOZ1siga2FfpMOINJgaE1tnXIlsPYJE8sDYXQy06BgqY5z985IBIDRg0q0rOz5mPP8R94Ot+Pz2e1TsFZEJSUlIIS4vNASQlBeXg6VSoWxY8f2mhheb6rC7K3z2TLnriwf7tixA0uXLsXXX3+N6dOn++Il+YWBAwciKioKZ8+edSgurCuIQqGweVyhUHi1b+MveqW4sBBCUFNTgzNnzmDEiBHo27cvaJpGYGAgsrKyuLu5srIyREREIDY21mF3vD0XL17E6dOnMXTo0G4zoqOknouL0IM7bDYczESARj1gMjMe2cIwDAOhh30oJr0OaN+bkQoBKSzNjw5nF15c9z3VcUtBAKDStCIgUIBmPQODGR0ilp2d294nzKhzLCxigWXG4lZYhE6ii+2YOGcJpj/5rvsDvcR+n4a90LIOEdYXWolEglOnTqGhoQFjxozp9nx5Z3Sl3Ng+DE2j0aC+vh4KhQLl5eUICgriXj8bBGjPrl278NBDD2HDhg3Izc310avyD7W1tWhoaEDfvn0dfl8ikSAjIwN79+7lXgvDMNi7dy+WLVvWjSN1TK8VF4ZhcOrUKSgUCowZMwZhYWE2+yvBwcEIDg5GcnJyh+74iIgI7m7HuuqEEIKzZ8+itrYWaWlpiIiI6LbXQ1EUCCh40svu1VIXIYiQUQAEIARoMVDQm2inXmCe9q4AaI8I7ngO69kFzRA06BgYzJZKMLkfjC5ZrK1onLkSsM8uk0o7GFA6QiaTwGAwQS6XAS7sXzzxCQOAKQ/8GZOXvOL+wC7i6EKrUqm4xkiRSARCCFJSUvy2j+gtvu5jYcuc7cPQqqurIRKJEBUVhcjISAQGBiIoKAj79u3DwoUL8cknn2Du3Lk+eEXeoVarcfbsWe7f58+fR1FRESIiIhAREYFXX30Vd911F/r06YPKyko899xzuOGGG2yW7SZNmoTZs2dz4rFixQosWrQIY8aMQWZmJtauXQuNRsNVj/UkvS7PBbBU6Rw7dgwGgwEZGRmQSqUelxrrdDooFAoolUq0trYiLCyMM5asqKiAWq1Gamqq3ypQXHFp36doO/oNAprLIRc6X1shhHi1TOfs+DYTBQORQEIMCGkvl9ebCWe17w5PM1oAQKFmEBNIocVgqTwLlosRIHR8NfZmDADQaBQjQtJxk55FZyJoNRKIBYBMLMS/TwBavaHDcfbxwtYzEVfi4ex71j9PUcCsR1fi5nlPe/iq/APDMCguLkZLSwuCgoLQ3NwMmUzm8w1xb+nOBkmGYbgy519//RXPPfcchgwZgtOnT+Ptt9/Gk08+2SPvwf79+x0WDixatAgfffQRcnNzUVhYiObmZsTFxeHOO+/Ea6+9ZrNhP2DAACxevBirVq3iHlu3bh3eeecd1NXVITU1Fe+//z6ysrK64yW5pFeKy+XLl1FVVYVRo0bZWL1Yh3t5gl6v56puWlpaIBQKkZiYiLi4uB5dJmBoGsrD36Ju3ycIVVcgWNxRaLwJ6/LkWK2ZQpuehoACIgPcbM6306Bjl9/cU28QI0pqKwDOfMAMZtIh+tgVKg2D6EDP+lzUJuDDo44F0Vpc7AVDLhVx3frWBAcHQd2mdhoWZqQtM827n/k7xsx4yKMx+guGYVBSUgKtVouMjAzOrYL1/VKpVADACU1nfL86Q0+7G69fvx7PPPMM+vXrh5qaGmRlZWHmzJl49tln/dZPxNNLl8ViY2MRFhYGQkinhQWwbOaGhYWhqqoKsbGxCA8Ph0qlwvnz5xEUFMQFgHX3LIZmGNTKhsB859sYmpoKddkeNP7yL4gvH0ew0HJhZIjFWdcTPDk2QEQQECSAlhHDyJjRqqchElhMJ50JE/GieZExGQCp7bHWPmBXgsEoBHgZA+LN3Y+Icn+0o5kI5aCUTCIE2trULreThAIK97/yGUZOvMuLUfoemqZRXFzMzfbZ5WChUGizIc7GG7O+X2w+C7tP42t6UlgA4NixY3j55ZexZs0aPPHEE6irq8OPP/6Io0ePdouwXs/0ypmLXq+H2Wzmlns6a4uhVCpRWlrK5YCz4mQymWwijeVyOSc09pHGvkan06GwsBByuRyjR4/u8AFvOn0Q9fs+glBRjGCTyqOxeDMTaDMQm81wEwM06ywhXaFSysZ00psZg1LDcGXT7tAYCTQm5xHLXTm3kQjxj0OO907EAsssw9ESl73g2Cx5wbHAhQQHYf5L/8KgrJ4tZaVpGidOnIDZbPbYC89RvLGvGxd7WlgKCgowc+ZMvPzyy/jzn//cK+Karyd6pbgsWLAAZWVlyMnJQW5uLoYMGeL1HkR1dTXOnTuHESNGOM2oAGATaVxfXw+JRILY2FjExMQgJCTEpx/IlpYWFBUVITY21qPX1FZVCMWedcD5gwghLU6XsrzZSG81EKcBXDQBmvQAYRiEyii06InH4tJMghBGeRbVTJMrtikmmkBLBcKo1yBMCoeOyt6Ii8FMsPZ3x/sznu6r2JcbOxIXiViEP63ZjsRRN3o0Ln9B0zQX5Z2WltbpZR6DwcAJTWNjo03jYmfyWXpaWIqLizF9+nT85S9/wfPPP88LSw/QK8WlqakJ27Ztw5YtW7Bnzx4kJydj1qxZmD17NoYPH+5yJsMwDE6fPg2VSoXU1FSv/JPY9WmlUgmVSsUtKbDLdF35gLIeUp01xNRerkDdnvdBn9mLEHODTbmyxkjchmixtOiJwxwUexgCXFIDYgGDEAnlVry8meU42yOiGYJmPQHdnkDJbvp7NXOhCf5xxFZcKACBwcEwGw3QGxzvx0iEgImGQ0dle3GRSSV4/MPd6HvDaI/G5C/MZjMKCwtBURTS0tJ8tsxjnc9SX18PiqI4oYmIiHD7PD0tLGVlZcjOzsayZcvwyiuv8MLSQ/RKcbGmpaUFP/zwA/Ly8rBr1y7Ex8cjNzcXubm5SElJsREak8mE4uJiGI1GpKWldakEk2EYrmFNqVRyf2Ds3o03S3UXLlxARUWF21mUp+gbL6Ju9wcwlv2EEGMdDIwQgSIP6mQBNOkJwj0QFwBQagliAihLibMRMJgYpyXO3ogLQ4jbggKGELToCYy0Rej6BndOXChcEQz7ajFrpELLjMqRPYy1uMikUtz91+8waHRmjxaFmEwmFBQUQCwWIyUlxW/7BwzDcPs0KpUKBoOBa9yMiorqsE/T08JSXl6O7OxsLFmyBK+//rpfhOXgwYN45513cPz4cVy+fBlbt27l+kxMJhNeeukl7Ny5E+fOnUNoaCgmT56MN998E3FxzvN7Vq1ahVdffdXmMbbC7Wql14uLNW1tbdi5cyfy8vKwc+dOREVFYdasWcjNzUVgYCCWLl2KV199FRMnTvRpFQj7B6ZUKqFQKEAI4byeIiMjnQoNa71x6dIlpKam+sXe3KRpwqU9H0N/Ig/B2hq3liSNOoZLdXSHQsMg1oFgtJoo6ExAoESIIJGlwqpey3DRxL5GobY4EejMluU/Z8t6gGWZbU27uFgLC+BcXEQiEYQww0GxGHceAiAoOBjzXt8CLS1EY2MjAgMDuc1yf+/VWWM0GlFQUACpVOpw385fEEKgVqs5oWlra0NoaCjnksE2NfeUsJw9exbZ2dlYsGAB3n77bb9FGPz000/47bffkJGRgTlz5tiIS0tLC+bOnYtHHnkEKSkpaGpqwlNPPQWapnHs2DGn51y1ahU2b96MPXv2cI+xvTpXK1eVuFij1Wrxv//9D1u2bMG2bdug1WoxePBg/OMf/8DNN9/stz84tjOa7aUxmUyc0LB2DIBlia20tBRtbW1IT0/vFusNs0GHuvxPoDm+CYFtlZAJO/5qfSEu1mjMFNQGGjRN0DfYc483T2YvLPb7OdaVZ/aOyqy4cAaUVm9BQECATewxcGXvRywS2OS7WEMBCA2PwJ+/OIqAEItDrXXTXn19PcRiMXeR9Wc2C+uEGxAQgFGjRnVbBowjrA0mGxoaAABxcXHo16+fz/cr3VFVVYWpU6ciNzcXa9eu7bb3haIoG3FxxB9//IHMzExUV1cjISHB4TGrVq3Ctm3bUFRU5J+B9gC9shTZEwICAjB79myo1Wps3boVjz76KHQ6He6//35IJBLMnDkTubm5uOmmm7xOknSFdWf04MGD0dbWBoVCwVlwREVFISIiApcuXYJAIODSMbsDkVSOflOfBqY+DdpkgvK3L9H6+1eQN51CQHvTple3Eh4cGygiCBQJ0EzLoWf0aNPREAldlzhz4/Dw2mPQtAJBVy4W1sFjejNBq4HhKs8oynnGiknfUVhYy3wR47ypNSauH5b/6xCkAVcsfMRiMfr27ctZEllns7AzW1/3kuj1es68dcSIET0qLMAVg0maptHS0oIBAwZwBrMCgYC76QoPD/fr7OrChQuYPn06pk2b1q3C4iktLS3cdcMVFRUViIuLg0wmw/jx47F69WqnYnQ1cNXOXADgxIkTmDhxIjZu3Ig77rgDgOWOMj8/H5s3b8b27dvBMAymT5+O2bNnY8KECX670LOlnbW1taitrQUhBJGRkZzfWXcJjCMYhsHJHf+E/vh/EWRuRDQaPfo5hZpBbJBnf6gNWgaRVstiRgZoaS9xdmR0aWaIx+aXSg0Q40FlrIkmaNAy+LKYdpixYr0sJhIANHNFP51VkvXtPwDL/3UEYjeJgCzszJbdq7Peo/DE984ZrGtFeHg4hg8f3ms2qauqqlBVVYX09HRuKcy6Q16lUsFkMiEyMpKb3fvyZu/y5cuYMmUKbr31Vnz22Wfd3rvibuai1+tx0003YejQofj666+dnuenn36CWq3GkCFDcPnyZbz66qu4ePEiSktLe01Egrdc1eICWByTna1Lms1m/PLLL9i0aRO2b98OrVaL6dOnIycnB5MmTfK551JzczOKiooQFxeH+Ph47gLT1taG8PBwbn3eXXSpL2Gr5+rr65Geno6goCA0nNiFxoOfQXjpD4QIOtqksHglLjoGkU6W28wEaDYKQcwmzujSRBOHZceOaDTLECFy7xMGWDbl3z3kukPf0d6LI3FJHDQcj3980CbkyxvYGw72c6BWqxEeHs7d0Xv6+dPpdDh27BgiIyMxbNiwXi0s9rD7NGwFplqt5iyZoqOju1QUoVAokJ2djbFjx2LDhg090hTpSlxMJhPuuusu1NbWYv/+/V7tQzU3NyMxMRFr1qzBkiVLfDji7uOqFxdPoWkahw4dwpYtW7B161Y0Nzdza7R33HFHl/dEFAoFTp48iUGDBqF///4239PpdNwFpqWlBaGhodyMxp8VRzRNc3Yg6enpDi9mzRWHodr7IQQ1hxACtc2Fyxtx8XQvh2nvpTHRDMJklEceY96Mg2YI3j3suM+FzcBxtLViLy6DR4/Fw+/9z6cXcp1Ox93NNzU1cS4RrkLANBoNCgoKEB0d7XW/lz/xRFgcYf8eBAYGcmLrzMnYEfX19Zg2bRpGjBiBr7/+usdsXJyJi8lkwj333INz585h3759TtMkXTF27FhMnjwZq1ev9tFou5frRlysYRgGR48e5YSmrq4Od955J3JycjB16lSvpqHWDZujRo1CdHS0y+MNBgMnNE1NTQgODuZ6aXy56c+mdlIUhdTUVI+WItQ1JVDs+QBM5X6EkmaoNAxigzy7G2zSMQj3sFAAAIyMAGKKQbMRMLWXODvr1fFGXBhC8M6hrjVRjh5/Ox5YvcWj5+ssrEsEWxAglUo5oWGbFtVqNY4fP46+ffti0KBBV72w2GNdFNHQ0MBFCrD7NM72ThobGzF9+nQMHDgQGzdu9Okym7c4EhdWWCoqKpCfn+/2muAItVqNhIQErFq1Ck8++aQPR9x9XJfiYg3DMCgqKsLmzZuRl5eH6upqTJ48GTk5OZg2bZrL7mSGYVBeXg6lUom0tDSv/9CMRqONDQ1b2sr6nXX2YqLT6VBQUICgoKBOJ2xqFedwOf9foE9uR4i5HiI31/YmPYNwmefi4sgZuc1IQWukESgTI8iqb8cbcSEEeNvBsphECIASwmh2rC6suGROno27X/rc49fhC+zNJdnN38bGRsTHx1+TwmIPu0/DLp/RNM35nlnv0zQ3N2PmzJno27cv8vLyemQv09o6Py0tDWvWrMFtt92GiIgI9O3bF3PnzkVBQQF27Nhh09cWERHBjdfeOv/ZZ5/FzJkzkZiYiEuXLmHlypUoKipCWVlZp8SpN3Ddi4s1hBCUlpZyQnPmzBncfvvtyMnJwfTp0xEREcH9kRsMBpSVlUGn0yEtLa3Ly1vsXRxrQyOTyTgbGm+WC9ra2lBQUOCxxYwnGJrrcHn3BzCe3IlgwyVuecmaFj2DUC/ExZ1ljdpEQWOgIRVRMJhJl8SFFQ6XTZQiIHP6Qsz683sevwZ/wDAMLl26hPLycggEApu0SV9vhnuLv4TFHkII2traOKGpq6vD2rVrMXHiROzevRuxsbHYvn17j+XUuLLOX7VqFZKSkhz+XH5+PiZOnAigo3X+/PnzcfDgQTQ0NCA6Oho333wz3njjDSQnJ/vrZfgdXlycwEbEbtmyBXl5eSgpKcEtt9yC3NxcpKWlYcmSJVi6dCmWLFni8z94mqa5hD3W78x+ycQRDQ0NKC4u5vLX/XG3a9K24PKej6A7kYcgTTWk7ZMiT21lWLQm4nFscZ1ODIo2QCy0VJ65649567cr4mK93CUSOO/An7r4Wdy++P95Ony/0dLSgoKCAiQlJSExMZHbDFcqldBoNJ2K9fUF3SUsjlAoFPjwww/xySefQKPRYNSoUZg9ezZycnKQmpraa2Z1PLbw4uIBhBCcO3cOmzdvxtdff81ldz/33HO466670LdvX799wNkeCoVCYeN3xq5Ls897+fJllJWVYdiwYS5tJnyJ2aCD4sC/oT6+Eag/i0iZZxY0gHd+aNbLYgaGQouOhpCyRCw7KmdmxcV+j8WRuFAAZi59CbcseMbjsfuLpqYmFBUVcf5z9mi1Wm4ZtaWlBSEhIdwehT9jI3pSWADL6547dy4IIfjyyy9x8OBBbN++HT///DPOnDnjE0slHt/Di4sX7Nu3D3PmzMHixYuRkJCArVu34vDhw8jMzEROTg5ycnLQv39/vwkNuy7NCg0hhMvpYFPoOlOV4gtosxmqw9+g5ciXkDWcRKCTFEqWzoqLNWYGaDGJQBgaoRKGK21+6zejw7x7e3ERUMBdT7+DzJyHPRqHP2lsbERRUREGDx6Mfv36uT3eer/O2sXY127ePS0ser0e8+bNg0ajwa5du2zGYDKZenSZkMc1vLh4iF6vx/Dhw/HKK69g8eLFACwzmkuXLmHr1q3YsmULfv31V6SmpnJCM3DgQL8JDSEETU1NKC8vh1qttpnRdFfCoDNMJhMKtr4P0ekfEKE9i2Bhx+ottZE4NMB0hCcb+jQBmvWWILZvSswOq8KsxUUooLDgxY+QMnmeR2PwJ/X19SguLsbQoUM7Neu0djFmZ7eeVF25o6eFxWAw4L777kN9fT1+/vlnv3jz8fgPXly8QKvVOi0XJoRAqVRyUQH79+/H8OHDuUyawYMH+1RoGIZBaWkpWltbkZaWBrPZzPmdGY1GREVFcR3R3dkDwJoqSiQSjB49GiKRCI2le9Gw/xMILx5FiMAS5GUfWuYKTzzOrHn3sAk00/FjzYqLSCjA4te/xJDx0zw+p79QqVQoLi7G8OHD0bdv3y6fz7o7XqlUgqZp7rMQGRnp8Wehp4XFaDRi4cKFuHDhAvbu3YuIiIhuHwNP1+DFxQ8QQtDY2Ijt27djy5Yt2Lt3L2644QYuk2bYsGFd8j8ymUw4ceIEaJpGWlqaTTkm2xHNCo1Op+OsN7piP+IJbAl0cHAwRo4c6fA1tp47BuWeD0AuFyPUcNEj80pvSpEBS4c+7eBTLRIAlECIR97JQ1LarR6fz18oFAqUlpZi5MiRftk3IISgtbWVExqdTmdTEODMKaKnhcVsNuOhhx5CeXk59u3b55dSXFe2+YDlvVu5ciU+++wzNDc346abbsJHH32EQYMGuTzvhx9+iHfeeQd1dXVISUnBBx98gMzMTJ+P/2qAF5duoLm5mcuk+d///od+/fohJycHs2fPxujRo70SGr1ej8LCQshkMo/s1q2rjdRqNSIiIrjlM1/2CLCGhdHR0Rg6dKhHszTNxVOo2/MBmIp9CGEaIXTyM96Ky98PGTuYVgJAUHAo0ub/P4T1H+KTZaOuUFdXh5MnT2L06NHd1sfAxhorlUqbWOOYmBhuRt4bhGXp0qU4ceIE9u3bhz59+vjleVzZ5gPAW2+9hdWrV+OLL75AUlISXn75ZZSUlKCsrMxpld53332HhQsX4uOPP0ZWVhbWrl2LTZs2oby8HDExMX55Hb0ZXly6mba2Nvz444/Iy8vDTz/9hKioKG7pbMyYMS4vdGq1GoWFhYiIiOjU7Eer1XJC09rairCwMM6GpitlraynWv/+/Tu9z6Svr8Xl3e/BdGoXQkxKm6ZNb5IoAWDNYWOHfha5XIblH+9HZP9BXLOeUqkEwzA22TzdsVd16dIlnD59GqNHj+6xvA421pgtCAgMDIREIkFrayvS09O9SnD1FTRNY9myZTh8+DD279/fbVWP9l32hBDExcXhmWeewbPPPgvAUiIeGxuLDRs2YP78+Q7Pk5WVhbFjx2LdunUALEuU/fv3x/Lly/HCCy90y2vpTfDi0oNotVrs2rULW7ZswY8//oiQkBDMmjULOTk5GDdunM2Frr6+HiUlJUhISPBJoYBer+fCz9iyVrZp05uGUHYz2pGnWmcxttXj8u510Jf8gGBdLZp0tMc2NADwj8NGGK3EJSgoCE//+xBCY23HZ+9gbDQa/ebey1JbW4szZ84gNTW11+wjmM1mnDp1CgqFAhRFQSKRcILrz2waaxiGwdNPP438/Hzk5+d3q9W8vbicO3cOycnJKCwsRGpqKnfchAkTkJqaivfe69hoazQaERAQgM2bN9vMgBYtWoTm5mZs377dz6+i93HV5rlcCwQEBGDOnDmYM2cO9Ho9du/ejS1btmDevHmQSqWYOXMmZs+ejXPnzmHNmjX4/vvvnXb/eotMJkNCQgISEhK4u1iFQoGKigoEBQVxQuOqf4LtrRkxYoRPly8kwVFInLMKmLMKZl0bzPs/R8PxbxGkPg+pgwA0V4SFhePpDUcRGNZxhmCdzTNo0CBuCbGqqgonT570+RJiTU0NKisrkZaWhvDw8C6fz1fU1taioaEBmZmZCAoK4uK92Wwa64IAf8zsGIbBc889h927d2P//v09nmFSV1cHAB32wWJjY7nv2VNfXw+aph3+zNUcVdwVeHHpJchkMsycORMzZ86E0WjkMmnuueceqNVq3HzzzaisrER8fLzP/ZSkUin69euHfv36cYaKCoUClZWVTqN8a2pqcPbsWb/31ojkwUjIfgrIfgq0yYC6gxug/uO/CGguh1zoJDmyfVIXGROLpz//HbIg90s8FEUhODgYwcHBSE5O5pYQ2SUsNs7X25kdC5stn5aW1qtKah3tsURFRSEqKoqb2alUKlRUVKCkpMRmZueLzyHDMPh//+//4fvvv0d+fr7Pbp54eh5eXHohEokEd955Jw4ePAiJRIL33nsPp06dwqOPPgq9Xo/p06cjNzcXt912m88tQMRiMeLi4hAXFwez2czZ0FRVVUEmkyEmJgZGoxFKpRIZGRndujYvFEsRP2kpMGkpGJqG8sh3aDn8H8jqSxAoNNsc27dfIpb9+zAk0s55vgUEBHA2Omycr1Kp5GZ27qzyrTl//jyqq6t7LFveGe42761ndjfccANXEHDhwgWUlZV1OZeFEIK//vWv2LhxI/Lz891WYnUX7CxcoVDYlIcrFAqbZTJr2IhzhUJh87hCofBbUUJvh99z6aXs3LkTjz/+OHbt2oWhQ4cCsGx4/vbbb1xUQEtLC7Kzs5Gbm4vJkyf71LLfHtbv7OzZs9BqtZBIJOjTpw+3Lt+T/k4Mw6D0p39Df+wbROnOIr81EQ9+cKDTIV+uYGd2rJM1K7iOOuMJIaisrERtbS0yMjJ6VaJgV6vCrAWXzaZh92msZ7jOIIRg9erV+PTTT7Fv3z6MHDmysy+lyzjb0H/22WfxzDMWW6DW1lbExMS43dDPzMzEBx98AMDyuUxISMCyZcv4DX2e3gPbo+BsZsAwDH7//XdOaBQKBaZMmcJl0gQFBfl0PGzTZltbG1JTU7llI9Yi3trvrDtLewkhOHXqFBoaGpCRkeFXgbWHFVzWyVokEnEX2NDQUJw7dw6XLl1CRkaGz38fXcHX5cb2jt5SqdSmIMBeaAghWLNmDdauXYt9+/YhJSWly2PwFle2+QkJCXjrrbfw5ptv2pQiFxcX25Qi29vmf/fdd1i0aBE++eQTZGZmYu3atdi4cSNOnz59Xfqf8eJyDcAwDAoLC7mogAsXLthk0nTVa8psNuPEiRMwm80dmjatcziUSiUIITalvf4UGmvBy8jI6DELdnYs7Ea4SqWC2WxZphs8eDDi4uJ61I7HGn/3sbBGq+z7AADR0dFc4mRAQAA++OADvP322/j5558xZswYn4/BE1zZ5m/YsIFrovz000/R3NyMm2++Gf/85z8xePBg7lh723wAWLduHddEmZqaivfffx9ZWVnd8ZJ6Hby4XGOwmTSbNm1CXl4eKioquEyaGTNm2Dgpe4LRaERhYSFEIhFSUlJc2ocQQtDc3MwJjdlsRlRUFGJjY31eaUTTNIqLi2EwGJCent4joVGOYGdSKpUKUVFRaGxshMlk6jE7Hmu6u0HS+vOwfv16fPbZZ+jfvz9qa2uxbds23HnnnX4fA0/P0ePi4q1dwqZNm/Dyyy+jqqoKgwYNwltvvYVp03reI6o3QgjB6dOnsXnzZmzduhWlpaW49dZbkZubi5kzZyIqKsql0Oh0OhQWFiIwMBCjRo3yahbCLuuxvTQGg4ETmq5eYM1mM4qKisAwDNLS0nqNMy4hBGVlZWhqakJGRgbkcrlN8JW1BQu7Ed5dotjTnfc0TWPlypVYt24dBgwYgPPnz2PixImYO3culi5d2u3j4fE/PSou3tolHDp0CLfeeitWr16NGTNm4JtvvsFbb72FgoKCHt0QvBpgN5dZoSkoKMCNN96I3NxczJo1C3369LERms7Yubh6braHRKFQcBdY1h3AG3EwmUwoLCyEUChEampqr1luYhgGJ0+eRFtbG9LT050u0Wk0Gk5o2trauIqrmJgYvy3r9bSwEELw1Vdf4dlnn8X333+P2267DVVVVdi+fTtqamrw97//vdvHxON/elRcvLVLYHMdduzYwT02btw4pKam4uOPP+62cV/tEEJQXV2NvLw85OXl4ciRI8jKyuKiAioqKvDaa6/hn//8Z5eFxRHsBVahUHjld2YwGFBQUAC5XI5Ro0b1KmEpKSmBVqtFenq6U0NIe1iXBKVSiebmZgQHB9uUOPuC3iAsGzduxPLly5GXl8cvhV1H9Ji4dMYuISEhAStWrMDTTz/NPbZy5Ups27YNJ06c6IZRX3uwmTR5eXnYsmULfvnlFwDAxIkT8d577yEpKcmvZcY6nY4TGtbvzNGdPOu4HBoaiuHDh/eI2aQjGIZBcXEx9Hp9l/Z+HIV/se9DcHBwp34HPS0sAJCXl4dHH30U3333HaZPn94jY+DpGXqsibIzdgl1dXVeWTLwuIeiKMTHx2P58uWIiYnB0aNHcc899+DixYtIT0/HiBEjuBmNrzNpAEAulyMxMRGJiYlc74RCocCZM2cQEhLCXVzLysoQFRXll5lUZ6FpGidOnIDJZEJGRkaX9n4kEgni4+MRHx/PNa8qlUocO3YMYrGYExpPe4p6g7D88MMPWLp0Kb7++utuE5YBAwagurq6w+OPP/44Pvzwww6Pb9iwAQ8++KDNY1KpFHq93m9jvF7gO/R5AAAHDhzAww8/jC1btiA7O5vLpNm2bRvy8vKwevVqDBo0iIsKGDZsmM8v8jKZDP3790f//v05F4BLly6hoqICEokEEokEGo2mV/SM0DTNFRVkZGT4tAJMJBKhT58+6NOnj01p74kTJ0BRFFfqHRER4XAG1xuE5aeffsKSJUuwYcMGm5UJf/PHH3+Apq/EkJaWluKOO+7A3Xff7fRnQkJCUF5ezv27t9y8XO30mLh0xi6hT58+vL2Cn7j55ptx9OhRDBs2DIDlDywyMhJLlizBQw89hJaWFnz//ffIy8vDmjVrkJCQwAmNt5VkniCRSBAUFASNRoOkpCQEBARwppLsklFsbKxH3eC+xmw2o7CwEBRFIS0tza+lxWxkcXR0NBiG4Up7T506xZV6W6dM9gZh2bt3LxYtWoRPP/3U5UXdH9hn47z55ptITk7GhAkTnP4MRVH8NcQP9PiGvjd2CfPmzYNWq8UPP/zAPXbjjTdi9OjR/IZ+N9La2mqTSRMTE8Nl0mRkZPhEaBobG1FUVNTByt96yai+vh4SiYQTmq42i3pCb6lWsy71ViqV0Ov1kMvl0Ov1PWrnf/DgQdx999344IMPsGjRoh6dBRiNRsTFxWHFihV48cUXHR6zYcMGPPzww4iPjwfDMEhPT8ff/vY3jBgxoptHe+3R46XIruwSFi5ciPj4eKxevRqApRR5woQJePPNNzF9+nR8++23+Nvf/saXIvcgGo3GJpMmLCyMy6TJysrq1MVXpVKhpKQEQ4cOdRkYRdM0GhoauG5woVDICY0//M5MJhOOHz8OqVTqUQpod3LmzBlcuHABcrkcWq0W4eHhXC9NdzkX/Pbbb7jrrrvw7rvv4pFHHunx5aWNGzfi3nvvRU1NjdPP0eHDh1FRUYHRo0ejpaUF7777Lg4ePIiTJ0+iX79+3Tzia4seb6J0ZZcwceJEDBgwABs2bOCO37RpE1566SWuifLtt99220S5evVq5OXl4fTp05DL5bjxxhvx1ltvYciQIU5/ht/o8x6dTsdl0vzwww9cjMDs2bNx4403erR8xGbEeJsrb22/olQqub2J2NhYn/idGY1GHD9+HAEBAX5ZBuwK9kthOp2OK4xgg+DYggB/ea8dPXoUOTk5eOONN/DEE0/0uLAAwJQpUyCRSGxWOtxhMpkwbNgwLFiwAK+99pofR3ft0+Pi0h1MnToV8+fPx9ixY2E2m/Hiiy+itLQUZWVlTvsJNmzYgKeeeqrDRt/1aEDXGYxGI/bt24fNmzdj+/btoCgKM2bMwOzZs3HLLbc4LNllUxq7Gv9rvTehVCpB0zR3cY2IiPB6xmEwGHD8+HEEBQVh5MiRvVpY7GELI6zjjB3l83SFgoICzJw5E6+88gqefvrpXiEs1dXVGDhwIPLy8pCTk+PVz959990QiUT473//66fRXR9cF+Jij0qlQkxMDA4cOIBbb73V4TEbNmzA008/jebm5u4d3DWI2WzGgQMHsGnTJmzfvh0GgwEzZsxATk4Obr/9dkilUrz99tsYOHAgJk2a5NOURusoY4VCwfl8sTY07oRGr9fj+PHjCA0NxYgRI3rFhZPF28171r1YpVLZ7FexLs6deW3FxcWYNm0annvuOTz//PO95v1ZtWoVPvnkE1y4cMGrgguapjFixAhMmzYNa9as8eMIr32uS3E5e/YsBg0ahJKSEqd7NfxGn3+gaRq//vorFxXQ2tqKPn36oLa2Fps2bcLEiRP99tzWPl8KhQJ6vd7GUNK+T0Wn0+H48eOIiIjwS+l1V+hqVZi9e3FnYhPKysqQnZ2N5cuX4+WXX+417w/DMEhKSsKCBQvw5ptv2nzPfh/3r3/9K8aNG4cbbrgBzc3NeOedd7Bt2zYcP34cw4cP74nhXzNcd+LCMAxmzZqF5uZm/Prrr06P4zf6/I/ZbMa9996LnTt3IjQ0FK2trVwmzZQpU/zaz0IIgUajgUKhgFKphEaj4SJ8o6OjYTabcfz4cURHR2PIkCG95sIJXBEWXwWQOVpGtI5NcDS7Ky8vR3Z2NpYsWYLXX3+9V70/P//8M6ZMmYLy8nIbi3yg4z7un//8Z+Tl5aGurg7h4eHIyMjA66+/jrS0tB4Y+bXFdScujz32GH766Sf8+uuvXokEv9HnWwghWLJkCQ4cOIA9e/YgMTERBQUFXCZNbW0t7rjjDuTk5CA7O9vvccparZYTmra2NgBAWFgYRo4c2aM5Mfb4WljsceZmzdrxhIeH4+zZs8jOzsa9996Lt956q1ftQfH0Hq4rcVm2bBm2b9+OgwcPIikpyeuf5zf6fMuHH36I2bNndygTZY0gWQfns2fPcpk006dP9zqTxhvUajWOHTuG4OBgMAyDlpYWhIaGcktGncmK9xXnz59HdXV1t0Ums7M7pVKJ06dPY8GCBRgxYgSqq6sxZ84cfPbZZ7yw8DjluhAXQgiWL1+OrVu3Yv/+/Rg0aJDX5+A3+noGNnyLFZqTJ09iwoQJyM3NxYwZM9xm0nhDa2srCgoKkJCQgIEDBwKwVIqxy0VNTU2cc3FsbGy3Rip3t7A4Ij8/H/feey/kcjnq6+sxbtw4zJkzBwsXLuxSdR/Ptcl1IS6PP/44vvnmG2zfvt2mtyU0NJS7E+U3+no/hBCcPXuWE5rCwkLcdNNNyMnJcZhJ4w0tLS0oKChAUlISBgwY4PAYa+fihoYGrqw3NjYWgYGBfptN9QZhuXz5MqZMmYIJEybg008/hUqlwvbt25GXl4f333/fZc8Yz/XJdSEuzv7o169fj8WLFwPgN/quNthMmi1btiAvLw+///47xo0bx7kD9OvXz+OLfXNzMwoLC5GcnIyEhASPfoYt62VtaGQyGSc0nbXId0RvEJa6ujpkZ2cjKysL69ev71XOBDy9l+tCXLqbVatW4dVXX7V5bMiQIU6jBAA+vrkrEEJw8eJFLpPm0KFDSE9P56ICBgwY4PRi78zDzBtomuaERqVScRb5sbGxne4fAXqHsKhUKkybNg2jRo3CV1995VeTTp5rC343zk+MGDECly9f5r5clT0fOnQICxYswJIlS1BYWIjc3Fzk5uaitLS0G0d89UJRFPr164cnn3wS+/fvx4ULF7B48WLs27cPaWlpuOWWW/DOO+/gzJkzsL6XOnXqFIqKijBkyJBOCwtgcS6OjY3FqFGjMGHCBAwdOpRzTv7ll19w+vRpNDY2gmEYj8/ZG4SloaEBM2fOxJAhQ/Dll192i7CsWrUKFEXZfA0dOtTlz2zatAlDhw6FTCbDqFGjsHPnTr+Pk8c9/MzFD6xatQrbtm1DUVGRR8fz8c3+gRCChoYGbN++HVu2bMHevXsxePBg5OTkQC6X44033sCuXbswZswYvzw/wzBoamqCQqGASqUCIcTGhsZZpVVvEJbm5mbMmDED8fHx2LJlS6cTNr1l1apV2Lx5M/bs2cM9JhKJnBYMHDp0CLfeeitWr16NGTNm4JtvvsFbb73Fm9n2Avg5rp+oqKhAXFwcZDIZxo8fj9WrVztdzz98+DBWrFhh89iUKVOwbdu2bhjptQtFUYiKiuIyaZqbm/H999/jww8/xB9//IHY2Fj8+OOPEIvFfjGjFAgEiIyMRGRkJAghaG5uhkKhQFlZmdNGxd4gLK2trZg9ezZiYmKwadOmbhMWFjYszRPee+89TJ06FX/5y18AAK+99hp2796NdevW8TdmPQwvLn4gKysLGzZswJAhQ3D58mW8+uqruOWWW1BaWurwgsHHN/sfiqIQHh4OuVyOkydP4ptvvgEhBHl5ebjjjjsQGxuLWbNmYfbs2UhPT/e50LDPHx4ejiFDhqC1tZWLczYajdydeUNDA8aMGdNjwqJWqzF37lwEBQVh69atPdJAyt+YXRvw4uIHsrOzuf8fPXo0srKykJiYiI0bN2LJkiU9OLLrG41GgxdeeAGbN2/mfkf33nsvNBoNfvrpJ2zZsgUzZsxAeHg4Zs2ahdzcXGRmZvq8OoqiKISGhiI0NBSDBg2CWq1GeXk5mpqaQFEUKisrORsae78zf6LVanH33XdDKBRi+/btPdIwyt+YXTvw4tINhIWFYfDgwTh79qzD7/Pxzd1DYGAgTp06BalU2uHxuXPnYu7cudDpdPj555+xZcsW3H333ZDL5Zg5cyZyc3M9zqTxBoqiUF9fD7VajXHjxoGiKCiVStTU1KCsrAwRERHcPo0/l6d0Oh3mz58Pk8mEXbt2+dXXzRX8jdm1A18t1g2o1WpUVlaib9++Dr8/fvx47N271+ax3bt3Y/z48d0xvOsKe2GxRy6XIycnB//5z39QV1eHzz77DCaTCQ888AAGDRqE5cuXY9++fTCZTD4Zj/0eS1BQEAYOHIhx48bhxhtvREREBC5duoSDBw/i2LFjqKmp8XlgncFgwP3334/W1lbs3LmzUy7L/oK/Mbt64cXFDzz77LM4cOAAqqqqcOjQIcyePRtCoRALFiwAYHED+L//+z/u+Keeegq7du3C3//+d5w+fRqrVq3CsWPHsGzZsp56CTwAJBIJpk2bhn//+9+4dOkSvv76a4jFYjz88MMYOHAgHnvsMezatQsGg6FT53e3eR8QEIABAwYgMzMTN998M2JiYqBUKvHrr7/i6NGjqKqqgk6n69JrNBqNWLhwIerq6rBr1y6EhYV16Xy+hr8xu4ohPD5n3rx5pG/fvkQikZD4+Hgyb948cvbsWe77EyZMIIsWLbL5mY0bN5LBgwcTiURCRowYQX788UePny8xMZEA6PD1+OOPOzx+/fr1HY6VSqWdeq3XI2azmeTn55Nly5aR+Ph4EhoaShYsWEC+/fZbUl9fTzQajduv0tJS8uOPP5K6ujqPjrf+ampqIuXl5eSXX34h27dvJ3v37iWlpaVEqVR6dZ7m5mYyZ84cMnLkSKJSqXr6bSWEEPLMM8+Q/fv3k/Pnz5PffvuNTJ48mURFRRGlUkkIIeSBBx4gL7zwAnf8b7/9RkQiEXn33XfJqVOnyMqVK4lYLCYlJSU99RJ42uH7XK4BVCoVaJrm/l1aWoo77rgD+fn5DsO3+Ahn30HTNI4cOcKFn9XX12PKlCnIzc3FlClTHMZo+7Lc2GQyQaVSQaFQoLGxEXK5HLGxsW5jjM1mM5YuXYoTJ04gPz+/1/zu58+fj4MHD6KhoQHR0dG4+eab8cYbbyA5ORlAR5smwNJE+dJLL3HuFm+//TbvbtEL4MXlGuTpp5/Gjh07UFFR4fDiwkc4+weGYXD8+HHOWPPixYuYPHkycnNzkZ2djZCQELz++utITExEbm6uz8uNzWazjQ2NVCrlhCYkJIT7LNA0jSeeeAJHjhzB/v37O0Qe8PD4Al5crjGMRiPi4uKwYsUKvPjiiw6P4SOc/Q/DMCguLuaEprKyEv369cPFixfx7bffYvLkyX5Nb6RpGg0NDZzQGI1GbNmyBbNnz8aOHTtw8OBB5Ofne2zUycPjLby4XGNs3LgR9957L2pqapzekfIRzt0LIQQrVqzAJ598gvj4eFRXV2PixIlcJk1kZKRfhYZhGJw6dQqvvfYa/ve//8FsNmP+/Pl48MEHMXHiRN6Mkscv8NVi1xj//ve/kZ2d7XKpY/z48Vi4cCFSU1MxYcIE5OXlITo6Gp988kk3jvT64e2338aXX36Jw4cP48yZMygtLcXEiROxfv16JCcnY8aMGfj0009RV1cHf9zrCQQCDBs2DElJSYiKisLnn3+O0NBQPPDAA4iNjUVJSYnPn5OHh5+5XENUV1dj4MCByMvLQ05Ojlc/y0c4+48NGzYgLS0NKSkpNo8TQlBVVcVl0hw9ehTjx4/nMmni4+N9MqMhhODVV1/Fl19+ifz8fM5lmGEYHDp0CGPHjnXb/8PD4y28uFxDrFq1Cp988gkuXLjg1VIHH+Hc8xBCUFtbi7y8POTl5XGZNLm5ucjJyUFiYmKnhIYQgtWrV+PTTz9Ffn4+v6/G023wy2LXCAzDYP369Vi0aFEHYbFv2vzrX/+Kn3/+GefOnUNBQQHuv/9+VFdX4+GHH+7uYfO0Q1EU+vfvj6eeegr79+9HTU0NFi1ahD179iAlJQW33HIL3n33XVRUVHi8dEYIwd///nd8/PHH2L17d7cJy+rVqzF27FgEBwcjJiYGubm5NmXvjtiwYUOHHJeeMM3k8R28uFwj7NmzBzU1NXjooYc6fK+mpgaXL1/m/t3U1IRHHnkEw4YNw7Rp09Da2opDhw5h+PDh3TlkHidQFIW+ffvi8ccfx549e3Dp0iU8/vjjOHz4MDIzMzmn4LKyMqdCQwjB+++/j7Vr12LXrl0dluT8yYEDB7hS5927d8NkMuHOO++ERqNx+XMhISE2AXvV1dXdNGIev9CdHZs8Vy8HDhwgM2bMIH379iUAyNatW22+zzAMefnll0mfPn2ITCYjkyZNImfOnHF73nXr1pHExEQilUpJZmYm+f333/30Cq5+GIYhjY2NZP369WTmzJlEJpORoUOHkueff54cPnyYtLW1EY1GQ9RqNXn33XdJaGgoOXz4cE8PmyiVSgKAHDhwwOkx69evJ6Ghod03KB6/w89ceDxCo9EgJSUFH374ocPvv/3223j//ffx8ccf4/fff0dgYCCmTJni0mTxu+++w4oVK7By5UoUFBQgJSUFU6ZMgVKp9NfLuKphM2EWL16M77//HnV1dXjppZdQUVGBSZMmITU1FS+99BJWrVqFV199FTt27MC4ceN6ethoaWkBAERERLg8Tq1WIzExEf3790dOTg5OnjzZHcPj8Rc9rW48Vx+wm7kwDEP69OlD3nnnHe6x5uZmIpVKyX//+1+n58nMzCRPPPEE92+apklcXBxZvXq1X8Z9LdPW1kY2btxIcnNzCUVRHWaWPQVN02T69OnkpptucnncoUOHyBdffEEKCwvJ/v37yYwZM0hISAi5cOFCN42Ux9fw4sLjNfbiUllZSQCQwsJCm+NuvfVW8uSTTzo8h8FgIEKhsMNFcOHChWTWrFk+HvH1RUtLS08PgePRRx8liYmJXouE0WgkycnJ5KWXXvLTyHj8Db8sxtNl2NQ/bxIB6+vrQdM0nyLoB3pLHsuyZcuwY8cO5Ofne+38IBaLkZaW5jTHhaf3w4sLDw+PTyGEYNmyZdi6dSv27duHpKQkr89B0zRKSkqc5rjw9H54ceHpMmzqnzeJgFFRURAKhXyK4DXIE088ga+++grffPMNgoODUVdXh7q6OptgM7736tqHFxeeLpOUlIQ+ffrYJAK2trbi999/d5oIKJFIkJGRYfMzDMNg7969fIrgVc5HH32ElpYWTJw4EX379uW+vvvuO+4YvvfqOqCnN314rg7a2tpIYWEhKSwsJADImjVrSGFhIamuriaEEPLmm2+SsLAwsn37dlJcXExycnJIUlIS0el03Dluv/128sEHH3D//vbbb4lUKiUbNmwgZWVl5E9/+hMJCwsjdXV13f76eHh4fAsvLjwekZ+f7zBKmY1rZpsoY2NjiVQqJZMmTSLl5eU250hMTCQrV660eeyDDz4gCQkJRCKRkMzMTHLkyBFCiOumTaPRSJ577jkycuRIEhAQQPr27UseeOABcvHiRZevYeXKlR3GP2TIkC6/Nzw8PB3hjSt5eiU//fQTfvvtN2RkZGDOnDnYunUrcnNzAVia8ubOnYtHHnkEKSkpaGpqwlNPPQWapnHs2DGn51y1ahU2b96MPXv2cI+JRCJERUX5++Xw8Fx38ClBPL2S7OxsZGdnO/xeaGgodu/ebfPYunXrkJmZiZqaGpfpiiKRiC8Y4OHpBvgNfZ5rgpaWFlAUhbCwMJfHVVRUIC4uDgMHDsR9992Hmpqa7hkgD891Bi8uPFc9er0ezz//PBYsWOCygTArKwsbNmzArl278NFHH+H8+fO45ZZb0NbW1o2j5eG5PuCXxXiuakwmE+655x4QQvDRRx+5PNZ6mW306NHIyspCYmIiNm7ciCVLlvh7qDw81xX8zIXnqoUVlurqauzevdtr25OwsDAMHjyYtxhxwocffogBAwZAJpMhKysLR48edXn8pk2bMHToUMhkMowaNQo7d+7sppHy9EZ4ceG5KmGFpaKiAnv27EFkZKTX51Cr1aisrOQtRhzgbRzCoUOHsGDBAixZsgSFhYXIzc1Fbm4uSktLu3nkPL0FvhSZp1eiVqu5GUVaWhrWrFmD2267DREREejbty/mzp2LgoIC7Nixw8b8MiIiAhKJBAAwadIkzJ49G8uWLQMAPPvss5g5cyYSExNx6dIlrFy5EkVFRSgrK0N0dHT3v8heTFZWFsaOHYt169YBsLgn9O/fH8uXL8cLL7zQ4fh58+ZBo9Fgx44d3GPjxo1DamoqPv74424bN0/vgZ+58PRKjh07hrS0NKSlpQEAVqxYgbS0NLzyyiu4ePEi+57RhAAAA4lJREFUvv/+e9TW1iI1NdXGYuTQoUPcOSorK1FfX8/9u7a2FgsWLMCQIUNwzz33IDIyEkeOHOGFxQ6j0Yjjx49j8uTJ3GMCgQCTJ0/G4cOHHf7M4cOHbY4HgClTpjg9nufahxcXnl7JxIkTQSwOEjZfGzZswIABAxx+jxCCiRMncueoqqrCqlWruH9/++23uHTpEgwGA2pra/Htt98iOTnZ5nkPHjyImTNnIi4uDhRFYdu2bTbfX7x4MSiKsvmaOnWq29fj7f5FT9KZOIS6ujo+PoHHBl5ceHiscBfnDABTp07F5cuXua///ve/Ls/JxznzXI/wpcg8PFa4cgZgkUqlXnX5r1mzBo888ggefPBBAMDHH3+MH3/8EZ9//rnD/YuepjNxCH369OHjE3hs4GcuPDxesn//fsTExGDIkCF47LHH0NDQ4PTYzuxf9DSdiUMYP368zfEAsHv3bj4+4TqGn7nw8HjB1KlTMWfOHCQlJaGyshIvvvgisrOzcfjwYQiFwg7Hu9q/OH36dHcN22tWrFiBRYsWYcyYMcjMzMTatWuh0Wi42dfChQsRHx+P1atXAwCeeuopTJgwAX//+98xffp0fPvttzh27Bg+/fTTnnwZPD0ILy48PF4wf/587v9HjRqF0aNHIzk5Gfv378ekSZN6cGS+Zd68eVCpVHjllVdQV1eH1NRU7Nq1ixPJmpoaCARXFj5uvPFGfPPNN3jppZfw4osvYtCgQdi2bRtGjhzZUy+Bp4fhxYWHpwsMHDgQUVFROHv2rENxuZrjnJctW8b1CNmzf//+Do/dfffduPvuu/08Kp6rBX7PhYenC9TW1qKhocFplz8f58xzvcKLCw+PFWq1GkVFRSgqKgIAnD9/HkVFRaipqYFarcZf/vIXHDlyBFVVVdi7dy9ycnJwww03YMqUKdw5Jk2axHW2A5b9i88++wxffPEFTp06hccee8xm/4KH51qEXxbj4bHi2LFjuO2227h/r1ixAgCwaNEifPTRRyguLsYXX3yB5uZmxMXF4c4778Rrr70GqVTK/Yy9M4C7/QsenmsR3luMh4eHh8fn8MtiPDw8PDw+hxcXHh4eHh6fw4sLDw8PD4/P4cWFh4eHh8fn8OLCw8PDw+NzeHHh4eHh4fE5vLjw8PDw8PgcXlx4eHh4eHwOLy48PDw8PD6HFxceHh4eHp/DiwsPDw8Pj8/5/zBD8I8NxVa+AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "from typing import Any\n", "block_map, noisy_block_map, mask, _ = dataset[DATASET_INDEX]\n", @@ -227,7 +304,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2024-02-18T19:55:12.028665Z", @@ -258,7 +335,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2024-02-18T19:55:15.575509Z", @@ -267,25 +344,14 @@ "shell.execute_reply": "2024-02-18T19:55:16.490151Z" } }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAGKCAYAAADALgxIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZgc133ei39OVfW+TM+Owb6D4AIQJMQFICVSpC3JvpZEybKk2JId+lq248S7reTGdmzHv9hOchPHziLn3iRe7s1NbMtybO2UxEUUKZIglgFmgMFgMJh97+npvbuW8/ujp3u6e6p6GQ43qd7n0SNipruquqfqvOe7va+QUkpcuHDhwoWLbYTyZl+ACxcuXLj4zoNLLi5cuHDhYtvhkosLFy5cuNh2uOTiwoULFy62HS65uHDhwoWLbYdLLi5cuHDhYtvhkosLFy5cuNh2uOTiwoULFy62HS65uHDhwoWLbYdLLi5cuHDhYtvhkosLFy5cuNh2uOTiwoULFy62HS65uHDhwoWLbYdLLi5cuHDhYtvhkosLFy5cuNh2uOTiwoULFy62HS65uHDhwoWLbYdLLi5cuHDhYtvhkosLFy5cuNh2uOTiwoULFy62HS65uHDhwoWLbYdLLi5cuHDhYtvhkosLFy5cuNh2uOTiwoULFy62HS65uHDhwoWLbYdLLi5cuHDhYtvhkosLFy5cuNh2uOTiwoULFy62HS65uHDhwoWLbYdLLi5cuHDhYtvhkosLFy5cuNh2uOTiwoULFy62HS65uHDhwoWLbYdLLi5cuHDhYtvhkosLFy5cuNh2uOTiwoULFy62HdqbfQEuvrsgpcQ0TXK5HKqqomkaqqqiKApCiDf78ly4cLFNEFJK+WZfhIvvDliWhWEYGIZBPp+vkIkQAkVR8Hg8FcIRQrhk48LF2xguubh43SGlxLIsdF2nfLsVi0UURUFKWfm9lLJCKmWSKUc2Ltm4cPH2gksuLl5XSCkr0QqUopSFhQVmZmaIRqN0dnYSDodRFKXyejuy0XWdYDCI1+utpNFcuHDx1oVLLi5eN5SjFdM0K1HHyMgIMzMz7Nq1i0wmQyKRQEpJLBajs7OzQjbl15fJ5sUXX+TYsWPEYrFKZFNOo7lk48LFWw9uQd/FtqNctDcMA8uyUBSFTCbDpUuXEELwwAMPVOoqAOl0mtXVVVZXVxkfH0cIUUM2oVCoQiiqqlaiIV3XAVAUpSaF5pKNCxdvPtzIxcW2QkpZiVbKmJubY3h4mD179nD06FGgVHOxq6NYllVDNmtrayiKgmma7Ny5k127dhEMBjdFNvVpNJdsXLh4c+GSi4ttg2VZFIvFSrRimibDw8MsLy9z11130dvbW/O6Vor0lmWRSqUYHBzE5/ORzWbRNI3Ozs5KdBMIBGrIpkw0ZdSTTXXU5MKFi9cHLrm4eM0op8HK3WCKopBMJrl06RKBQIC77roLv99feX075FLGt7/9bY4ePUosFmNtbY3V1VUSiQRra2t4vd5NZFN9bWWysYtsqrvRXLhwsX1way4uXhPq02BCCG7dusWNGzc4ePAgBw8e3JaFWwhRIa5yLQbANM0K2czNzTEyMoLP56u8prOzE5/PV3O95UaDMsEpirKpQcAlGxcuXhtccnGxZei6Tj6fr9Q0dF3n8uXLpFIpTp8+XSGAemznwq2qKl1dXXR1dQFgGEaFbKamphgeHiYQCFSIJhaLNSQbgNXVVXp7e/H5fC7ZuHCxRbjk4qJtlLu1FhcXGRoa4p3vfCfxeJzBwUFisRhnz57F4/E0PEa7i3U5cmkGTdPo7u6mu7sbKJFNIpFgdXWViYkJhoaGCAaDNWTj9Xorn0tKyZUrV7j//vsxDKMS2dQ3CLhk48JFY7jk4qItlHf5lmUhhMCyLEZHR5mYmOC2225j9+7dW1p4by2u8X/+5bOcvW0nTzx8Ep+3MTm1Ck3T6OnpoaenByhFW2WyGR8fJ5PJEAqFKmTT0dFReZ+maZXPXCwWKRQKLtm4cNEi3IK+i5ZQnT4qd4MtLi5y8eJFQqEQJ0+eJBKJtHyscgpKCMH/881r/M7//CZWuX3ZMoh5JSf29fD+B2/n+x+4k/Pnz7N///5Kx9l2oVgsVshmdXWVbDYLwM6dO+np6SEWi1VIphzZlL+LMqG4ZOPCxWa45OKiKeyK9gsLC1y+fBkpJY899hiqqrZ1vGKxiG5Y/OR//hrfujLe+A2mQVTVObm/h4+++16+5/Tx123xzufzvPDCC/T395NMJsnn80QikUonWiwWq3zWerIBexFOV/HZxXcjXHJx0RDVEi6KomBZFteuXWNubo6DBw8yPj7OY4891tYxpZRcvrXAJ//dF0ikMm1fk5JfozcW5vThAT788F2cvevwti3eUkqefvppzp49i8/nI5/PV9qeV1dXKRQKRKPRCtl0dHS0TDauvYCL7ya45OLCFk4SLhcvXkTTNE6cOIFpmrz00ks8/vjjbR37M1+9yL/8y+crC3DL12QaWIUMarCj5ufCLLIz6uH+Izv56KOnOHV0b1vHrTlHHbnUI5fL1ZBNsViko6OjEtV0dHRsEuGsJ5t6xWeXbFx8J8It6LvYBLs02PT0NNeuXWPfvn0cPnwYRVFIp9MtdXCVUTAMPvnVF3jh4gSiy49YyyP01gjGLGQQQt1ELABS9TKTgb++OMdfX5xDMYvsiXk5c3wPH3v0Ho7vH2j5GpshEAgQCATYuXMnUsoK2ayurjIzM4NhGBWy6ezsJBKJ1GiilYkmn88DsLKyQjQaJRKJuGTj4jsKLrm4qEF50r4crRiGwdDQEKurq5w6darSdQWttwcDXFha5WNffpZULgc9Wul/MojIg5IyEMkiaiKHNDcfz8wmUPxRRIv6YJbqZSIF498a5S9fHAWhsK/Lz8N37OPjj93LgYGe5gdpAUIIgsEgwWCQXbt2IaUkm81WyGZqagrLsmrIJhwO15DN1NQUe/bswev1ks/nURRlU4OASzYu3o5wycUFsNl3RVEU1tbWuHTpEqFQiDNnzmxKE7VKLv/q4lX+4Nwgsj4NJgQyAGbAA30eDBlExtcQ8SxK2kLkBeRzqMFY25/HzCVRvAEMtdTSPJawGPvWOP/t+Zt4pc7B3iCP3HWAjz92Lzt72j++HYQQhEIhQqEQu3fvRkpJJpOpkM3ExMQme4Gy6oCmaZXIxjRNTNOsaX12XTpdvN3gkouLmhbjMsbHxxkbG+Pw4cPs37/fdjErk0tZs6seGcPgQ196jstzC61diBCI7hh0x9CnppHXbxGM3o5VzIKUCM2DEI2jFyklVjaBEow5XrMuvIysGIw8M8pnnr6OH50j/WHec89hPvyuU61da0sfRxAOhwmHw+zZswcp5SZ7AdM0mZycpFAoVOwF6lufy7Uv16XTxdsJbkH/uxj19sNCCIrFIoODg2SzWU6ePEksFnN8fz6f55lnnuE973nPpsXtW/PL/OhXniNbKLR9XcVz57ASi6hmgOjeRzeu1zQws2vIYq50PtVTc15LLyBNHdUfbvucRiaBJxTFkuCz8ty+q5P3nD7KRx65h2go0PwAW4BlWbz00kt0dHRQLBYr9gLVkU0r9gJ2DQIuXLzZcMnluxRSSvL5fKW2IoRgZWWFwcFBuru7ueOOOyo7aCcUi0W+8Y1v8L3f+701C9pvnrvMn14eoVC+s0wDWrjNhKFTeOl5rPVid0iL4u076/wZjGKJbPQCllFE8fhQNG/zD199DMvCyicdU2/SMoloJrfv6uR9p4/xoXfdTcDX3jka4eWXX+bgwYP09PRU7AXi8XhF8bmZvYAT2bgunS7ebLhpse9ClKOVc+fOMTAwwK5du7h+/TqTk5McP36cXbt2tZRmKb+mTFCJQpEPfulZri8ub36xooCqokqJmTc23XlWNo08/wpWIV/5WU4aNFrGheZFi5Ym9o3kEkoggpVNIo0CCKUp0VjFPEirYU1HKCppS+XlqQwvT53nNz/7CjGPxQNH+3n05GF+4MxJPJ7WB0gbQVEUOjo6KhI0lmVVRDgXFha4fv26rb1Afeuz69Lp4q0Al1y+i2A3u1IoFHjppZewLIsHH3yQcLj1lFL1DvobMwv87089T35d1mUTLAssCxNAA1GEsNdDWpMUZ6YwhwdLr6m94rY+n+Lxo3RU+cYUc3jMHLlsBqGoKOqGXlmp4B9EqO0/AvFUhq9cjfOVqy/zj//7C3T54O79Pbz/zB285x23t61W4ETkW7UXqCebsuKzYRisrKywZ88el2xcvO5w02LfJbCbXXnxxRdJp9Ps3r2bY8eOtbUoQmmxe+qpp/hapJf/PjzaUuqr5ppMA/36NaxEHLKbJ/UVNUBH/yMtHStgZckpwYavsfIZ9EIKK6Sj5jRU2R6xWMUcSInia3AeU6c3qHDPwX4+9NCdPHLqWMMo8KWXXuLw4cMVFed2UG0vsLq6SiqVamgvkEqluHDhAmfOnKn8zHXpdPF6wY1cvgtQbz9sWRbDw8OkUikGBga4/fbbt3Tc5VyBf7yUZXHyevvXlE2jD15EZlIQCtm+RrYRuaRzRdRQY3KhM4x1oAOkgQkYiRTE0ygpAzWvoTR4HMzsGoov1DzSUT0sFeArV5f5ytVnwPgKR/uC3La7h4+8627uv/1Azctfy96uXXuBcmdZdTdavXGa69LpYrvgRi7fwbCzH06n01y8eBGv14vH4yEWi3Hw4MG2j/35iVl+4ZkXyegGKCoIwGitcG/Mz2JcvbyRBguFIZPe9Dqh+InteHTTz+1gZhKooZjzOfs09B7T8fqkJfHn8hTmVhEpE7XoRUFZb21ea3hsJ5RrOtWRjmIW2dXh5YFju/ihR06RW57m6NGjFbOz7US1vcDq6iqZTAYhBLt27apENtW+O3aW0K5Lp4utwiWX71BYloVhGJU0GMD09DQjIyPs37+fQ4cOceXKFYLBIIcPH275uFJK/tHz5/jrqzfsX6CooCj4BeTXi8pl+DNpdrzwLNfqc/zhCKRTmw4lFB+xHe9u6bqcyMUC9EMeLK++6XeNIE0LOTmLuJXE44kiVE/LCgEAZi6F4vUj1Ma+NIqRZ3eHl3eeOMDHH72HI3v627rOdrC8vMzw8DD9/f0Ve4F6xefqDkEnsnHtBVy0ApdcvsNgN7tiGAZXrlwhkUhw4sSJShrlypUr+Hw+jhw50tKxZzM5PvCFp5lJrLV8PV5NY9/SPMr8HLMT4yzZOVTakIsqLT40cYugLrg2cCfXDz4ADbq/zMwqaqjWVtnyQvGQhsRo+XrLMG6OY9y4SiB0DH/XodKMTW4NWcyX6i4eL6VwrRZSSsxsAtVhiLMRLKNIT0ChJ+LjnXfu5+OP3cuevu2LaFZXV7l69Wql5lIoFGpEOJvZCwAu2bhoGS65fAehXsJFCEEikeDSpUtEIhHuuuuuiqUvwNDQEJqmcezYsabH/ouxSX752Zcqx24HR198FnNpgaGQg5lYOArpZOWfncUCnxq/waHsRqpMl5I5xcNYpJ/hPaeY3HcvVC1i9ZGL3qlg7FJLMzZtdp1ply+RXpwFIOA/ir/r0KbXKNKkmF4tkY0QpQjFMrCKOdRAtK3zAZj5DELVUDwbBXgpJT6KHO4N8+jJg3z8sXvp62z/2GXE43FGRkZ48MEHbX/vZC9Qrfjsko2LVuGSy3cIqn1XyoXZmzdvcvPmTY4cOcK+ffs2PeRXr15FCMFtt93meFwpJT/57Ct8/vpY29fkz6TZ8fzTXNM0jmdSXHUgFxHtQCZL0dC92TSfHB8l4NTSvI4CkAhFGYvt5pWBk8xGd0CgAwno+z2Ygao0mFpK1SFlqS7khHye/LkXoEpVoKvrBNK/q+lntfQCRnIRgQAh2hrmNDIJ1EBzYU4pLQLC4OiOKN9z6jAfffc9xMJNmhiqsLKywujoKA888EBLr69WfE4kEm3ZC5Qj5lQqRX9/v0s234Vwu8Xe5nCaXRkcHCSfz3PfffdVhvLqIYRo6KkynsrwwS88zVIy1foCvY5oMoH1wnNcq6TBnBeUgKqSBz5ZzPHAyBCtVDZ8QH8mSX9mmAO3LvHSoXv51qkPUTziQVJXXzHN0v/WIXNFZGINPBoiFkFoGubsHGJ0CIza92aNIq2IvygeH6o/UomerGIOK5dEGjperxdD2qTQ1tUBtBabBYRQyONlcD7Pxf91jn//pfNoAo7vjPHe00f58CP3EPI3JrV2FvbXai+QyWS4du0asVjMUYTTVXz+zoVLLm9j1M+uKIrC0tISly9fpre3l3vuuaehhEsjVeM/HRnn155/ZaMhoG6BRtXQFIFhWbU/B4y5GZavXsaq7kRq8Dk0KfnlpTkOT082/sA2GMzlmNJ1lns6KBxVQTYv3IuAFxEoTfZL00R/9QJmfA6U7VvkFG8AxVuiJQmIQgYrl0KaOigaWAaY5hYVn0vNAgU8FCScm8lybuYi//xzrxLVLO7c08n33XecDz50Ap+3thtsqwv5VuwFyh2KHo+nJrIpe9m4Lp3f2XDTYm9T1M+uSCkZGRlhenqaO+64g507dzY9xujoKIVCgTvvvLPyM9Oy+MTXX+SZ8TYWeiEIer1kikWKQ4PIuelNLzmWSTMS2jz9Lzq7+ejqCsdTa0TTCfzzC6gt1EiKlsULmQwZKRl+4mNMnbqv9etdh6UbGC98CyufBs0+XvJHbyMQPmD7u3qoRg5Ta03kUl+dBQRYJkJVEUpr+zwjk0ANdrS2AFsGMa/k5L5e3v/gcd5xqJ+pqSne8Y53tHSudlBvL5BIJCpR8cGDByteNvW6aK4l9Hcu3MjlbYZyGuzGjRuoqsqePXvIZrNcunQJgDNnzhByGEqsR31a7Npqkg9/8RlWM2362ktJemUF/cp5ZDZr/5LNJ0fp6cdamqcjm+aeW6XW5qzXw4TXT1oIwrksHXpx0+KypOucy+Uo+Py8+uTPsLZnX0upumpY8VWKr74EimyUsWsLumHSIkcgPH60cKkTTEqJlUtiFTKEfF6yBQNRp5YgLRMrn245hQaAopEw4Omr8zw/uogpBVHV4P5v3eKJh+7ksXtv27aF285eYGZmhvHx8Yq9gBCiRvE5FApV5micIhvXEvrtC5dc3kaoToNls1lUVWVubo6hoaGKhEs7OlHliAfg/xoe4zdfOLfZ0KsFGHMzGNeulIYiy3WZelStB4rPhwyGsJbmAbCqFougZXE8v0FQOVUlbpoULAtVCMaKRW4Wi8QPHuH8J38SU1E2iEXVSqktm1RdNcyZWfThi9uaBmsXStVnFkKgBjtQgx0UAdVvVcgGaYElAWlr8dwMZdM0Uymlx5J4eGpkhadGnoX//DX6QwrvODzAhx4+wdm7Dm0r2QQCAbxeLydPnsSyrIqXzcrKCjdv3qxop5UJJxgMbiIby7IoFAquS+fbEC65vE1Qbz8shGBpaYmZmRlOnjxJX19f28cUQpA3DJ740nO8NDVTau3VPCUiME0bIck6GAbF68NYczNVB1UojS7WQgmWupoO5LJM+HzI1fjGZ2tgABZQFHZVEeazmQyj7/kBbp61mdw3DahwigBNLf2/aYIstcyaM1MYI0MtE0v/6gLJ0P6atuftQCMZGaEoqKFYpTnAWFsA1VPRNmvFNA1K7dlKoxSa6mEhD5+/ssjnr3wNYX6RnVEP9x/ZyQ89cjf3HNu3lY9WQflehdJGJhqNEo1G2bdvX429wNLSEjdu3LC1F6jvRrNz6XTJ5q0Jl1ze4rCzH06lUszNzaEoCmfPnsXv9zc5ij1GMnn+4ZVbZAvF8slqu6UUBRQVvyJK0/ZVEYmVTmNcuYBVL9uiiKoFfgNGNsedlslQKIKsMxAzW1zodVXl+X/wy6z2D7Tw6tquNmlaGFPjmGObddA0VcOoI0SPZfEjk+M8uLpM9tKXmNb83Ojcw5UDD7DS17qigRMsCS3LhAqlkkIDkKaOmV0j7FVIZbII1VuzoJZTaO1K1kjVy1SiwNRLN/jri3MoZpE9MS9nju/ho4+e4vb9zet4Ncdrovi8HfYC9S6dhmHg9/vx+XyuS+ebDLeg/xZGvf2wEIKJiQlGR0fp6OjA7/dz4sSJLR37/7x0lX/zio2vfQP4PR7ygDE7jXHlon1k4/VC3YxKxDA4mk3zajRme9wf0Qt89NqVhue+1beDf/bRHyO7BYl8K5tBHzyPCIWwFm0sly2o7n/u1wt8auw6e3L29aOUlMz4I0wNHOWVnadZ6ywtulY+jdKiC6aZS6EGHIZK66Dm1zD9zikxyyhirZumSctAAIqvtbpbzTXl0yiaF+Ewo6NZRfZ1+Xn4jn18/NF7OLCrt+Hx5ufnmZmZ4d57723/WqrsBRKJBMlk0tZeoIwy2bzyyivs37+f7u5u1xL6TYYbubwFUS3hUk4t6LrO5cuXSaVSnD59mng8TqbdwjslX/sf/PI3uTQ73/Z7c7kc+vVhpF50TpnVpWv257IkNI1VTwPpliYpni/c+yD/z7u+pyTi0mZNyFhcwBi+BKaJCNov/IqiYK1HLnetrfLkxBihBjWbiBDcVkhz263zPD7+KhlNYy7aw5ce/iQzulnSV9tGFE3ZMMpRNC9KxTRtGcUfXp+xKbY80Glk11D9kYaDnIbiZSxhMfatcf7b8zfxSp2DPQG+59RhfvCRU+zsidW8vjot1i5UVaWrq6si6FltLzA1NcXw8HCNvUBnZyderxcpZWWOpto4zXXpfOPhkstbDHazK6urq1y6dIlYLMaZM2fwer01rZ6t4uWFZX7kq98kncs3f3EdrHQa/fJ5ZDaD6GlQ36naFN6ZTjEcCmMJQWeDbi6vQ1rMFILf/cgnubRzzwaprKfqSi9wVmGWpolxcxRzcrz6p/YX4Pch8jl+xDI4e/N6S0OcZQghMAsFxiZG+c2f8XLvE0/wuRev8uWLtxieS5O22hO8fO2QKF4/irfKNK2QJYBOOp0EoaJotbMvZnatvS40Sp+7aCkMz6wyEh/hj752DT86R/ojPHb3QT727nsrcy7bgVbtBfL5PGtra4TDYbxer+vS+SbCJZe3EKolXMqdXDdu3ODWrVscO3aMPXv2VEL6si9Lq/jn567wny8OYVoWaFqpQN2kq6oM/9IciSsbTpFCCMdJFE1RMbxeukJhqhNdjXKvWZtfLnR08k9/+CdY89btutcdLctQTRPT7y8VunUdKQRWPo9x5SLW2mrtex3SIQFp8cPZFKdHhhtcpT1uFQoMrdeQBIKAz8Pfe+QEf++RUrpyNZXjL54f4muXpxhdypEX3tc1LRMK+CnU/UzxBSkAHt96fSOfxsynwNCRRrFtYoF1OwGsio6aEIICXq4sFrjy1av8wZeHCIgiezu8PDGd4SOPnCIaam0GqBVomkZPTw89PT3Ahr3A0NAQ8/PzjI+PEw6Ha0Q4PR6Po0snuGSz3XDJ5S0AOwmXfD7P4OAgxWKRBx54gEikNj/fKrmsFYs88aXnuLawtPHD6ihCCFA1ggpkjdoOMWkY6NeHyVd3gzWBGQxBOkW8qhsMwEb9pATNg76yyIph0KmqKELwzJ2n+E+Pf79Nz5nN+VQV1neiUgjM5Br6xXOg22iT2ZDYfk3jJ69dpjuxSqqrh7lCAU1a9OdzhJp8v+cyGRaqydnmM3ZGAvzk+07zk+87DcDM8hr/47khXh1XuTyXxVB9m9/0GpDJ5dE8jWs5ij9cSp0VsghvACufKg2SWhZC0TbN2NTDzKVQPH6E5txIIhSFPH6uJ+H3Pz/I7/3tBSKayX0He3n4xGE+9M6TBHyt6681g8fjobe3FyFERaC1HNmMjY052gtUk015c1eObOpdOl2yaQ8uubzJsEuDLS4ucuXKFfr7+7n33nttJVya6YIBPDu7yN//6jedfe1LFwCGTrl0rakqQtXIJxMYF15B2tgPO0Hp7cfKZiCf23wam5VXRKJIy+RKKIJMJvEA137kf+fG0fadMaWUmFO3MMauN6gH1bLLw0LwsQsv4Vkn20h8mfKybAGzPj+ikCdgmoQVBW094ihaFs9nMuTqUnKtpL929XTwSx/asBn+8899iespLy+PrzCdMrFUmwW3jUinHfdOiYUiBGogWolApLRQChmK2RRIC6FqiKoaUkkhINpSK3QNhMJaKsU3bqzxjRuv8pt/9TIxj8WJfd18/33H+YEzJ/B4Xnutqrw583q99PX1VVr0q+0FRkdHG9oLlL6Hxi6driV0c7jk8iaifnbFsiyuXbvG7Owsd9xxBwMDzi231QOQdvjH377In12+1ravvW4YmFMTWMsLrROLx4MS7cBaWgAH5eP65V7p7cNaWQbLwhKCQjjMC0/+Q1L9Ay2l6qohdR396uXS+Rs87IF0mgzglZK/l89ypkGHmgLsLKzXplQVU0rWTJOir8iMN0c+o0BddWYrC82ezgAffs99BNfngF4emeIvXxjhlfFlFrJAE7OxegjHEHEz/B5vvcQnQihIfwSPv/R3lJaJlV0rCXEWslsiFrvWaKGorJkq37yZ5Js3X+If//dv0eWDu/f38v4zd/CedxyvWexbOs96qssuuvD5fOzYsYMdO3YAtfYCIyMjDe0FyseuJxvXpbMxXHJ5E2A3u5LJZLh06RKKonDmzJnKYuMEp7TYSi7PB7/0HGPLK+1fl6Gjj1zFmp9BdDduMy1DjXZgGkaJKKB+vd3AevTltSyC3T0klhYrv8oN7Oa5932wNKlvmuupOrX0/02GObX4MplrQ8hy23ADMvXPTtGhqvxsfImueHvfjyoEvu4iR+/KcNoLummykITpZcHUnMLSisJWdGTqZ0HuO7aH+47tqfzub5+/wN995Rtcz+usKjEM0eSRbeMS8oU8aqCJirKiooa7UCkLZgYws2tIPb8+0Nm4hmTpBbCM5uoCikZch2+MrvKN0efhvz7NzpDgxMEdfOihE7zr7iNNF+7y89BK6srv9zMwMFDZwFUrPs/NzaHrektkk8/nefHFF7n77rvxer2ul00VXHJ5g2FZFslksnIDAszMzHD16lX27t3LkSNHWno47MjlS1Nz/MOvv0CuWGy7aO/NZUhdfHUjWmmwSEc9GglKaTBzeakkUVKB/cNkSUlfsYBmWcxW1WO0O06yuqNuOK9e1n+9LoSg9PP1azPmZ8kPD7YcnR1MrvEjSwsE2pR9kUjy+3McPZitDPZ7VMHuTtjdCQ8cscjrJsmnf41zy99gzzs/Tt/xs695YRkeHua5v/l/CRkGpyhFfykRYUWJEVdirCkRzGZks40QQiBUDS3SXfmZNIqoeobC+n1TTTZmPoPQPFubuSnmmSHA7PAyXx7+BsL8CjvCKvcd2clHHjnJfcc3i4m2Qy712Kq9gGVZZLNZNE1DSkmxWHRUD/huIxuXXN4gVIfVL7/8MnfeeScdHR0MDQ2xsrLC3XffTW9va9EC1NZcpJT83LfO81fDo1Sq1jaLsybAMMwaMpBSYs5NUxgZrhmoFA2y90nDQnT3ltJQNtdl977ufJ4bwRA57/ruT1XxPvhOFF8L6gJ1ygFSUpq2H73W/L0AlsUnrw9xNpvBErDaEWO5u5dIOkXf4nzD1mNDtfAfW2P/QGOC9nsEfhJw9a+Zv/rX3DRV8h2H6Dz6IPse/SSde+3rSE6pzS9+8Yt89atfrfm9AnTIFB1mioPmFBLBcs5iRYaIe/tIB3a1Z7rZZsrU6/VuMowWmhdL8+IJlCymLT2PlU1iFtII1dOWaVoZdnUdqXqYy8H/Gpznfw3Oo5hFdnV4efDYLj766D3cdWjXayKXms/Uhr1AudGmPEMDtS6d381k45LLGwC7on06nWZoaIhAIMDZs2drpo1bQbnmMpfN8YEvPMP0aqLRBYChVxYGRVUJeDykcnmM4UGs+Vnba7aDiESRikAuLtn+vr7moVkWx7JpFn0+cusPn+jsxnvPfVsSI7byOfTLFxCtkBIQzef42WuX2SslCIEKdK4l6FxLAJD1B1jq68ejaoQScTqqoqpcX4C+g7N0hdqrAQFkCzodayOI89eZPP+nDJterO7DdN75OAce/VFCPRvRWvUCY5omf/zHf8zIyEjTcwgkvQFBL1ngFpn0DV5JBMgKifD4UfyRhotXu9ocRcNEacIViseP0uGHpECL9lZM0yyjiFBUlAY1pHZmbizVy1Qapl6d4S9enUExC9yxI0S312T3kds5umdHex+uAYQQhEIhQqEQu3fvrrEXWF4upYOff/75GsXncDhsSzaFQqFh6/N3Etm48i+vM+pnVwCeeeYZdF3n8OHDHDhwYEs31OrqKv/hhVf4zwtrW/K1t9Ip9NGrSIfag4h1IRO17cRKTx9WfBnFIWoBEB2dyPX5ki69SNg0mPQH6S0WWPL6UA8fw3PwSNtFewAzvoJ++TwYRqkzzeEayji2ssSnJsaItPH9JjQPSz4fhYjJ6duW6Vc3d741gpSSxYykL+QsM2JJSZoQov84icgx3vWJf0yks5dkMsm/+Tf/htXVVdv3NcJqOsetWxOkw7vJ3fZ9pfPohVKLsbQIhDvQ65jByCTamnGxivma4cxGMJKLaNHNw7Yeq0g2GQdTX297Lu1vS0X/DGow2vL1lCFNA6uYq8jpSCnxSp0DPQHeeed+Pv7Yvezp62pylK0hlUpx4cIFTp06VeNlY2cv4ORlUz279p3k0umSy+sEu9mVYrHI5cuXWVlZ4fDhwxw6dGjLx/6xp57nqVubTblauq65aYxrQ+Dz27YNQy1JKJqGjHUhl0tF+EYLe6inh8zyMpHuHuTCPOn1Qn6noZN5+DFEMFSKWNoo2kvLwpi4iXlztPKzRtcgpOTDy/M8Nj3ZujjkOgwp+YLHS6TL4J89tMxCWmF1zUK3IBiQeBo0bxVNSbIg6Qm2l5YxLJhS93Eu8AiZfKFt5YWVVJ756QmkqbMaOUDu2PtsX2cVcliFdEkSxhdCFvOo4c6Wz2PpBRRPaxF20EyTVRvrrEkpsfJprHwaWcyjeANNZ2w2XdP6MKfidW6AkVLio8jh3jDvXlcP6Otsn8TssLa2xpUrVzh79uzGNVXZC6yurrK2tmZrL9COcVq5M+3tRDZuWux1gF0aLB6PMzg4SGdnJ9FodMtKxrdSGZ74wtMspNIleXyoSMo3hWGgXxvCWlhPgzVYxHwK5AERjuBVFPLLi46vrUbWlCh9/aQWFyodYkSi5N5xpsbDZFPRXlFQDB3L66+RdZHFIvrwINaKQxquDopl8TNXL3FXo9keB6QCAb6UzRGKr0BnqbupP2zRv75GmpZgcQ3SloVpSXyaQF2v8KcKEiFom1gAhvN9nPPdDdkNoi+nVCzLathyPjK9TDExX0kxqh7nKXjFF0DxbfxezyWRySUQCkog0rQ+0s7Clkxn0Toak4sQAjUQQfGHSi3Q0sLKpbAKGaRlomreTVp11TDzaYTmRWkwzFk+TxEfw8s6w18b4Y+eukqEHIcGunn81GE++u57iIUbd2c6XoNpbmqZfi32Ak7GaR/4wAf4iZ/4CT75yU9u6TrfDLjkss2wsx8eHR1lYmKC2267jd27d/Pqq6+2vTsF+H+u3+KffPPlDV97G3n8eqn5ynWlk+iXL9Q6RTYgpIJprafBVshbLaawfH7waDXKw+r+Q3gOH2ue4LcsLEXd+EyqipVOUzz/bci3poUWLBbw6TrvtCwMIUhbFjqlQrjSZGEc6erl+toqoVTS8TWqAgOdUO631k3JUkaympfoFsT87e8qv5Y+ymToxKZF1KxKG0rVQ8IK4FHAq6fwKhLDNBkan0PNJ2pqV2YbiQihemrcMM1cEqkXCAaDFIRvs+dMO/Mt7XwVlgWqghBKxTStdFEWZnYNq5AttT2rGzptZnYNxR+uGfBs+XS5FCl/mEvzeS596Qr/+guDhFWD4ztjvPf0UT78yD2E/K01IlSnu53Qjr1AmXACgdImoEw2qVSq8rO3C1xy2SaU02C6rlcGuXK5HIODgxiGwYMPPkg4XNrJtasLZloWn/zGizx9s4GvfZ3mFqpK1OtlrVDAnJ4sOUXWLzyWw0KkqhAK15qANYGIdSLzOTA2FkXPO86gRjvarxwDxtQtzOmplomlO50i4/WxGgojgbCqEi7v/qUkaVkUPBrJji6C8WWUqsX72V17WbsxgqrXjxQ2hqZA0CswJICgYEhSRQvLKv087HVeYfOWwudzp0mG9zc9jzB1OtFLPjkKLKd1Jmfm8OqbiVC2EV1oVYuiWJ/UJwBFAMvCyCZAL5aig0Bk2w3TylAUhyY3oaCGOlFDpdSdNA3M3BpmZg3F42+P7NZR6kSrNVATikJGejk3k+XczEX++edeJapZ3Lmnk++77zgffOgEPq99PtSyrLaHPcspss7O0ueqtheYnZ3l2rVrFXuB1dVVBgYGyGQyLduXt4LnnnuOf/Wv/hWvvvoqc3NzfO5zn+ODH/xgzWuuXr3Kpz/9aZ599lkMw+D222/ns5/9LHv37m3pHC65bAMsy8IwjJo02MLCAleuXGFgYIDbbrut5gZsh1yur6X40BeeJp5uU17fNFlLJtFHhrAW5+0XeJvIRYTCSKFAgx18/bGq6x8iGEb6g/geeKjt/DmUFhB95CrW3DQi7KyRJaqiqYG1VeaiHZXFpiQ1U9XCKwQxVQVL0r+6QsEfYKKnj7Tm4ZVcDvXqlbZrM5aULGchb0B5m+7TBD5tY9HK6pJ0sXQ1Ya8g4Cn9bqEY4KvWWfRQ+0XmhbUsc9OTWI6PbusLrolw/NxCUdCCscq/pWmUZPxNo9SJFmjcidZO6GIaBoqn+VIkVA0t3A2midbRhzR0zNwaspgv1ZFUjyMBSimxWuxEE4pKylJ5cSLNixOv8Ov/40X2xzT29XXwAw/ezvc/cGfleW4lcmmGRvYC//W//lf+6q/+CiEEn/nMZ0gmkzz66KP09/e/pnNmMhlOnjzJk08+yYc+9KFNvx8bG+Ohhx7ix3/8x/mt3/ototEoQ0NDbaXz3YL+a0D17Ep50ros4TI3N8edd95ZkZuoxuDgIKFQqGlB/z8P3+C3XziP1WpaqgpWOok+eKE0ua6qLXVnKd19WImVde+TkKP8S6B/B7mFefB48Uej5MvT+YB67HY8e/aXCKhFefzKNWcy6FcuINMpoFTvKf93PXyUhgp7TYPZuvTN/3f5POEWBz7+mykx69WTgcChDv7Zw8s27ygV7pezpUJ8O0gVJNcLXQwpd2AEesBOR6wB4okEczOzSGmRFz78sl7/GFa676Jw4OGWjmdm15pPzq+jXklAGsXSxD4S6fGj1pmkGckltGhrc1tWIVdTC2oGp040Yeno6dWS31CVj420TKxCpqKf1g5su9hMg54AnDrQz8PHBzi+I8LJkyfbPnarWFlZ4Y477uCJJ55geHiYS5cu8RM/8RN85jOf2ZbjCyE2RS4f+9jH8Hg8/Pmf//mWj+tGLltEvYSLEIJ0Os2lS5fQNI2zZ8865kibRS66ZfGxrz7PS7MLWKqy3lHVWruxlBJtfpb81csbi7lQsPUe3rgg/L195Bc2DMQa7TmKpoWIdiB1vYZYPHefRu3u3TivTaqulF9XN9WFzOVF9CsXa0mwwTWUl9V6YoF1BeZWt0xtpnqyumQl296sYhmvGoe4Gbmn9PeQFiKfAKMAqgfp63A0GbMsi/HxcXK5jYJ/UDGw3XNsIVXUCkqjsVWpJM1bM6lf0h7LgJTrE/ltFV3aupZIKIhdj6NUPDWkU5mxKZbUn9uFNIolBYL69mhVY7kIT42s8NTICphF+kPP844jA3z44ZOcufPgtnZ1dXZ2UiwW+Y3f+A2OHj1KPB7fUrt6q7Asiy984Qv86q/+Ku95z3u4cOECBw4c4J/8k3+yKXXWCC65bAHVsytltdTp6WmuXbvGvn37OHz4cMNQWVGUmoJtNQZXEvzQl54lWV14B0CAVm7dtbBbWaSuo48MUViYqz+h84cJR0AoNcRSOpjz8ik9HuTK8kZazePFd+ZdCBv15hpUGhHWiUVVkYA+eg1r/IbNibYWVOs25NUuIsHNi1F+i8RStBS+nL+H5dDBjR8KBemPbfzbMlAFoKgIU8eQAoTALOaYnJ6rIRYAy+H+GeiKcssyQGnh0W7j+5WWhVAb3NPeAErVAm7mkhjJpVIE4Q+XaiQNjt0OUpkcWrS5nXT5mqSpI1QPViGDlUshTR1N82I1IOJSizOt2VarXhby8PnLi3z+8lOI3Cr/+sce4wceua/lz9QIxWIRwzAqagDVKbTXA4uLi6TTaX7v936P3/md3+H3f//3+fKXv8yHPvQhnn76ad71rne1dByXXNqA3eyKYRgMDQ2xurrKPffcU3HKawRVVW3J5d8OjvCvX77o8LDVdoGpqoopFAKqQq5YxEqtURy8AHa+7w5aWqK7F5lKQnFzesW2k0zTSsOVhULl90rfDrwn7tkSEchshuLQpdLxWkFZY8xoXHhvK4nosMFMZTfvjf0ewe6oxJJQMCFThFwTDlvK+fmi/hBmtMlioGiYknUCVsAsoCdmmZiPk6d19YZHDwT5uV/4MH/z4jW+eH6cobnUNrlhtvf3FaqnJrIxcymknicQCFAUPoRWXSBv995pMyoQpYhQ8YVqdc5yqdLcj2EgNA2xTshmPoOieeuusTUYyWUKM0OspbaHWADS6TRApSHo9UY5q/KBD3yAX/iFXwDg7rvv5oUXXuAzn/mMSy7bDSklyWQS0zQrPemJRIJLly4RiUQ4e/Ys3nrXRAcoilIxJALIGQYf/vI3udiGr32JnEyyusScnca4NeY4ELkpVaIoG1P2Tt72dZ1kIhwp9d4vLyK6Su5/2m13ou3asyViMddW0QcvlIgtZP/Q1KTmfH6EP1AZ7GwEq42itiY2k9Hs/kNceeJHeNpM8dDCRd5rXuFB/wyqWO+qEhBUIOgpXWNBh8lFBeGR+Pwb13xL38Nz3ndgBtp/zDLxOSYXk5i0t8CpqorPo/HRd97JR995J7Dhhvm3L40wlZYUFX/7aZs2/8aaVpviUwMRCERKEv/rLcZSLyA0T/spxnYuXUpHYlUDkZqpfiuXxMwkSq/fQnpRX5mmuDgGQHSLczN2yGQyFb2zNwI9PT1omsbtt9fq4R0/fpznn3++5eO45NICyrMrY2NjqKrKsWPHGB8fZ2xsjCNHjrBv3762HtbqmsvLCyv88FeeI9Niy201ymkwa2EOAg1uvKoHRQ2GsDRtY7rdaUdbFblEdgyQWlzcSMUJBe9Dj5b0vVStFBm1qL4spcSYniiJTlYWLIfvbv335TbnVogFwGpj8THqVrahs48y9fj7EKrGGh18oXM3X+B/w5dJ8fWFf0aozgFFCIHfC0d3lw6UzAjiScFL+UNcDdwGWyCW+MQQsykLUGm3HmHXFlt2w3xgp4eenh5MT4j/77khXh2Dq8tFjGaCYawX9Nu4DhPVuRNtfZ6lDCMTx8ysIg0d4fGVNNEaRVrtmKdZ5uZ5HdtDCtRgB9I00CLdSMsq1WsKGZAWqsdna3hXRmHhBkZ8o3W/I7J9bcPlNuQ3ajrf6/Xyjne8Y5O+3fXr19m3b1/Lx3HJpQHqZ1dUVUXXdc6dO0cul+O+++6rDEa1gzK5/P/OD/F/XR6huAWdLW82TfLiqxtpsAYPY8CjkQNEVw9WKlnbBeZwwwopkYqC6O4hNb9RwxGd3fhOnd4gBtPY2Po7SOOXIXW9pBCwWFcTavDMtKIhVvP6HTv5P+44wbGpCR5bnOUdLSonm6rK0M/8MnM9/baXUwhFsIQKsnFKzh9U+YryvcwVw6XidjqNks+XCD0c3lAtsIFl6MyNXWZV97LxpbS3oJRVe7u6umokRoCKjtXevhif/sENuZLB8Xn+5/PDfPvGEnMZC2nXxfY6NpUKRGWWBUCaOkYqQSToJV2UpWHJ6rmUNr6TVsll4w3rGxpFQQ3FKgZnQlromQSymCtFQ5qnotqcn76CmarV6OuMbF8KK51Obzu5pNNpbtzYqHOOj49z8eJFurq62Lt3L7/yK7/CRz/6Ud75znfy6KOP8uUvf5m/+7u/45lnnmn5HC65OMBOwqVQKLCwsEB/fz+nTp2ytR9uBRnL4h9cm+JWMl37ixaiACkl5uwU+ZHh2ge+wY2Xkw0WaSdS8gdAUZBVpl7qkeN49h1wXmjqpPFR1jvdhIK5lsAYfNW+vdnu2lUNEe0ozei0AiHQjhxH27OPNPDqjl28Smlp7stmODFxk++58BIH6o8nBOnefl7+qV9Ad0oRtohFq4M/yT5G1lQrx7bC4RKpAJgmUXQ61VXmCkGKarASVVrFHLNTt0jorV2Dhf1ESzAYZHl5mbGxMTRNo6urq2Zgz26BOnFgBycOlFrmpZQ8e/kWf/3Sdc7firNSUEr3ZZvk0s5C6PN6aqT8S/WaLnKAGijJ+Jv59HonWrC9Dr9WZJGqEA76scshSKFU1AygRIBmdo3C/OgmYgHojDrPaLWLbDa7rQOUAOfOnePRRx+t/PsXf/EXAfjRH/1R/uRP/oQnnniCz3zmM/zu7/4uP/uzP8uxY8f47Gc/y0MPPdTyOVxysUG9/bCUkpGREebn54lGo5w4cWLLu4jn5hb50W9epGCnfVUXBQS8XnKmhbBMpGU57/wp7bRsH39/ALxe592/zecQ3b3ItcQGUQiB9/6HUELh9haZ9dSfsTCNtTDXwDa59hoUvx9L87ScBsPrw3vXKZTYZhFGCSwEQzx1/C6eOn4XHim5LZ3k2MgQ33v+Zeb3HeLCe35gS63F1bhi7uNzmftKRXknqCpJVJJmX+nJM4uIQpJ8JsmthSS67eNY+91IIB6MENQLBPTN91BnZyenTp3CNE2SySTxeJyZmRmuXbtWuWc1TSMWi+GxUeEUQvDIiQM8cqJkxqXrJn/38ghfujDG0FyGeFFpUXKl9eejoJsN3ZwVj7+m28woZDGSyyBA8YUbKzW3SS7pbGudaCUC7EFfumXbQNLZsX3kkk6nN0WhrxWPPPJIw3EDgCeffJInn3xyy+dwyaUKdvbDuVyOS5cuYVkW+/fvrxTXtoJ/+tIl/tvg1dYWaCnJrXdRScDKpCgOXYbUmv3r7UiisxuZSSF03XnxrC5cClHSEysTkRAQjuB7x5ktfWZpmhhj1zGnbqH0tjZRLLp7sVbjJdkXr3OXlKaqGKaJ1tWNevuJlv1ddCG4HOng8ukzzBw+y2MLRXYuwNWIYDxglayWna7N4edfLp7m27nNzohNoXpJrMaJr66iY7czrZ0tUTWNqWgXq/4QhxbtpXnKNRdVVWsiFl3XefXVVxFCMDY2RjabJRKJVCKbehvfMjwelQ+dvZ0PnS0Vd5PZPH/5/DBfvTTJ9aUMOXz298brWB8Qmq9m9sTMp5HFLAh1kwBnu23O7UZo0mH+LBRoz5+pETKZzBvWKbadcMllHeXZlWo3u9nZWYaHh9m1axdHjx5ldnaWZLKBLIoDVvMF3v/FZ7fmay8l5swUxvXhJkV7UfPfSm//Rkop6LyL8iqipCXlD6D4fTURjrr/ENqBwwivd7OKcRNY+Rz6lYulCKgZCqVEhOjsRtaoHzs/6IZpou7eh3rktrbbbBUp+egsPDZdqlcdS+h8EChoCsMyyZWwZKQ3yHx3492nIQV/ln+cyWKsrfNDqRawePMyS3mNYAu7fFMIbsT6KKwTrs/nBWNz5OKkc1WWbt+5cyd9fX0UCgVWV1eJx+NcvXoVXdcrNr5dXV1EIvbyLtGgnx//3nv48e+9B4DZeJL/8ewQzwzPML5axFDXF9U2O7ragVrfieYPw/o8SkWAs5gvpfO2ZEnXOgIeFTsNie2uj2x3WuyNwHc9uVRLuJTTYKZpMjQ0xOLiIidOnKCvrzT1W/bMbgdfnprj5559mdSmocjmUAyD/NXLGyTRoD3Sq6qlqXW/n1AoTKa6ttDgPtcR6xFOGiuRqPzcc/pB1I7Y+ouq6ihVdSFpmraHNldX0C9fqH1fI1gmqBpytY58nb5rRUE7dLTkipnLIdp48CIG/OIE7Fne3LbtMyxOEebUGrAGuaF5pq01hjpUvn2gnwIq5f1jQob5v7PfQ9rYMHWq9uNoBM3MMXVzlJVC6fFz+vOUrKYF+ANcj/WWVKPXUSgUsIvVGokoVku4+Hw+duzYwY4dOzbZ+E5OlgRSY7FYJbJxSsvs7Iryi088yC8+Ufr38OQi//P5YQYn4NpyAbTt28GXYaE6NptvCHCWIhsjs4qRSYCxIcDZMK3XJidkc5vvI08LOmltneN1qLm8EfiuJhe7on0qleLSpUt4vV7Onj1bI9TWaLLe7ti/8K3z/MXV0Y2dWRttu1ZqDfPKRaxqUnIYhgTQJYjOLmQmQ6ZKkgVw9LVHCAiFkNXqx/4gvgcfdo4GqupCArHe/STBLNWFzIlxjLHmFr1lHMjn+PCNa0x4/bza28fNWNdGFGbzHYlQGM8dJ1EiG2kRWchjZbOl3oFA0DFFtj8n+AfX83TlW/sbBnxRjhDlSBHe/dI0w9qPI5hguSfJZdlTqa/UE4qiKEgrTx4PvrrVKlBcYWJykpVC8yFCAUivyVDXZn064bDZt6ujVM5Spw9WOZaNjW+9/4jH46mk2bq6uhxtuW/f28dv/b0+pJR84xvfQO3Zx9+eu8m58ThLeWhYXGkVbUQFQoIajlX+LU0DMx0nEvCRKpgtCHA2gY1ShrrNEjxuWuxtBjv74cnJSa5fv86BAwc4dOjQppuu1cjF0dfepm23PGFfMceSEnNmEuP65tqMEA5FeyGQfj9y1sGZ0u7h8fpKO/6qiX5l5x68t9/VRppioztM6kWM6ckat8jaa9j8o0cScT5yawyPtDiqF/meTJKslExoHoajHbzct4vVKhkW9chtaLv2bGotFT4/ahWhWJkMspDH278Dcz16Orsq+JEbWTxONgNOn1BK1lZv0dG5HyEEI17BdWu24XtK94gXHxASebqUNCBJp1Kcm0iRM5svsAomAXK83HOX05XZ/rTVyKURhBAVs6v9+/fXSMLPzMxw9epVgsFgJaqxaw4otz2fOb6XR04eBkqNMl94ZZS/e3WMy9NrJAxtS34sbXWi+eo70TTUcBdZQA2W9MOMXKqk9eYN0G7oIm3IxTANXn755QoRd3R0bLmzFEppMZdc3gawk3DRdZ0rV66wtrbGvffe66jb00rk8rnxaX7+6RfRm9Un1tt2y/IhHk2jqOslOZR6bbAy7B4qnw8RCEMDCZX6ZUh0dCILOeRqHNFZ+qzayXvRevq2NM9gpZIUB8/XRBM2F1/5L49l8SNz0zxo0/UWFILjpsHx1RU+FF9mFbjp83PlxD1c7t2B3sLMghIKQSiEqeuoEp6YFxxImywFNHZk9Jbn9w2jQDa9SKzrABYWL/lusCQdGiockJF+Mqaf0OoQ8bUMObP5lLWXIiDJ4Sy26LQEbge52B2zWs9K13USiQTxeJyxsTFyuRyRSKQS2XR0dFQ6kao19lRV5f0P3Mb7H7gNgHSuwGe/NczzV6d4dTpNVm7MjjREG5FBs060egFOPZ/BSC1XBDgVX5O/l7X5Ofd6POzbt4/V1VWuX79OPp8nGo1Wvp9oNNqWB0wmk9nSPN2bje8qcrFLg62urjI4OEg0Gm0q4dIocpFS8qlnX+YL129u6dry8Tj65fO2YXYFdWmxyuR6YgXR4yxvriqisnuL7txFcrYqDebx4j3zrhIxbEHs0Zid3jAia+C/ItcjpB69yE/fusEeByn9aggh6AK6igVOn3uRlW9/k7+6+z6G3vv+lq4tZsBPjhkcSWwUvjMehWwsQNIy6UzrdBXsv+9Mfg3FNIjG9pATRV7wjZC1WtRAq4JiFbHmh3gp7uFIC5vPIFnyeLHQUNtTSQNeH3Kph8fjobe3l97e0j1XKBQqSr3Dw8MYhkE0WtpopNNpOjo6bM8bDvj40cdP8aOPnwJgMZHm/3tuiKevTHNztUBReB060dpIO7W5VxKqihbpqfzbKmSwClmEUBD+MIqnNh1oF7lomkp/f3/FcyWXy1XqWbOzsxiGUWme6OzsJBKJNBS6zWaz7Ny5s70P8hbAdw251M+uQMkQZ3x8nKNHj7J3796mD55T5DKRTPPBLz7DQrL5glmPTWmwBmY8ilAqy01s524S1WmwBteuCQXD40GJdtQQi9LbvyE6WVEqbq0uJE2zJD3TolulzOe4K5PmyZvXCTURnrTDeKHAcKGAVl/0d8CBuQT/cDFAR119JaRbhJYylKl4OaCx4hMoK8vsVEKEhMZNM0W/L0hAeFhWU5zXbmIIq7K5aNUCKasX0aevMJVZ9xVxeF0oGCKThS6vQbxYnZpxPo9wuIZm5PJ6wOfzMTAwwMDAQKU5YGlpiUQiweDgIEBNvSYQCNg+a32xMD/3/vv5ufffD8Do7Ar/47khvnV9nqmkibWuHNBed2C7mmi1YU612GWpEy213ommovojtptBT10KLBAIEAgE2Llzp23zhJSypnmifhp/u10o3yh8x5OL3exKoVBgcHCQQqHA/fffX9llNYOdD8v/O3qLX3v+FQqGWSpuC1Gy+m1heEvqOp7RYQpzVTn8Bjloj6pger2IUKSWWCgV150eo4KigseLVVXo124/gTawe3MarK4uJCnlqavNvqxcDn3wPDJd35bt/CDvKeT5yPw03i1I3ZzLZFhYf58wjJIbYoP02EMji/zwahCPaH6unpxBTw5QOzCkxQVjGR8qS1aeGf8y18VsaVGuOpQQojJc6xTJziZTxGemwdyIhLMijJ1WmFHI0K1KVoq1oY1TiihQyOP0XTcr6L9W18RmKDcHKIrCzZs3eeihh0in07bNAeXF1Kk54MjObn79Y++s/PvlkWn+8vlhLk6vMZ0yt6c5oA6mZTXQRBMVAU4AKS2kzUbJ26BbzK55Ip1OV9rCb968WbFBzmazBIPBba+5tGJxXMZP/dRP8cd//Mf823/7b/n5n//5ts7zHU0u5aL9q6++Sm9vL3v27GFpaYnLly/T19fHPffc01ahrXrnaknJj37j23zj5sTGC6rTSopSMsVymA8xk2voly9QqFcybhDyF1QNFHVzy24DKL39SNOE8nS8quJ98J0oPj9Nd3VlscLyA6SoJTXj8y/Zp9DsDicEqCqhXJFT2Qx5j4eJUJiUEARzWTrtLALWUbAsvpXJkKsiQKEIQCAyKbyUpG1EqKQ9pRgmf29wiUf0KIgiYeVPWc5ZIE7h89yDEM5/67w0mbTSnNJ6kEjO+W8yb9krBJTrdmUoikLegLSl06EqjC0tk19c2FTbyWVSUDcs6REGeb+XbGbzQqnUE5GUBIt5sr7AG1pz2QrKRKYoimNzwNTUFMPDw4RCoUpk09nZ6fhM3ndsN/cd2w2UMhFPXbjJ/3rlBhcnEyQMpTUPm2Zoq9NLYHfT+xoQ/KYjCEEkEiESibB3714sy6p06v3lX/4lf/RHf4QQgkKhQCQS4d3vfje7d+9u4xo3o5nFcRmf+9zn+Pa3v73llNx3JLnY2Q8bhsG1a9eYmZnh9ttv39IXVn5wr62u8ZEvP9fY177KhVEAUtOIej2s5Quldt1Rh0l9h52l0tuPZRjOsvqbLlZDdHZhLS2g9O4oRSCxLrz33r+lsTJpWRg3R7ESq461mU2fZt23HsOoLJN+y+RYlcpAPBgiUSxCsYAGeNY//7Jh8Eo2u3mfb0mEqiJDEQqU9LVU02AgU+D7xlIcLnjxqAv0+P4DhpVnTwRgjILxVyQKEQrmIVT1Pryew5VDFowiJpKjWgcFdL7lv07GavF7prSJ8SoQEwpTiSRFG2IpfT+133xQKXKza4AOmSOQ2Uyy1ZInimXhM4pk1+2AFaFgFwU12iy90eRid67q5oBDhw41bA4od1rZRVuqqvLe00d47+kjAOQKOv/qz/+OawnB9aXc1j1s2mpzto9afb6tR1SKotDR0UFHRwe/9Vu/xa/8yq9w5swZ+vr6+I//8T/y5JNP8n3f93387d/+7ZbP8b73vY/3ve99DV8zMzPDP/pH/4ivfOUrfP/3f/+WzvMdRy71RfvycNvExAQ+n48HH3xwy/lLRVH4atbgLz73VUcnQNtrAjAM1nI59OtXsead6xRCqUtvebwokeg6SfQ3EGDfeCj80Q7ypoVc3hCdVA4cwXvwsN0bm19/sUBxaBAZX650l9miOkXk8dQMUZoOD21XsUAXgNeLlJJV02TOMHjJYejUrtawfyHFT08KYiJK2HuekPo/Mepajn0a9Gsp4CJwkXRRkCz2kDOO4NXOEvL2ElfSvOQdxWjUVOGArK5z7dYkQi+25MAS8RS40HWQguqlo2D/WU1ZWhy96wOruSoNLSdZk2bk8kahurbZCPXNAfl8vpIiGhoaqhS/yyk0J+WAgM/Du45080unTxMKhVhJZvmL54f4u0Ev46s2On4OaKlbrfwZHaRf/C36OrWCUCiEqqp86lOf4r3vfS9ra2tMTzuMHGwTLMviE5/4BL/yK7/CHXfcseXjfEeRS/3sihCCmZkZlpeXiUaj3H///VvOOeuWxce/9iIvLLdftIeNNFhZ6sQRVQ9OsLOLbD6PFV9u8IYSIh6VNUDp6aWwulqqkawfz3Pb7SVTsBpJ/NbqQuba6vp1r3dKNVifatJ1ddP5rbiBCCHo0jTyjRbBumt+17UFPp4IoQmFbu9fofByvc+ZLcJeSdi7BCxhyW9xLnWAkc4zWFtYgJcyWaYnJ/GaBnqDmlku2APpLMGQxbcjRytRquM3I6DLo7FWKGJuSrVsvk5FUbY0RPl6YKvn8vv9m5oDyp1ot27dQgjh2BxQTWjd0SA//X3v4Os3vg5tkEtbaTGHTUhv1/a2DafT6YrFcTmqeT3x+7//+2iaxs/+7M++puN8R5CL3eyKaZoMDw+zvLxMb29vxT1yK7i8kuDHv/4C05lsaXF22LE4XZt/fpq1q0MtzZCEPB7SlNJg2eWlusXU+WFNGeZmWf1QBN/9ZzcecjtJfFVF6vqmI1c0zUaGqVnItrj7NduIBmSD3Xc5clF1gx8ZXOZho1Rf2eH/D5iWw3xQEzyTOcKtyN01f9dyCrRZd9h0PE58bg5PC99LvGASj/WSDLZWnO3r7ydgFZgVkmkJZpOFr1m08EaSS3mI8rWguvi9Z8+eSj1idXWVxcVFRkdH8Xq9dHV1EYvFbBsWCobDBsosYGRKG0XFX6Ws3MZQp7SZcQEwzTbFMpvgjZR/efXVV/l3/+7fcf78+df893vbk4vd7EoymeTSpUsEAgHOnDnD5ORkja1wO/h3l0f4ly9drEtDCNDUUiRgmo4aWFIvol+9QqFe7l5RHXc9WdiwIK6Hg+aHCIaQqoKs6jpT9x7Ac/R4YzJYrwtVbqF1srGKRYzhQax5m0l0p+MJ0fBc7Wiy5fp3wqp9MV1ISSyZ5R9czXCQKB4xT6/vP6NbadvXN0LBEnw+d5q18GZF4+qCvYoCqgAJlmEiFZCWZG1qmUSqtr7i9DjqispcR3dFeLIac55eDjBZ87Njx46VuqqAvZS+v2Quz1JRZ8Z0bkV+K0Uu292ZVl2PqG4OiMfjTE1NAXDhwoVKTScWi6EbDpsa1YcW3fhblJSVS3U2IToQWgupLYdnOLiNishSyjdU/uWb3/wmi4uL7N27t/Iz0zT5pV/6Jf7gD/6AW7dutXystzW5lO2Hq3dsExMTjI6OcvDgQQ4ePFhqH1RV8m3aCOcMg4985XnOz9jthuWmzjBF1bCkhTDN0q4/uVYairQ7r2pPLiLSgSUFrCxufk/pFZt/0tWDTK6hGGYlvvCcfgC1o7P9KMOysNIpjPEb9sQC2KZjWnCLbGcv59xUDaFAF//HcJEuESKsnSOk/iW6VUq6aUppRMe0NtsX12NJ9/Nl8yx6qLvxCwETq6o9G0TOYmVmkbn85nRlWCrk64Yfsx4fU119GA7t00YVkXk8Ho4ePbqJBBRFIRYKEgvBEcCIhUin02QyGdLpdGXzlEgkyOfzNZp4ZbzRkcvr3fZc3Ryg6zrf/OY32b9/P2tra4yOjpLP50nnWnvuy8rK0rJAgJldQ+oFhOZBC3YgbaJGuwFKgFCgNfuHVpDL5bAsq5IWe73xiU98gscff7zmZ+95z3v4xCc+wd//+3+/rWO9Lcml3n64LOFy+fJlUqkUp0+frvhYQOkmbFVwEuDcUpy/9+VnW74xsSwsq5TXtaTEXF7EuHzBeXFXFeqs2EsL9PISwudzXlprnCcVlJ7qCEeCP4DvgYcRbUhLVMNYXMAYvoQINbiRqwsaHg9KpKMlG2LZTheOQ5TT/T1P8k7vAYrSxOv9fwlwqXI5EtCr3qYIkHhZTOcJewUBz8b5r+W6eNFzFul3lldxgpErMnVrEk229h0nAiFmYz22i1M9IpFIyx7lZcOvWCwGwOLiIouLiyQSCV588UX8fn/NDr5c6H+r11y2inJk3NfXx44dJaHPfD4P3/wqtKh0IC2r0mGmBjfqGlJamOlVpKUjNN+62KXiGLmEA+3fV07Irje2bGfk0sziuLu7dsPl8XjYsWMHx44da+s8bztysSwLwzBq0mDxeJzBwUFisRhnz57dlBpoh1x+9/wQ//7Vy1vqrCmnwWSx0DhqqFpoFI8HGY3VGnQ5IKippAH8AfzBIPmqRV109uC78xTC5ysRQDt1IdPEuDmKOTm+/oMGccb670QkijTNlpoNoL3IZdMy7Aty9Pt/npOFIIICuwP/AdNqbH9cIp0ivaHSsGOyIMnpkuvWHkZD7wA7n/gmKMSz3JqbRJcGHcI+B54P+iCzHkV09zHja54rF0Cgp4d9OzarH7eC2dlZ4vE4AHfddRf79u2zbe8FSCaTeL3e1z2q2I6ay1bOV/25/H4/VhuN98LJPFooqOGNzWpZ7NLMJGyPEwltH7mk02kURbGNRLeKZhbH24W3DbnYza5IKblx4wa3bt3i2LFj7Nmzx7G3vhm5pIo6n/z6i7w01ZqcyaZzpJNkLr0K+TyioYAj+DwahVxpgfYAhSqDLPuxrBKyhomIdSGzGfLxjc4s7cS9aL0lz5maLq2yYkCDupCVz6+berVoKSxlya0yvtJYB60KIhgift9ZPnH/QxyanuBdi/M8PHwJzYGAq0tLys6D3H/mSXbnwCPm6PH9R4w2Nb6EEAQ88HXjXlajh8EyELkVhGlgaQHwRZrON6RmVplcnUU2GTzVVQ3V4yXe08OCaC33viPgYyDa2fyFNhgfHyeT2Zi3UlUVTdPo6emhp6ekkZXP51lZWSGZTDIyMsLVq1cbyo1sB94INYBqOKXhzIa+03XHMA2UFgYxy2KXsmA/5xYONRcnbRVl6Zc32uK4Gu3UWarxtiCXegkXIQT5fJ7BwUF0XeeBBx5omJNsRi7fnFvix776zYqtcDu+K1JKzOkJ8qPXNqKVJsXrggSltw9rZZlCO+ZjHi+yOgXl8eB78F0IpyJudV1IrHuvVCkGmKvxdVOvulZNp2sSAqIdDeoxm6H09OG54wRC85AHhrp7GQL+0/f8b3Tlstw1dYvvvfASR6o0yso1F/+px3h037sJ5yRh7RVC6l9tml9pBXEZ5Sv6WXLldJ+iIQPdGzRh5BCFFEp0YNN9Ii3J0vg8i7nWVBFMr4/Jnh3k880JUACngl6O+Df+fq12qRmGwdjY2KZGFbuCvt/vp7+/n5GREe6//36KxSLxeLwS2WiaVmntbeTV0g7ejMjFjlzaul/aNAJ0qrlEw9tHLmXplzfyu9wuvOXJpXp2pRz2LiwscOXKFfr7+zl+/HhT+epGUvm//vIg/+XScG0aq953RdPwCkGxqFMdV5TSYJexlmoL8A19u1UVEQxhOcnq24Xx63piFDcWLKWnD+/dp1sv2ktZiWqklJhLC6W6kNNr6+EPlNqWEw0inLqOMe3QUdR9B20fDAmsBII8c/R2njl6O5qU7Ems8o4bV7lzfJTe9/wED3v2oeql4+2PfhVNSPJGKeuUbzHrdyF0gpezt+PxNfibaAGkFqjcI6ouUIySL8fU9CRrxuYdqkfVoe4asv07mYz1YqaaW2F7BJwJ+9nhqb13q+9TS0Ium0EIgdfrrdRNcrkcN2/etCUfp26xagn8cDhMOByuyI2UO67KXi1lOZb6ek07eKtELpra+qIsW5j7qkbAo2JXld1Ocinri70d8ZYlF7vZFcuyGB4eZnZ2ljvvvLNSuGsGu8hlNV/gA196lhtLTXak64tyeW/v1TQMIdBXV9EvvmI/FOlALiIcKVFTo0HKumdBdMSQhQJydQXRXZpi1o7fhbZzz5ZmTqSuo1+9jKyPVqpfU29Stp6KI58DB5dHoNTKbJrg8eI5cQo11mCavw6GEIx3djFzz1mifQ9yIGtxE5NwUdKftxBIVEUQ8kLIux7NWpAzIFUAu+zHVzoeZzLVg6fNRcP0SPK5PAsz86yZ9qmP8vR8GYn9R5gpGo7NCAB+j4e8rhNWBA9H/ETVxouvIqjMN0gpS91P6TTz8/b1JkVRHDda5b+pXRdaeSgRSl4tZcXecsdVNBqtRDXN5OHLeKtELvliGzYSbd4ndhbHALHI9hXfX4+02BuFtyS5SClZW1tjbW2Nvr4+FEUhk8lw8eJFVFXlzJkzbbF5vQ/LU1PzfOrr36JQbGNydx0FXcecmsBaW3UmCZtwWenpw1pdKS2+nc7tryobxW9f/wCFxfkKiUgEnvsfQg1HaFdKHMBKp0pqxrksIhpr8MKN70rp68darErFNSz2lzxmvHedQtjMczRDry74mdEiu1O1qZ6kV8FQFKpL8EIIPCp4VIh4wZKC6/kOEkWDLjL8ufEI2loXalutBCVkF5JMLE3jE85F/6XuTrTFOaSisHDwNlayufKFOb4nr+v0awoPRYNobf79hBAkEgmWl50bKCzLauhHVD5OI3g8Hvr6+ujrK9Xwyl4k8Xic6elpLMuqUTQOBoP2kelbJHKx23R4VUE2sVQanvQ0l9RxPql9NiTg275l9e3qQglvQXIpz64kEglu3rxJf39/JVzfu3cvR44cafumLUcuUkp+6cUL/I+h61vb9RfX02DLiyh9DaKm6ihJVYn29pOsqlM4etoDqhDomgelo4NCVepMxDrxnapKg6lqqetMNq8LARhzMyVTr/ID1FBiRcL6NdQQS5P3PbAWp0cvcG1miul9Bx1FOO1wR1rwqes5QvrmBzxatFAtcNJCFwJUITkeTBD3h/kvme9nzfDi7ehCKeQJ5Z2Vl6shLUlicpmZdPPWakPVEP4A07sOkM62JnK5S1M4E/HjYFbdEGOTk2STpXRbI3pwSmE5RS7NUO9FYiefXyaarq6uCrm9VSIXOzmfoikrhmBmLoXU8yW75TYjF6cJ/fEbo+ip1RoSbkb6TngjByi3G28ZcqmfXfF4PBiGwaVLl4jH45w6darS/dIuVFVlpWjw8F9/lZuJZKmw3UKxvub61hIUqrXBmk2+U5KCl4pSQyzQeOajAOCr9V5RDx3Fc+BwXV3IpFIYWtcMk4ZeeqCrXictE2P0GuZ07QR4o+sXfn+pzXjFZpds852plsXHFuZ413xJUO/9g6+S9ni5tmMnV/cdYuTY7SQbRGvftwgfHM+0bD/shKvmXv4qcz+mhG4PsBZfv2agIDGxUHwKwiYPbxkmc2PTrOqtacfpfj9TO/ZSdEiNVEMA9wS9HPZ7SJsW2XXPkKim4GmyAJumydjYGMVisaWmWqeaSzlyfy0LfrU8/L59+2om5CcnJxkeHiYcDtPV1VW63rcAuTTbQ1b7sxipFYxMAowiQvOiBKINlZWdCvrv/Z7H0AslAc6JiQmGhoYIh8OV9GM7daxMJuPWXF4L7CRc8vk8uVyOUCjE2bNnX1MHyxemF/iV+dRG3aVSrF/3XIFaza26azOnbmGMXmvrnKK3HxlfsZ83cXjolN6+Umhebi0VAu99Z1HCkeaRhrGuDyblhoxLNoN+8RwyaeP77rBLEx0xZD63IVRZj7rUQYdh8FMTYxxKJmp+HtaLnJ66xempW/D815nt7Wfk8G1c3XeQGzt2YmgefBY8OWFx72Irw6qNF6qnivfyrdxB+1+qQFCgooIErQDCAkspeXkZ2SJTE5NkrNrrMBXFdv4uvXMvs6EYhu2MT+11etcL9/3rhfuwqhBev+UsKUkYJgUpiXo8BOoimqKuc2N0tC3pnEaRy3Yv9tUT8gDFYrGSQltaWsI0TQqFQk295vUinO1RBJBoodjGv0wDI50g7PeQ0UsaZDXX79gtFoJwqDKMWP5e6utY5cgmGo06XrsbubwG2NkP37p1i9HRUYQQ3HvvvVu+IaWU/NRzr/B3I2MOL7CgStgu4POSsyTaeutzKQ02iLW8ZPNeh8VeUUraYIm44yDjprSYqiI6u7GWFlF6eku/C4Xx3f/Q1j67ZWEuL2HOTNoTi931C1GqCy0ttJzOOpLN8Knx63S0ULvaubTAzqUFHn3xWYqah8F7HyGw5wy7060WXO2/B1MK/rzwOLcKsZYPY1TtUwrLGWYW5sjKzQSn2izqKwePMZ8vOu5ofVax0kHUqak8GPIScSjcK0IQ08q5vnVBzvXNTj6fZ+zmzbaIpRle70jC6/VWvOM9Hg+FQoGOjo6KnS9Q0/Ic2MZJdjtyafe7CwcDNd1fQtXQwl3kKU0nWHoeM5cGJIo/hGxxULn6e4HaOtbMzAyWZRGLxSqRTXXrsUsuW4Cd/XCxWOTy5csVp7QLFxxaZVvAZCrDB774DAtrzdtCy8gVSoukAZjJBPrIMDgsznZtoCIYAk0rLdB+/ybZeTuo4TAmSsV7RcoWRScdIC0LY+Im5s1RRJdzGrGmeOnzI/yBDZWAFs772OoKPzgxhrqFa1y8/WFOB+8huFBKKSV8KktBD8Iy2bGWJ2xbXNm8MCZkkP+S/V5SxtbMmZLTcaYSs/gcHFgMVam0G1uqxvyBY6yWfWYcPndB9QJ5bg8L7vB6UdpM9pmmSS6XY2VlBXOLYqt2eKPlWMqp7d27d7N79+4ah8WFhQWuX7+Oz+erEE1nZ2dD0c1msCOXdKv96uXXZ7JoUWdFBcXjr20AsMl2KC18x/V1rEwmU7EVGB8frzQwXb16lZmZGQ4edIjIt4BGFse6rvNrv/ZrfPGLX+TmzZt0dHTw+OOP83u/93tbMld8U8jFLg22vLzM4OAgXV1dnDlzprJ4W5bVdI6lHv99dIJPP/cyZhsSKNXXVkmDhZ0n7YWsndWO9u8gubKyYSfcQEsq4tFK3ivdvZhrqzXDjp4jx1EikXVxyzbrQsUC+vBlrPLEfwu+KKKjE1nI1U7oN3qfovLuXIaP3rrh/BoHWEIw+a4f5TazD6VKWTJWMIkVSp/TQmFGFEgKg5BU2Sl9aIhNfjCj5gB/nX+IXPt/YizTYnl8nsV8vOHr0tEg3ngWIxBiaue+is5TM9y2Zzd3ZeI0S+XZoWwGtd1ChW8GuVQv9tWKxgcOHMAwDBKJRGVBvXLlCpFIpEI0sVisrTSXHbmk8m2Sc9v7JHtPnXYghNg0d5RMJnn66af57Gc/y+XLl4nFYqytrfH444/z6KOPVozVtoJGFsfZbJbz58/z67/+65w8eZLV1VV+7ud+jve///2cO3eu7XO9KeRSvsnLEi4jIyNMTk5y/Phxdu3ahRCiQjymabZFLr918Rp/fP5KW9paZaiGTm7oUiUNtskVsgoKstTkup4GSy7UzR40uMlsvVf8fnwPvLMkOlllkVxr8GU4LvxmMok++Gpte3STOk1JLHOx5QhJhMJ4Tt7LC4EgL777vfQtzHHnzeu8a2iQWJOOrHwwyurDP87t2ca7UwXBLuljlyzlrrKYjFMklX2Y/f5z7PdM84x+gmezxyp/m7IxXFkiqBH0fJGZ8WnSZitEIcj39DMZiKK3UrhXFE53x+gUEk3JQ9HC0Frz4bCkZHlpicXFUgS71e4iJ7wZQpKNntt6iZpCoVBJFQ0PD2MYRo1ETbMpdTtySbZLLm1CsynJqU1ml5pBURRisRhPPPEETzzxBB/5yEfYtWsXkUiEf/Ev/gW//Mu/zMTExJb/lo0sjjs6Onjqqadqfvbv//2/57777mNycrJGhr8VvGlpsXLod+nSJSzL4sEHH6zJLZYXDMMw2nrQXl3LoHR1lyIfXUcWctDCwmCurWJcuYhVLZHfgCCEtCAQRHi89qrATqZDgSBSVZFVcifKwG68d5ywX+QdDL6qoxpjdgrjmo0ZmaMqs4ro6GxJzbhy2v6deG67A7FeMJb+AAv7DrKw7yBfe9f34k8m2Dc7zQO3bnDq6uWadFl891F8x5/gUHYLaT4EqoBI/kGW8vfzt8Fx4katSkA1oQgh8AiThYxFWJM1qZZ8Yp6J6Tn0loyIIdvRyaxutJRb9/p8PNzfTU+yNJRrEAANNCODx0iT9ccwlCAemyJwTje4NTeHWZWCLW5hBsvv93Pu3DnbOuWbHbk0g8/nY8eOHezYsaPGgTIej1dSRdUtz/VCjnbkkim0Sy7t3Z+6zd/otZJLPYrFIqdPn+anf/qngVJ08Ub+HdfW1hBCVNS328GbRi5zc3MMDg6yc+dOjh07tmmXU/ZhaUcqHyCoKZX34/UivF5kOAqWhSwWUPI5rKpctrSsUhrsxsjmgzVIbRmaD4wMMufg9W4T9Shd3VipFMIwKr/TTtyD1tvfen2lKqqRpokxPYl5w6mTzaYuFAojJcgVmyYFB2hHj6Pu3ud4UwtFoRDr4nqsi+u3n+DPv+9DdCZWOT4zyd3LBW4L3UUg3z6xzFNEFYKDMkBe6HzLN0LWaNxZJqWkKBU6A+v3QSGF0LMk11aZXC1i2RCLRRrYqPJLIVg+dBtLmg9ZsK+5Bc0c5dn9jo4OHg56CKU3v9bQQhhaCAGo0iIZDOPRiwjTxGsarOUL3JqYwOPQrdgO9u3bx5//+Z/zJ3/yJ4TDYW677TYee+wx9uzZ86ZELls9n50DZTKZJB6PMzc3x8jICIFAoGaOxLbmkrP/Tr0KFLejT8JmziUW3l7HyHoXyjeyLTmfz/PpT3+aj3/840SjjcV47fCmFvTvuuuuSgeFHbZELjahuBCitFsPBCEQxAsopkEusYZ+8cWNGoXN+zYtieWuqmx6s+BjzeuUuvf0Yy1Vpc48HnwPvhPh2Vr6w8pl0QfPlz6T44tqnyDR3YNcS5TSa608+JqG546TqD19bV2bBOIdMXoLnZxMZ1kIaEx6VQKGyc6k3tJNd0PJscvyEpAqK0qKlz03MNqwSi7D8gRZmr5JNpfDonnXjeXxMrPvCMlsFhF1bn/PqgEgzc7+fh6w8ngKzaNjRUqi2Q3HzKlkmtXFhZaIxaKUGW30VytHaaqqksvluHDhAufPn0dKSVdXF319fZw6deoNWaBe64T+H786yKmeLu7bt7uSKirvng3DqLT2li0FPB4PgUCARCJRae1NF+zvl6IFViGLVciUnk1/BMXja+2ZqP6MNvdj0dhCEbAB3qxuMV3X+aEf+iGklPyn//SftnSMN41cdu3aVekUc4Kqqk1fU4+Q1rw+YwCoGko47EgsALLu4fAEgxheXymd1GhRB4IetbSz9fnRgkGMamIJRfCfuKfpdTrBXF5Ev3IRTLM1cqluMy6jWaQUDOE9eS9KsP2dWMCEn7hR5ESi9PANpHUG1t3RcqpgKuKlqAh6sjrd+doH1EIyouQ4ZgVQEIx5Frgqprfkr1Mo6iyMDZI0fYRbSHnokQ4megYotFi4P753D3el41so28P1pWXyC/MYikor24vynejgOOIIIURFOiaRSPDpT38aTdPYvXs3v/iLv/i6zp1s5dimZfGhp77FpblS7UktPMsBn8a79+7kk/ecYHesA03T6O3trRS28/k8Q0NDGIbB5cuXK6290/POpK34gii+0rMjpVyf1C9gpOOogSjCwTW09kNuJhfva+h4q0e5k+yNcqEso0wsExMTfOMb39hS1AJvgTmXRtA0re3IJdyOgmuznVXVsyE6u7GymQ1V4Ca76JwpS4KPuSyRhXn2JOJc7ulDvf0E2q49G+dX1RoZ/EaQlolx8wbmxM2mr63A60OEQvb1FQffe6V/AHXPfmQ+X1rM2iCYnQXBz1wv0J910F0yJQcSGwOaywGNeEDFY0liGZ24keO4FUQiedU3zjyrKIrSUrG+GqvpPFMT4yiyteFbnyhwLdaL6TQ8WgVFUbijM8LeXLptYrGk5Mr0LMraKgrtNyg53bGtLuSKopBKpfjSl77EL/3SL7V59taxlcglVTR47xefYSaxkV40fX5uADcmF/njW18lWCxweyTI/3bkAD909x2EvF78fj9+v7/ScZVOp1ldXWXlamvPiRACNRBBGgW0cBfSMtedJ42NSX07/TSbWpxvG8kFSmmxNzJyKRPL6OgoTz/99CZXynbwliaXdtNilmWhOw0N2qHJAxnWPKSEKHVVLc7XdoaYTRY6vx85O839qys8OTFGUdP4g/f8ADPVsyfVXWGwYe6lG9QvO7KQpzg0iFytV3F2Xp4O5bLsmpnkXFcvGTuFA0Wt7apTFLz3PYQSqiUTWcgjc1mkECjBsKN/zL1Jwd+/nsXfhkFTT86gJ2ewFNAoeFVUS2U4IpgtDJMrd3RVffHlRo9GfidTyyni81M1opWN/tJSk1zsOYps4V7z+fw83NdJd7xE1nmfn0wgjJCScCaJt0GKq4hgOJ5Aq2r7bnRdqs/XEtm1g0QiwfT09LYe0w7tRi6z2Rzv+/wzrDWIGoWikPMHeFWXvDp8k98avE6npXOmK8pPHTtQuTfKEjWd1zNAaz48sNFGLBTV1nkSaa1HPKHSvWejcuHzbi+5lFWRtwuNLI4HBgb4wR/8Qc6fP8/nP/95TNOsKHBX68a1ijeNXFq58dpJi+VyOS5duoRswaSpgiY7q4xlITpiWIs2EudOkYvXW5LWLxT41MRNTseXmBzYxR997EkKzVqqjdqFvnx9xvIyxuXzNX4uFTis448K+MiFl9Esk4/NTbMoBCPBMK/29DHS1bNOrFVvjkTx3XfWdrETPj9iXWpfWhZWOonUdYTHhxIuLaxPLAi+b8Jenr4Z5lSLWNEkYEpWFZ1ruWF0af93r+8MU4VCKm+hqCY+VeH69DyFxLLNGObmTyawMPwKk5E9SKfuvirE1gv3wczGYK6/kMe/3v4tgVQoSsHrw1MsEMkkK5FGSlEZm5lDW1ncfOA6qKpaasdvg1haSRvOz8/XqCqvrKwQi8XaniNr9XpajVwurST4oa98s32Vck1jJZHib178Fp868lObu8XakdsHnKi+7DxZhlXIYubth7P9vu0jF8uytr3m0sji+Dd/8zf527/9WwDuvvvumvc9/fTTPPLII22d6y0dubSaFltcXOTy5cv09/dzV88u/ueV9gf86iFiXUhwNseySdGIaAdS1wktLvAbY9eIZTM8deYRPn/mkfbnsyxrvRtsomRGZkcssCmt5RHwiXSaB64PVX6mCsEAMJBN88hkmtzEGLc0D1c6Onmpf4DUzj14T5xqKcUjFAVRNVwalAo/NG3SnzNJehWibbbhJPNpdvhCCCGZ8CxxWZlsub4ipcSQJgEv6Ibk0vgiama5pc+hYhCPhpkODxDR001fv3tHP/ebebQGhXsBRDJJIuscq6saa6EoScMkceUSWtbuPLWf1ev1VmZ22kG5uzKfz6Oq6qaFdmJiglSqVpTz2rVr6LpOR0dHZVJ+u1wPW41cvjazyE9+44W2098AxuI8xuULKOtzcfWfOV9oj1zqB3WdoPiCjqMGgW1w8Swjm80ipdzWmkszi+Ot1Dad8JYml2ZpMcuyuH79OlNTU9xxxx3s3LmTsanWZzds02JVaTClt78xKahaJa0U3DFAdmGeu9YS/MzN61hI/vBHfoIbO3a1fj1VkLqOPjKEtTCH0tXjeB3VN0OvqvLTk+PsXnRyuSwhIATHTYPj8SU+vLLIyvUhblwd5POPfz+pRlYCddi5nOIfzvnoy5a+AwuYC3tYUyyCusXOnHS8wUzLJKvnifrDSCQXfbeYkstbsakhlS9yY3wKwwIntSqfX5Ba72L2UmS8e4CEr7VC5e1793DnFgr3HtNgLZlkeWUFvy2xgKj6vMFgkGKxiGEYW9qtlie9TdMkm81SKBSQUjIxMUHBJgo6c+YMuVyuMk9y69atyjzJa7U8bjVy+TdjM1id3SWppHweWui6AzAmb2GMXgVKkit258vpbRJWg9GDTS91EH4NBraXXIBtTYu9kXjLp8WcyCWXy3Hx4sVNA5gxj0Zdwqd1eH2ooRCmXRrMBkJVkUIgOmJk5+f44ZkJ3rX+3v/yIz/BjaO3QzbrqLjsBGVxntzY9ZL7IzSuDa2TywlV5ckrFwjmW3s4K+cSgqiukx0Zpm/HTlLvtp/ercfpsSV+bMmPX2zsDhXKnWEl5FTBZMSLocCO1RzRdffGglFASoj4QhgYvOy/yYrVugZcNeYTGRZmpvBIA0M0EEJct0uOeAtc7DpAXqleBJzvlgf37WFvqrFMjBOu6hJj5BL0DzR9rRrpIJvaqBfqr0FXTFXVSt2hWCzaEku5iywYDBIMBiv6X+V5kmrL4zLRtJNCazVyKUpZioZ9PvD5kLI0kxZIJkhnMig2eX599Brm5Hjl32WX2npyaTsAa0duxrT/+wTrhjtfCzKZDJqmvSZF+DcTb/nIxa7msrCwwOXLlxkYGOC2226rueE7fK17/AkhSgRhmohYJzKfw1ytWkiahYjhCBRyyJUlzq6u8OGVJfJCkJaSYiCI4g+AP1CKLgwDWchvaI85IPKtp1nO52s+Q8OrkBYfNA3ee/FllC2EtEu6zrlcrjRHUWgh522afPjKEu/LR5tKZwVMycFKZ5hCwSiSLeZQFZWQN0hSyfGi9zpFq/SgtiPjApBZXGJ5cRF1/RtyFuspIRjQeanj6KYWczt/F58/wMMdQQJ6nuVYD6plEkkn0VqYtdERDKeyqBNjLUU7aa+fcBWxgH16QgIFzYPfZrPitJC3k+aonic5ePBgxfI4Ho8zMjJCoVCoSLI0S6G1GrkY9bNY6zNp+c5utM5urEwauZYoeRVpnpJZX93mT1GELbmsZtprhhBtRC5ONdfu2Nbadu2QTqcJhUJvqKPnduItTS6aptXsuizLYmRkhJmZGe644w4GBjbvCLuadDRENJWUsXFjSK8PJRxxkEJxfjBLg5TZClkoQuARAo+qEpaScBUpCiHA40F4PMhQGCwLUchjFfIV5WSRyxF85iss2dkDOzzAwYLOkzdH6TANbu4/RPfKMp11viqNMJLPc6OqiKogkYUC0rJQQuFND1AoW+BTV9a4Q0aR0kSI9grBBaNIbL2tc1Jd5rI2gWVtfMf1hKKqKoolNhX3pSWJTywyl6mdURpQc6wam78rBYtUMMD5yGHb61LqKKAzFuOhgFop3AfXddNMobAWiaFrHnyFHOHs5lbktFC5Mb+AVj3X5LQAC4EnGMKT2WxQtkm+BVgMl869O9G6uoKjqkIL2/pqy2MpZVsptFYjF6MJ+SmhMIRKWQlZLNg216iKYltzKRj2GxTNzJFPpxDeQMksrIw2yMXJKCyRWGVmZmZbLAW2u1PsjcbbJi2WzWa5ePEiAA8++KDjl97VpFujTCwK6wNpnV1Ys/atmba7vrL3yvIiRDZ2KdmqAp8QAq9DWqO8MyMYQgmG8C8v4p+fJfnKC6z47W9GO6WAvWtJfurWDXqs2vOsdHUTD0XwGQY75mfw2nwGy7J4KZcjXpdyVA0D4fOVFkzLBARoKuZqnJ6szq+OK/SKMD5lnKj230gViiSL/ZicxOt5EFWxv37TssjqWaL+0iJx2TfJLbnYNHdpmmalC1nVQTEEhmUyMz1l6xhpmiGgtpXVJwyWOmMomvP9lgz3wLpV8Z4d/dxn5tBsdKlUadGRSlT+XfD4SIfCCAmhbIqUaTFz8yZaunmKz1AUDKGiZdO2D2H1vSeBqc5eUoEwkVx7HXlOaeV25e3bTaG1at7VjFxqYNm/VlNU2/MVHGouhhpA6yjdq1Yxj1VIgwThbSOl5UAusUiE+fl5rl+/jt/vr8jTbMVSwCWX1xHltNj8/DxXrlxh586d3HbbbQ1v2lCrOeHyfzTKbdfdzL5IhIIUFe8VITbc0LN1gnW+RtIwVcj39FHo7CJzuXXvmrMzc3x8cQqvzercHV+hO17q7S8oCquGgSUlASEIqipZy+JbmQxFOz+aTQtRKZ0nhCDeE+OfRgo8OfcU7089tV4zgYhvDpjDsL7Maj5IzjiAqj6IRzuCEIKCUcSSFhFfGAOLb/uvs2o1786qh+mBfCHP4vQ8q4aDFbGQNYQVUguMdO1hzRNin+G827fWp7Hv2LObOzKrLRfufXoB33rab1JoLM/N4bUhFlF/L2gaCuA3dIwmmywLwc2eAQrrEa3aps/764VmKbRiscj169fp6+trmEJrYyQKj6pgV1FUVcU2DVcwmqcwFa8fxVtuszdLk/rFPEJVUQIRhGpPCE5ipnt2D3DvvffaWgpUu092dHQ0Jd8yubyRmnDbiTeVXJq1XAohSKVSXLlyhTvvvJMdO5p3MrX9h2iQRhPSqqxVorsXPZmoJSNl41yZutbEVskFQKolxxKnVki5XgvRTJOP37zJw+nWCsw+y8JXRbYThQLDhQJOy5Ni98B4PBWb5d9c+jNOJq/YBhyaAr3BLDAEDJEuChKFbnTrTgK+h0kLeME3QsHaWqE6v5RifGEKr3De/WU6ArBaWn7CXoPzXYfRlea3uCpU7t+3hz1bLNxfMwX6tUvgYM7mT8Rr7AEsw6jMv2gN7n/TH2A02oNZrTrhKHRtv6lyer620+ESNqfQnnvuObq6ulhbW2uYQjPbiFyKDhtBj6rZRi5Fh7SYHaSUpeHJQATWU2XSsvCaWbLpdGmmKxDZqMs4RC6RUElSxs5SoGwIVpaqqa5f2ZFIOp1+27pQwls4cslkMoyNjWEYBg899FBbYnvllFcraCQcqQHFsm3x0oKNiOXGzZyp0yLytTkQpiDs7NpLWFmjyyzwUzdH2V/Y2qDi5aLOZJOhPKUmcllP3+k6USPNH934l8RyrS++Ya8k7F0GnmEsd4FvK49hCN+WZjjWJpeZSpZz7c7vzXj9+IQgs28/Q3Vfv3SoDwUCAU70dRHLZ5C0Z+9lIhjK5lFujpbe5/C5FEoiA+0oTqjRTsYMiVl3Xzk1LTiRhdN3/XruhsvH3rFjB6FQqGEKrb6g3xA2C7oQCj/3xPuxrM01F70NchHSBFH3XSsKRYJoHesaZFWT+mbRXkkgFrFPY/l8PgYGBhgYGKhohpUjvfHxcVRVrbGA9vl8mxSR3254S7YhzM3N8eKLLxKNRvH5fG2ruLZiNVpBA3LRpUREoo6+J9U+6pm6G9vvNPTohAaaaJ1FnU9fH94SsegS/kbzMLneopx3qOtAVVpMVUtRmWlwZ2aUP736620RSzW+ndnNs77HKKilgdiy9LvdoF89LMNifnS6ilialGmEYPrQ7UzY8LqQmxemrq5OvqcjyP74ApFsmqLHy0qsm3hHN4UmatU5oXB5OY5yc7Th66C0wLdKLEIIjp68m92dUT7YHeF9foV7hUG/5WwUVz5HsVjc1ML8ZpAL1Bb0yym0gwcPcvr0aR5++GEOHDhQqqm1I0xbJ7mkqCr/5Rd+hh975CHbtFixmURT9fW28rdZn9TXor0IhyHKjkjzSKPsPrlnzx5OnjzJww8/zJ133kkgEGBmZobPfvaz3HHHHfzZn/0ZiUSCZHJrbfr1eO655/iBH/gBdu7ciRCCv/mbv6n5vZSS3/iN32BgYIBAIMDjjz/O6Gjz+9sJb6m0mGmaXL16lYWFBU6cOIHX6+XChdZrEWWoQrRcKBQOaTHR2V3KqzbQKqs+Q15Va3a+/jY1oaxQBKqthteh9O2gZ+wWhwXcCnSQQiGo54g18TUBWNY8fKNYJBTf0FfKqypOZUvFNEHzVOZyPrz8NX5s9n9htZMYX4cpJV/KnGAxfHzT76SUNQutJlSkAsIEQ5ogwMjpTN+aJG3WZtmddu56NMZs705yK8u2v6+PXPYODPAOPYNWFWH69CK+ROm7Kkm5REpSLrpOJJ2kXGFbVTQmbt1Cq+/Ms7k0RVEqBfB0Ok0qlXIusnu9HLn9DhRjozU7GgwQDQY4DOiGQdJjkRMm6XS6pk1fURS8Xm9lV6zrOh6PxzGieT3JRUrZsBW5OoX24USOL84sEff4Gm6woJSmqhzD6+Wz/+SXue/wwcr3UH8+ow1ysVPc2MrrY9H2I436+tXhw4eRUvKHf/iHjI+P093dzf3338/jjz/Opz/96S13oTWyOAb4l//yX/KHf/iH/Omf/ikHDhzg13/913nPe97D8PDwJnO2VvCWSYul02kuXbqEoiicOXOGQCCw6QFqFQFVodDizSK0uhx+tfeKr/EXGvRoJVn99dRZNfzF5ot/zWm9ntq1yeNBiXRgLZZl2S2O6huRy0IozKw/gDQMelLJTQ6Hw7Euri0tEqozM3Oq6xiawux9MbTCGIYY4Hcm/2/uXB0qddQJ8CiljXMr6i5JQ+ML+gPkwjtb+uyGNCvilMICI57n5uItijb6YnbUku3fyaQ3VNPWXI+53sMQL0Vfd+3bw/FU44n7kpRLish6m3BZyiWhG6QGz6MVNv99RV3NyuPzsX/fPnzrG5hYLIaUknw+TzqdJp1OVyQ+wtEo+w8caDhw69E0uqNRiEZrjpNIJCqEVTbaKiORSNh/vteZXKA1P/nffuAUv03JjfMvRsb4u8k5hnNFcr5ATWYAqKTFgqEQT/3mP+XQjpLPUJlA68+nKq1/RmkT2TZCwKNgt33sbCFyaYZYLMYP//APc+XKFSzL4tOf/jRf//rXeeGFF17TQGUji2MpJX/wB3/Ar/3ar/GBD3wAgD/7sz+jv7+fv/mbv+FjH/tY2+d7S5DL7OwsQ0ND7N27lyNHjlRuknIqoV0XvQZdp5tR3R7o8xGOdJAuzyg0sbfNmbVWx0VFxbf+APhbsFauveiN6xCRKNI0seKlXbhh85D2F/L0ry9wBU1lItTBmlAI5TJcEBrp6Ul8dgRr892kOnwMfWwPQrvKwOIQvxuPEyluPGyWhGrfJY8ChqKSSBtEfbUL1WQhwjfEQ1jV8wNtILWQYG51wZZYYHMtLbH/CDNFA0yj4RClqXlRVZV39nfTt4XCvcc0WF5LsJZIVIQqN72mqlMsFAqxd+9eW4fVQCBAIBCgt7cX0zTJ5XIIISium161cq+Xj5PL5SgWi2gOu36nY72eg3llcmnnmQ14NH70zmP86J3HAJhaS/FnV2/w9fllJqWC5fODaREJh/jMD/8Qaj5LMpkkEok4klm2HeHKNiOXrMPz3dmxfQX4TCZDT08P+/bt48knn+TJJ5/ctmPXY3x8nPn5eR5//PHKzzo6Orj//vt58cUX337kYlkWly9fZnFxkbvvvrti/lNG+cG0LKst5dZ2Jm2jAT8rUJnQTy9XqdY2ycNKzVOavF+PDn7qn/wOd98Y4dT1YZu23iZYJxelpw8rvlJTvDSa7MB8lsXR1MbC9q3VxRoP+5prrnvgZw52MPmYF0Vb4Y5igV+JJxBNnjPdAiyTDr8gb0hShdIbJuQAg4Ez4NC+2QjSkqzcWmA+u4zHRtO4jGzQj5bRkYrCwv6jrLSogq2pCo8O9BLLOrQxN4AJXM3rcGMEdu5xfJ2QEklJnnzHjh0tLeCqqtZ0BC0uLhKLxVqSN5+bm2NlpbGkvNNxXs/IpRxJvJZz7OmI8E8fOMU/pURWz0/P8dVR+PkP/ha5dJp4PM7ExEQpdbhuZlUoFGrSN7pNOldVBIW1ZZRAGEWrsrZuUzDKaYhyu+VfDhw4sG3Ha4SytH69M3B/f3/ld+3iTSWXK1eukM1mOXv2rG1Or7wbMwyjLXLxtRAOq5QWjRQCpa8fa9GmaO9Ut1kXt5SGXmN1nAkEeeHkaV44ebqpdIw/lyNflTsVXm9JMNOmecAucmkEoSiOxFh9VcNn+kieNFAUgw9l0nwwmWmqeFMPvybwqvCVzO3Mhe5AFJKIXB5L84Mv2tLUs17Qmb45TcbMbLrGTRClFt3pXQdI1+8eHd7Y3dXFgxQxVB+pUARhScK51mZt8kLh2uIK2sJMw3OUMTAwQFdX15YW1tnZWeLxOB0dHU1fe+vWLdLpjc/gdD47XTFof4iyHbSTFmsFQgge3rOTh/esp1ljsUodK5VKMTdXEmp98cUXCQQClY4r0yZNaloSLdJdqvtl15B6AaF5HYUoHbEFy+128XbvFntTyeX48eMIIRxvwrK4Xrty3D61+U1dPqJE2BNLGVXKx0DJryUUKakm9+2oXWuqV+Ymi0s1sUhpgeZx7EoztDbl1xXV0fhK+APouQwXf2AAa2cGISX/RyLBsWxxS2KfGTz8tfku9HAXANIf2ziOUUAUkoDECvbYRpS5RIbJ6Sl0Nr5js8GV6IEw06EoxRbTjvt3DnC6mEYtWDWKu3mvn2wghFIsECwW8NoIEa4pGuNTU2jVBm0Of1YhBAMDA8RisS0Ry/j4OJlMiVxVVcWwLDSb58KyLG7cuEGxxVZ3p24xpzTadmA7IpdWoCgKHR0dCCFYWlrigQceIJFIEI/HuX79OkaDdUMIgRrcIHEjtYyRjoNlILxBVH/j9JbdEGVbXaotYLu9XBqhPEO4sLBQI6u1sLCwydulVbyp5OLz+RoW7Mstq+2Si78F46cylGYFMm2DXERHrKS9VV5s6h/cLXohCKFsLl5Wod09klAUx+W54FcZ+eQASqC0kP18PslZWSStQb7N3olpInyNs1iag1if5kNq66nOdfVbvShRdR38KsmFVWaW5rCEzfdo85ymd+5lOhjBdHIrrHvgT+7bw20O9RV/MV9purCEIBmOUtS8ePUikUySecXD4ugIWs7ZGbHyMTWN/fv34/f7sSyLYrFYSeU2ixBM0+TGjRs1LcSWZeFd19XTdR1FUfD7/RiGwdjYmO3z4EQWTuSylUaZVlGukb5Rk+XlAUqPx0Nvb28lvS7/7q9pRx9dW98gAVjFHFY+QyjgI4cXxVO3TthELttdx3oj5V8OHDjAjh07+PrXv14hk2QyyUsvvcRP//RPb+mYb4mCfiO040YJpRtNtjNjojb+CjRVxYBSymp5sTGBNOhWagbRYCdptvmQCq8PbIrO2s7dvM80mXzZw+iuDib2pOkQkqBXEPSWFgXdgqwO6ULjQdQL7OQC9wGtWZ8KIZCWhaaBpSis3JpnIb3S8tTiysFjzOeLje2l1zcVqqrx4O4d7GqxcK9ISbSqGD+qeMgNDaLaLOKi7t7y+f3s27cfr6f09yu3BJdhGAbFYhEpJX6/vya9WygUGBsbc2wX9vl8le6gdDrN1NSU40bL6eeNJvSXl5eJxWLbHsW0a3G8HeezW9jbGdYNBwNUPzGKN4DiDVCgVEszc8lSCk3RUIJR25qL2kLGpB1sd+TSyOJ47969/PzP/zy/8zu/w5EjRyqtyDt37uSDH/zgls73tiCXViOXbDbLpUuXUJt0edWeoPENYXg0RE+ffcqq/uZ9LZIaDWpKVpsPquL1bop2oref4MHZSTTLYlc6w4OTYHxbsOdhP/SUUixClOonXhU6fJKCFFiGJKlDdePN3xknWFKPbcEwA0zdZPrGBBkj14BYqkQbFYW5g8dZrUQrTWT1gyHeGQvRkdo8M9QMlpRc1S3k9SuOlxZYXamQbjQaZffu3Q13rJqmVRbvsrKwaZoYhuHoZb9JOj6xxsz0VONrt6yKMnCr3Wajo6Pk8/mKE2V3d/e2OFG2Y3G8HXAml9aPkc5k0RxmVIQQqIFoxYlOmgaWsTktqW2jXXR5Xmk7XSgbWRz/yZ/8Cb/6q79KJpPhU5/6FIlEgoceeogvf/nLW5pxgbcBubRrdbxjxw52CpPL8427aMpwmrQFEKEwUtEqQpX1qN8ZSWm17VZYeW8Dky9FKIwEguwp5Am2QmDaxmeSHg/7jt3OXVXmSpWXSUkonQcbSSwhBH4BrEc1cQMWCvDlwgkS6qEtLUCFTJ7J8QkK6Jtk7qtR/lZVqTC+Yx+p6jRYgwWjy+/l7s4w0WT7rcZFIbiaSKNO32r4uvJV9/b20tfX19b3UG4fXllZabkDZ3FxkcXF0v1nCuHYBaiqKqqqUiwWyedLe/BAIOC4e/f5fDz44INks9mKjH65+6pMNF1dXS11rdXjLRO5tHGMdrrFhGpvSKhp20cusP0F/WYWx0IIfvu3f5vf/u3f3pbzvekT+s3QitXx6Ogok5OTFavj8KvDrV+Ew25D6enFWo0jNI/jbVduPS29QXlNBT3bv/n6QGdheYFjuSw6MOb3k1U0ug2dnQ7pP6VMmJ3dnOrqYpcNsVTOa7V2zV1a6X9f9BwiqsUoFuMUi3mEGcJqocaVXk4yNT+N2aLqmwcvo719bBa8sf9rHNi5k3uLKdRkmqLmIR2KIgWEM6mmIqIpoTI2N4fmsImox+7du4nFYi29th7xeLzS3eSE8nMxOTlZI/3hRCzV7/F6vRVCkFI6douVF+N6Gf21tTXi8ThTU1MMDw8TDocrRNOKkm/5vG925NKufp1oc1uoCUn9XeXZ5vTiG1nQfz3wlo9cGtVc8vk8ly5dQtf1GqvjHq+3Zavj+kK6UBTEulAlUKN8XI+gIkgD+AMInw9L10vuk1uAqCc5jxcRjmAtzVfIwgMcym9khpc1D/NeLx4p2VvIEyh36agqnn0HOVPIEXboQCuj/UyehaKo+P29VKLlooXMmeiGTl7RkXXrysrkEnNrCzVpsEZ/G00Ncrm3B9OO+OsXDSG4e+9ujlXVV7yGTtfahoxL1h8kGwjh0YtE0ms1gnqLisbc2A20TGutyYFAgM7OzsqGp51FNB6PMzs7C0AkEiGVcp65GZ+aIvMaNaWEEI4NBXbXrShKxXvk0KFDFIvFSlQzNDSEaZrEYrEK2QQCAdsN4lshcsm1M0AJbTfj6DYbFp93+9q7Lcsim8265PJ6wikttry8zODgID09PZw+fbqmUKopzQxvq1B9UwYCeP0BClULcrVnSz0yuoGIdSFzWeRaAnN6AnHwaMkPvE0Iz+YJ/XJXmnR4TnsMnZ51uRAduOEPkA8GCXX28o7RYdQWmMMy22wWsPs2vArCq+DFg9eSkLMwCzp5S2ducoaFnF3h3uY4EkxfjKGeTueHvappQlM1zuzewUCDwr2g5CRZdpM0FJVEpAMpFBLJJJnhy6gNJFcqp1XUklOnlJWhPcuyyOfzlYK9E9FYUrK4sMDysr3uWT1mZ2fJrDlr2tnBaTF3ype3Mjfm9XrZsWMHO3bsqNQAVlZWWFpaYnR0FJ/PVyGazs7OmtrSmx25pAv25BLQBNmCjmjSyNP8pJvXJL9HI5fLvWYHSqDSlr6dNZc3Gm+7tJiUkhs3bnDr1i2OHz/O7t27N70n6mn8saqjGr+mkWNdqDKTorBau1DVT7TXHCcQxJqfqfxbv3gO/eI5lN4dqHv2oh29vaHHePXvRKwTKE/oL9eEFK2E+B7gcD4H+Rxhnx9fZzdzsS7MYoHuuWk8DtGf1WJarAzVUhsnthQBIRU1pBLMe0rEYoN6wlSkYC3cw2Qz+Yz194VCIR6OBtsu3GuWSddanKsGZBKrtn709Sj4AiiGjmKapKrcChVFqaSVAHRdJ1cooqoKxvocimVZjE9Okks3j4w0TcPr9bLWJrE0Qs5hHqjdDrGykm84HGbfvn2YplmRjB8bGyOXyxGNRunq6mpr4Hk7YEcuqZz93zVnSBACM72KtHSEJ4DiD7fdnGI352IYBt/+9rdrBjm32o1XJhc3cnkdUU0uhUKBwcFBcrkcDzzwgCOrdzQhFwCvIpAS8qaF0rfD1psbsL/pNA9KRwyZsl8ErKV5rKV5tMPHGrY6m4lVhN+P8PkRmsdxQr/dBmdLKPSurdK7rrJc1DQmdu4hqQhCiQQdiQ0CbXcw2WsFaVWSs9XUiFd4mezuZ8W38V05pjWlpLe7m7Oaha/QfAalHoaUDGXyqLfGYMeupq/PBsP4cxmUMsE32JF7PJ5KGkquRwxDQ0O2xGLU+//4fEgpyTrN8DRBo02MHbZSqK+Gqqo1Zli5XK6SQltZWUFKyZUrVyqRzWsRXGwG+8jFedMgFBU13Lnx/mIeSy9gpJZR/GEUT+PuKCml7YPTGevg4YcfrpBudTdeZ2cn3d3dRCKRlp6LTCaD1+t9XZUUXm+8LcjFMAzi8TiXLl2is7OTU6dONdwNdDTJfUqgWE6vqKozscAm/3p/tIO8aWCtLCECTXxmmhRg1VhnzUudJvTbLU7Wty57DYMjsxutrIs9fczFOiGfp19eb+vYGZlHpcWwvwVuCaohhrp7yGr1i7b9mw/u2MEBn0ZGWiiptU1q0I2QEQrjszOo6xYEniaF/kwoSjCT3FIHYHkBcWpG0ap2vsFgkEKh0PawcDXebCfKQCDArl272LVrF/Pz89y6dYtgMLjJHKy7u5uOjo5tjW5sI5d8646nZatjLdJTkoXJJZHFPIrHi/BHNneUOtxzAb8XTdNqBjmrSXdqqvQMVpuCOaXQ0un029riGN4mabHl5WVmZ2c5duwYe/bsafq+ViKXqoto+GuvqlR26kpPL4XV1cokuGz2gLZBCqLRDqXN0MVqku/uS8TpW49eZm/fRzGUp2BIdsk1dhQbt3DnLWi1OdKpVlSG39PJq90dWDZNEypQk3gQglN7d3M0FadspG4JwVq4A93jxZfPEsk5m6ktKxoz4zdRqwQ+dY/PViJTCkExGCaUee0mTc3MuuoL+1tx6oT2nShf79SV1+vl4MGDHDx4EF3XKwvs1atX0XW9pjEgGAy+pkXUjlwybcpNlIcoN2ZaSnU1aRqY6TjSMhCeAGog0kC0cnN0Vk26ZS20eDzO/Pw8169frzSI1NetMplM2yaJbzW8pSOXYrHI3NwcuVyO+++/vyVBP4CubezaMC1Z8WvZFFk00i6KdrTXgdJwmFOWbHJbPJTVhqKBt6BzZ2as8u8pXx+L3m6i6QUOWPHN9gVtfCYnchFAVAnxSnfUllhgXQl6/Vya5uHsrj521BXuFSnpSG+kJvNeH5lgBCyTSCaFd30TMCk0EteGUTfpcW3+LNLjZeeRI3SJ0q6zbPDlVLt4LQh3dJDapvqKZVltteS+ngX3+m4xj8fz/2fvvcMkues7/9e3UufuCT1hZ3POUauVVhKyOHRIgAQiGIzlMxIYBxBnG98ZTPL5DAYf9+NkY5tgks+AgTsfxgYjGwuQEAhJm3MOMxsm9cTOlX5/9HRvh6ruqt2Z3RXm/Tx6Hu10qOruqu/7+0nvNz09PfT09FRSf6lUilQqxenTp1FVtRLVtLe3+04FOZKLz26xTK6AHG3cNglZQa6ThTGmnTdgrRSRy1poiUSCpUuXYhhGJYV26tQp8vk88Xicf/7nfyYcDs9p5GKaJv/tv/03vvzlLzM4OEhfXx+PPPIIH/jAB2btmDecXNx2ahMTE+zbtw9VVSs/iFe0zya5CIGIulgdu+xgnIryrdBsmBMgL0lEvL6fj3x6fGgY1l/598LCMAsLpXmPvA0XCmDY0KlCuwL+wqjG81WQCQqVSSuDsB2mN8uQFTB0IqEQd3fEiE9PtDxasFio2EuXo5pL+SLG/l1XaiZVcJJyWbhkCcEZwisX67u7uzEMg0wmw1RRp1AoXFMNoayZNzXu0IwgRAOBW5T8yJttMGRZRghBNpulWCyiqmrTIcq5jFyadYuVzczKfjemaVbEJs+ePcvhw4eJxWIVsonFYq3tsC2rgZAyPtJiMyfm6WmSFkIOO2vpRcL+JtmdUmiXLl1i165dPPvss+i6zhve8AZe/vKX8/KXv5wlS5b4ev9m+NM//VM+9alP8Td/8zesX7+eXbt28eijj5JIJPjP//k/z8oxbji51MO2bc6fP8/JkydZsWIFgUCA/v5+X+/hJ3IRQpSKtA4Lt2jrwAbsejvbMupeI2QZOjqxRoYhHKk1Imt5Iu43kIhEORqKELJteosFOlt0OLm5Tbo82RVBCZZU3S/nsiH0QoFUukB7WENqYW0g1xnDBCQFLEHaLiUamy4ZQtCdTHKH0Ak0SXe5wbZtzg+PUCgWCbkssKGJ8Qr9xWIxFixY4LroKopS2uRQWgQmJyexLItQKEQ0GnV9nVV3bFmWCQaDrvUVp0aG8vfUjA7KQpHV3WuGYdQIYtafx1zBz5yLLMt0dnbS2dkJlJp2UqkUY2NjFXmccjG8o6PDsbXaec7FZ/3KhwdUQJEchnsh6pNc6hEKhVi+fDnf+ta3+NKXvsQXvvAFtmzZwpe//GXe+c53cvDgQdasWXNNxyjjJz/5Ca95zWt41ateBcCSJUv4u7/7O55//vlZeX+4ychF13UOHTrExMQE27dvp729neHhYd+FzpBfGYZAEOrUb8sdZFJXT9O9upCVUltiKIwWCFAYGUbqW4i2bqO/Tb7T7qwqHdetF1k0s9O+oAUYV1WipsnCfK7hR2xV66g5fx913SXhHAFdIRQNUDBMJqZLMv3xkEpYa7yUqtu42+UMU2YQs2qJFE1SbEt6urk1N4F0FWKgOQTHU2Moly/CgsVNnll672QySU9Pj+cFUQhRIyh58eJF1q1b53yEqs+oaRpCCDKZTGVWxum9gZIIp49mBadzr9Y1q8eNilxaIRAI0NfXR19fH7ZtMz09TSqV4vLlyxw/frzS5tvZ2UlbWxuyLDuSi+63OcIHueTzzv2S0VmskRQKBXp7e/nABz7ABz7wgYrr5mzhjjvu4LOf/SwnTpxg1apV7N+/n2eeeYZPfOITs3aMG04u5bTY1NQU+/btIxQKceedd1ZaJa9Gch9KhmEFrwuTFrhCLqpKINFOodxB1qLGYMsSIj4zIzORRdm0DaWrB2y75Kkyk65oBVEfBQSDiECoko7LVS0GC4oFFswQTVpIDARD2ALmFwokTMNn5OLTiGxmQQ4oMj2JUqdLucMmaE5jK0GMQPvMzVp676ScZtSMUN8BJokCUHtDipnC/eJ8mol4B7ahEy3kCTgIBTphXMic7+9HmWnDxmjesTd//nza29tdn9MM5UWvmf5T+ROHQiF0Xfek8N1qet/xOC7XmFs30s0SuTSDEIJ4PE48Hmfp0qXoul6pURw/fpxisUgikag4UFbPjk3lnL9nge14f/hxr3Uj/TYX4curQb30i9tm5Grx3ve+l6mpKdasWVNZYz/ykY/w8MMPz9oxbji52LbNwMAAx44dq3SXVF+YiqJclfeE7mPHGwyFyE+OVybjC1UaUy07d9o7sYdKWlHykuWoq9aVRChz2ZKUjMebrPooItGOXchhT17JyeddajJR22LtTNrIAvpDESbyOcYMg3YPxFZvpdIKwqGOUu6w0Zm5AYw8amEcbJsOOcOo6TwIVl8HUVWVO+d10zNTuK+WcJmKxCnICgG9QCyXcaTPi0IhdeIYSrXdgOz++dvb24nH4w0DrV5Qdo2EK1IdQpbRFKVh4dbCEfK5rKcusGg06nuIUtO0ygJRf+zyMF495tIsbK4m9FVVpbu7m+7u7orCdCqV4ty5cwwMDDA4OFhp8U3nnTcjtm1jZsZL3V/VpmA+ztdpgBIgMosWx+l0ek4HKL/xjW/wla98ha9+9ausX7+effv28Tu/8zv09fXxlre8ZVaOccPJ5fDhwwwODrJt27ZK3rUaVxu5yEI05LvLCMsS2SpfkKKiOHrXAwjbcs5uKSpSIoFV5QOCJCFUFaGq2NHmIWzDgla2hnXxjcl7uPglYFEuw4nOJP9vaoqwECzRNBaqKj2qiua0gPqc0PckrKME0ZWSm92Y6S6amddilbpVNBrl7kSYWHrC4ZgQr2oLLqga6UgMDJ1YPodm6Jy0ZfJHDiDV186cPp4oyRSWUyyGYZDL5SqbmFYLY7VrZBm6roOuUwDkGeMqRVEIh8OOPvdmvabdzAS8Gxk0QzAYZN68eUxNTVEoFJBlmUgkQjgcdiW0uRzOux7aYtX1pZGREXp6egiFQoyNjdHf30//JbehaKmh+8vKp0v3myQhKR4aNVwil8QsRi5zbXH8X//rf+W9730vv/RLvwTAxo0bOX/+PB/96Ed/dshl3rx5LFu2rKkGkmmavneXshDoLjdWtt5wKhLDuuDcNOA0yyKiMWzbwkqNQuxKuGpXFU9bRgzlLrkZh0bbMN19Y/BGLmWU1Zmzts2RQoEjhQICmK8qzI/FWSBJtJdFLn3O0kk+R/rd0hBASZHasuhub+NOFTSPhfuAXiQwUVqwTeCQpMGBPd6TgTNq1uXrQ1GUSj67rCScyWSwbRtFUWoGIk+fPt3UYlhwRXNsZGSEiYkJx+eNheMEZh6TJIlQKMT09PQ1RRTl94HSzvfChQu+hCtnCzdCW0xRlErUAhA/8gxcbi7aCldMwWzTAEnGzE5iGwWEoiGHEo5dZG5zLolZjDQymQw9PT2z9n71yGazDb9RuX41W7jh5JJMJptGJuUw3zRNXzee4oOIJGx3vay69FqsZx7To8OVGZcaYUuXzhw3CCEqF6+kaa6+MQB5HzlhyVkTkgu6weF4O8+/949ZcO40d//kB2zsP8YKxpA9dh/4zdVLAkyXtxZCsHLBfLZkJ5Ga1EbcULDh6MQUhmHgnpBoog3n5DQpBMFgsLLZ0XWdTCZDsVhs6hpZDcuyuHTpEhMTE+5dZDM3tqqqyLJciViuZsdf/5pMJsPZs2eJRqOu5DIxMcHZs2fp6OggHo/PaqRxM6gi+28Wk0EI5PCVkQdhm+jTE2BbSIEIUqBUH7Qt57TYXNZcZhsPPvggH/nIR1i0aBHr169n7969fOITn+Ctb33rrB3jhpNLK5QJxQ+5ZLNZX502qO5zIQFBaUJfCKRkN9NDdV4c1YX4FnIiTdGirTfvw0JVavLZ9Y5eFmRMLi1exleXLCdmTPPyXd4vKB960zMvkBybImwhsWZeL2tdBtJaYVLInB0oFe7Nnj73J84cuxiJonmU1a+Gqqq0tbVRLBY9EYthGAwMDFTIolmdRW/rQM1Mu3YfVSOrBpAsk2ALl9WJiYlKC2+zaf9YLEYmk2FgYAAhRGXXPxs6YLZtX1fxSkdyMbzf/7ZlNVhvANhCRoldSdWbhTR2IYeVd46wO+Kz18011+TyyU9+kg9+8IO84x3vYHh4mL6+Pn7jN36DD33oQ7N2jBtOLl7SR0IIz3WXsiOlJinN/darj6G4558Lug6BICIYck5ZVUUU1jWRS3PyKHgw5CpDdgrlheDS2h2YRpLP7CpNmz+TlPlee/PvtWhLaFW5M+HLsw8kZMxaIRfsUJi+jZvpnE6RCwTJqKWCdGx6CsXDpmBQUhg6eQJlpsPPbhYxCsjNX0Toor9ZqYa38bATzxaLXDh3rmnarAxLUZEz6YY5FNshQp2KxBhIJFk+7GyLXD63atfK8t+bkcuGDRsqkiSpVKqiA3Y1BmE1n+0miFwKho/0jmV6KujLgSgEohhTzhmG9laK3j6QyWTmtOYSi8V4/PHHefzxx+fsGDecXFqhPM3cilxs2+bkyZOcP3+e9evXEzl0nrGsR/3eZsXNYBCymZrOrZrzk6rSYkWfU8G179T00Zzk/aeS6xYoPRRmcPltSOMmtF+56e4aNblrVIYmG1XLhoPZdoqWzMJAGoFLg4NHiK5ulixeQjRbarUNFfKEZrq7TCExEY5iqAFCxRyRXKNC8BlkMocPIlddD8IlojUDQSxVI3L2pOPjfjS8WkXNF4TC1OmjWB42QZOLljMZirDIYTNSHRnawEi0jZF4+8xjzhBCcOHChYb6jm3brkOU5c9TLUmybNmyGoOwQ4cOYVlWTVTjxavkarrvrgWOkYvuJ3IxEXhvcFAEDS6UAKFZVH7OZDIvai8XeBGQCzR3o4SSBtn+/fvJ5/MVKf7AkQHX59fDbXGSunqwJifAxU4YQJUkyo+KwDXImLvdjEIg2js4r67g+10RlPF9zJs4y9LMBIrLMl9dP8l09ZJqX4s8PnOzNaR2StYDbocPShYbI1eI1c4ZXJ7WCciC9qDcOJ9TB6mK6NRlK1kWj6LmnWXlZduiLZuGkr8n2WCIrKIhSxLR6UlOFAzsE4c8Fe71WAJbCCQPUcS1IheNkz18AOGQNjOFVNO+Pbp8DUO5Am573PJnk4XFuUQ3U+GqBcaFDNPpxggISvdNM8UBJ9QbhKXTaVKpFENDQxWhxXJUUx5irIebp/1cwel4Qc1HWs5nk4qTC+VsY64jl+uBG04uXnY4bm6UAOPj4+zbt69Bit+XMnJdWkxSFOxEeykN1uImKZ+V1NmNNZ66+l2b02tUFRGNY4+lMJU4wdgyiC1jZBFc0qcwx/bQNn6cFVOXiVfl4svzI2PL1pIxu5EzVd+d7n9mqBphCebFSt+XqZvY0zo2IIdUJIcbuty51t01n2QkiOTBnKtyrHyOMDl0BEcMG/nEEecn1i26hWQPyvQUciFHLjK7w2c1h0WQn1EACLnUY+yZtmdbkri8bA3j2VJKslkUogWDnInGmNK8pVncohNwd6L0Ur8UQhCLxYjFYixZsqQitJhKpTh27Bi6rlcUfTs7Oyu2xzeDE2Uq7b4hrIft19TIoe4VDQcxDGNW5ofK4p4/j1yuA5zSYtUaZCtXrmTx4sU1i7qfS1tRlUqYK8IRAqpKLjVS+kOLIq4JtSZfltnUIMwN9YQkojFsy6pYHet1/WyqGkftuYd8zz0csEwK00cJjh1kwfQAMnB5w22YYxpSw5TktSS1YIEY4jhLAZBVGRIlQrFtGyNTxNZNJFVGCqsz9TKJ5fOWEOqM+vYpB8gXCpy9dAlkb2mLfN8iAoMXrkQRs5SdqT9zS5YpdvcRunCO3IIlTV5oY6oaFxavJO3BCCwSjTKqhsgJd6Ku/FuSmjYZCCFmzYmy/Jqy0KKTurGmaXR2dpLP56/KNuBqYNu2s/yLS83FyE6AXkSoAaTQTJecT3JxakXO5Qv86Ec/qrhx+jEGc8LPI5frhHpyMQyDQ4cOMT4+XtEgq4cffTF5puYiOpLYU5PksnXdIG46T4EAyEqN1TE+Cu8NUFQwdERnF/bEWI2kf31RvOb0JJlQYgMkNnAROB+awnr2nx2DIeHY5ODq++jwTOcbUQiBErmSFrSKJkZOZ+m8RYjI1V1mU1NTDAwMYNs2qiQ1tVcuRxGhC+fqT8z9NTOyQ7ZtEwqFPLszmsEQRjRG8HLr1KsRLRXj83XE4nRW8+fPp62tjT4h2GBZpPMFhgtF+i0YQa6Qc7nJpUwsbiTTrKB/rU6UburGqVSKTCbDqVOnGB0drYhSzpV8fPnz1afndBfSVcJtlf+39AJmbhrLLCJkDUnzOGHvsBYoisLtt99eYwwmhKiJ7Px04c11t9j1wIuCXKolYNLpNHv37iUQCHDHHXe4/mDhFuSiCAhKMmnTpCgkpK5erBGXqV65kVxEvA27mEdYZu2y3KyA0QqahtTe4diVZvjYXSlSEwE9jx10bqhXOnaDpMlImkwsoCAFZAo5ndHOTpT0NKEqDxY3jIyMMDTUeggOQDYM8vPmNxILzot4XlEIGAbMaFfBlVSEruulyfpIpOa15f+XQiF0NUCgyUxSGcWOJGdjHRgOaau2uu9g6dKlNTtVSZKIh0PEwyFWAEVdJy31kJ6eJp1Ot2yLFkLQ2dlZkaipx2y3ClerG6fTaTo7O5FlmbGxMc6dO1d5vNwYMFsKAeXvoZ64DLfhqipIagBJDWCmx5G0IGZ2ClvPlyzHQ3FXGwynyEWRZUdjsFQqxaVLlzh+/DjhcNiTG6dpmuTz+Z+Ty7XCqxulaZpcvnyZQ4cOsWjRIlauXNk0rxttQS6GDelKZCDciaV0AlC1PpQkWkZK4XRDSv/q0gG2oSO1tWNdcm43NZru22shNRscdFyUvEcuzeMHB8zUoIJhjQW5aZAh25FkMhDCKhYITqRQ6lKeAwMDnvW1hBAsmtfLpSOHnA9f9/9ZLUBkpkEjp17ZmJTlRKqfWxQCrWrnHw6Hyeo6akOqqfG7y/f0oaVGMEPOPkSBqrz96tWrWy62mqrS0d5OR3t7hQjT6TQjIyMNzxVCsHr1ajo7Ox2lZ2DutcUCgQC9vb0sWLAAy7KYnJwklUpx/vx5jhw5QiwWq5DRtaSPqqO3ahg+Js1DAZUizPi0XHGgVPU0uVx2ZoCyKkXlGLnUrjf1XXhl0c1UKtXSjTOdLjW0/JxcrgMkSWJwcJBMJsPmzZvp7u5u+Zqoj5unqcUwEFBVCvlcSTusM1kbWdSnHa4y1ywUFQruRUgT762VUhPNfWFZmLZdMwsznFtGXD1NSPWw25uFXHrY1AlnS2xtRSLkZiIG0zQ5f/68Y53AKb2jKArr1q2j0NkNLuRSXvgtSSIvKxViAZrWYwTUEItpmqXhXKcjVFknA+TmLyZ4sX+mrdj9+5IkiTVr1vgufgshCIVCXLx4seExWZZZv359jZyNE+ZSW6y+oC9JEu3t7ZX0dbVni9MQp25BNOQtheRGLqYP4dpsPo+i1i7kQlbQ5Wjl71Yhg1XIgiRhOyh0qy3Wm3rRTTc3zosXL1bWt7kkl4sXL/Ke97yH7373u2SzWVasWMEXv/hFtm/fPmvHuOnJJZ/PMzo6CpQ8CLz6SsdUH2F/qwFGGwiGEJqGPdIiHWLZ3v2I69Hkhjd9pMWEy3SyLUloi3SGAhapkErAhKVTeVT5/UyYJiP558B+mph6lkSw0FBABu9psTIsmn8d0kzuHkomXF7thAOBAJs2bULTNIrNdqk2GOEIhg3hOu0yXy7UTdJI1sw520B+wZKa9JyrE6QksXbt2qvaseu6zqlTpxqaXBRFYf78+eRyOWRZbipcOZeRS6tW5GrPlvohzvd99Rl+cmqUgF1gw/wEb7xnKw/esdFdRmfmWPXfo+XHB8jDhVAbvTQ+X/PRnepUrypHdh/+8IfZt28fQgg+8pGPcP/997Njx45ZTWOOj49z55138tKXvpTvfve7dHV1cfLkyau2nnDDDSeXZjdXKpVi3759BINB4vG4Z2IBiPuJXFoU4aVoFGsshT3lkKqZpcgFKKXfXGD40MaXHbrVzFCAZOd55g/vJbrwTfQVS8fSgYvFMxi2Truylrh8BwXgUvYipvkvqGI/yfAU5S5jv2kxJ50zN1geF9p4PM769euvLGBNZm1sWQYhEcw6+aPMXkeTBRS65znWfeoRkSU6EzGikRCGYVBoErHWI5/Pc/r06QbSUFWV5cuXV0hD13UuXLjgqrI815GLV9KsTh/9zyfP8uNTKUCQF0F2XSqw66s/5ff/9ml6woK71y/i1155B0vnd1Ve70ZkboroswGnmkvgGr5PWZYrUdsPf/hD/umf/olf//Vf5/jx4/zFX/wFlmXx93//9/yH//AfruW0K/jTP/1TFi5cyBe/+MXK35YuXTor712NG04u0NjVYts2Z86c4cyZM6xdu7aiUusHCR9Wx80iF6mrByufcx+krLuIr6kfxo3khCAkpRmzzxFjAapo/rPVL+h6Z4xl4sckxkppFF1cuTlUSWO+tqzy7/H8BNligYAcpj30CIPpUVAT6NkfIvNTisJn772Pm9zL3qynp4cVK1bU/dX5Wy/09CFsGyXjz3jralBQVELDlxsfqGvwaFMV8oaJiag4RQYCASzLxJi4TA4NoTh3LU1PT3P+/HmHQ9i0tbXVRCOFQoH+/v4XheS+bds8/Pg/s+uES/edrDFUgP+z5zLf2P1/CdgFVvdEed1dG7n/llWO5BJSFXTT60yVTyJyIhc/600LtLW10dHRwd/93d9hWRa7d+92uOavHv/4j//Ifffdxy/+4i/y1FNPMX/+fN7xjnfw9re/fdaOATcJuVRD13UOHDhAOp1mx44dJBIJzp0759vTJe5niNJp5ysriLbSIKXo6HS9/CKyRHnpkrp7sUwDiatr8xRO7aGqiojFEZl+fqf7I2RMjR9lbuVUYQuSvYKoaMzLylUnqy+Ms37iH9HMK+mmolUEybmHvj3YRvvM2pY3iuT0AkPpSdqC9xBQ76MonwMac/1umK39oyRJLFq0iL6+RpFKJzHNct2jMG+B+7nNwskVJbnUyuxhOLRLUxkr6pjU0mFJ4khB7lxIgFJ0ks1msSwLWZaRJImxsTEuXbrk8jlqhSKrxSs1TXPUOrueNZdmME2L1/zptzgx4K0zUAhBUQQ5OGKw/2s/5k/+33OEhcFL9g/x1lfczoZl8wGYzvuQYvJ5HTiZhXV3tPl7kyYotyGXpa927Ngxa+8NcObMGT71qU/x7ne/m/e973288MIL/Of//J/RNG3WvFzgJiOXyclJ9u3bRzQa5Y477qjcAFfjRtmhqt57oOq0uJRoFAMJe2aQskZWvw5pXS8Zh8UTWMODNbMpflHfWCAiUWxs7LEURqC0eETkIvfHfwz8GID9uRXszu5g2lhLQnQjCQnJKn1uaanG1qGvNxxH95irCioaQVVjXqwby7ZIZcbJalnctEuEDQ29BD5uXLfdriRJrF692lNO2BaCfN8iQhdLO3zJRR59NpBXVBTTcKxNVTDzWG9AY7BwZZFvtq+vlvwv5+PdiOXKYZzFK91ENG9kzaWMXNHglR/+ey6OOOv2NYOZzyCpGrpQmUTj24dG+Pahf0Ix8yxPhrBJNrxGlSA3MYKQ5FKr8VUMO5c8mBpTw3oLtWo/mOsBSsuy2L59O3/yJ38CwNatWzl06BCf/vSnf/bIpZXV8dW4USYCbspbjVBlifK+XupIYk5P1nizNGm+KhFTIIA1Vmo6sAoFpBYulK6okqGROpJYUxMwQ6qGi9f95tApNodOATCsJ/hR5jZS0buJLp5m6dAzjq8xmgxk1mNMmWQ+PUhCojPSTlyeBpwXA1uAmdWxCgZClZEjqk8N5UaoqsrybbdQbE8yYeSJ5fPILqlIS9UodiQrxAJguUz225TIfCJfoC3YujOpULcQZbUgwWIeCSi0+IzxeJzBqdqOMq+zUPLM/EQrCCEYHR2tIZZmuNYhymbwWnN5xxef4dK0XkpL+2gdNnPTSFrIkRwMOcjxcRsp1ngOugVKvFSvsS0TMz2Obemu5l+OcHlu2MM15BVzPUA5b9481q1bV/O3tWvX8vd///ezepwbTi62bXP48GGGhoZm1eq4s0UONCrLlTmXsk+VqJZxqYJb5CI6k6VIpconRPjo6mi4CWdqLpLDeRgeqjnd6iSvb/tX0tLT/OXIlOvzirbhuThU/7klF5IrQw6ryOHSd2/pJkPDQ4QKERKJRMvdcv1iEA6H2bhxY2mGYLpEaEVJYiwcx5YEidw0AcNEAEYkiqUFCA7V7/AdvGRkmZ6ly+gOBqCQ51IuS94WBDWVrlAQ1eE3NKvqYZlIjHBm+spX6GLkZskKItnNlMPApZ/anJeFOpVK+WoMMAxjztSLvdZchqeLJRdINQjYYBpYeh6KeVfyNbNTSMGoo/9KNVpaeUgycrQUCRtTI1fsjoWEHIohFGfydSOisIuG29Ugk8n4al7yizvvvJPjx4/X/O3EiRMsXrx4Vo9zw8ml3OO+fPnyplbHftNi7S3IJV1FVrZllaRfXCyGGyAEUrIHa2QQUR+l+NgFNeiJqQpS/RzNDNwiFycodvNz8DOQWR95yD6WRUmVKWTznJ+RSUkkEnR0dNDe3t5yN652JNmyZlXDd6RZFl2ZK117k8EwE5ICNmjjjQODdr6utTkUZtGyZSSq3jYiSUQATIOp6WmmLZveSBhFVVGqFjFbCPI984kM1g26qioUao9jBoJcWLjc1V10tpd0P8QCcPLkSQzDqAwytre3z1q7q9eai1EzXS9A0ZAVDbQQRnoc2yiAkJFmInozO4kUiiF8uLJ6QUDTMGfsjkvnb0F+CqOYRyhVGmQALmnWSHh2yWUuI5ff/d3f5Y477uBP/uRPeOMb38jzzz/PZz/7WT772c/O6nFuOLkAFbkENzRTRXZDwM+NIknYM2ktJ8hSlaKWqhJtayddnuivP69rqLnYto2Vcj4P08cNpdrNidhPWqwesi9J0FoCnZycZHJykrNnzxIIBAgtXU6PptIeDiHLcuW5E/F2utdtRNitpc0T+SxoQS5mnV0m7SqXR5FoY9mCBYSarOyKELTLgkI+TyGfJxOKUIzEkCRBoXc+ocsOCgp1TqZ6NE5/dx95jzM7V4vqiL6ViGU9duzYQUdHB6lUipMnT5LP5ysT452dnTUT437hNXJxlWiRVZTElUFpMzeFOT2GUL2mnvxdowVdp7pBTwgJgnGUYGlav6xBVoLzOUdfRORy66238s1vfpM/+IM/4L//9//O0qVLefzxx3n44Ydn9Tg3Bbm0uhD9psXKxmEzmXVvx1eUSn2j4fgIdGaUim2LdNUgpV13Q9vXVNB3z4ObPva6Mja2kBBOhUctxNF4lr6iTXfBw3fT8G9/C47p8tsWCgXOovLjnIU8MsjygMJCTeZyexdjoShdvpRqW9d15O5eVnQnfVhClRDJZSCf48TkNEEnYgGkSBTGS5uCQkcX52Pt6PlCqZbg0pLm51t0aieuvyf8qhAHg8EKkQA1E+NnzpypKBz7jWrK5+EncmkFORTH1vMo8W5sU8fMTGDreZBkJKeaWguPoQa0WH/KGmQAZsa53hidxTTWXKfFAB544AEeeOCBOT3GTUEurVC+kbzkiKuNw2ptmlpAC4LhvPstWpajUjHQmAa7FnJpckNaTbsKHN5LUaDO1CgT78JGsEf7Lt/t+SrzjA3cPtDOtuIKFkpLa4y9yqhfsvykxQDXxbzQ1VMi4kwGUwhOFE1OFE0IlXZskg+5G7lFGjCwaDHL4zGf+9kSxoXC+fPnEE3TnaVvKdMzn341hNXMdpnSvno6X2BKEcRmPFD8wOtmq1zjckop17cih8NhwuEwCxcurFE49hvVuAlJOsGPREs8GiMLCFmtFOUBhJ6lmJ4Ey0DI2sw95PNe8ZEVcFtR4tHZJZf58+fP2vvdKLxoyAVKbZnNisKTk5Ps3buXRCLBzp07kb/zjOdJXREIYDulVoTAVlVsF0HJBjLxWRuqQZPdoZ/IBUAoMnbVGjfWvYzI5BCBQgZhLwLgsnKIby6Fb/IjErkA21PLWJ1ew3qxhphcaoWsP6rkU9vG6cYte65IicZ20TJ0VJzNZBthuZyTDcjhCN1d3eR1nbDPtuTLksrwiWMo+RxG0w5AweSi5VwwrJY1N1UI4orMZcNk39AEYTHOyoDKonCQZCTsqFFVHZVIkuSJWDRNY9OmTRw8eNCRXJp1i1UrHIO/qMZP5OKHXKZzBeRIY53OVsOo7aWF3TYNzOwElp5HFPPeJfR93FuWy/0dj8wuubzYRSvhJiGXVrucMqE0I5cLFy5w9OhRli9fztKlS0sDSEKgeyUXTWtMrqgaIhpDFIvuiZfq0F5RUfwMb9bB9VS1ALJs0l8MMWgGiUsGK7Q0ShNJGKFcacUenr+O5KVjSDOpJuFgpDQZKvDkgqM8yVGEKVg2Mp/Nk6tI2m01z5Msl3kWt/OounEbPVfcz9/2LtTsCEsI8loAzdBZFNQgqJG2bCYME9vQiejFpjR5DompwweRPcwvZMJRhtKNChL1HyEkS6hCkNINegKlyCFrC/bnDfbn05CaZiNZFgdL3XX1EYLXukowGGTz5s0oiuKazvLTiuwnqinfn94il2uzf6iHkBWUWBIzN1WS0C+ksQu51nMtPiIXpwFKSQjCAXXWuu9+Flwo4SYhl1YoC9M57dgsy+LIkSOOrcwJVSFf8Oh3XXezafEERcPAHk8hOrtcXlQ+QRkRCmEDejrtO69fhpM6s4jFsQ2Dom6wSMuxaGYiZ9JUOK2XdjfL1TQJufaiF7KMJSmk5q2k+2KdPfDYBDQRlrZlm9O9Fzjde4GXnNnKyvxihoxRQlKQYDDsmVjgSjpb2IJ8X63nSrO3MSUF2yx62lPWP8eQJAwhES7kMapmh6KSIKopoCnodpAx00bXdWJGsWaTMD4+zvTFi3VptMYzsSWJfO8C1zqbbNuV1om4IqNbNlPNog4hGM5nCV4+x1nCaJpGR0cHwWCwxhzMCeWIIRqNsnHjxkrk4HTPCCGuekK/VVRTft+xsTE6Ojqa12rmSP8rFNBKEvqBKARK94htmQTMLJlMBkkLIQWrIgM/qtQOkall21zoP8+zz0oVCf329varHlRNp9NzXnO5HnhRkAs455lzuRz79u0DSorJ9e2tTdVy6xAOhignxaRkF/p4VX2lxU0gOpMlO2LDwNaLWJaJdDWOlHUXudTZhTU+BpaJJdc+lpANtskTQGlO51ghypSlMU/JsVDNYYbjTCkJui4ebTxfw8JzKkAy6dE66dFKi8l5Gv1DKrDBzBYrFsdQSovJtoSE1FAQdzsDqasHYRrkFI2cpmILhUQujeqScqp+n4KsIGybYIuIQxWCHkWAEgAC2LaNaZoMDAxw6dKlxnOrO7alahTbOwld6md6+dqmx4oHNHLFInrVZeR0SWm2Tm86RZbSwlIsFhkcbOIzVIf29vYGpeX6Qr8Qgne9612+XBGboT6qGRoa4tixY5w6daplreb1m7v5zt5+RgoCpNlbinLZHHK0NiUmJJkCYZR46bu1ClmsQqZkoyF7j+Lc5lzuvusO5nXEGBsbq3z2RCJxVU6cP49cZhFevvR6CZhUKsX+/fvp7u5m7dq1jjskTZZqTL6aIS/LM/Mr3Q1zJnaTziWpuxdrcgIMA2XNBuSuHhgdwdI0hBaAkPeWzuqCvtTdW5KTKZ9Dk9cpAtYErtSLLikdIKBttFHkEPx1fOl1R47QJI8tQI5oWAUDI28gxBURTV00LvaifoWVJERHac7Hii4hbBQJz3hnmMB4MERBDRIt5IgW81UvLL1PoXseyvAg8lXk04QoCUnqbsX4qs2CEY5iBQIEy0KVTX7f7oDKSKExrZor5qmW6tQsi2XjI4SlEFN+DdmA7u5uVq5c2fD3anKRZZkPfOAD3H333b7f3wtkWaatrQ1Jkti5c2fLWs17Xn8H73n9HeQKOv/nmcN8e/dZjo/kKErXRnxeOuekQBgpcIVoytP6Qg0hh9wXdtulbpdsj5NMdpJMluqI2Wy2Ynlc7cRZ/uzNIsd0Oj2n8i/XCzcFuXhBdcfYuXPnOHXqFGvXrmXBAndhwkCLcFcBFEkib1mIYAiRaHccYMSp8KioSIkZPbFIBG3rS0otqWUUi9jFYqm92GsKQpJqdcqq4CeD0GeMESRJ3uVxSSjgcdbFFLU7NS/dYlJAQQrMXFpDAtPNA6b6e9UCiHC4MnTY2KUG7fkczAxFTmshsrKKImw0vUhu/iKCly44iFjObuqlGIsjWXbdwKbzMboCCpddBBRt06o0cIRMg0Wjl5FNg8xVDjI6CXrCle4tRVH4+Mc/zqZNm67q/b2iesbFT63mP/2Hzfzqy7YAcOT8MH/7w4P85OQww3kJZMWzXE4J/n5zSVEhcCUNZRVzRGST6WwBORQvGflVHnSOXDritZa05c9eduKcmJhgbGyMs2fPcvjwYeLxeMXyuNqJs2wk9vOC/nWELMsUi0X27dvH5ORkRTG5GQJyc3IxuNJrb0Op1dgJdRdUIBajYFEaeAwGCdz2klkp5NmmAcFgRaes9kF/N0wzGRrho0vHqCMX6RqGKBsw8/uI8IxA58SVGQK7xYhSrJgjVq4/KRqhi/2+zutqUOjqRZkYQ65r8a7/PgXQE9AYLbQOm2NGkfkjl5FbzPW0Em+dmJggEAg05Plt2yYYDPL2t799zomlfDynTjG3Ws3Y2FhNVNPR0cGq+R189C0vA6CgG/zfZw7zhWf7uTTpsX7qk1xsUWsMLmkhcoASi2JbFkZmAswiQg06FvQBAgH3DaQkSRW/lhUrVpDP5ytRTbUT5/j4OIsXL55z4cpqfOxjH+MP/uAP+O3f/m0ef/zxWX3vm4JcvC7Mx48frygme+l2Cfoo1DnK3c8gIKhEAVJHJ/r0NOhFpK5utM3bmy/8PkhBCoQg7eI9YtuYtkD2aBrW7JP7MZO0pNon+53Qb8YQwrYRbR3Y6Wmok6z3kxiaO/H4K9DbOghe6kc41PG60hMMK6V6n0xJ126wUERrcV23F/P0jl5u+Y0qisLq1as5fPiw63POnTvHxz/+cc6dO8dzzz1XUVFua2vjYx/7GENDHqWNrhFep/PdohqnWs0v37OJT//YxevFCT7uOdu2m5oFCklCibRV/q37Ebl0QTAYdHTi/PjHP84//MM/YFkWn/vc58jlcuzcuXPO7BFeeOEFPvOZz8zZpuOmIJdWGBwcZHp6mo6ODrZv3+6ZjEI+UgzCRT0XIK+XditSdw/WcOkmVVatQ1m4pOWFbNu29wpHCzLMCpWYx9mPeq2rMlKhJJYtKGTjgIQmTSGC7kt5fUrLL7nYzVwiVRV7ctzxO7R1E8+2OE1tjv3tYp3eKbdgCerEmCOxwBX61CRBVJYZLupXHnA5fLyQo20i1fLaKNs5t4IkSWiaxrZt29i2bRtQ6tgKBoPk83lGRpo0YswivOqKPXGmn5GxMd64eQMBVWkZ1RSKzhGDkZkAoxRVlHTHfGYQLLOUdvMKh4Fdya8iQM1rrzhxfulLX+L8+fNs3LiRVCrFL/7iL5LL5fjzP/9zHnnkkas+hhPS6TQPP/wwf/3Xf82HP/zhWX3vMm5qcrEsi5MnTzIwMEAikSCZTPq6eMKKj/x1s/kU2y51bpWJZdMtKH3za2T5m73WM1r022eERsyD3hY4X/BDkXl0ZQa5bCYIhKcqpyeNW0hZGzskMNtFTX7bpL7m4o9cnGo0pXmXRUh60f37USXwOKUvmtzcFgLTtpG9NlVUz+WUvWEunMOIxpu8CsKyhCwEY3qLWpZt05edonN6omV0dkUVWnH1ZSnDsqyGlFhHRwdQ6qqcC/Vjt/Noday/OXmOP/rJHizb5oN7j9GLyd19Pbzt1s2s7u5yjGqs7zpHXtVRhVXMY+ansfQillFEclE2roZtmf58XRw2GF6N0byg3CX2uc99jng8zr59+1qm/68G73znO3nVq17Fvffe+++PXKplXG6//XbOnj3rWxk57Kc46nKBiXAEW1GxUld2fnKyC6m9s9SVousl5d169d0KfKTFmjtIcTiyHFEcoKfoUhuqea8rb2YhGIn00JMpdTdVe4UJAVa7hNU+84e8RTGrIySBElUw69Ji/msutf+2FIVispfQhfNkl61xfV2rmosX5BUVSZTIZbRQxLJLs0/NNh3l38BSVIqd3TXeMG6QhcCybbJm3cIjakMXYdv0TYzQlsugi+ZaB4lEgnXr1lUWLrcOqOoW/eeee47u7u5K7aJMNnMlre+EVpHLnx8+xSdeOEDle1FVBlH5xsgkX//OUwQLeTbEwrx2zXLetGUD6kytppTobU7HkhZE0oIYU8MIWcHITIJRaB7V+BzktBxqLm2x2auPlO3cI5EIkiRVotDZxNe+9jX27NnDCy+8MOvvXY2bglzqf/R6GZfypLFfZeSIj8hFOAw8ifZO7PQU5LI1fy8PzQkhQNNK0/2xOJgmIp/HymevXLQ+IhfVpQAs2juwp6foyQzSY49xTuthOCtoEwWWSxOOdRhpplhekAOktRg9mSvdZ3I0Dkw4n0RQQgtqM5/TJlfMczB7gnlqF0m1vRSJ+Fj4q39bMxjGjEQIViTr3b8bP7e8Uxkqq2oE9SKmpqFJEj0zZk62bTNe1MmZFh2aStCh6UNRFLKxOMGh1nbOkUiEjA15hyaJAAbFGTKWLIuF40NEC6XqXbMCfldXF6tWrWp57Pp7YtOmTYyOjnLmzBkOHz5cE+37Fba8WjSLXP5471E+v/+I42NQulYKwRC7dZvdB0/xgT1H6cXi7r4uiqaO14suFomQExJK5MqOv+QTk8W0LKRQDEkpXw8+aygONZdC0YelcguURStny/6gHgMDA/z2b/823/ve91wtTmYLNwW5AJUboOxIuWLFCpYsWVK5UJvOILigXfP+A0l1P2aibz6Tl6oWFyGuEIVDBFVRVo5GkSIRhGVh6l67W0pwqk9UG4flZooQS4pDLJn55VJ2gHNGG4qwWCGNE5mZJ5GEYFqLgW3TmavtPvMafQhZoAVUNoZLC92F4iBjxqT3WghXyEWzFbJCQkt5yP2rGpKmMRSKEs1liRitvEpqF86MFiBcLCCAelV3IQTtmko5UKtPmSmKUqpfOHjD1CMWizE9PQ0R57mI8rvKpsHisSFCHq6HQCDgSCz15OC02Srn7leuXEkul6vMmIyNlSLd48ePz7p3i9N5OkUuv/fcfv7+6Cl/b6aqXLIs/vZb/0R7fDvI3iKEdF5veKqkBkENosyco5GZBLNQSgsHvA84Og1RyrOYFiuTy1xFmrt372Z4eLgmIjJNk6effpq/+Iu/oFAozNq1cdOQi2maHDlypPLB6x0pZVkmn3eb3HBGyEcuNahppcZWWUa0ddQSC5TSZjMdTW7tiBUIgS3LSLKDIZZtu/fsV3etSBKis6tm7iZjQH0upVMU6FRKzynagsNmJ1kUspJCQB9FsxsJ2U8rcoArA20LtF4WaL0cxt37xprWMW0TOawhKSXZnqCtUkBHydUKgzpFHCIcwRYCo1ikxyilCKYCIbJaEK1YpK2YRXKxObaFIKtqRIrejbPqazGGYTjWN4J6oWYyKB6PM1WxLnb+PQUQM9L0pMYJePRY9xKdu4lXltPGQgg0TaOvr48FCxZw+fJlzp07hxCCEydOUCwWaW9vrxTRvdgoe4VT5PJrT+/i3860Ti82vJdhUPzpj6CQx07M3gIuhKhENUZmEtsoYOZL12Z1VONyUg1/Uq9BT7Aec92G/LKXvYyDBw/W/O3RRx9lzZo1vOc975nVTcdNQS6WZfHcc88BsHPnTseL/WrcKOMtfvSgJFG0LCwgZ88sbLKM7bS7VuQr7bLXoHws2WAJkE2rZA6m1BIKUBooDIUbnDGzBROaSA5pwma9XNpxH5GS5ByIBfyRS33NpRWkmIqEim3ZGOkiZsEgj+68/uq1C6RItGHnclAsYFdtLuKFHPGZ7reCJDMViWIDiWyagFXSiy7VcnqIDNansmYnHVQhNCGIx2JVxOKOJFmCo0NgeV8YC4VCZciura2tknsv102aaYypqoplWViW1eD1omkaq1atYuXKlZVurJGREU6ePEkoFKoQTXnC/mpRH7n822CKJycyEImW0sseaxyWrlP86dMwQ/SSJF+FbkFrhAIKuhIsRTbMRDXZScKqIKfbtS6UOEcu2lVqiDmhPJ0/V5FLLBZjw4YNNX+LRCJ0dnY2/P1acVOQiyRJrFq1ivb2dtcL+2rcKGMtyCVfdaHbhoGt65BtVLctnWQVCRhXn2O1ZlJfpiwhdIPE5WEkwyTbnsCQpIpQpT3ZaEqUNXzM7TTpDpD8kIu4ur7+UkOAhhLUXFPlQpWgMOOk2NmFNZ6qLD719splBCyTrvQkUKrLjIeiZGUFPdFOsIFYZheSJKFEog3E4vQNLdJHSVxOUbB95BBnkM/nMU2T/v5+ZFmmo6OjImTYyrG1+jmmaWKaJqlUqjKELIQgGAyyYMECFi1ahGEYjI+PMzo6ypEjRzBNk/b2dpLJJJ2dnb41yOojlwndQCgKQolihyNg29i6jpbPUnSxZraKBYrP/qjmPtveF2PvhSl0L9IwPhbmXK6AUlWQF0KghBMl4Ut1xoUyX5o9k4IxR78mrYWluh/8rMjtw01CLlAqYja7ca6moK/6SI9IoVCDuVY1AopC5d202RH9s1WFyXkz8sS2TWAkhZ3NuBqO5WzvIavSpJnB14S+dA3+NLQakJ3x/qiaH6o84uEUJaA9lyYqyZzzUsvxALfzlSSJYDBIdroxYlELRs2dtFiG6KUpn5IlVxAMBpmYmABKBOFlRqVemh9Ku/DDhw+TzWbZvHkzsiw3RDWSVFLy7erqwrZt0uk0qVSKy5cvc/z48cqutrOzk3g83jKqqY9cclX3tBClNncRCGAEApDNYE+OY+s6QtVKSt75HMWfPgN1acS/+e2Sa+KBs4N8+YeHePbUCKNFyUXwcvakYqpdKG3bxjIbN5bBWSaX660r9sMf/nBO3vemIZdW8JsWGxgYYPD0KTx/xBYzJkUARUFKtGFPTng+D88QgmJHW1Mny7ztPXJR4u698Uqgm5hYwhTHEXZzAjaka5tIlgPurxc2iGR3A7EAvlpEpWbSKT6zYk5dVZqmIctypU204TWBK7/LcmERHDiPP3nQWnhJudVjzZratm5d19m/fz+WZXHrrbdWprwty6ooQNu2XUoDVdVqwuEwkUiEJUuWoOs6Y2NjjI6OcvDgQWzbruhhdXZ2Oqpk1Ecu+SbXsxSOQLi0kNqmiTU+RnHvCw3EUo1NS3v5H0t7AUjnCnzki9/i2KTMqVQBQ57Z9Pn64r1fIEIIcLjWggH/0akbbgS5zBVeVOTiJXIp+7sMDw9z24Z1sPuEtwO02JGJQAjbsrBSo4hEe9PnXi3sFueQ9xG5yHLjHWbKKmPdy+iczPH+k4+QEwb/GjjIXv1p+pOjGLHGG81wqLn48fGydedLzAwEMbVARaiy4XUe37/03NnLT9d3JIZCIXRdb9qpaFHSplplFVAGL83aufjBX/3VX1X+v1AosHfvXjRNY+vWrTVF2nJUUf5bOZKxbdsxqunq6qKnpwfbtpmamiKVSnHhwgWOHTtGLBarEE1ZfLE+cil4jJKFLCMnuxCS1PDbu0WT4YDKf1yT5I/uugtN09h76hJ/+9RhnhuQGct53BT5bdF2qLmEZsm+AH6eFpsTeHGjbEUu+XyevXv3AqXGgGkhAR7JpcnxRXsnllGs6H7ZPlqiJcuu1FlaP1kq/eeya89aPsil7pD5UIJ8OEHX5ePkFpXIMWQrvCa/ldewFYZg78XDPC3v5mzHIGPtUyCB6Ri5+KAXh+/ViMaxZBml4N795/k7awIbMFWVS7kCmlRqQW41qV8dHUciEbLZbKUg7gYJWFNII9Wl5gyHlu+rSe+2QrnQD6Vp/N27d5NIJFi/fn3LNJYkSZXnVEc15caAcqpakiSi0SixWIxly5ZRKBQYGxsjlUrV1IbqU9vNIhcnKDS6ZLj9YtXnBrB1RR9bV/Rxywe/5eOI/nTInCKXcFCdtRbinxVFZLiJyKUVWt2U4+Pj7Nu3j2Qyybp165BlGcXP9K1brn1mzkTq7LrSreJjfsXye62pGjgsulJHkkLxbIMpmBuqyWW6vQ+5mKctVVIOdvOk2KqsZyvrYRyGUimeknZxVrlI0dTRqrTXNGQKHiX76z9+sbMbOZtGS0+RS3R4eo/Wx3DQJpNljEiUgGHQFyrtLIuWVZrUB9pUpan2XDQWIz3tIiJaBUVRCBVzTM/USKphlqYqKv+uvoabWRaXayPV8DIIOT09zZ49e+jt7WXVqlW+F7r6qOarX/0qzz77LPPnz+euu+5i27ZtFSJTFIWenh7mzZuHZVlMTk5WajW6rrNnzx46OzuZznuvewLoDvdWwEW4sZ5cyjAdvidZQGFyBCS5JKPvR/KlckDn9adYKPDCCy+gqmqNZ8vVOFH+rHi5wIuQXOqlLMqDl8ePH2f16tUsXLiw8rgqSYQkqaao6Ir6G1GWSxHLTDtwzeXaQucpYNhItk1OlfwXdVW1llyqDMyKUbnGFGygGOKyGSIu6azQ0ihVgyPlwfNU70rio/2o1YOIHqaSe6RO3sh95PMFZEliOJNCNw0SgSi65n03Wv1b6W1dKBNjSDM5dSdSqJyiJGNItqcNQv03bAZDEAqijo+T0K7sAqsn9S3bRjet0qJTKDS0vzcQi8PvGAwGSzUGD+foNWJxsvMuv9aNYIQQlc3V4sWLWbp06TXvoD/3uc9VXF4vXLjA1772Nb7yla+QSCTYuHEj9957L/EZD5Nq8UUofZ9tbW2kUikuDk7QMJzVDPUSOrgLQ5a/p/rPajmk4kwblHjJrty2TMzMOLZpuFpUO8HNhXL+vHm85CUvaars7DWqyWQyFcOxFztuGnLxkhaD0gVV/f9HjhxhZGSEW265pSLUV428x+ilWouLYAg5oGFW1wOqLnCrReRSUAQgrkrTSajalSVX0xDhSIXg6msuC7UcC8ueJqbCKT2KBKwMZpEFDC9YT/LCEeqz2G6RixMkISFLMt2RztZPhpLnslL1mcvGUbZGZmKklghcuEXq6i7d9JLNaDCKqSrE8jnCussuuOp99HgCbFDHZ1q5XX5+SQikmfAuFApRKBQqLcCOqHufUCiEYRjout6yXddt6LEe1SRS/7dmiEaj7N27l1WrVjU1z/MC27b58z//c06ePOl4ful0mmeffZYf//jHyLLM0qVLueeee1i7tmT1XL4/582bx/z58+mwTsAlH518Dgu46XIPW5aFJEmN5NLKllySkSOl1LAxNYxVyGAVsghJLs21uEU1LvdNNBJy9Ksppw3PnDnjOar5ec3lBqAcqpcv3ur6yh133OGqkyOJRgmQMjQhKM5ciOUdoUi0Y+dzmJOTNc8V1fvsgre0WLW7XPn/Y3kDNZ1hvCPmWMAXqlqS7orGsC2rxkCr0KSgn5ANbpEnANBtQRqN7gu7nJ/sw5NCcuiiE81qLorAyOrYRROhlArdIUsjKxUbIozSjr/2r+W2ZHv+AhRskvl0xUxnWguSCYQIGkUSuUzlleVfptjZjZxJI+drteC8IBAIEAgEXCeUZVlUigGRSIRcLte0dR6u/P6tngfOBOSFlEKhEA8//DDr16+np6en5XGawTRN/uf//J8MDLT2TikPdp45c4YzZ86g6zo9PT10dHTw8pe//ErtynfBvPG7cpNXcZOa8aOjFotGyUlhpMBM15plQnYCw9BnrJCvpKjcIpdouHHtqXairParOX36NLlczjWq+XnN5QagvEMxTZOxsTH27dtHd3d3jXKs4+sQmC4LYdG2rxCMEEjz5mMNXmp9QxT9ydBgXbG0nQ4qEEwgFXVsVTSmWxQFqaMTa2qyQQmg6LEVWRU2HaLJObpM7jtBcoi8WsViSliFcClPbqcz5CQXMq6WPpakUhpy2CENOYNYMU9s5rvPKSqWKsjKIdqyafK9C9BGLiPVLcZuw5hucCOX8m64oidW8zGcU1Vuj9U/z2nq3qkmU58Wi8fj/Nqv/Rp33nlng1ySXxSLRT760Y9ele9LoVBAkqSKu+KJEyfQNI0VK1YwtG6742sk28Kq27i4pajcyKUcudTDD5+lc0XkyBXZCyHJEG6rLIxmIY1dyJWGqF1a3mORJrIZOLtw1kc1Y2NjTE9PMzk5OWc1l49+9KP8v//3/zh27BihUIg77riDP/3TP2X16tVzcrybhly8pI9kWWZgYID+/v6G+oobFEmgu4UuUIlcAKzpKdcrM6IoVJYULdBcI6weVeRS+ZPD4JVtmkjxBMalCw2Plc7V+5xLU8dKn5FLfXrPzwRHvSBoNSqK9JqGCIZrZHdaLcohQwcDIhQxgcDgBcez8iv+4nZc27br9MSuIJerbaxoVqyvhlNkUyabVhFLMpnk7W9/O7fffvus+H1cLbHk83kURalJ80iShGEYHDt2jBPBTuiZ3/A6C4E5lgJdR4TDSLG463Upz5BvQ+HeNJ3JxdcnaH4ty4EoBEqRhD7p3DafiPojA6eo5hvf+Aaf/OQnuXDhAplMhvHxcV7xilewdu3aWZOCeeqpp3jnO9/JrbfeimEYvO997+PlL385R44cmRNCmz01uDlGuZh/4cIFtm/fzqJFizx96YqPH0Zq0m6aKRehY3GQZX8XsMe6j5Bl7CbNAkUfP5fSrFhumOR8/PJWC3/3Zmg+u2MjwhFQNeypias+hgyuRG94tIVuhba2Nk/DjX6IRZblGjIrp5pavX7+/Pm84x3v4K677po1I6lisUg8HicSiXiyEIcSqaqq2rQrynL7/YVA7uhE7ulFisWxMmnM4UHHp9qWzTPPPMOhQ4e4fPlyRVjUiXB8Wwv4WB8CLnJSfsmlGuWo5rd+67c4fPgwixcv5q677uL73/8+27dv5zd/8zev+r3r8cQTT/DII4+wfv16Nm/ezJe+9CX6+/vZvXv3rB2jGjdN5NIMuVyOvXv3Yts2a9eupb3d+xCjKnl3NGwq62KD6OzCnhgrTdE7RCPur/W+OAvFXUpC9yP/4rKoTifm0S/vRLbgRMiiaOosnM6TCLgvUpZt1/T7+Ilcmp1xUFGJFfJMOezSrUIB/Ew+V1siVEG1r33Xt3DhQhYsWMDwsPPOtQyvHWHlWkr9cGOZVJq1HS9fvpxf+qVfwrIsjh07RldXF8lksqI9djWontAvRyHBYBAhBKOjo5W/VyObzRIMBlvO0biSSx2kSNR1oQ+HgmzZsqXUfXbxIkePHiUWixEKhSoqA+WNpm5YzAvZXM6YLtIwdfBBLkUXl9FE7Oq/+3rous6b3/xm7r77bnK5HOPlxpQ5wORMXdmpEWo2cNOQi1sUUl1f8erPXQ3NzzCe2mQxUzXsS1cKnfrRgygLFiES7S0jKNvyMUPe5L38RC5OGrIjXWsYHFqGFbDQgFU5CQhAIMBQeojp4jQxLUZ3pLvmM9VHLr6Wa5cna6vXsVaV2AJk83mG8wX6TbiMXPoOPO6eK4cRzk6FAolMPk/EozFSTfpPCJYtW0Zvb2/LaMKJWJxIwul5Xklp69atvOlNb2LLli0YhsHo6CgjIyOcOHGCUChEMpmkq6vLt7Kxk6xS+XtIJpPYtk02myWfz2PbNsVikVAo5OkYXskFQDMNnCqFiiwTiUSIRqMsXbqUYrFIKpXi0qVL5HI5nnnmmUpNo6Ojg+//tzeQyRf5+tOH+Paec5wczV+RhrkGOBX0g8EAKxb1XfN7l1Et/xIKhWbVDqEalmXxO7/zO9x5552zroZcxk1DLvWwbZvz589z8uRJ1qxZw8KFC3nuued8TzdrPi5u4bSgzeiJUafgahzci3FwL4TDKIuWIfctQEp2I5yiGT9pJZeBMWSZot3OE9NbWB88xUI17fy88mnXLbQDfTuYONNZEq1UG8+nJ9pDD6Vuo0wxx2R+CkVS6AgnGlo7/VgdOxFvZPMtLDELFd4JB4MsCQZZAuiGQSqbY3RqDEOJex5Es0VjPBUTYXTL4iuXx+iQYFVQY0EkSFs47Glyfc2aNZ6jZD+txq3+5vSd3XXXXbzuda+rCFBqmsaiRYsqysZjY2OMjIxw8OBBLMuio6OjEtW0SnO10uwTQhCJRCqL3vT0dMX3Rpblph4gdgvNvhq4KF9ENa1mpkWW5ZrOuOXLl5NKpTh//jxHjhwhHo/T2dnJL+5cyaP/cStCCHadvMiXnzrE82fGGNPlUuEeb7XeCupakRVF5f984oN0d86eHFQmkyEWczafm028853v5NChQzzzzDNzdoybklxM0+Tw4cOkUim2b99eucGvRna/XVPpz3rr7hJ1kYsajaIjSnpinS6DTdksxrFDGMcOIfX0IcJhlOWrkRJtV8jqWtNigSAiEGQiazGcfyfDebDECRLqc6wKHGFNYLRB7qVMLpaQONNzD/lTgSuLr8OgWjUiWoiIVtox6aZOKjuOJCTaQ3FCahDJFj7DlxJsIejYfjvzc+6T76qi0BuP0UtpESsWixXpkWa7uPpFIh6KMJXLEBKl14xZ8NNsEbJFNKZYGZBZGwkTj4QaCEyWZdavX+/pJve6OLlFJ16u5/vuu48HHnjAVc5FURS6u7sr0f309DQjIyMMDAxw5MgRYrFYhWjKGmDV8OvwGgqFauT9M5kMhZnNl1q3OfITuTgJVgb0Isumx9BmCKZa/0zXdSRJqnjfLF++nHw+X3HgPH/+PIqi0NHRweJkkv/5yMtQFIXJdI6vPHWIJ/b3MyRpTHm8PasjF0VV+eaf/SHb1i33/vlaoFgsYhjGnLciP/bYY3z729/m6aefvua5qGa4acilWhtp7969SJLEzp07a+ZXrkaXyU+BLxoKVZzlRXsHViYDZdn+ZgJ8QkCyG2uoJFoodSQRnUnsqSlsUy8Vrb2iztNdxOLYuo49NYGlXFnsJHsV08VV7C7CC1MjBNWfsCRwkE3BC4QlEwULXQ1xKv4LmGfqFkAfsjiqrBIPJYhrISzbIpWZwEj4n9CXhUzfuk0kmhBLPcoy9wD9/f2V3bjLgSr/m1uwBC6cA5w7h4rA4YJJzLLYGC85nBqGgaIoaJrGli1bGuamnBZgr8V7VVUbXl829moGIQQPPfQQ9913H6tXr/ZEZEII4vE48Xic5cuXUygUKsZg586dQ5blCtF0dHSgKIpvE77q85YkiVgsViHifD5PNpu9Muzsp75ed28H9QKLU4NoHdGaCKlMaBcuXKCrq6umZqSqamWA07Is1/mSt9yzjt96ZalN+pnD5/m7Hx1l1/lxpkwV4UaIM+Siqirf/OR/Y+uaZT4+XGuk06VsxFyRi23bvOtd7+Kb3/wmP/zhD1m6dOmcHKeMm4ZcAFKpFPv27aO3t5e1a9c27NKuxo0y1MTXpB6ZmRC+rCdWc6m7RR+ahghHa4YdYUbvaEYewxeqTMlEZ7L0vjM3nSU7X/SS6KJovIYTxms4ls6jKM+h9oxxQlmLPeAwg+GToC07D4SQhERnpA1FuGuLSUUo5vJIYRVJLdVPgrLG0sVLkcXVmaz19/czNTVFoLuPsBYk4jBnJITAkiQK8xYSmiGWEpxXt4QpEYypNQQGsGLFipaLuNfhyHKN0CkVput603SSLMu86U1v4mUvexnLli276nbUQCBAX18ffX19WJZVMQY7efIkuVyOjo4O/yoSTZ4fDAYr36dpmqw48FMu9CxkbN5CjFjzzrbq6zJYLLAkNYhsWw3RUD6fr+gIrly5stJh56Tq3NbWRkdHR8WBs3q+RNO0khbhvE4++esvR5ZlRicz/O/vH+B7hy5wftLAlq9kM2zLRFFUvvUXf8Tm1bO/MKfT6YrtwVzgne98J1/96lf51re+RSwWY3Cw1J2XSCTmpLZz05CLruscOHCA1atXu4ZqV5MWC7fo6NJEab5bt21Q1ZK/yIg3f5ErU/RjEAxekXO9Bhvkcgea1NWLNVLbmmmFgrTSi5REEMv8BQbHLOzUN5yf5EfQE8hpIdqq/t2sW8zSQNGCJZ+QdAE9W2TFkuUQ8u/NbVkWZ86cIZ8vkUmomCVSzDMVCJHVgsQKRULFDBJgaQEKbR0EL55v+b5JQ2JascmpVkNk65VYvETE5eHI6k2Sl6n7WCzG6173Ol760peycOHClsfxirIxWGdnJ6tXryaTyTA6OsqJEx6Vw2fgJxW4pJBl3dhFGLvIJSFzNpxgKDmPbE9fo83FzPcSLuRZNDaIPPMdV5NLJpNh9+7d9PT0NIhzllWdy0RT71VTJtryfMn4+DipVIrjx49TLBZpb28vtQXfv4V3v3Yntm3zvb2n+cZPjrNvYBJJlflfH3rHnBBL+bOVba3nAp/61KcAuOeee2r+/sUvfpFHHnlk1o9305CLqqrcfffdLXdzfvPDrXpEqocoEZKrv4iwrJo9cLSrh/R46gqRVJ23fQ02yEJWZgiuseff9lG7kZq04IoWNZd61CsceGlFFkKgRAMEhUCJaJg5nQklSEEThCbHrnjSu8AwDE6dOlUTqZYjhXghR7xQGlzMyypToQhmKEJwqNFLxaa28aHXkBlRTEyaa1BZlkU2m0WW5Yp22GwMR7Z6fSgU4s1vfjO/8Au/QG9vb8tjXQvKRfpgMOjLjfBqo6g+26QvMwaZMbL9RzmlhLjYnmR83iKsUBgsk0ghx6KxoZrro9yQkE6n2b17N319fY4Rpl+vmo6OjppuuFQqxfDwMCdPnqx03926tJN7t7wCSZLYu3cv3d3dV/XZvWC2ZPvd4HsG6Bpx05ALlCKTZl+ALMsN09DNMDIyQmZsFK+zoo7dYjOQbLvSfyV19ZCuj26qdxvXQC42uBKc5WOyXm5SIxJA0TLRJG/RhNVALj5QrrmEVDoxwYZCWwfjwTDm1CShqfGGDUWhUOD06dOeFvKgqRNMT3B+YhSn8dPqImxvMcWg1uHpE5SbCKCU3slms56JxSka8jIcGY/Heetb38pLXvKSa5Zz8YOenh4+8pGPcOTIEX70ox/R39/vKq0CV08u1QjbFpv0DJuGM1hD5+iXNM5n80ipoQahVU3TmJ6eZvfu3SxcuNBzmtDNq6Y6uik/LxgMsmDBgpruu1QqxeHDhzFNk46ODvL5vKdr4Grxs+RCCTcZubTyrPBa0Ldtm7Nnz3L69GnmdyZhaMLb8Zu0vRqG0SDDX3vuV6b2/ZiJ+TkHP5PyzdqFp2MBTljTGECvCNIrms+ABDS1xsFJ8kEvTgFUwDLozU6BIrDa2irdRkIICoUCZ8+edX6vJteGZLkpG5SGK3uKKQYDVydlLsuyp5y0U2RT/lurXWNnZydvf/vb2blz56xN3fvFunXrWLduHbqu8+Mf/5jDhw8zNjZGJpNpmlG4VkhCsMTWiaTHOOFQIxNCsGvXLpYsWXLVRWi3qKY6lVY+lhCCZDJZ6b5Lp9OVDrSTJ09y+fJlOjs7SSaTxOPxWYs0yl4ucxW5XG/cVOTSCl5qLqZpcujQIcbHx9mxYwf7L6U8kwvNDIRkGRFwt+XVZJnyJMy1kEt9t1g1bNvyHDZIRuP3ZAtIRwPEpgv02hpJqVQ4vGjnGLELxIXKYsINbo31ZR5f2mItFtX6bqMjR454fu/6s3Iu3tt0FccYciCW2UwSOBFLuSMsEAg0jbjnz5/P2972Nnbs2HHDFXGLxSJ79uwhkUjwm7/5m5UN3fPPP89zzz3H0NCQr8XPz3Pd5nGmpqZYtmwZixcv9vxereDHgTMcDhOJRBgaGmLJkiXYtk0qleLAgQPYtl0zwOlVOscJP0uKyPAiI5dW3WLlNmZZltm5cyeBQIDY8KTr8x0O4PhnEU/MtAO7v1flrFSVwNqN3o9Zj2b1EFlhLCTRkfFgTlW3cpqKRD6kEZsuFccLVemi+SLE/Jl5kAm7SL+VQxWCpUQICpliIAB6Vfupn8SYbz8bd/mbprt/B7kbGRMVnZHA3KeYnCKWcn2wUHB3Y1y5ciWPPPIIt9xyi6ttxPVCPp9nz549RKNRNmzYULPb37lzJzt37gRgYGCAH/zgB5w6daoyazIbKLro6s2bN29WiaUeXqOacrt6e3s7vb292LbN1NQUqVSKgYGBiixNOaqJRqO+yDWdTs9Zp9iNwE1FLq1+iGZpsbJMTE9PT00bc8JFbM7x+A7kIiW7scZGW3ZY2ZJAxBNot97BVc4Ylt/J+dzaO7EKRToyFtOazbgxjWZLdNlhZCev9qq/FTUZSwgi01daeIsubpRtQqNNlHZfuoATEYlxFZIBiVih9B1o9sz8gpcP6fOLUJtcA03TYnWRi4qOhIlOk53kLIQuTi6RXtO327Zt4w1veANbt269ph3vbCCbzbJnzx7a29tZt25d03tx4cKF/Oqv/ipQ2tA99dRT7Nu3j4mJiYb0mZ/F1en3nTdvHr/7u7/r+T1mA05Rzfnz5zFNE03TKhvcctSdSCRYtmxZZaYolUrR399fI7Vfnilqhp8lozC4ycilFdzSYv39/RWb40WLFtU81q55/4gBVb2ibSQEiXl9TF66eOUJsuI4RQwgYgm0FatL4onNBi5bQAgHgpuZu7G1IGgQKwpilGZo8hhcFmkQkLTCBGd+UmnGQisfVlGKBkGj9px0D2Keqg2r0hYno4JIwWLMvsSFaUG2rejDuXb28sfNdvZCBGHGlTMkdAzbpkAQ1bHMX4Jfr5d6XItO2O23385rX/tatm3b1jDHcb1R7sLq7e1taO9thVAoxP3338/999+PbdsVSZELFy5g27avWk199LdgwQK++MUv3tDvR5Ikzp8/z/nz59m6dSvxeLwmqqkX/ezt7a3MFE1OTpJKpTh79iyHDx8mkUhUohqnrrCfk8sNRP2Na1kWR48eZWhoyNXmuM3BN8UNenkhVFREPFFLLKUTcCSXW2WJX37iHzi3cAl7Vq5l14YtWGMpRKAkCtlM6bgedrXQphClyGmmgcB2OHYQhQV2HGwwsRgUaYrCpN0Kkk2ECE3lkBzW0IILSTohmL6MRC8dYj4dcRiVxnBLEMqGwJAsxMzn8FubdFrYhBB0rd1AW3sHboM+5ddFRYiCLdBbEIciBGp6mmG95HXuN3K4FmJ52ctext133006nea5556rCE62t7fP2YyDG6amptizZ4+vLiw3CCHYuHEjGzeW0sKjo6M89dRTHD58uNLW3QzV5LJkyRI+//nPz2kjgRecP3+eM2fOcMsttxCfGYqujmqq/6tvdU4kErS3t7NixQpyuVwlqjl79iyaptXYHsuy/PNusRuJ6pu3UCiwb98+TNNk586drt087S3IJarIGJZN3rJKqa1wBFtI2GOjTidQ+2/b5iHL5JV7S34IXSNDHHrV62Yc9czSvEsmjR1PIAW9TcCKstCfqiKi8ZrOtFZzLjISvXa0ku6JZA3X1E/RR+eZZmdrApBmNRdTsbF1C3O6tLxL2rUtDlcEJOOAATkLYdigCuxg9UIsiIsw03a2ZTwSkARrslPIlsHJiQmgJLmRTCZpa2trOWtwtZbEQghe/epXc//997NmzRosy6oITh4+fBjDMOjs7PQsOHmtGB8fZ9++fSxdupQlS5bM+vsnk0le//rX8/rXvx5d1/npT3/KCy+8wPDwsCNplNNiK1as4K//+q9veNeUE7FUo1mrc31Uo2lazQBnWZbmxIkTHD9+nK985SsYhsGmTZvm9DP95V/+JR//+McZHBxk8+bNfPKTn2THjh1zcqybilxaukrOpMUmJibYt28f7e3tbNiwoenuphW5pKu6qizDKHV66c6plICqMjO7h4bgbdMTbD19HICDq9by+Ve/yUH0nab1Gtu2sYaHELEYUjgCFYIT2OOp+ic3/Sz1ELLi2rnmVnNxwqjdSU91QNUi1SWpMlKi9JuYBZ0jR45UFu5WC2b1NaAoChs2bKjdzYWqpiCKFqJggyyIiSCX7brvC1Dquu/i6CydmsaYmsSqWjDS6XRF20nTNLq6uujo6CAajdZEE07RiRdikWWZN77xjdx7772VCKGs89XV1VURnBwdHa0ITsbj8QrR+C0Ot8Lo6CgHDhxg1apVcypeWIaqqrzkJS/hJS95CQBnzpzhqaee4syZMxiGUem2W7RoEY8++iinTp0imUySSCSuezQHrYmlHn4HOMtqACtXrmT+/PlcvHiRz3/+8+zbt4+f/OQnvPKVr+TVr341L33pS2ftM33961/n3e9+N5/+9Ke57bbbePzxx7nvvvs4fvz4nAyH3lTk0grlH+6FF15gxYoVLFmypOUN1+EjLSYFgq7EAlCYWdXaZYnHBs6xcOgyAN+9+16+u+Mu9zduQgpCCOSe0iS2NTmBnc2VIh6nzhm/5BIIYuedW2B1H+RSf1Q/3WJCkhgfH6+YHrWKECr/VjW2btncnIw0CXvm4bzk0upbFaF1mVP0TaYx8u7dW0BF8PDixYuVSW63xb28KDab0QoGg/zSL/0S99xzT0NNsIxqwclycbjs11Ktg1VOn11LumhoaIhDhw6xfv36OVcBcMOyZctYtqwk/Hjy5EmeeOIJ5s+fz6/92q8xNjbG6Ogo+/fvx7ZtkskkyWSSzs7O69L44JdYnOCn1XnBggW8733v4/jx42zbto3Nmzfzz//8z3zuc5+bVXL5xCc+wdvf/nYeffRRAD796U/zne98hy984Qu8973vnbXjlPGiIRfbtjl16hQA69evp6/Pm0GP7GfX00pXShIsUxR+8+gBEulpbOCzb3wLhxe1GOzySApSog3bspyJZQZFy0Dz4rCH+0CmHlQZs3OcttMsFdGW+gXXQi5SXcGnOkIIaTLagsX0RaO0zWgqCSEwAwEGFq/hTh8LidFisZ2vp+iYyGK4uAmWoWkaQggymQxQWhhGR0cZHa1Nk3oVrwyFQrzlLW/h7rvvZt68ea0+RgWBQID58+czf/78ig7WyMgIR48eRdf1Gr+WsjyNF1y6dIljx46xadMmd4Xp64iBgQEGBgZ4+OGHKzXT3t7eSqvv5OQko6OjnD9/vlIUL5PNbEdzMDvEUg+vrc4DAwPcfvvtvOY1r+E1r3nNrBy7jGKxyO7du/mDP/iDmvO69957efbZZ2f1WGXcVOTidqHous7+/fsrg2h+J5jdxuscTqDpwytti9/e+xyqYVBQNf7H2x5jJOrhAvQRcbjKfc+ggI7m8WcTDkOhxY4Y3eeeJb5oOcsTUaYU6A9LKDYsmTYIOlBNA7nYs0TYxTS7MnmKeRt1dJrVAQXbEhzrmEd3Ogdd3jtn3K4dG8Gy4gjhVKaplhiUtLYKhYIn8ywvOk2xWIy3ve1t3HXXXSSTV6cOAKVFqbyglifGR0ZGaix/y+m1Zgtuf38/p06dYsuWLXNmbesH5YV827ZttLW1NTwuhKCtrY22tjZWrFhBPp+vEH11NFe2D7jW4v9cEIsTnKKaJ554ggMHDvDggw/OyTFHR0cxTbPGZA1K0j/Hjh2bk2PeVOTihHQ6zZ49e4hEIuzcuZOnnnrKtzKyJMD0sr67LYQzXVtbBy8iunoYDEc52dvH6NKVpSgjn21wqqyBD3KRWhBcwdaJ4bE5oI5cCj1tLDj8b2iFLIGZlse4ARtm3JLyts0xe4oiNgtFiPaZeZf6ll1f8i8ucVGEDHk0ijP2szpwqGCAKKUxbZ8aTm4LalwxyI2mW24uIpEI+Xzes7xQK5TlXG6//XbHhfNqIYSoKBpUp89GR0c5d+4ciqLU+LXIslyRQzp//jy33HLLDZOXqcbZs2c5d+4c27Zt83w+Zf2valXj0dFRjh8/TqFQqAhRJpNJ3xLy14tY6iFJEt///vd59NFH+eIXv8jDDz983Y4917ipyWV4eJgDBw6wePHiigrq1RiGqULC9GM1XA1FQYq3YY0MkZdlFo4MsZChUouxEJV2Y9u2wTCw81mol/rwcWzF7bmShAhHWHrws0y2rSLVsZZYaDFByT11VE0uxXlxFu/5NvLMoj1lNhb6g0JmjSjdWKZtc8bOMGXrGPYEVInu+6q5ODy1TQozYYHcZMm/9vlGmy5NZ1K0IWheY4nH40xNTdX8rZkAZSv09fXxa7/2a9dFzqU6fVb2axkZGeHYsWMUi0U6OjqwLIvp6Wm2b99+XSx0m8G2bc6cOcPAwMA1nU99NFe2DxgaGuL48eNEIpFKjSqRSDRNn90oYgF4+umnefOb38wnP/lJHn744TnrkEsmk8iyzNBQrS7i0NDQnNXdbipyqfbKOH36NGfPnmXjxo01H/5qDMOiiky+6EHRtu7fUjiCJcmlCX0gV7VYh3PZxnNXVYSawI7GCWYzGHoRvaj7Gqq0nUJ7VS15x4yPgaVz14Xn4cLz6Egc7F7Lha4NBCLLiMm1PfJClktdZ0mFpbu+XfOY0aKgLwvBMiLI9ufJ6M/Qr8cZkdYSl3eA5OMGrLtZ2qQoE1ap5mI3mcSUSicJirebrfqmFELQGRaMZDQ0rfl339bWxsRMO3I16kmkehK/GVasWFGRc5kLA6ZmqPdrSafTHDlyhOnpaWzb5vDhw5X0mZPd8VyjfF9fvHiR7du3zxrxCiGIRqNEo1GWLFmCruukUilGR0fZt28fQGV4MZlM1gxl3khi+clPfsIb3/hGPv7xj/PII4/M6e+haRq33HILTz75JA899BBQSsk9+eSTPPbYY3NyzJuKXKCk33Pw4EGmpqa47bbbGn7wq4lcil4XdyFA06BYRLS1Y2UzUMxUHi5U1UMiLl1YpbcRFCKlG0eybULFPMrZU+S7etCjzXdqdp0M/pW25DEA8lWPq1hsGz7MtuHDABxvX8zp7k1YsRV0qJ2gqajRLD37Xmg4jtmyW8xGMj9KTj+BBPQySa/1U7B+yrB0B6jr3V7WwNKCUvtyTIQrxFJ6qvPvEjclVATIILImwgQrIEBzr/WUb8yyJMfoZGtNOVmWK11srZ5XvubcFgBJktiwYQNvfvOb2bZt2w2Xc7Ftm3PnzmEYBnfeeWfJZXGm+6zsLV/e2c9GvcLL+Zw4cYKhoSG2b98+p8OCqqo6NgWcO3eupilA13UuXLjA9u3brzuxvPDCC7zhDW/gIx/5CL/xG79xXYj+3e9+N295y1vYvn07O3bs4PHHHyeTyVS6x2YbNxW55PN5fvrTn6JpGjt37nS8Qa/GjVKV3H+4sCyRN60r8ylaECnRhjU60lAryVfdgJG6yMUVQpBTNFi6AkyT6MA5lFyOfLKLfIdDkbfqGKKtHTuTqWmPzjcp+K8eP8/q8ZIT42jnQg4HQ4hjjcQCzSMX284hmR8ib4w4Ph5sIqkCINJmSek+JIEk0ISKisKknal7ZiO59CpBJimSs20QAjvcLHlWdcwZ//RAIMBkFbG4pbHa2tqYnp5u+b5eNzO33XYbr3/969m8eXNLDam5hmmaHDx4kFwux/bt2yvdZPV2xyMjIzX1inKtZrYFNG3b5vjx44yMjLB9+/brKs7o1hTQ399PJpNB0zQuXrxY+Q6uhyLA3r17eeihh/jgBz/IY489dt0iyDe96U2MjIzwoQ99iMHBQbZs2cITTzzRUOSfLdxU5BIIBCqGPW6DU1cTuTTLrGTrVIilZBLr3BmXN7rydUW9kgtcMRKTZdILl1T+HBq6TGBinGI8QXbefADsmWNIyW6slAPBeWytTqYGSLQnmXJ53LRcUov2CBh/SMF0/3yS86hoCQLs6MwNatqItIkiZNJWY6RXv+z3GDLDdh5LQMCDeJmiKJUUqaqqKIpSaXN2PfeZyMZJZLEeXq+1e++9lwcffJCNGzfekIG/ahiGwf79+zFNk+3btzvqclWnz6rrFZcvX+bYsWNEo9EK0VyrX4lt2xw9epSxsTG2b99+3VOF9QgGg5imSaFQ4NZbb8UwjIYa1VyRLMDBgwd59atfze///u/z7ne/+7qnJh977LE5S4PV46YiF0mSWspQ+CWXS5cuYReLeBZQbDJgl6u6EFTTLC38Hi4ONwHhXM88cj2l2YfAxBih4SHysRi57l6s4UabY6hNi7VCNKC5kovh4GoprOOYxscx3IhnBk3JpRqywI7KFEWT38uyQRLM12UuKmbli/JSOK+uvQkhWrqUyrJMOByuiWyawaucy3333cfatWtvuFyJrusVy4lt27Z5iqDq6xXFYpFUKsXIyAj9/f1IklRJn3V2dvoWojxy5AiTk5Ns3779hlsKgHONpbopYGRkpEKykUikQjStmgK84MiRIzzwwAO8613v4r3vfe8Nv17mGjcVuUDrjpzq3WozlHO8AwMDxEJhhrPNO4YqCLjnyn3EKjUQQpQkYJrsagttHRTaSrMH1k+ecn+ej51xvkn/9XjIZEKFtpmmMcl+jqL+6ZazIKXn+oscZSFws0+TgHm6zEW17j193nitrolyZFOdCnPbqHjpCpMkiV/8xV/k3nvvdfRzv94oD8kFg0E2bdp01ekdTdOYN28e8+bNqygVjIyMcOLECQqFAu3t7ZUFt1kUYlkWhw4dIp1O16TmbiSaFe+rSXbp0qXoul5p8S43BVQrBfhVaj5+/DgPPPAAb3/72/nDP/zDG369XA/cdOTSCl4il3JqIJPJcPvttxPddQw8kotQ3cmlKGoXdtkyMZu5V1ZBMgwsr0VeRXGd0vdDLsKh1mRJMtaqNZy1D/Pbi77PUvM2Nl9YxMP29+kK2BRNyBQh3cRM0y+5uHqxI+jVZS4GHFwz1dm7+QIzreL1kU09IVV3KzaDoig8/PDDLFy4kMHBQUzTvGGqxlCqVe7evZt4PM769etn7RzK0jcdHR2sXr26srOvbvd12tlblsXBgwfJZrNs3779hjc3gP+uMFVVKyRbbgoYGRnh7NmzHDp0iEQiUfnsrayJT58+zQMPPMDDDz/Mhz/84X8XxAIvUnLRm9gIl02PAoEAO3fuRFVVQj52cW7kIqIxkCTO9/SRCYVJTowh64YPctF9kIuGW5xUT3DNINc91wgEyfTMI3HsMIkV2xgXFmeUZzmz5FluGRllR14QUCCgQLttY1iQ1WGyUKtxIHvwgqmB3UjsMhIhEeC4aoDDoKXfuSQ3QtA0jVwu5yjTUt++7CUVl0gkeNOb3sTdd99Nd3d3pTBeVjUup5DqW17nCplMhj179tDZ2TnnqblIJEIkEqm0+5Z39nv37q2kzzo6Orh06RK6rnPLLbe8KImlHtVNAStXriSXy1U+++nTpytCp8lkskH37dy5czzwwAO87nWv4+Mf//gNr8ldT9x05NLqJpdl2TW3nkql2LdvH319faxevbryQ0YUP+TiUADt6MSanCQXibB46FLl75aPriDhYzZH0jTHqoaaaCM/MsTBcJQ2U2dhM1UASsoEZRQSbRiBIIn+swBMF2oJov7shBCoMiRkiAUE+40k04ZEpz7hveZSea/afwck0FSN6YKz1wz4H6J02nDEYjFXYqlGWXyyFaLRKL/6q7/KnXfeWdHlKqdK1qxZw/T0dKXV9/Dhw7S1tdXsbmcb09PT7Nmzh3nz5rFy5crruiOu3tlXp8+OHDmCZVm0t7czODhIV1fXDS3iz8UcSygUYuHChSxcuBDTNCtCm0ePHqVYLDI8PMylS5e4/fbb+fVf/3Ve8YpX8Gd/9mf/rogFbkJyaQW3tFjZjXLt2rUNEuLJgPcdZCgYrKkPRHvnkR4sqR/XL1+SZeL2FcbyOaarPFyED3MuHEhLdCTRJ8cxJImN2VJHVEpRuKQFCVsmi/O5hjMpS8lkevqQsxkiVU0Coq4eYzTzLxE2W9VRUMEMCr5raFw2LKKSINakzbtyrKqnBChgWYLpGV6UMMDBitgvudQvrLIsMz093XLB9UosHR0dvP3tb2fnzp2uOlhlVePly5eTz+cZGRlhZGSEkydPEg6HKwOMs1EcnpycZO/evSxatIilS5fe0FSLJEnE43HOnDlDPB5n9erVjI+PMzw8zIkTJ3xNy88mrseAZL1tQjqd5lvf+hZf/epX+dCHPkRHRwednZ08//zz3HrrrTfc/Ox64kVHLvVzLtVulNu3b6e9vb3hNX7kSvLlVJIkITqSFWKBRn0yucmiVCEWyyJimYjxMYqJ9qZF/QrqoqeyzTGAVfVYp2HQaZSIZlqSGAiGkGxYXMgRsiwkIZhcvIzI5YsoxdooR+i1BK17vOFlYdMjZ5g38zkmLZuMZdMrCkhyEKe+uBLJ2YTIUUDFqr7sLLPBMlkCOqs+p98OQT/P90IsfX19vO1tb2PHjh2e5UqCwWBld2sYRqUDq7o4XO7A8jsXMzY2xr59+1ixYoWrhP/1RHWX2tatW5FlmXg8zuLFix2n5a/ls3vFjZi8L+u+/cf/+B/5xCc+wetf/3oeeugh/vmf/5lXvvKVPPDAA/zv//2/r8u53Ay46cil1a6mWv6lWCyyb98+dF1v6kYZVX3sFhQFNA0RjmKPDtc8VF8HkE0P6SFJIiNJBNvaUdPTRIYuY2oa6b6F2C45+YomWJ3NMUDOxTI5Zlmsy5aGFIvAxa4epkMRYof2IzmkGe26yXQ/gjqaMV0JNhKSICEJIESILB1MYiAzSgfmzOUlREmoMkOI+vpKfYpNFYK4ojBS1dBQJopstlSHCgaDnueg3FKsXiOW5cuX88gjj1zTjIaiKPT09NDT04Nt25UU0qlTpzh48GBltqKrq6tlu+7IyAgHDx5k9erVzJ8//6rOZzah6zp79uxBVVU2b97csDOvnpYv+8qXaxUHDx6s6T6breHKGynpMjo6yoMPPsjmzZv5yle+gqIo/Mqv/AqGYXhSg/hZwk1HLq1QXjzK+eZ4PN6ypz/mZ3ekKKCo2BNjDQ+Z9XpTDrMibshqGlI0zkS8pAAr53JEZ+of6b4FmKGqG0tVQVERsVqbY4CihwhDA+aPDNERCDHptrjWrateIxcA1XamohxhLlL6HApF2qUMqYkpgnaeIcI4RTWi6vyCkkRAkkjpOppDuq28+JimWfFbCQQCKIriKmrqVMMrP69VhLNp0yZ++Zd/ma1bt85aK60Qgvb2dtrb21m1alWlA2twcJDjx49XBhid9L8GBwc5fPgwGzZsmLOpaj8oFovs2bOn0v7cqqZQdmBsb29n5cqVZLPZiiTNiRMnKqnDa3GgvJHEMjY2xoMPPsjKlSv58pe/XLMmldWq/z3hRUcuiqJQLBb56U9/ytKlS1m+fHnLaCeu+Si8ywpk62VKSqi/1BU/dZQ6fTMzFGJy+arSPwyd2LnTyHqRTE8fxWAYgqFGm2NA93HDtanun1vUnY8vchGtd/wGGuOWhhSPoEvnwaXDTMxUV+KShSkkJmei0maNW7IsVwrk5RbjeivZMtyIpRmEEOzcuZPXve51bN68eU67vqo7sIrFYqULqaz/VSaabDbLqVOn2Lx58zV5w8wWCoUCe/bsIRwOX7UyQTgcZtGiRSxatKgmdbh//37A/1zJjSSWyclJHnroIRYuXMjXvva169IpeLPjpiOXZkRh2zaDg4MUi0W2bNniWSo60WSRbUCTKKdYRyaKH3XmZqulojK9ZHnp/y0L2zIh7Txb74cEMk3Oz7YFti0QonRezdXCaqF4IJdqNDtlYUObPkVBi5GrSlN5LegLIQiFQp4WNy9e9wAve9nLeOCBB9i4ceN1LcBqmuao/3Xw4EEMw6CtrY1isUixWLyhLb5zMVdTnzqsnytp1Xl3I4llenqa1772tXR2dvJ//+//vSkGRm8G3HTk4gbTNDl06BBjY2MIIXx5ELT52UU0WUysuhqLajSZNKyHV8MwSSo1Lbg87Idc3G75oqIQzGawrRDFQulGzNluQjGNUH32cpUWH+dPlNCnuBTuwbRrP5ebYnLzYzR/vFWNRQjBgw8+WJFzuZGto+UBxrIdwIYNG8jlcgwMDHDkyJHKEF9XVxfhcPi6dWDlcjl2795Ne3s769atm5PjOs2VjIyMMDo6ysmTJwmFQhWiaWtrY2Bg4IYRSyaT4Q1veAPhcJhvfvObN4XEzc2CFwW55PN59u7dixCCW265hZ/85CfYtu35wm7XvJOLkzVw6QGB1NbBQHcvU5EoyYlxfuGZ7/OtO17KdO88RAvNLz9LZXsxj7OyGBh+hihdDqoZBvHJaSQ5QCBc0tmyfYQufiMXTXb+naKkuaQsxJQav3PLhwcOuBfunbzuLSykOuqVZZk3vOENN42cS1m+aHBwkFtvvbXifbJs2bKKsu/IyAinT58mGAxWOrDa2trmjBRzuRy7du2qzPVcr+8oFAo1pM9GR0c5cOAApmli2zbLli277vM02WyWN77xjQgh+Md//Mfrqvb8YsBNRy71F+zExAR79+4lmUyyfv36SlrDNE3PbYztPmoujq3CqoqIxDFHBukbGWLhzLzInZLEivEUUj7Hj1es5YV1mxifvxAcOrqED3qRh4fdH8PmcKKd+dkMbXpzRpCaHLOh5tJkXiUHHE4LelWbBQFvNZeaYzmcR1fIZiQXrSnoV8PvnItT+kqSJIQQNakwI2EwuXUSK2ehjCqEL4dJWAk2bNiAZVkkk8mbgliOHj1KKpXi1ltvbVi06u1+y7WKgwcPYllWZVefTCZnrdU3k8mwe/duenp6WLVq1Q37jqrTZ+fOnePMmTP09vYyNDTEmTNnaGtrqxDtXHrG5PN53vzmN5PP5/mXf/mXOXccfTHipiOXaly6dInDhw+zcuVKFi9eXHNBG4bhg1xUVCHQPaSmVCHIV/07KQlGtQD2RKm4nlFV4jNtsp2pETpTJc+T7tQod+x9nlg+x4+23MqPN2xlZPEymMm/epEWKUPIjQQXsG3CqkLRslg/OY4JnI9EmVI1FlombVONSr/l5daSZTIdSWLVnWd1/FBsMgsUArZHS+d/oQDnijbj6jhtgTZPi0z1UwQ2HXKGkVzpZgy61cN8Ll715+GUBit2FZneWhKulDQJK2FhLDFYPloaejx69Cjvf//7URSFVatW8cpXvpJly5b5Oo9rRbXg46233toyzSLLMt3d3XR3d9fUKs6cOcOhQ4cqrb7XMimfTqfZvXs3fX19N0VUB6Uay9mzZ2uMvsqyLOU271AoNCcRXaFQ4Fd+5VeYmJjgX//1X697Ku7FgpuSXKoVjbds2VLTwue0G22Fdk31RCwAC8dTHJn5/6W5LCOhMGSueISk1UCFXKrRUSzQMTOo+NoXfsx/ePYphCzz/MZtPLXlVka6emguCH8F9Sm2SCGPbFmMizCLZjrIZGBx1Xld7uhkLNFOIj3NghkSkW0bPRgim+wmceF87THqycXjfbcgAEnV5AWpnayeRZItFkk5RunEcqnylJciGYu4lCdlXtnl2WbR8SpMFnOVduNgMNiysF5NJE7EUlhQIL2u1uslpsfYltpWQ7Tl1x47doyjR49i2zaLFi3ipS99KTt27JjThdU0TQ4cOEChULgqwcf6WkU2m62oBJQn5ctE49WnZXp6mt27d7Nw4UKWLVt20xCLU42lWpbFMAzGxsZqIrrOzs7K8ObVNkTous4jjzzCpUuXePLJJx2Htn+OEm46cikPZVUUjR3CTb9ulC0lQLiyvhgzJLQ2M82JUKShDJ0OaODcqVxBUAgsRSEsBPcd2sud+3fx8d/8PU53e2tCqCaXtmyGgqKQmZmD0V0+yryxFPPGSsQzFksw2plkQlHRY/EGYgEa8k5e5mfKUGcEwcJq6ZyGiYJZRC2MgQ1GsANbvnLzSpKEKgyCQmfcqk3xqIHGiffk9AQ90+OEVi5FkqRKu7FpmgQCgaZtnk6txvnleTLLa3+0jmIHG1Mbm+bfhBAIIbhw4QJ/+7d/y5e+9CWSySQ7d+7kFa94xawutIZhsG/fPmzb5pZbbpmVVtZwOMzixYsrk/LlXf2ePXuQJKlCNG4OjFNTU+zZs4fFixezdOnSaz6f2YDXrjBFUWoiuqmpqRrdNz+qxmUYhsHb3vY2Tp8+zQ9+8AM6Oztn86P9zOGmI5d8Po8kSRVFYyf4lQOxbZtaXd9aWLbN0ksDBIoFisCG9DSHXLzuDY+pOHnGSEwVgnZFIdzsfOtNx2bSYt3Tk6TCUcyqG99LQb9jepKO6Un0eQsI1w1hllFf69Bde8saIQOWbSFVn4usoYdnyNMyUbLDCNvA1NrQhImKybTVmJbRq7VfbJveqTE6M6XONcuyKpFqdUonn88TCAQoFos1bZ9O10V2XZbcgtqYsTffy+rx1b4LO7Isk0qlePzxx7n33ntnrR24vKFSFKUinzLbcBOaLNscl3f1yWSSQCBQqXUuXbq0pYHf9cK5c+c4e/as764wIQSJRIJEIlFjdVxuiAgEAjWqxk7pM9M0+c3f/E2OHDnC97///X93A5FXg5uOXOLxOFu3bm36nGoJmFYwTZPDhw83JReE4Oz8kkZTMjVCvwuxAKQMb6Qm1+2EVMO9+C4sk64zpzACASb6FiJkmXmT41yOtzXUHoyg97x5zGzSKl33ZRR8pqObtgpLMka4e+aJNoYtyNrOvf/CtkGUvq95Y8Mk8lciDLc6VbkOUSaYYrGIbdsNxJLepaxBJQAAT2dJREFUlqaQrNVUW5xbzJLxJS0+nTMMw+DUqVMYhsGOj+xgTXINb9j+Bl6747VXTQizMYzoF9U+LdUqARcvXuTo0aOEw2Gy2SxLlixh8eLFc34+XnC1xOKE+oaIcvrs0KFDmKZZIdqOjo6KLfK73vUudu3axQ9+8ANfYxD/nnHTkYsXeE2LFQoF9u7di23bKJKg6KG9VW+Rjsh6tBmuXyICRfeF3pYVhleuAUDNZpBzWS4nnHO5Yz3z4NRRT+dgN5HkFxY1EVPBh7gnlGTzDS87fyGQJJlGTemZhyk1UawtZjDztakrL00QmqahaVpdsdrmsRX9ZBWDPYUAe1SNcUmmr9jHivQKDF9KaiXous7JkycrtRxTNTk8fZjDPzjMH33vj1gYWsgr1r+Ct9zzFuJhb4tfeWakra2NdevW3ZC5mnoHxqGhIQ4ePEgkEuH8+fMV2fxmu/q5xmwSSz3qVY3Ltgn9/f38xm/8BsPDw8iyzOjoKD/+8Y9vCj23FwtuOnLxkvv0khYrFyLb29tZv349ynd/TNFDHkRv4kQJoHs0sZKEwLLtiux9oEXbcOX9wxHsZDcMOU+6FH10nZlupmpCYCGx8lMpLm8Nkl4RIBct1Z28Lh2ybWDUyxm7nYdwv8wCAlZNpTCnG7vd/HTYFWeaLGQs/mD1WTrUAmRhQ7bArwDngyp7AisgHMG2bSzLQtd1Ci08caC0STl16pT7+SgwoA/wqWc/xbe//23+5X/+S8v3LLf2dnV1XdeZkWYYHR3l8OHDrFu3jr6+voZdfXVR/HqZoc0lsdSj3jbhz/7sz/j1X/919u7dC8A999zDAw88wKOPPsq2bdvm9Fx+FnDTkYsXtCKX4eFh9u/fz7Jly1i6dCmWZaF4vHmLTW6YTtvibD7PvlyWRapGuyw3XRSqF2vNI7kATT+bF4/7MmSH58qUFm3NNFFSEPu3LPxblo4+G+nlnt/a19yO7SLwGQgECE+Nk02nHR/3Qy4AAcnkg2tOE5ZqIxMJWJrXSdtFTgSpiFzKslyxQJ7KTWEVrIb0Vi6X48yZMy3PxcgYpA+lOS+d5/3vfz87duzgvvvuc2wlLm985s+ff9O09o6MjHDgwAHWr19fSfvU7+rLRfFz587VmKGVVQJmG9eTWOphWRaf+9zn6O/v58CBAyxYsIAf/OAH/NM//ROnT5/+Obl4wE1JLl7cKJ1qLrZtc+7cOU6dOsXGjRvp6enBsiwsy0JtIkFSDUNRkWwbq+6Gnzc5weV4nHQ+z65c6b+IEKwIBFisqSRlpRKllGFhU27EDTi0L7vBbmKdLGkaxxctZdHgJULF5rvuaL62kK1wRVq/PkIR0+7ftwFcJsgC8pXkmS83SofFMxQKoet601klP+QSlQr8l7Un/Q94znSEtUXasEIWmUyGQqGAEIJcLsf58w6ddnXQJ3UyR2dSeqIkYvi9732Pf/mXfyEUCrFx40Ze9apX0dXVVSmUL1my5KbpwBoaGuLQoUNN1Zbri+JlSZa5MkO7kcRi2zZ//Md/zNe+9jV++MMfsnLlSgBe+cpX8spXvvK6nsuLGTclubSCU83FsiwOHz7M6OgoO3bsIB6PY5pmpeOoO6iRalL3qIaqKBRm3l/YFr1Tk5UaiFlVc8nYNvvzefbn8wSEoLejk/WqQk+hgCxESQh55h4LtiCCGrgUh3snx8nl86zuP4shBKf7FmIHAvQOXSbqoOQcqBLaVHGrepSgNylDKMBC8qXFfmbR0NDJevgo0Ci0H4lEyGaz2LbdVOTPK7nErXFe1/08omXKsvn7SZJELBarGIIdPnzY/ckzH6o4ViR7wvmbkCSJQqHArl27ePrppyvvfd999900xHL58mWOHj3Kpk2bfHVAOUmyjIyMsHfvXiRJqjEE89vscKOJ5WMf+xhf+MIX+MEPfsCaNWuu6/F/lvCiJJf6tFixWGTv3r2YpsnOnTvRNK2GWIQQ5PzMxcwsQqph0FZXXLccpuehZBN87wfex843vpHxgQEOfurTZF94HvnyIKoQBD3k9ivHr19wbZt5UxNcTrQTK5T0AxTbZvmlgdI5AWcjMdKqyrxshuQMkZUdODUaVY/rl1ndw9dTvRu1LJtuMYIiS1zMhxCae1qkOqKLxWJMT087vmc9hoaGKjIebs/rtga5O/MdbA+1ML97aUNtwrgCCsMFcmdydX9uPEomkyEUCmGaJhMTE3z961/n7/7u75g/fz6/8Au/wJ133nlDUmOXLl3i2LFjbN68+ZpmNqolWcqGYOXBzUKhUDFDSyaTLRUHbjSx/K//9b/4q7/6K5588kk2bNhwXY//s4YbJ/vaBH7cKKenp3n22WcJBALs2LGjQiy2bVeIBSDQpMurnmFlIREuFAgVi4zEai9w0+F9goEA7/3m/2PnG98IQPvChdz9Jx/hld/7HluefgrrzW/G9KNvVtVUIFsWPdNXIienORcJWJqZZuPEGMligSnTJGUY5CwLTXiT05dkfzLhOQOGRReXrE6EGsLKpLAmL2LnG9WVy79BTGRriAWc1YzLfyvXznbt2sWZM2eYnJxsmLx/wP4ecdXySBz+ajjBkPtCmL+UbyAWJ2QyGcLhcMPnlCSJy5cv87WvfY13vOMdvP/97+cf//EfyefzLu80u7hw4QLHjh1jy5YtszoMWDYEW7VqFXfeeSe333477e3tXL58mWeeeYbnnnuOM2fOMD093RCZ3mhi+Yu/+As+8YlP8MQTT7Bly5ZZP8bTTz/Ngw8+SF9fH0II/uEf/qHm8UceeaSSpi3/d//997d837/8y79kyZIlBINBbrvtNp5//vlZP/erwYs6cikbCy1evJjly5fXGEbV38whl4gDSlP57VPjqMNDpJPdaLrOuIAphyKlWfc+7R0dvO9fnqC9r8/xvWMdHdzxvj9g9OIwX91zzNPnK6sEBAydSCHPULztyvGbCEyWEZ9JQ+Rtm6LLelr953giwfv/5QnsT2/3dH5AbQpKCKTIlQXKzk1gFzKghZDCHSAgRpppu1FtoWxdXEZ1VFptZ3358mUuX75cSnF2d7Nu3Tqy2SwR2UCRBfGAjWlDToepApgOn9tvbFAwnKNNrU1j88RmLquXuVi8iCmcw750Ou1p+luWZSYnJ/nXf/1Xvvvd7xIOh7nnnnt48MEHfZ6xN/T391eK0m1tbXNyDChtKpzM0MpNAaqqVuo0k5OTnD9//oYRy2c/+1k++tGP8t3vfpdbb711To6TyWTYvHkzb33rW3nd617n+Jz777+fL37xi5V/t/KG+frXv8673/1uPv3pT3Pbbbfx+OOPc99993H8+HG6u7tn9fz94kVLLtPT0+zbt48NGzZU/Lmr02D1aEYuCMF4ogMSHQAYiTZyDkKQUBu5LFm9mvd8959RPZgDRVvkneddPE9WVpjsnY8ty0TzecBmLFI70Gn6kNz38uP2LljAB/7tewRjMUY9vzOIJgV9EWpDhNoAsAsZbENnGmfV2OpIxEuLuWVZtLW18aEPfYhCocDkh78MlokQAkVALABRzcZCcECOok5kiFeI0F/k0hXqYpraSGvhwoXEE3EEgt62XjaZm5jITDCYHWRAH6ikxdLp9FUp5cqyzMWLF/na1742J+RSjg62bdtGIpGY9fdvhmozNNM0K2ZoBw4cwDAMOjo6SKfTBIPB62aGZts2X/rSl/jDP/xDvv3tb7Nz5845O9YrXvEKXvGKVzR9TiAQ8DWk+YlPfIK3v/3tPProowB8+tOf5jvf+Q5f+MIXeO9733tN53uteNGlxSzLYmhoiEwmw6233kpvby+maWKapiuxAIQV70XFqYj7omDOREQ77ruP9z/5b56IBSDawg3z8vzFTPbOJ5CeJjQyiC5LpB2m8U0fQ2ytnrlq6xb+6Cc/JjhTwLZ97O1bF89nnheIIGutvyOvkj5r167lL//yL4HSjSg5pCmFEMgCtlppNsRtzLDEgCKTtXw0VQBGXZfDkiVLSp1QVd+TLMt0xjtZ37ue+xbcx62JW5mcnLzqxXF4eJjBwUHy+TwDAwOzmiY7c+YM586d45ZbbrnuxFIPWZZJJpOEQiFs22bDhg20tbXR39/P008/zQsvvMC5c+cq4qVzAdu2+fKXv8x73/tevvWtb3H33XfP2bG84oc//CHd3d2sXr2a3/qt3yKVarQ6L6NYLLJ7927uvffeyt8kSeLee+/l2WefvR6n2xQvqsilWCyyb98+crkc0Wi0oSOsGSlF/HSsNGmPtQJBXv2ux3i1z11BzCO5FaIxhtZspHDcZQpfCIo2aB54oL41uhp3PPggb/30p2r+Nt22lkDqCAEPp+pnziUSbE4ubsRS35J+++2389GPfrTGAMyy7ZYkulS1Wara9Jtn2WQM8JS5lCGxmKDaVauP1gTLly9vKVkvhCBWFWkWCoVKu7UXh8LLly9XFhNFURgcHOT48ePEYjG6urro7u72LLJYDdu2OX36NBcvXuSWW26pdMPdaJSjqGrZ/OXLS/YH5TbnsnR+OX3W1ubN5qEVbNvmG9/4Br/3e7/H3//93/PSl770mt/zWnH//ffzute9jqVLl3L69Gne97738YpXvIJnn33WseNudHQU0zQb2sd7eno4dsxbCn4u8aIhl3Q6zZ49e4jFYqxevZrTp0/X1FdaXXARH5GLcCEXSZb5nT/6Q159x23eT3wG8RaRSzXMFp8lLwk0j2261YrPUKo7PPjOd/Lq9/1Bw3OX/dcfYOoFhp76AtO7vk544jgh2TlCaZYWq4fdROPMq33C7bffzr333svzzz9Pd3c3nZ2dnD59Gj9iHGo2w6KYxErlAHCAQSvI94tLOCcWoyrzUBwcMQHWrFlzVaZbgUCAQqHAhQsXWLFiRdPnXrp0ibGxsSvnqqrceuutlTrF8PAwZ8+erYgsevUosW2bkydPcvnyZW655ZabxtSqWfE+GAw6Sufv378foKbN+WrN0L75zW/y2GOP8Y1vfIP77rvvmj/PbOCXfumXKv+/ceNGNm3axPLly/nhD3/Iy172sht4ZleHm5Jc6olidHSUffv2sWjRIlasWMHk5CSZTIaDBw/S3d1NV1dXy4ss6oNckBun9IPBIN/6wHvYtmyJ9/epQtzHTSCaLBhCkjjV0cnG0RFUL1I5XCEXSQje8qcf486HH3Z/vhqg797fgnt/C9u2ufjMVxn8/mfonD5GLHDleF7TYqVzdv7uZVkmFAqRdpnQL+M//af/xNve9rbKQjs4OMipU6eQJIn517CL7ZXy/HLgGHCMLCr7pC0cs5YwSRwodetcLbFAyUX1woULBIPBCtGUI5nqa3xgYIDJydoaX5k06usUY2NjDA8Pc/DgQWzbbrrQ2rbN8ePHGRkZcXS0vFHw0xVWL51fbnM+ffo0Bw8erLQ5d3V1efav//a3v81v/MZv8JWvfIVXvepVs/GR5gTLli0jmUxy6tQpR3JJJpPIsszQUK3y+dDQ0E0hrnlTkksZtm3T39/PiRMnWL9+PfPmzcM0TSKRCLfddltlN3fkyBE6Ojro6emhq6vLUfNoUyyCWiyge8j/U0dEyY4OfvjhD9HTdvV56qjqg9xcFmMtEOCzv/0Yu7IF3nf6LGt+8mN2HtzD8okxAi6LrCQE2DaqovCuv/kS6+65x/NpZDIZztgLSf7ip7H/5fcYG9iDbloEFIFwIGA35LQkcCV3XF5YTdMkl3Nv55Vlmccee4yHHnoIKC20nZ2dnD9/ns7OTvr6+uDp2ZkPCaNzh/UCd/ACBhIHWcMPkxuY1kVD+7MXpFIpLl++XPl3MBisLH7FYpFMJoNhGFy6dMmRXJ0i8Xo5lvJCe+rUKQ4dOlSz0GqaVrFK3r59+3X3l3fDtbQb15uhZTIZRkdHGRoa4vjx40Sj0crnj8Vijt/hE088wVvf+la+9KUvVa6rmxUXLlwglUoxb948x8c1TeOWW27hySefrHwWy7J48skneeyxx67jmTrjpiUXy7I4evQoQ0NDbN++nba2tpr6Snnaefny5WQyGYaHh+nv768QTXm3Uy6svnpRLw8s6OZzP/4pXz8/yLlAGCPovJMTVfIr65Yv418/9F4C1yjSJ4RA2Da2l522Q+QSj8V48o8/xJLuJK8C/vCOW5h+06v56/1H+dDpARY+9wx37tvF6pEhwlXHUAA5HOa9//gt+tau9Xy+4+PjlWhx2bJliHXfxdR1hp/9MlPPfRVz3Ls/eaFK+qaVtE8ZqqrygQ98gF/4hV+o/C2bzbJnz54aFeFRWcaryLFXGlKw2MoRng9ugZlrxLZtJiYmPKkCj4yMNOwmq1FWcoZSW7ATWh3HaaEdGRmpDEYqioJt22zevNnzjn6uMdtzLOU253oztPPnz6MoCslkks7OTiKRCNFolO9///v86q/+Kp/5zGd4wxveMAufyB/S6TSnTp2q/Pvs2bPs27evYn/wR3/0R7z+9a+nt7eX06dP8/u///usWLGiJm33spe9jNe+9rUV8nj3u9/NW97yFrZv386OHTt4/PHHyWQyle6xG4mbklx0XWf37t0UCgV27txJIBBoWriPRCIsXbqUpUuXksvlGBoaqtxkbW1tdHd3k0wmOXnyJOslm3987X1EIhG+f26Azx09za50nkI10cykFx64cydffOevz9rn+uCSbr5+5gInTLCbRVB1C8uC3l5++OEPkqhLa8Q0jXffupl337qZwhvu528Pn+T81CRbThxh8B/+gcD58yQ6OnjoM58mODM97WVxHBoa4vDhw6xatYoFCxZU/i6rKvPufpR5dz+K/NGPQot0Vhnl38vJftgJqqry//1//x+bNm2q/G16epo9e/bQ29vLqlWrKu8pgm3YBW/n4dMbrAZCCNrb29F1nWw2S7FYRFXVhmtxcHCQ0dHRhtc2e18/f3dDeaFdtGgRBw4cYHJyklgsxt69ewkGg7NeEPeLuR6QrDdDK7c5/9M//RO///u/z+rVqzl27Bj/43/8D375l3/5hnwHu3btqmkcePe73w3AW97yFj71qU9x4MAB/uZv/oaJiQn6+vp4+ctfzh//8R/XzLqcPn265vp605vexMjICB/60IcYHBxky5YtPPHEE64acdcTwvYrPXsdcPnyZc6dO8fGjRtrOonKU6tekc/nK62dk5OTyLLM4sWL6evra0gT/PTiIJ89dIJnp7KkB/p5bFkf73nogVn9XGWYpsn/OXaavz50nDNCxQo1RlDZr30JbJtb1q7hO+/7L1dlRmWaJmOpFCMzOzrbtitdR27Wtv39/RXhz2ZaUx/72Mcapu3LUM0sU0WBpmnIsszg4CBnz551JJb6TrFQKMRf/dVf1WhvlaOoJUuWsGTJkpprYPS/r4CC83nUYzBt0Rv13sr9GfvNZIV7hGYYBul0Gl3XK7nv6qJ89WdyU9HdvXu3Y7vx2rVr+dSnPuXwCndYlsXBgwfJZrPccsstFbWKsu7XyMgIQIVorkb362pwo9WNv/jFL/J7v/d7LFiwgP7+fm677TYefPBB/st/+S9XXU/7OVrjpvxme3p6aGtrq3EX9EssUMpzt7W1ce7cOXp6emhvb2dkZISzZ88SjUbp7u6mp6eHSCTC7fN7uX1+qQiWLhSJBuZuiMuyLFbkpvjI4i62bNnCkxeH+NKx0+zL6hTLsy2Kwut23s5nfvOtV30cWZbp6u6mq6oYOjQ0xLFjx9B1nWQyWYnqZFnm1KlTlXbVVnMQzX4LXQ4TCpVSSblcjmKx6CliicfjfP7zn68htZGREQ4ePNgQRVWdiOv7TRZsEoGr36FKktQ03FEUpTLhbpomR496M3GrhtPeLhAI8Hu/93u+3sc0TQ4cOEChUKgQC5SugeqCeNneuKz7VfZnKddpZhs3kligFC188IMf5BOf+ATvfOc7GRwc5Dvf+Q7PP//8dSHWf8+4KSOXfD6PYRjYto0Q4qrd74aHhzl06FDFB7y8IOq6zsjICMPDw6RSKUKhUIVootHonIbMuVyOvXv3EgqF2LRpU8MF/szAJT57+BQbrTz/9ZU+DFZ8wLZt0uk0Q0NDjIyMkMlkKrvcrVu3epIE+fjHP87ExISn401PT3PgwAHHx8qRS3d3N1/4whdqWmXLqc3169e7hvmpP16FnXdWUwCYyNtM5m0iGhgWviKXx7MPYYeTnp5rWZbr4FqzyGXXrl01hmWhUIjPfvazLFy40PN5mqbJ/v37MQyDrVu3ejLxsm27UqcZGRlhamqKRCJRIZpIxHtNzQ03mlj27NnDgw8+yAc/+EF+93d/96bwzfn3hJsycnn00Uc5cuQIr3nNa3jooYdYvXq1rwvDtm3Onz/PmTNnHBcmVVUr7Z2GYVTmCF544QU0TaOnp4fu7m7i8fisXpCTk5Ps27ePnp4e189018I+7lrorFM2WxBCVBoilixZwt69e8lms4RCIXbt2lWpU3V3d7sWg/0QfrOOMIClS5fymc98pmbnXF6YtmzZQkdHR7MP0/S924KCtmDpOfum2zk0GWeFfImF4SKyB522uUb13i4SifD5z3/eVxupaZoVK+9t27Z5TvPU2xsXCoUK0Zw+fbpmcPFq/FluNLEcOHCA17zmNbznPe/5/9s786imrr39P0EN4MQMAspYBEVlUnCWVi0iYILVOlyrtrTXDlp7vb1t3/5sxdoWta3LVm0d1r3St9ValCDWqSKDtIJaJhWRQZRJIAFkCjPJ/v3he85NmAOZhP1Zi7UknBx2YjjP2Xt/v89DhUVDaKW4fP/99zh79iwiIyOxd+9eODo6YtmyZQgODu41a1wqlSI7OxsVFRV9Wt4ZPnw4xo0bx9rIVFVVQSQSIS0tjV1SYJbpBvIBZZZ3HB0dYWNjoxUf9paWFqSnp2PEiBGYM2cOhg8fznZHi0Qi5ObmYsyYMazQyN7NKjL+no719vbGl19+yR5DCJFbnuv9wtT3cegM18Nd/cW4C0BXUge7ugw4ohj2oxrBHaa6/4++CPGYMWNw/PhxmJr2baYEPN3zSU9PB4fDgaen54CWeXR1dTF+/HiMHz9eLp8lIyMDHA6HFZru9upk0bSwZGVlISgoCO+++y4+/PBDrfhbG4popbgYGRnh1Vdfxauvvora2lr89ttvEAgE8PX1hbW1Nfh8Pvh8Ptzc3OT+cNva2nDnzh20trbCx8dH4RJM2fVpqVTKNqzdvn2b/QNj9m4UuXMvLi5+WqnWw/KOumloaEB6erpcWS8g3x3NNC0KhUI8fPiQXT40NzdX6PV398ft6+uL0NBQ9num/PzJkyeYMWNG35ZmFLpu/Hffp2XYWOSMnY8cAMOkLXBCCazbC+GAIowe3sfaZhl6Wl02MTGBi4sL8vLy0NbW1um9MzIywvHjxxVyKG5ra0NaWhpGjBgBNzc3pe4fdMxnYfZpcnJy0NLSwjZumpqadtqn0bSw5OTkIDAwEH//+9/x6aefqkRYEhMT8dVXXyE1NRVlZWWIiopi+0za2tqwfft2XLx4EQ8fPoSBgQEWLVqE3bt3P+3L6obQ0FDs3LlT7jGmwu1ZRSvFRRYDAwOsW7cO69atQ319PS5evAiBQIAlS5bA1NQUy5YtA5/Px6hRo7Bp0ybs3LkTvr6+A64CYdL0TE1N4eLigpqaGnYPR7bqysTEpNsLLWO9UVpaqnJ7c0Wora1Fenp6rxnust3hzN2sSCRCSkpKr0tdsnR1/uXLl+Pdd99lv5dIJGyl04wZMxS4MRj4xUOio4tsOCJ7uCNiiQSmTYWwkz6EhCjH2XXEiBF45ZVXADzdf4qJiUFmZiYaGxthbm6Ow4cPK2TL0trairS0NOjq6na5b6dMdHR02D6MiRMnQiwWo6KiAsXFxcjKyoKBgQHrksE0NWtKWB48eIDAwECsW7cOu3btUtmMpSfrfKYX65NPPoGbmxuqq6uxdetWLFu2DCkpKT2e19XVFVevXmW/f9Yr2Z6p0Y8ZMwarVq3CqlWr0NjYiN9//x2RkZEICgpCY2MjJk6c2GXvwUCR/QNzdnbuVHXFCA1TdQU8vVhmZmaivr4e3t7eWmO9wSzPPffcc7Cxsenz8zrezerr6yMuLg61tbV92kBm4HA4eOONN7B27Vr2sfb2dmRkZEAqlWLGjBkKna+3PRe5Q/vS6cIZhkp9B1TCAdL2drT+X3HJiBEjes3W6H6I8kmcy5cvx/Lly9mNfEXOyzjhjhw5ElOnTu13sUt/kN2rc3BwkDOYzM3NBQBYWVmBEMIW46iLgoICBAYG4qWXXsLevXtV+r70ZJ1vYGCAmJgYuccOHjwIb29vFBUV9fg3xyzRDxaeKXGRZeTIkQgODoZYLEZUVBTefPNNNDU1Yd26deByuQgKCgKfz8ecOXMUu1j1gmxn9MSJE1FfXw+hUMhacJiamsLY2BilpaXQ0dFh0zG1gcePHyM7OxtTpkwZ0PKcjo4OZs2ahVmzZoEQgr/++gvXrl1DRUVFJ98sQL6J8oMPPpBL12P2fbhcLjw8PBS+C2/mmkC3oXtbcrlxKHTmpxdy2ZuC1tZWdllLT0+vzxfP7o5TVKyam5tZ81ZXV1e1CktXMEuoEokEtbW1sLOzYw1mdXR02JsuIyMjlc6uiouLERAQgKVLl2L//v0af186Ultby143eiIvLw9WVlbQ09PDrFmzEBYWptANoLahlaXIfeX27dvw9fVFREQEFi9eDODpmmd8fDzOnDmD6OhoSKVSBAQEIDg4GAsWLFDZhZ4p7SwpKUFJSQkIITAxMWH9zjQpMIQQPHz4EEVFRXBzc+u5+mqAvycrKwsxMTEoKyvDsGHDwOFwUF1djZycHHz++edyYUxNTU1ITU2FgYFBvy+WhBBUpZ/Hkz/+jeFlaRg7rPvMlswmM8To8/p87sbGxm5nnG1tbWhqamLTFgkhuHHjRpfHjh8/Hnv37u3W964vNDc3IyUlBUZGRpg8ebLWbFIXFBSgoKAAnp6e7FKYbId8RUUF2traYGJiws7ulXmzV1ZWBj8/P8yfPx/Hjh1Te+8Kh8OR23PpSHNzM+bMmQMXFxecOHGi2/NcunQJYrEYzs7OKCsrw86dO/H48WNkZmZqTUSCojzT4gI8dUzursKmvb0df/zxB06fPo3o6Gg0NjYiICAAPB4PCxcuVLrnUk1NDTIyMmBlZQVra2uIRCKIRCLU19fDyMiI3Qzv7/JKf2Cq5yorK+Hp6alWy/WCggJcunQJ+fn5mDZtGlxdXdn1eWZDuqey7P5Qk5OEioQfwClMwljUy2Xa3GsywxUliYssUqkUdXV1uHfvXpc/t7Ozw5tvvgmxWAwjIyP2jr6vn7+mpiakpKTAxMQEkyZN0mph6QjTUyUSiVBRUQGxWMyWupuZmQ3IUFMoFMLf3x8zZsxAeHi4RpoiexKXtrY2vPTSSygpKUFCQoJC+1A1NTWwtbXFvn37EBISosQRq49nXlz6ikQiQVJSEiIjIxEVFYWamhosWbIEfD4fixcvHvCeCOPH5eTk1KkBrqmpiRWa2tpaGBgYsDMaVbrVym6Se3p6atTAsKmpiS1xrq6uBgAYGxvDxcVFKQ17XdHw+D7KY76D5EE8DCTVyGkxw+8qEBeg5yZKFxcXHD58mH0PKioqUF1dzbpE9BQC1tDQgLS0NJiZmSlVhAdKX4SlKzq+B6NGjWLFtjsn466orKzE0qVL4erqihMnTmhs87s7cWlra8PLL7+Mhw8fIi4uDiYmJgqfe8aMGVi0aBHCwsKUNFr1MmTERRapVIpbt26xQlNeXo4XX3wRPB4PS5YsUWgaKtuw2ZsfF/B0j4ERmurqaraPxMLCQqmb/kxqJ4fDgbu7u1KXIgYCk5lubm7OVqCNGjWKvciqyiGh+cljZF/9GdH3m9Dc3NKnJThFxEUikXS7LNaVTxjjElFRUYHKykro6uqy7wHTtCgWi5GamgpLS0s4OTk988LSEVkn46qqKjZSgNmn6e7/6MmTJwgICICDgwMiIiI0+tnuSlwYYcnLy0N8fHyv14SuEIvFsLGxQWhoqFxV5bPEkBQXWaRSKTIyMnDmzBkIBAIUFhZi0aJF4PF4WLp0aY/dyVKpFDk5ORCJRPDw8FD4D621tVXOhoa5yDJ+Z/29mDQ1NSEtLQ2jR4/GlClTtMZDqaysDFlZWXIFBbIOCZWVleByuWw/UX86w/tCY2MjYmNjcfv2bYjF4m7fH2WJy8qVK/HOO+/0+FxZc0lm8/fJkyewtrYelMLSEWafhlk+k0gkrO+Z7D5NTU0NgoKCYGlpCYFAoJG9TFnrfA8PD+zbtw/PP/88jI2NYWlpiRUrViAtLQ3nz5+XK5wxNjZmx9vROv/9999HUFAQbG1tUVpaih07diAjIwNZWVn9EidtYMiLiyyEEGRmZrJCk5ubixdeeAE8Hg8BAQEwNjZm/8hbWlqQlZWFpqYmeHh4DHh5i7mLYy6yenp6rA2NIssFjDW9svcyBgrjtuzm5tbtEoFs0iJzke1v42pfkEgkSE1Nxb179yAUClFTUyMnNMoQlyVLluCjjz7q85ikUilKS0uRk5MDHR0dubRJZW+GK4qqhKUjhBDU19ezn4Py8nLs378fvr6+iImJgYWFBaKjozW2zJuQkCBnnc+wYcMGhIaGyjl6yxIfHw/f/wvrs7Ozw8aNG9km4tWrVyMxMRFVVVUwMzPD3Llz8cUXX8DR0VFVL0PlUHHpBiYiNjIyEgKBAHfv3sW8efPA5/Ph4eGBkJAQbNq0CSEhIUr/g5dIJGxnPHM333HJpCuqqqpw586dLq3pNQUhBPn5+SgpKYGHh0evdjwMTGc4s4QokUjkGlcHOhtra2tDeno6dHR04O7uzoZr/fXXX7h+/TqEQiEkEkmf74y7Ehc+n4/33ntPoXHV1tYiLS0N9vb2sLW1ZTfDRSIRGhoa+hXrqwzUJSxdIRQKcejQIRw5cgQNDQ2YOnUqgoODwePx4O7urhWfc0pnqLj0AaaU98yZMzhx4gSb3f3BBx/gpZdegqWlpco+4MzdPONgLGtRY2RkxP5eZslp0qRJPdpMqBNCCBu16+np2e+Ne0II6urq2Itsc3Mzezffn/Levna4Z2VlISEhAcXFxb1GPrS3t+PmzZvs92vWrMGmTZsUGheTW8P4z3WksbGRXUatra3F2LFjWcFVVVEEoFlhAZ6+7hUrVoAQgp9++gmJiYmIjo7GlStXkJubqzWWShR5qLgoQFxcHJYvX46NGzfCxsYGUVFRSE5Ohre3N3g8Hng8HiZMmKAyoWHWpRmhIYSwOR1MCl1/qlJUARNc1dDQoNRKNaafiBEapry3r2Xezc3NSE1NxZgxYzBlypQ+L7UVFhYiNjYWDx8+hFQq7fR/LCsuGzduxMaNGxV6XU+ePEFGRkb3uTUdkN2ve/LkCetirGw3b00LS3NzM1atWoWGhgZcvnxZbgxtbW1aU6hC6QwVlz7S3NyMyZMn49NPP2UvHIQQlJaWIioqCpGRkfjzzz/h7u7OCo2Dg4PKhIYQwjYnMpvSzAVWXQmD3dHe3o7bt29DIpHA3d1dpZuuHcu8x44dy74PHfdLGhsbkZqaOuB+kcrKSsTExCA7Oxutra3Q0dFhxeWtt97CqlWrFD7fnTt34OLi0q9Zp6yLMTO77UvVVW9oWlhaWlrwt7/9DZWVlbhy5YrWePNR+gYVFwXoaYOXEAKRSMRGBSQkJGDy5MlsJo1s7rsykEqlyMzMRF1dHTw8PNDe3g6hUAiRSITW1la5lEl19gAwS05cLhfTpk1T6+9mMkmYu3nZEmfgaXiUsst6xWIxW3nm5uYGHq/vfTTAf0uzJ0+eDEtLywGPR7Y7ntmrYj4LJiYmff7/0LSwtLa2Yv369SguLkZsbKzKXCUoqoOKiwoghODJkyeIjo5GZGQkYmNj8dxzz7GZNJMmTRpQ5VNbWxs7M/Dw8JCbGcimTIpEIjQ1NbHWGwOxH+kLTAm0oktOqqBj9Z1UKoWhoSGcnJxUVuKsKEKhEJmZmQP2eusOZq+KEZqmpia5goDulhA1LSzt7e147bXXkJOTg7i4OJWU4vZkmw88fe927NiBY8eOoaamBnPmzMEPP/wAJyenHs976NAhfPXVVygvL4ebmxsOHDgAb29vpY//WYCKixqoqalhM2l+//13jB8/HjweD8HBwZg2bZpCF+Hm5makp6dDT0+vT3brstVGYrEYxsbG7N28MperGMNCMzMzuLi4aMXFG/jvXoaFhQUIIUpdNhoI5eXluHfvHqZNm6a2PgYm1lgkEsnFGssuIWqDsGzatAm3b99GXFycylyCL126hOvXr8PLywvLly/vJC579uxBWFgYfvzxR9jb2+OTTz7B3bt3kZWV1e3+4a+//or169fj8OHD8PHxwf79+3H69Gnk5OSws+ehBBUXNVNfX48LFy5AIBDg0qVLMDU1ZZfOpk+f3uOFTiwWIz09HcbGxv2a/TQ2NrJCU1dXB0NDQ9aGZiAb7oyn2oQJE1S6z6QoTLyAs7MzrK2tAcg364lEIkilUqWWOPeF0tJSZGdnY9q0aQolTyqTrpYQuVwu6urq4Onp2eeScWUikUiwefNmJCcnIyEhQW1Vjx277AkhsLKywj//+U+8//77AJ6WiFtYWCA8PByrV6/u8jw+Pj6YMWMGDh48CODpZ23ChAnYsmWLQr1OgwUqLhqksbERly9fRmRkJC5cuICxY8di2bJl4PF4mDlzptyFrrKyEnfv3oWNjY1SLuDNzc0QiUQQCoXsRjjTtKlIQyizGd2Vp5omYWYGrq6u3d79EkJQW1vLCk1ra6vK3HsZSkpKkJubC3d3d63ZR2hvb8f9+/chFArB4XBYlwRzc3MYGhqqZWYnlUrx3nvvIT4+HvHx8Wq1mu8oLg8fPoSjoyPS09Ph7u7OHrdgwQK4u7vj22+/7XQOJp7hzJkzcjOgDRs2oKamBtHR0Sp+FdrHM5vnMhgYOXIkGxzV3NyMmJgYREZGYtWqVdDV1UVQUBCCg4Px8OFD7Nu3D+fOneu2+1dR9PT0YGNjAxsbG/YuVigUIi8vD6NHj2aFpqf+Caa3pqcLuCZ4/PgxcnJyel1yks3mcXJyYpcQCwoKcO/ePaUvIRYVFSE/Px8eHh4wMjIa8PmURUlJCaqqquDt7Y3Ro0ezLgl3795lHQJUObOTSqX44IMPEBMTg4SEBI1nmJSXlwNAp30wCwsL9mcdqayshEQi6fI5z3JU8UCg4qIl6OnpISgoCEFBQWhtbWUzaV5++WWIxWLMnTsX+fn5sLa2Vnppr66uLsaPH4/x48ezhopCoRD5+fndmkoydi7a1FsDgDURVXRmIJuy6OjoyC4hMktYTJyvojM7BiZb3sPDQ6tKarvaY2HivZmZXUVFBfLy8nD37l25mZ0yPodSqRT/7//9P5w7dw7x8fFKu3miaB4qLloIl8vFiy++iMTERHC5XHz77be4f/8+3nzzTTQ3NyMgIAB8Ph/PP/+80i1ARowYASsrK1hZWbGmkkKhEAUFBdDT04O5uTlaW1shEong5eWlkbX5rmBcFIqLi5WyZzBy5EjWRoeJ8xWJROzMrjerfFkePXqEwsJCjWXLd0dvm/eyM7vnnnuOLQgoLi5GVlbWgHNZCCH47LPPEBERgfj4+F4rsdQFMwsXCoVy5eFCoVBumUwWJuJcKBTKPS4UCrVqVq9OqLhoKZcuXcKJEydw/fp1uLi4AHiaxX39+nVERkbiH//4B2pra+Hv7w8+n49FixYp1bIf+G+m97hx41i/swcPHqCxsRFcLhfl5eVsia8mN/EJIcjLy0NZWRmmT5+u9EA0Js53woQJ7MxOJBLh0aNHrOB21Rkv66vm5eWlVYmCilaFcTgcjB49GqNHj4a9vb2c4Obm5mL06NHsPk1fYhMIIQgLC0N4eDji4uLYz7g2YG9vj3HjxiE2NpYVk7q6OrZJtiu4XC68vLwQGxvL7rlIpVLExsayzsdDDbqhr6UwPQrd3YFLpVLcvHmTzaQRCoXw8/NjM2mUfYFlmjbr6+vh7u7OLhsx7sWyfmfqLO2V9S/z8vJSusD2BCO4TC/N8OHD2QusgYEBHj58iNLSUnh5eak1AbQ3lF1u3LGnSFdXV64goKPQEEKwb98+7N+/H3FxcXBzcxvwGBSlJ9t8Gxsb7NmzB7t375YrRb5z545cKXJH2/xff/0VGzZswJEjR+Dt7Y39+/cjIiIC2dnZQ9L/jIrLIEAqlSI9PZ2NCiguLpbLpBmo1xRj59Le3t6pabNjaS8hRK60V5VCIyt4Xl5eGk3alEqlcnEB7e3tAICJEyfCyspKazJ1VN3H0jE2AQDMzMzYxMmRI0fiwIED2Lt3L65cuYLp06crfQx9oSfb/PDwcLaJ8ujRo6ipqcHcuXPx/fffY+LEieyxHW3zgaerC0wTpbu7O7777jv4+Pio4yVpHVRcBhlMJs3p06chEAiQl5fHZtIEBgbKOSn3hdbWVqSnp2P48OFwc3Pr0T6EECJnk9/e3g5TU1NYWFgovdJIIpHgzp07aGlpgaenp0ZCo7qCmUlVVFTA1NQUT548QVtbm8bseGRRd4Ok7Ofh+PHjOHbsGCZMmICSkhKcPXsWL774osrHQNEcGhcXRe0STp8+jU8++QQFBQVwcnLCnj17sHTpUjWO+NmBEILs7GycOXMGUVFRyMzMxPz588Hn8xEUFARTU9MehaapqQnp6ekYNWoUpk6dqtAsRNYmXygUoqWlhRWagV5g29vbkZGRAalUCg8PD61xxiWEICsrC9XV1fDy8oK+vr5c8JWsBQuzEa4uUdR0571EIsGOHTtw8OBB2NnZ4dGjR/D19cWKFSsUjiagPBtoVFwUtUtISkrC/PnzERYWhsDAQJw8eRJ79uxBWloapkyZooFX8OzAbC4zQpOWlobZs2eDz+dj2bJlGDdunJzQKNPOhfE7Y4SGucAy7gCKiAMT8jVs2DC4u7trzXKTVCrFvXv3UF9f32PEgGxcQH19PVtxZW5urrJlPU0LCyEEP//8M95//32cO3cOzz//PAoKChAdHY2ioiJ88803ah8TRfVoVFwUtUtgch3Onz/PPjZz5ky4u7vj8OHDahv3sw4hBIWFhRAIBBAIBLhx4wZ8fHzYqIC8vDzs2rUL33//vUp8wpgLrFAoVMjvrKWlBWlpadDX18fUqVO1Slju3r2LxsZGeHp69popw8C4JIhEItTU1GDMmDFyJc7KQBuEJSIiAlu2bIFAIKBLYUMIjYlLf+wSbGxssG3bNrno2B07duDs2bO4ffu2GkY9+GAyaQQCASIjI/HHH38AAHx9ffHtt9/C3t5epWXGTB6LUChk/c66upNnHJcNDAwwefJkjTouyyKVSnHnzh00NzcPaO+nq/Av5n0YM2ZMv/4PNC0sACAQCPDmm2/i119/RUBAgEbGQNEMGutz6Y9dQnl5uUKWDJTe4XA4sLa2xpYtW2Bubo5bt27h5ZdfxuPHj+Hp6QlXV1d2RqPsTBoA0NfXh62tLWxtbdneCaFQiNzcXDb4a8yYMcjKyoKpqalWOS5LJBLcvn0bbW1t8PLyGtDeD5fLhbW1NaytrdnmVZFIhJSUFIwYMYIVmr72FGmDsPz222/YtGkTTpw4oTZhsbOzQ2FhYafH3377bRw6dKjT4+Hh4Xj11VflHtPV1UVzc7PKxjhUoE2UFADAtWvX8PrrryMyMhL+/v5sJs3Zs2chEAgQFhYGJycnNipgIEmO3SHbrMi4AJSWliIvLw9cLhdcLhcNDQ1a0TMikUjYogIvLy+lVoB1bF5lSntv374NDofDlnobGxt3OYPTBmG5dOkSQkJCEB4eLrcyoWr++usvSCQS9vvMzEwsXrwYK1eu7PY5Y8eORU5ODvu9tty8POtoTFz6Y5cwbtw4aq+gIubOnYtbt25h0qRJAJ7+gZmYmCAkJASvvfYaamtrce7cOQgEAuzbtw82Njas0ChaSdYXuFwuRo8ejYaGBtjb22PkyJGsqSSzZGRhYdGnbnBl097ejvT0dHA4HHh4eKi0tJjJnjEzM4NUKmVLe+/fv8+WesumTGqDsMTGxmLDhg04evRojxd1VdDRqHT37t1wdHTEggULun0Oh8Oh1xAVoPENfW9vbxw4cADA0/VrGxsbbN68udsN/cbGRvz222/sY7Nnz8a0adPohr4aqaurk8ukMTc3ZzNpvLy8lCI0TMhXRyt/2SWjyspKcLlcVmgG2izaF7SlWk221FskEqG5uRn6+vpobm7WqJ1/YmIiVq5ciQMHDmDDhg0anQW0trbCysoK27Ztw8cff9zlMeHh4Xj99ddhbW0NqVQKT09PfPnll3B1dVXzaAcfGi9F7skuYf369bC2tkZYWBiAp6XICxYswO7duxEQEIBTp07hyy+/pKXIGqShoUEuk8bQ0JDNpPHx8enXxZcJ+XJxcekxMEoikaCqqortBh82bBgrNKrwO2tra0Nqaip0dXX7lAKqTnJzc1FcXAx9fX00NjbCyMiI7aVRl3PB9evX8dJLL+Hrr7/GG2+8ofHlpYiICKxduxZFRUXdfo6Sk5ORl5eHadOmoba2Fl9//TUSExNx7949jB8/Xs0jHlxovImyJ7sEX19f2NnZITw8nD3+9OnT2L59O9tEuXfv3l6bKMPCwiAQCJCdnQ19fX3Mnj0be/bsgbOzc7fPoRt9itPU1MRm0vz2229sjEBwcDBmz57dp+UjJiNG0Vx5WfsVkUjE7k1YWFgoxe+stbUVqampGDlypEqWAQdCx6WwpqYmtjCCCYJjCgJU5b1269Yt8Hg8fPHFF3jnnXc0LiwA4OfnBy6XK7fS0RttbW2YNGkS1qxZg127dqlwdIMfjYuLOliyZAlWr16NGTNmoL29HR9//DEyMzORlZXVbT9BeHg4tm7d2mmjbyga0PWH1tZWxMXF4cyZM4iOjgaHw0FgYCCCg4Mxb968Lkt2mZTGgcb/yu5NiEQiSCQS9uJqbGys8IyjpaUFqampGD16NKZMmaLVwtIRpjBCNs64q3yegZCWloagoCB8+umneO+997RCWAoLC+Hg4ACBQAAej6fQc1euXInhw4fjl19+UdHohgZDQlw6UlFRAXNzc1y7dg3z58/v8pjw8HC89957qKmpUe/gBiHt7e24du0aTp8+jejoaLS0tCAwMBA8Hg8vvPACdHV1sXfvXjg4OGDhwoVKTWmUjTIWCoWszxdjQ9Ob0DQ3NyM1NRUGBgZwdXXVigsng6Kb94x7cUVFhdx+FePi3J/XdufOHSxduhQffPABPvzwQ615f0JDQ3HkyBEUFxcrVHAhkUjg6uqKpUuXYt++fSoc4eBnSIrLgwcP4OTkhLt373a7V0M3+lSDRCLBn3/+yUYF1NXVYdy4cSgpKcHp06fh6+urst8t6/MlFArR3NwsZyjZsU+lqakJqampMDY2Vknp9UAYaFVYR/fi/sQmZGVlwd/fH1u2bMEnn3yiNe+PVCqFvb091qxZg927d8v9rOM+7meffYaZM2fiueeeQ01NDb766iucPXsWqampmDx5siaGP2gYcuIilUqxbNky1NTU4M8//+z2OLrRp3ra29uxdu1aXLx4EQYGBqirq2Mzafz8/FTaz0IIQUNDA4RCIUQiERoaGtgIXzMzM7S3tyM1NRVmZmZwdnbWmgsn8F9hUVYAWVfLiLKxCV3N7nJycuDv74+QkBB8/vnnWvX+XLlyBX5+fsjJyZGzyAc67+P+4x//gEAgQHl5OYyMjODl5YXPP/8cHh4eGhj54GLIictbb72FS5cu4c8//1RIJOhGn3IhhCAkJATXrl3D1atXYWtri7S0NDaTpqSkBIsXLwaPx4O/v7/K45QbGxtZoamvrwcAGBoaYsqUKRrNiemIsoWlI925WTN2PEZGRnjw4AH8/f2xdu1a7NmzR6v2oCjaw5ASl82bNyM6OhqJiYmwt7dX+Pl0o0+5HDp0CMHBwZ3KRBkjSMbB+cGDB2wmTUBAgMKZNIogFouRkpKCMWPGQCqVora2FgYGBuySUX+y4pXFo0ePUFhYqLbIZGZ2JxKJkJ2djTVr1sDV1RWFhYVYvnw5jh07RoWF0i1DQlwIIdiyZQuioqKQkJAAJycnhc9BN/o0AxO+xQjNvXv3sGDBAvD5fAQGBvaaSaMIdXV1SEtLg42NDRwcHAA8rRRjlouqq6tZ52ILCwu1RiqrW1i6Ij4+HmvXroW+vj4qKysxc+ZMLF++HOvXrx9QdR9lcDIkxOXtt9/GyZMnER0dLdfbYmBgwN6J0o0+7YcQggcPHrBCk56ejjlz5oDH43WZSaMItbW1SEtLg729Pezs7Lo8Rta5uKqqii3rtbCwwKhRo1Q2m9IGYSkrK4Ofnx8WLFiAo0ePoqKiAtHR0RAIBPjuu+967BmjDE2GhLh090d//PhxbNy4EQDd6HvWYDJpIiMjIRAIcPPmTcycOZN1Bxg/fnyfL/Y1NTVIT0+Ho6MjbGxs+vQcpqyXsaHR09Njhaa/FvldoQ3CUl5eDn9/f/j4+OD48eNa5UxA0V6GhLiom9DQUOzcuVPuMWdn526jBAAa3zwQCCF4/Pgxm0mTlJQET09PNirAzs6u24t9dx5miiCRSFihqaioYC3yLSws+t0/AmiHsFRUVGDp0qWYOnUqfv75Z5WadFIGF3Q3TkW4urqirKyM/eqp7DkpKQlr1qxBSEgI0tPTwefzwefzkZmZqcYRP7twOByMHz8e7777LhISElBcXIyNGzciLi4OHh4emDdvHr766ivk5uZC9l7q/v37yMjIgLOzc7+FBXjqXGxhYYGpU6diwYIFcHFxYZ2T//jjD2RnZ+PJkyeQSqV9Pqc2CEtVVRWCgoLg7OyMn376SS3CEhoaCg6HI/fl4uLS43NOnz4NFxcX6OnpYerUqbh48aLKx0npHTpzUQGhoaE4e/YsMjIy+nQ8jW9WDYQQVFVVITo6GpGRkYiNjcXEiRPB4/Ggr6+PL774ApcvX8b06dNV8vulUimqq6shFApRUVEBQoicDU13lVbaICw1NTUIDAyEtbU1IiMj+52wqSihoaE4c+YMrl69yj42fPjwbgsGkpKSMH/+fISFhSEwMBAnT57Enj17qJmtFkDnuCoiLy8PVlZW0NPTw6xZsxAWFtbten5ycjK2bdsm95ifnx/Onj2rhpEOXjgcDkxNTdlMmpqaGpw7dw6HDh3CX3/9BQsLC1y4cAEjRoxQiRmljo4OTExMYGJiAkIIampqIBQKkZWV1W2jojYIS11dHYKDg2Fubo7Tp0+rTVgYmLC0vvDtt99iyZIl+Ne//gUA2LVrF2JiYnDw4EF6Y6ZhqLioAB8fH4SHh8PZ2RllZWXYuXMn5s2bh8zMzC4vGDS+WfVwOBwYGRlBX18f9+7dw8mTJ0EIgUAgwOLFi2FhYYFly5YhODgYnp6eShca5vcbGRnB2dkZdXV1bJxza2sre2deVVWF6dOna0xYxGIxVqxYgdGjRyMqKkojDaT0xmxwQMVFBfj7+7P/njZtGnx8fGBra4uIiAiEhIRocGRDm4aGBnz00Uc4c+YM+3+0du1aNDQ04NKlS4iMjERgYCCMjIywbNky8Pl8eHt7K706isPhwMDAAAYGBnBycoJYLEZOTg6qq6vB4XCQn5/P2tB09DtTJY2NjVi5ciWGDRuG6OhojTSM0huzwQMVFzVgaGiIiRMn4sGDB13+nMY3q4dRo0bh/v370NXV7fT4ihUrsGLFCjQ1NeHKlSuIjIzEypUroa+vj6CgIPD5/D5n0igCh8NBZWUlxGIxZs6cCQ6HA5FIhKKiImRlZcHY2Jjdp1Hl8lRTUxNWr16NtrY2XL58WaW+bj1Bb8wGD7RaTA2IxWLk5+fD0tKyy5/PmjULsbGxco/FxMRg1qxZ6hjekKKjsHREX18fPB4P//u//4vy8nIcO3YMbW1teOWVV+Dk5IQtW7YgLi4ObW1tShlPxz2W0aNHw8HBATNnzsTs2bNhbGyM0tJSJCYmIiUlBUVFRUoPrGtpacG6detQV1eHixcv9stlWVXQG7NnFyouKuD999/HtWvXUFBQgKSkJAQHB2PYsGFYs2YNgKduAP/zP//DHr9161ZcvnwZ33zzDbKzsxEaGoqUlBRs3rxZUy+BAoDL5WLp0qX497//jdLSUpw4cQIjRozA66+/DgcHB7z11lu4fPkyWlpa+nX+3jbvR44cCTs7O3h7e2Pu3LkwNzeHSCTCn3/+iVu3bqGgoABNTU0Deo2tra1Yv349ysvLcfnyZRgaGg7ofMqG3pg9wxCK0lm1ahWxtLQkXC6XWFtbk1WrVpEHDx6wP1+wYAHZsGGD3HMiIiLIxIkTCZfLJa6uruTChQt9/n22trYEQKevt99+u8vjjx8/3ulYXV3dfr3WoUh7ezuJj48nmzdvJtbW1sTAwICsWbOGnDp1ilRWVpKGhoZevzIzM8mFCxdIeXl5n46X/aquriY5OTnkjz/+INHR0SQ2NpZkZmYSkUik0HlqamrI8uXLyZQpU0hFRYWm31ZCCCH//Oc/SUJCAnn06BG5fv06WbRoETE1NSUikYgQQsgrr7xCPvroI/b469evk+HDh5Ovv/6a3L9/n+zYsYOMGDGC3L17V1MvgfJ/0D6XQUBFRQUkEgn7fWZmJhYvXoz4+Pguw7dohLPykEgkuHHjBht+VllZCT8/P/D5fPj5+XUZo63McuO2tjZUVFRAKBTiyZMn0NfXh4WFRa8xxu3t7di0aRNu376N+Ph4rfm/X716NRITE1FVVQUzMzPMnTsXX3zxBRwdHQF0tmkCnjZRbt++nXW32Lt3L3W30AKouAxC3nvvPZw/fx55eXldXlxohLNqkEqlSE1NZY01Hz9+jEWLFoHP58Pf3x9jx47F559/DltbW/D5fKWXG7e3t8vZ0Ojq6rJCM3bsWPazIJFI8M477+DGjRtISEjoFHlAoSgDKi6DjNbWVlhZWWHbtm34+OOPuzyGRjirHqlUijt37rBCk5+fj/Hjx+Px48c4deoUFi1apNL0RolEgqqqKlZoWltbERkZieDgYJw/fx6JiYmIj4/vs1EnhaIoVFwGGREREVi7di2Kioq6vSOlEc7qhRCCbdu24ciRI7C2tkZhYSF8fX3ZTBoTExOVCo1UKsX9+/exa9cu/P7772hvb8fq1avx6quvwtfXl5pRUlQCrRYbZPz73/+Gv79/j0sds2bNwvr16+Hu7o4FCxZAIBDAzMwMR44cUeNIhw579+7FTz/9hOTkZOTm5iIzMxO+vr44fvw4HB0dERgYiKNHj6K8vByquNfT0dHBpEmTYG9vD1NTU/znP/+BgYEBXnnlFVhYWODu3btK/50UCp25DCIKCwvh4OAAgUAAHo+n0HNphLPqCA8Ph4eHB9zc3OQeJ4SgoKCAzaS5desWZs2axWbSWFtbK2VGQwjBzp078dNPPyE+Pp51GZZKpUhKSsKMGTN67f+hUBSFissgIjQ0FEeOHEFxcbFCSx00wlnzEEJQUlICgUAAgUDAZtLw+XzweDzY2tr2S2gIIQgLC8PRo0cRHx9P99UoaoMuiw0SpFIpjh8/jg0bNnQSlo5Nm5999hmuXLmChw8fIi0tDevWrUNhYSFef/11dQ+b8n9wOBxMmDABW7duRUJCAoqKirBhwwZcvXoVbm5umDdvHr7++mvk5eX1eemMEIJvvvkGhw8fRkxMjNqEJSwsDDNmzMCYMWNgbm4OPp8vV/beFeHh4Z1yXDRhmklRHlRcBglXr15FUVERXnvttU4/KyoqQllZGft9dXU13njjDUyaNAlLly5FXV0dkpKSMHnyZHUOmdINHA4HlpaWePvtt3H16lWUlpbi7bffRnJyMry9vVmn4KysrG6FhhCC7777Dvv378fly5c7LcmpkmvXrrGlzjExMWhra8OLL76IhoaGHp83duxYuYC9wsJCNY2YohLU2bFJeXa5du0aCQwMJJaWlgQAiYqKkvu5VColn3zyCRk3bhzR09MjCxcuJLm5ub2e9+DBg8TW1pbo6uoSb29vcvPmTRW9gmcfqVRKnjx5Qo4fP06CgoKInp4ecXFxIR9++CFJTk4m9fX1pKGhgYjFYvL1118TAwMDkpycrOlhE5FIRACQa9eudXvM8ePHiYGBgfoGRVE5dOZC6RMNDQ1wc3PDoUOHuvz53r178d133+Hw4cO4efMmRo0aBT8/vx5NFn/99Vds27YNO3bsQFpaGtzc3ODn5weRSKSql/FMw2TCbNy4EefOnUN5eTm2b9+OvLw8LFy4EO7u7ti+fTtCQ0Oxc+dOnD9/HjNnztT0sFFbWwsAMDY27vE4sVgMW1tbTJgwATweD/fu3VPH8CiqQtPqRnn2QIeZi1QqJePGjSNfffUV+1hNTQ3R1dUlv/zyS7fn8fb2Ju+88w77vUQiIVZWViQsLEwl4x7M1NfXk4iICMLn8wmHw+k0s9QUEomEBAQEkDlz5vR4XFJSEvnxxx9Jeno6SUhIIIGBgWTs2LGkuLhYTSOlKBsqLhSF6Sgu+fn5BABJT0+XO27+/Pnk3Xff7fIcLS0tZNiwYZ0uguvXryfLli1T8oiHFrW1tZoeAsubb75JbG1tFRaJ1tZW4ujoSLZv366ikVFUDV0WowwYJvVPkUTAyspKSCQSmiKoArQlj2Xz5s04f/484uPjFXZ+GDFiBDw8PLrNcaFoP1RcKBSKUiGEYPPmzYiKikJcXBzs7e0VPodEIsHdu3e7zXGhaD9UXCgDhkn9UyQR0NTUFMOGDaMpgoOQd955Bz///DNOnjyJMWPGoLy8HOXl5XLBZrT3avBDxYUyYOzt7TFu3Di5RMC6ujrcvHmz20RALpcLLy8vuedIpVLExsbSFMFnnB9++AG1tbXw9fWFpaUl+/Xrr7+yx9DeqyGApjd9KM8G9fX1JD09naSnpxMAZN++fSQ9PZ0UFhYSQgjZvXs3MTQ0JNHR0eTOnTuEx+MRe3t70tTUxJ7jhRdeIAcOHGC/P3XqFNHV1SXh4eEkKyuL/P3vfyeGhoakvLxc7a+PQqEoFyoulD4RHx/fZZQyE9fMNFFaWFgQXV1dsnDhQpKTkyN3DltbW7Jjxw65xw4cOEBsbGwIl8sl3t7e5MaNG4SQnps2W1tbyQcffECmTJlCRo4cSSwtLckrr7xCHj9+3ONr2LFjR6fxOzs7D/i9oVAonaHGlRSt5NKlS7h+/Tq8vLywfPlyREVFgc/nA3jalLdixQq88cYbcHNzQ3V1NbZu3QqJRIKUlJRuzxkaGoozZ87g6tWr7GPDhw+Hqampql8OhTLkoClBFK3E398f/v7+Xf7MwMAAMTExco8dPHgQ3t7eKCoq6jFdcfjw4bRggEJRA3RDnzIoqK2tBYfDgaGhYY/H5eXlwcrKCg4ODvjb3/6GoqIi9QyQQhliUHGhPPM0Nzfjww8/xJo1a3psIPTx8UF4eDguX76MH374AY8ePcK8efNQX1+vxtFSKEMDuixGeaZpa2vDyy+/DEIIfvjhhx6PlV1mmzZtGnx8fGBra4uIiAiEhISoeqgUypCCzlwozyyMsBQWFiImJkZh2xNDQ0NMnDiRWox0w6FDh2BnZwc9PT34+Pjg1q1bPR5/+vRpuLi4QE9PD1OnTsXFixfVNFKKNkLFhfJMwghLXl4erl69ChMTE4XPIRaLkZ+fTy1GukDROISkpCSsWbMGISEhSE9PB5/PB5/PR2ZmpppHTtEWaCkyRSsRi8XsjMLDwwP79u3D888/D2NjY1haWmLFihVIS0vD+fPn5cwvjY2NweVyAQALFy5EcHAwNm/eDAB4//33ERQUBFtbW5SWlmLHjh3IyMhAVlYWzMzM1P8itRgfHx/MmDEDBw8eBPDUPWHChAnYsmULPvroo07Hr1q1Cg0NDTh//jz72MyZM+Hu7o7Dhw+rbdwU7YHOXChaSUpKCjw8PODh4QEA2LZtGzw8PPDpp5/i8ePHOHfuHEpKSuDu7i5nMZKUlMSeIz8/H5WVlez3JSUlWLNmDZydnfHyyy/DxMQEN27coMLSgdbWVqSmpmLRokXsYzo6Oli0aBGSk5O7fE5ycrLc8QDg5+fX7fGUwQ8VF4pW4uvrC/LUQULuKzw8HHZ2dl3+jBACX19f9hwFBQUIDQ1lvz916hRKS0vR0tKCkpISnDp1Co6OjnK/NzExEUFBQbCysgKHw8HZs2flfr5x40ZwOBy5ryVLlvT6ehTdv9Ak/YlDKC8vp/EJFDmouFAoMvQW5wwAS5YsQVlZGfv1yy+/9HhOGudMGYrQUmQKRYaenAEYdHV1Fery37dvH9544w28+uqrAIDDhw/jwoUL+M9//tPl/oWm6U8cwrhx42h8AkUOOnOhUBQkISEB5ubmcHZ2xltvvYWqqqpuj+3P/oWm6U8cwqxZs+SOB4CYmBganzCEoTMXCkUBlixZguXLl8Pe3h75+fn4+OOP4e/vj+TkZAwbNqzT8T3tX2RnZ6tr2Aqzbds2bNiwAdOnT4e3tzf279+PhoYGdva1fv16WFtbIywsDACwdetWLFiwAN988w0CAgJw6tQppKSk4OjRo5p8GRQNQsWFQlGA1atXs/+eOnUqpk2bBkdHRyQkJGDhwoUaHJlyWbVqFSoqKvDpp5+ivLwc7u7uuHz5MiuSRUVF0NH578LH7NmzcfLkSWzfvh0ff/wxnJyccPbsWUyZMkVTL4GiYai4UCgDwMHBAaampnjw4EGX4vIsxzlv3ryZ7RHqSEJCQqfHVq5ciZUrV6p4VJRnBbrnQqEMgJKSElRVVXXb5U/jnClDFSouFIoMYrEYGRkZyMjIAAA8evQIGRkZKCoqglgsxr/+9S/cuHEDBQUFiI2NBY/Hw3PPPQc/Pz/2HAsXLmQ724Gn+xfHjh3Djz/+iPv37+Ott96S27+gUAYjdFmMQpEhJSUFzz//PPv9tm3bAAAbNmzADz/8gDt37uDHH39ETU0NrKys8OKLL2LXrl3Q1dVln9PRGaC3/QsKZTBCvcUoFAqFonToshiFQqFQlA4VFwqFQqEoHSouFAqFQlE6VFwoFAqFonSouFAoFApF6VBxoVAoFIrSoeJCoVAoFKVDxYVCoVAoSoeKC4VCoVCUDhUXCoVCoSgdKi4UCoVCUTr/H/QgFRI+gM0vAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "display_voxels(squeezed_post_processed, zero_block=\"minecraft:air\")" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -302,20 +368,9 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAGKCAYAAADALgxIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZxk513e+33PUntVV+89PftoFo1GmtFIspYZSZZsYRsTbMtgbEPYxIVACEsW4pBrEiAkwUkukBUDn0sgcAMJiwN4N7ZsWYslj6TZumd6emZ637fq2qvO8t4/Tld1VfWprdWSRvZ5Ph+DpqvqnFPLeZ/3tz2PkFJKPHjw4MGDhx2E8mZfgAcPHjx4+NaDRy4ePHjw4GHH4ZGLBw8ePHjYcXjk4sGDBw8edhweuXjw4MGDhx2HRy4ePHjw4GHH4ZGLBw8ePHjYcXjk4sGDBw8edhweuXjw4MGDhx2HRy4ePHjw4GHH4ZGLBw8ePHjYcXjk4sGDBw8edhweuXjw4MGDhx2HRy4ePHjw4GHH4ZGLBw8ePHjYcXjk4sGDBw8edhweuXjw4MGDhx2HRy4ePHjw4GHH4ZGLBw8ePHjYcXjk4sGDBw8edhweuXjw4MGDhx2HRy4ePHjw4GHH4ZGLBw8ePHjYcXjk4sGDBw8edhweuXjw4MGDhx2HRy4ePHjw4GHH4ZGLBw8ePHjYcXjk4sGDBw8edhweuXjw4MGDhx2HRy4ePHjw4GHH4ZGLBw8ePHjYcXjk4sGDBw8edhweuXjw4MGDhx2HRy4ePHjw4GHH4ZGLBw8ePHjYcXjk4sGDBw8edhzam30BHr69IKXEsixyuRyqqqJpGqqqoigKQog3+/I8ePCwQxBSSvlmX4SHbw/Yto1pmpimST6fL5OJEAJFUdB1vUw4QgiPbDx4eAvDIxcPrzuklNi2jWEYlH5uxWIRRVGQUpYfl1KWSaVEMqXIxiMbDx7eWvDIxcPrCillOVoBJ0pZWFhgZmaGWCxGZ2cnkUgERVHKz3cjG8MwCIVC+Hy+chrNgwcPty48cvHwuqEUrViWVY46RkZGmJmZYffu3WQyGRKJBFJK4vE4nZ2dZbIpPb9ENi+88ALHjh0jHo+XI5tSGs0jGw8ebj14BX0PO45S0d40TWzbRlEUMpkMFy5cQAjBgw8+WK6rAKTTadbW1lhbW2NsbAwhRBXZhMPhMqGoqlqOhgzDAEBRlKoUmkc2Hjy8+fAiFw87CillOVopYW5ujuHhYfbu3cvRo0cBp+biVkexbbuKbNbX11EUBcuyGBwcZPfu3YRCoS2RTW0azSMbDx7eXHjk4mHHYNs2xWKxHK1YlsXw8DDLy8vcdddd9Pb2Vj2vlSK9bdukUikuXryI3+8nm82iaRqdnZ3l6CYYDFaRTYloSqglm8qoyYMHD68PPHLx8JpRSoOVusEURSGZTHLhwgWCwSB33XUXgUCg/Px2yKWEb3zjGxw9epR4PM76+jpra2skEgnW19fx+XxbyKby2kpk4xbZVHajefDgYefg1Vw8vCbUpsGEEIyPj3P9+nUOHTrEoUOHdmThFkKUiatUiwGwLKtMNnNzc4yMjOD3+8vP6ezsxO/3V11vqdGgRHCKomxpEPDIxoOH1waPXDxsG4ZhkM/nyzUNwzC4dOkSqVSK++67r0wAtdjJhVtVVbq6uujq6gLANM0y2UxNTTE8PEwwGCwTTTweb0g2AGtra/T29uL3+z2y8eBhm/DIxUPbKHVrLS4uMjQ0xKOPPsrq6ioXL14kHo9z9uxZdF1veIx2F+tS5NIMmqbR3d1Nd3c34JBNIpFgbW2NiYkJhoaGCIVCVWTj8/nK70tKyeXLl3nggQcwTbMc2dQ2CHhk48FDY3jk4qEtlHb5tm0jhMC2bUZHR5mYmOD2229nz54921p4xxfX+X/+7GucvX2QJx85hd/XmJxahaZp9PT00NPTAzjRVolsxsbGyGQyhMPhMtl0dHSUX6dpWvk9F4tFCoWCRzYePLQIr6DvoSVUpo9K3WCLi4ucP3+ecDjMqVOniEajLR+rlIISQvDHX7/Kr/2vr2OX2pdtk7hPcnJ/D+976A6+68E7eeWVVzhw4EC542ynUCwWy2SztrZGNpsFYHBwkJ6eHuLxeJlkSpFN6bMoEYpHNh48bIVHLh6awq1ov7CwwKVLl5BS8s53vhNVVds6XrFYxDBt/t7v/i3PXR5r/ALLJKYanDrQw4ffcS/fcd/x123xzufzPP/88/T395NMJsnn80Sj0XInWjweL7/XWrIBdxFOT/HZw7cjPHLx0BCVEi6KomDbNlevXmVubo5Dhw4xNjbGO9/5zraOKaXk0vgCP/QfP0MilWn7mpT8Or3xCPcd3sX3PHIXZ+86vGOLt5SSp59+mrNnz+L3+8nn8+W257W1NQqFArFYrEw2HR0dLZONZy/g4dsJHrl4cEU9CZfz58+jaRonT57EsixefPFFnnjiibaO/ckvnuff/dmz5QW45WuyTOxCBjXUUfV3YRUZjOk8cGSQDz9+mtNH97V13Kpz1JBLLXK5XBXZFItFOjo6ylFNR0fHFhHOWrKpVXz2yMbDtyK8gr6HLXBLg01PT3P16lX279/P4cOHURSFdDrdUgdXCQXT5Ie++DzPn59AdAUQ63mE0RrBWIUMQqhbiAVAqj5mMvCX5+f4y/NzKFaRvXEfZ47v5SOP38PxA7tavsZmCAaDBINBBgcHkVKWyWZtbY2ZmRlM0yyTTWdnJ9FotEoTrUQ0+XwegJWVFWKxGNFo1CMbD99S8MjFQxVKk/alaMU0TYaGhlhbW+P06dPlritovT0Y4NWlNT7y+a+RyuWgR3P+J0OIPCgpE5EsoiZySGvr8axsAiUQQ7SoD2arPiZSMPbcKH/2wigIhf1dAR45sZ+PvvNeDu7qaX6QFiCEIBQKEQqF2L17N1JKstlsmWympqawbbuKbCKRSBXZTE1NsXfvXnw+H/l8HkVRtjQIeGTj4a0Ij1w8AFt9VxRFYX19nQsXLhAOhzlz5syWNFGr5PLvz1/ht85dRNamwYRABsEK6tCnY8oQcnUdsZpFSduIvIB8DjUUb/v9WLkkii+IqTotzTcSNjeeG+O/P3sTnzQ41BvisbsO8tF33stgT/vHd4MQgnA4TDgcZs+ePUgpyWQyZbKZmJjYYi9QUh3QNK0c2ViWhWVZVa3Pnkunh7caPHLxUNViXMLY2Bg3btzg8OHDHDhwwHUxK5FLSbOrFhnT5IOfe4ZLcwutXYgQiO44dMcxpqaR18YJxe7ALmZBSoSmI0Tj6EVKiZ1NoITida/ZED5GVkxGvjrKJ5++RgCDI/0R3n3PYb7n7adbu9aW3o4gEokQiUTYu3cvUsot9gKWZTE5OUmhUCjbC9S2PpdqX55Lp4e3EryC/rcxau2HhRAUi0UuXrxINpvl1KlTxOPxuq/P5/N89atf5d3vfveWxe25+WV++AvPkC0U2r6u4rlz2IlFVCtIbN/jm9drmVjZdWQx55xP1avOaxsFpGWgBiJtn9PMJNDDMWwJfjvPHbs7efd9R/nQY/cQCwebH2AbsG2bF198kY6ODorFYtleoDKyacVewK1BwIOHNxseuXybQkpJPp8v11aEEKysrHDx4kW6u7s5ceJEeQddD8Vika985Su8613vqlrQfvncJf7w0giF0i/LMqGFn5koGBSefwbbdgYsw1oMX9/Z+u/BLDpkYxSwzSKK7kfRfM3ffOUxbBs7n6ybepO2RVSzuGN3J9953zE++Pa7CfrbO0cjvPTSSxw6dIienp6yvcDq6mpZ8bmZvUA9svFcOj282fDSYt+GKEUr586dY9euXezevZtr164xOTnJ8ePH2b17d0tpltJzSgSVKBT5wOe+xrXF5a1PVhRQVVQpsfLmll+eXFrHGjpXJhaAXL5Ao2VcaD60mDOxbyaXUIJR7GwSaRZAKE2Jxi7mQdoNazpCUUnbKi9NZXhp6hV++S++SVy3efBoP4+fOsx3nzmFrrc+QNoIiqLQ0dFRlqCxbbsswrmwsMC1a9dc7QVqW589l04PtwI8cvk2gtvsSqFQ4MUXX8S2bR566CEikdZTSpU76K/MLPB/felZ8sWi+5NtG2wbC0ADUYSoqpEumhiTExjTV4HatuT2gmpFD6B0VPjGFHPoVo5cNoNQVBR1U6/MKfiHEGr7t8BqKsMXrqzyhSsv8c/+5/N0+eHuAz2878wJ3v22O9pWK6hH5Nu1F6glm5Lis2marKyssHfvXo9sPLzu8NJi3yZwm1154YUXSKfT7Nmzh2PHjrW1KIKz2H3pS1/ib6O9/M/h0ZZSX1XXVDCwzl/GyiaQdn7L44rpo2Nfa9P/QTtLTgk1fI6dz2AUUthhAzWnocr2iMUu5kBKFH+D81gGvSGFew7188GH7+Sx08caRoEvvvgihw8fLqs4t4NKe4G1tTVSqVRDe4FUKsWrr77KmTNnyn/zXDo9vF7wIpdvA9TaD9u2zfDwMKlUil27dnHHHXds67jLuQL/bCnL4uS1tl8rl9Yxhs9jm1mEEmj+giZI54qo4cbkQmcE+2AHSBMLMBMpWE2jpEzUvIbS4Hawsuso/nDzSEfVWSrAF64s84UrXwXzCxztC3H7nh4+9Pa7eeCOg1VPfy17u3btBUqdZZXdaLXGaZ5Lp4edghe5fAvDzX44nU5z/vx5fD4fuq4Tj8c5dOhQ28f+9MQs//CrL5AxTFBUEIDZWuHeHpmgWJEGE2oQaeW2PE8xdTr2tSYtY2USqOF43cfNPg2jx6p7fdKWBHJ5CnNriJSFWvShoGy0Nq83PHY9lGo6lZGOYhXZ3eHjwWO7+b7HTpNbnubo0aNls7OdRKW9wNraGplMBiEEu3fvLkc2lb47bpbQnkunh+3CI5dvUdi2jWma5TQYwPT0NCMjIxw4cIDbbruNy5cvEwqFOHz4cMvHlVLyM8+e4y+vXHd/gqKCohAQkN8oKpcQyKQZeP5rXK3J8b+e5GIDxm06ts/Y8lgjSMtGTs4ixpPoegyh6i0rBABYuRSKL4BQG/vSKGaePR0+Hj15kI8+fg9H9va3dZ3tYHl5meHhYfr7+8v2ArWKz5UdgvXIxrMX8NAKvLTYtxjcZldM0+Ty5cskEgnuueeechpFUZS20jKzmRzv/8zTzCTW6z/JtsC2KFVQfJrG/qV5lPk5ZifGuOriUCkQW0v3UhJJrFP03UCN9aAEY00Wsa3vw/ZB8TYNSXvEAmBNTGBev0IwfAy9a48zY5NbRxbzTt1F9+GEa7WXLbGyCdQ6Q5xbrlELMJmBP35hgv/x9VF6ggo9UT+P3nmAj77zXvb27VxEU6qpHDt2DIBCoVAW4RwdHW1qLwCecZqH1uGRy7cQaiVchBAkEgkuXLhANBrl7NmzZUvf0uOtKhP/7xuT/JOvvVg+dqsomibi6hDm0gJL4dbMxIRpcerqMP5ckXO5DdJQdbSOAbR4P1q0B2XLoGT1gmZ0Kpi7VWfGpk1oly6QX5wFdfOYQtXQIptFd0VaFNNrDtkI4UQotoldzKGFO9s+p5XPIFSNVUNjddXi2jM3+L2vXcdPkcO9ER4/dYiPvvNe+jpjbR+7hNrONL/fz8DAAAMDAwBV9gIjIyNle4FKxWePbDy0Co9cvkVQ6btSKszevHmTmzdvcuTIEfbv37/lJm8lcpFS8ve+9k0+fe1G29cUyKQZePZpLmoaxxs9seK6orbNmVdfJJDNsBiu2LVbBubqFObqFAD/7Vf+CRdm0zw3usB00nLmaHDiF+OAjhU0wNogTtVJ1SGlUxeqh3ye/LnnoUJVIBgKuDZE20JFi24KYNpGATO5iND8zkBnG8OcZiaBGtwqzCmEoIif4WWD4S+P8F/+9gpBYXJ0IMZ3nD7Mh99xD/FIkyaGCjRqewYIBALs2rWLXbscFelKxee5uTlXewE3L5tCoVBufU6lUvT393tk820Ij1ze4qg3u3Lx4kXy+Tz3339/eSivFs0il7FUhg985mmWkqnWF+gNxJIJ7OefqUiDNVjUgjrZtOCIgNu/9mVKS6zU679msCvC+99+b/nf3/9fn+bl2VWKR/StaTDLcv5XOm6uiEysg64h4lGEpmHNziFGh8Csfm3WLNKK+Iui+1ED0XLdxy7msHNJpGng8/kwpUsKbUMdQGuxWUAIhTw+Ls7nOf9X5/gvn3sFTcDxwTjvue8o3/PYPYQDjUmtnYX9tdoLZDIZrl69SjweryvC6Sk+f+vCI5e3MGpnVxRFYWlpiUuXLtHb28s999zTUMKlkarxH46M8fFnv7nZEFCzQKNqaIrAtO3qvwPm3AzLVy5hV3YiNXgfBU3j1OI8B4Yv1r7Butdt1Ty26rMoHFVBNq+viKAPEXQm+6VlYbz8KtbqHCg7t8gpviCKz6ElCYhCBjuXQloGKBrYJljWNhWfnWaBAjoFCedmspybOc+/+tTLxDSbO/d28t77j/OBh0/i91V3g213Id+OvUCpQ1HX9arIpuRl47l0fmvDI5e3KGpnV6SUXL16lenpaU6cOMHg4GDTY7ilxSzb5ge//AJfHZts/GLLxCxxihCEfD4yxSLFoYvIuektT69HLqKzmxPXh7cSCyBcyEWqAqvbj6luPvbxc5e5qifbHuK0DRPz+eew82nQXvuUus/vx6rzmOIPo/jD5X8ba7OgaNhGAaGqCKW1W9HMJFBDHe6Kz4pKylZ5YSLNCxPf5Jf+1wvEfZJT+3t530PHedtt/Tu2cLdiL1CKiicnJ8teNqXWZo9svvXhkctbDKU02PXr11FVlb1795LNZrlw4QIAZ86cIRwONzmKg9q02NW1JN/z2a+ylmnT115K0isrGJdfQWaz7k/ZenKUnn7spfmWVV5kQMXu8oMqsGybVNHgR772Ei8vLLudoSHs1TWKL78IimyUsWsLhmnRIkcg9ABaxKkpSSmxc0nsQoaw30e2YCJq1BKkbWHn0y2n0ABQNBImPH1lnmdHF7GkIKaaPPDcOE8+fCfvvPf2HSWbWnuBmZkZxsbGyvYCQogqxedwONyUbDxL6LcuPHJ5C6EyDZbNZlFVlbm5OYaGhsoSLu3oRFVGLr83fINffv7cVkOvFmDOzWBevezoh5XqMrWoWA8Uvx8ZCjvEAsg6i0WpQVkCskNHRvVy8X84neMn/+IL5Col/VXNSW25pOoqYc3MYgyf39E0WLtQKt6zEAI11IEa6qAIqAG7TDZIG2wJSFeL52YomaZZipMeS6LzpZEVvjTyNfjdv6U/rPC2w7v44CMnOXvXbTtKNsFgEJ/Px6lTp7Btu+xls7Kyws2bN8vaaSXCCYVCW8jGtm0KhYLn0vkWhEcubxHU2g8LIVhaWmJmZoZTp07R19fX9jGFEORNkyc/9wwvTs04C7emO0RgWc4i3QimSfHaMPbcTMVBFbYKUIIScrqaDuayTPj9yLXV8mOyziIvpPOY3e2HwOZOXjt2B5+4NrmVxCyTzbyUAE11/r9lgXSGAa2ZKcyRoZaJpX9tgWT4QFVH206gkYyMUBTUcLzcHGCuL4Cql7XNWjFNA2ewVKmTQgNA1VnIw6cvL/Lpy3+LsD7LYEzngSODfN9jd3PPsf3beWtllH6r4GxkYrEYsViM/fv3V9kLLC0tcf36dVd7gVoRTjeXTo9sbk145HKLw81+OJVKMTc3h6IonD17lkBge9pcI5k8/+DyONlCsXSy6m4pRQFFJaAIZ9q+YjG302nMy69iZ9LVB1UEboUHM5vjTttiKBxF1hiI2XUWyqKuYw8EQN14XAh8Dz7qEFXT+kp1V5u0bMypMawbW3XQNFXDrCFE3bb5u5NjPLS2TPbC55jWAlzv3Mvlgw+y0te6okE92BJalgkVSjmFBiAtAyu7TsSnkMpkEaqvakEtpdDalayRqo+pRIGpF6/zl+fnUKwie+M+zhzfy4cfP80dB5rX8aqO10TxeSfsBWpdOk3TJBAI4Pf7PZfONxkeudzCqLUfFkIwMTHB6OgoHR0dBAKBbRPL/3PhCr/xTRdf++oLANsuT9sHdJ08YM5OY14+7x7ZuNzIUdOkwzR4ORZ3P08NuUhguaMTn1ncJJZoB/77z2yrPGJnMxgXX0HUqUWZtg0Vl9BvFPiJG9fYm3PqRyEhOGoVOLp8nfcuXyclJTOBKFO7jvLNwftY72xv0W0Xfp+viq+FqqNFe8gDur8L2yxib5imSdtEwPZSaPk0iuZDbDQe2KqPiRRMvDTFn7w0hWYX2d8V4JET+/no4/dwcHdvw+PZtt3ywr5T9gLnz5/nwIEDdHd3e5bQbzI8crkFUSnhUkotGIbBpUuXSKVS3HfffayurpJpt/CO42v/vZ//Ohdm59t+bS6Xw7g2jDSK9VNmNURxIJcloWms6fXnL+yKFJXl82HFOuhdXmI16iyQ6oHb0I/esVF/aK8mZC4uYA5fAMtChNy9ahRFwd6IXO5aX+OpiRuEG9RsokJweyHN7eOv8MTYy2Q0jblYD5975IeYMSxHX20HUbRkwyhH0XwoZdO0ZZRAZGPGpug0TrQw0Glm11ED0Yb6aabi40bC5sZzY/z3Z2/ikwaHeoJ8x+nDfO9jpxnsiVc9vzIt1i5UVaWrq6ss6FlpLzA1NcXw8HCVvUBnZyc+nw8pZXmOptI4zXPpfOPhkcstBrfZlbW1NS5cuEA8HufMmTP4fD4SiUTL0i0lvLSwzN/94tdJ57Z6pzSDnU5jXHoFmc0gehrUdyo2hXemUwyHI9hC0Nlg8DKwsRgX+wew1tYILi8BoKgK+tvOoMY6NmVcNlJ1QEP7ZGlZmDdHsSbHKv9a5wL8iHyOv2ubnL15jXaWGyEEVqHAjYlRfvmnfdz75JN86oUrfP78OMNzadJ2e4KXrx0SxRdA8VWYphWyBDFIp5MgVBStevbFyq6314XGhnqArTA8s8bI6gj/+W+vEsDgSH+Ud959iI+8497ynMtOoFV7gXw+z/r6OpFIBJ/P57l0vonwyOUWQqWES6mT6/r164yPj3Ps2DH27t1bDulLviyt4l+du8zvnh/Csm3QNCd91aSrqoTA0hyJyxfLUYMQLkKTG9AUFdPnoysc4XLF3xtVSLIIVg/fTufNa/g2zpHt7OaVn/4nqD5/9ZPt6ujFr+sUwBGTtCxsKbHzecyh89iJterX1kmHBKXND2RT3Dcy3OAq3TFeKDC0UUMSCIJ+ne9/7CTf/9hJANZSOf73s0P87aUpRpdy5IXvdU3LhIMBCjV/U/whCoDu36hv5NNY+RSYBtIstk0ssGEngI0adLTOhBAU8HF5scDlL17htz4/RFAU2dfh48npDB967DSxcCtaB61B0zR6enro6XEkeEr2AkNDQ8zPzzM2NkYkEqkS4dR1va5LJ3hks9PwyOUWgJuESz6f5+LFixSLRR588EGi0WrRx1bJZb1Y5MnPPcPVhaXNP1ZGEUKAqhFSIGtWd4hJ08S4Nky+shusCaxQGNIpViu6wQBc1E8caDpmMEDXuavlP83c+yBD7/++liZXChWy/jZgJdcxzp8Dw8Vu2eWABzSNv3f1Et2JNVJdPcwVCmjSpj+fI9zk8z2XybBQSc4u77EzGuTvfed9/L3vvM95b8vr/OkzQ7w8pnJpLoup+re+6DUgk8uj6Y0FQpVAxEmdFbIIXxA7n3IGSW0boWhbZmxqYeVSKHoAodWv9wlFIU+Aa0n4xKcv8ut//SpRzeL+Q708cvIwH3z0FEF/6/przaDrOr29vQghuOuuu8rR/draGjdu3KhrL1BJNqXNXSmyqXXp9MimPXjk8ibDLQ22uLjI5cuX6e/v595773WVcGlF0fhrs4v86Be/Xt/X3rkAMA1Ko4+aqiJUjXwygfnqN5HZ1us6Sm8/djYD+a3eLNJl5RXRGNK2UNLJjefAxe9/ivnb72z5nJtvQ2JNjWPeuNagHlTNLo8IwUdefRF9g2yjq8uUlmUbmPUHEIU8QcsioihoGxFH0bZ5NpMhV5OSayX9tbung3/8wU2b4T/61Oe4lvLx0tgK0ykLW3VZcNuIdGQbw6QSG0UI1GCsHIFIaaMUMhSzKZA2QtUQFTUkRyEg1lIrdBWEwnoqxVeur/OV6y/zy3/+EnHd5uT+br7r/uN895mT6Pprr1WVNmc+n4++vr5yi3479gLO59DYpdOzhG4Oj1zeRNTOrti2zdWrV5mdneXEiRNldVo3NFM0/mffOM//uHS1bUkUwzSxpiawlxdaJxZdR4l1YC8tQB1Z/drlXuntw15ZBtvGFoJCJMLLT/0DUv27WkrVVUIaBsaVS875G9zsYVUjBehC8APZNGeuXq77XAUYLGzUplQVS0rWLYuiv8iML0c+o0BNdWY7C83eziDf8+77CW3MAb00MsWfPT/CN8eWWcgCTczGaiHqhohbEdB9W5xuhFCQgSh6wPkepW1hZ9cdIc5CdlvE4tYaLRSVdUvl6zeTfP3mi/yz//kcXX64+0Av7ztzgne/7XjVYt/SeTZSXW7RxWuxFygdu5ZsPJfOxvDI5U2A2+xKJpPhwoULKIrCmTNnyotNPdRLi63k8nzgc89wY3ml/esyDYyRK9jzM4juxm2mJaixDizTdIgCatfbTWxEXz7bJtTdQ2JpsfxQbtcenvnOD2CLjYFHIRwV5tK/G0Ro/nyG5CvnkBttw43INGNadKsqPz83Rf/MVEvvr/w+hcDfXeToXRnu84FhWSwkYXpZMDWnsLSisB0dmdpZkPuP7eX+Y3vLj/31s6/yN1/4CtfyBmtKHFM0uWXbuIR8IY8abKKirKiokS5USoKZQazsOtLIbwx0Nq4h2UYBbLN5a7SisWrAV0bX+Mros/D7TzMYFpw8NMAHHz7J2+8+0nThLt0PraSumtkLGIbREtnk83leeOEF7r77bnw+n+dlUwGPXN5g2LZNMpks/wABZmZmuHLlCvv27ePIkSMt3Rxu5PK5qTn+wZefJ1cstl209+UypM6/vBmtNFikY7pGAicNZi0vOS3CZbjfTLaU9BULaLbNbEU9RjtxirWBmjmRWln/jboQAufvG9dmzs+SH75Uc/766LItPjZymY5UsqXnly8HSf5AjqOHsuXBfl0V7OmEPZ3w4BGbvGGRfPrjnFv+Cnsf/Sh9x8++5oVleHiYZ/7P/0fYNDmNE/2lRJQVJc6qEmddiWI1I5sdhBDCMU2LbpqmSbOIamQobPxuKsnGymcQml4l2NkqrGKeGYLMDi/z+eGvIKwvMBBRuf/IIB967BT3Hz+45TXtkEsttmsvYNs22WwWTdOQUnrGaRXwyOUNQmVY/dJLL3HnnXfS0dHB0NAQKysr3H333fT2thYtQHXNRUrJzz33Cn8+PEq5au2yOGsCTNOqWoyllFhz0xRGhqsGKkWD7H3StBHdvU4ayuW63F7Xnc9zPRQm59vY/akqvoceRfG3MARaoxwgJc60/ejVBi+qhtLbz+50ikOGweLeAyz6/fhSSToX51EaEKmp2gSOrXNgV2OCDuiCAAm48pfMX/lLbloq+Y7b6Dz6EPsf/yE6991R5625n/uzn/0sX/ziF6seV4AOmaLDSnHImkIiWM7ZrMgwq74+0sHd7el3tpky9fl81DaUC82HrfnQg87wo23ksbNJrEIaoeptmaaV4FbXkarOXA7+6uI8f3VxHsUqsrvDx0PHdvPhx+/hrtt2vyZyqXpPbdgLlBptSjM04Ll0luCRyxsAt6J9Op1maGiIYDDI2bNn8fvb6xoq1Vzmsjne/5mvMr2WaHQBYBrlhUFRVYK6TiqXxxy+iD0/63rNbhDRGFIRyMUl18drax6abXMsm2bR7ye3cfOJzm5899y/vWn7fA7j0quIVkgJQNcRUaceJEMhfKbBnrlp9mw8nA5HmOnpw1ZV9LUVwqub6cRcX5C+Q7N0hdurAQFkCwYd6yOIV64x+cofMmz5sLsP03nnExx8/IcJ92xGa5ULjGVZ/M7v/A4jIyNNzyGQ9AYFvWSBcTLp63wzESQrJEIPoASiDRevNrmFommhNOEKRQ+gdAQgKdBivWXTNNssIhQVpUENqZ2ZG1v1MZWGqZdn+N8vz6BYBU4MhOn2Wew5cgdH9w609+YaoJG9wPKykw5+9tlnqxSfI5GIK9mUXDrBvfX5W4lsPHJ5nVE7uwLOANjIyAiHDx/m4MGD2/pBKYrCM6k8f/dPP922r71tWaTWExijV5CrdWozLguP0tOHvbqMEgg22CBvvpcuo0jEMhmKxOgtOtMX6uFj6IeOtF20B7BWVzAuvQKmiehtTi4iGkNaFnJ1ecu1lRDJ5zg2PVH+90ogwIzuJ9dpcvTQIl1qm80FUrKYkfSFq2VGImoREsNYzw5z7ev/kTRhRP9xstFjGKfvIhAIkEwm+Y3f+A3W1tYanMEda+kc4+MTqJE9aPudDinbKGDl0yBtgpEOjC3M0Ca7tLUdcI5daZoGoNtFsslVsIyNtmdnCXKK/pltzdxIy8QoFrm05GzQnv7Xn8InDQ72BHn0zgN89J33srevq8lRWkelvUA8HufVV1/l9OnT5cimnr1ApUtnrSU08C3n0umRy+sEt9mVYrHIpUuXKBaLHD58mEOHDm372D//zct8aWYbRfuNNJh5dQga7f4r0zGahox3YS8v1n/+BkK6SgaIdvdQXJhnMuA0JpiKgu+hRxGhcNtFe2nbmBM3sW6Otvw+AWQm3bZcTLdp0m2aTB0RvK0rz0JaZW3dxrAhFJToDZq3ipYkWZD0RxqnZRQhiJGFxZeJLr7MtX/xP5lS93Mu+BiZfO0IZHOspPLMT0+iY1ZFjoruR9GdBdcA7EIOu5B2JGH8YVcztoZoY6GLhUO4OfsYig897kQVUkrsfBo7n0YW89uqzWwOc252KQohMISPa6sW1565we997Tp+ihzujfCODfWAvs5Y2+dyPb9to6oq0WiUaDTKvn37tm0v0Mg4rfTctxLZeOTyOsAtDba6usrFixfp7OwkFottW3ByPJXhyc88zUIq7cjjQ1lSvilME+PqEPbCRhqsUReWAnlARKL4FIV8C8QCkLUkSl8/qcWFcocY0Ri5t52p8jDZUrRXFBTTwPYFqmRdZLGIMXwRe6VOGq4Rat5fG126ZfRHbPo3JMksW7C4DmnbxrIlfk2gblT4UwWJENATaj/fP5zv45z/bshuzgeVUiq2bTdsOR+ZXqaYmC/HFKpefwpe8QdR/JuPG7kkMrkEQkEJRpvWR9pZ2JLpLFqHu5Zb5fHUYBQlEHZaoKWNnUthFzJI20LVfFu06iph5dMIzYfSYJizdJ4ifoaXDYb/doT//KUrRMlx265unjh9mA+/4x7ikcbdmXWvwbK2tEy/FnuBemTz/ve/nx//8R/nh37oh7Z1nW8GPHLZYbjZD4+OjjIxMcHtt9/Onj17ePnll9vWBQP442vj/OLXX9r0tXeRx6+Vmi9fVzqJcenVaqfIBoRUsOyNNNgKebvF1JA/ALqGvbhZ6FcP3IZ++FjzBL9tYyvq5ntSVex0muIr34B8+1pobnAb5GwHqgK7OqHUb21YkqWMZDkr0VQI6e0f/2/TR5kMn9yyiFoVaUOp6iTsILoCPiOFT5GYlsXQ2BxqPlH1rqw2ohGh6lVumFYuiTQKhEIhCsK/1XOmnfmWdj4K2wZVQQilbJrmXJSNlV3HLmSdtmd1U6fNyq6jBCJVA54tny6XIhWIcGE+z4XPXeY/fOYiEdXk+GCc99x3lO957B7CgdYaESrT3fXQjr1AiXCCQWcTUCKbVCpV/ttbBR657BBKaTDDMMqDXLlcjosXL2KaJg899BCRiLOTa1cXzLJtfugrL/D0zQa+9jWaW6gqMZ+P9UIBa3rScYqsXXjsOguRqkI4Um0C1gQi3onM58DcXBTLopPtpl8Ac2oca3pqx4gFQN9h50ldFQzGBLa02dOhkDMkS1lJtihRFEFAq3++vK3w6dx9JCMHmp5HWAadGI5PjgLLaYPJmTl8xtaW6nqunm7QKhZFsTGpTxCKALaNmU2AUXSig2B0xw3TSlCUOtUfoaCGO1HDTieatEys3DpWZh1FD7RHdhtwOtGqDdSEopCRPs7NZDk3c55/9amXiWk2d+7t5L33H+cDD5/E73PPh5bSYu2gkb3A7OwsV69eLdsLrK2tsWvXLjKZTMv25a3gmWee4d//+3/Pyy+/zNzcHJ/61Kf4wAc+UPWcK1eu8LGPfYyvfe1rmKbJHXfcwV/8xV+wb9++ls7hkcsOwLZtTNOsSoMtLCxw+fJldu3axe233171A2yHXK6tp/jgZ55mNd2mvL5lsZ5MYowMYS/Ouy/wLpGLCEeQQoFGsyA1x1J6+8ttySIUQQZC+B98uKlGleuhLdMZ5JybRkQaaGRtI/JrZ1e/HQR1wb6OzUUrVXCimoIFmgDfBtksFIN80T6LEW6/yLywnmVuehK77q3b+oJrIepK+QtFQQvFy/+WlunI+Fum04kWbNyJ1k7oYpkmit58KRKqhhbpBstC6+hDmgZWbh1ZzDt1JFWvS4BSSuwWO9GEopKyVV6YSPPCxDf5pT99gQNxjf19HXz3Q3fwXQ/eWb6fW4lcmqGRvcDv//7v8+d//ucIIfjkJz9JMpnk8ccfp7+//zWdM5PJcOrUKZ566ik++MEPbnn8xo0bPPzww/zYj/0Yv/Irv0IsFmNoaKitdL6QjRK6HhqicnalNGldknCZm5vjzjvvLMtNVOLixYuEw2Fuu+22hsf/3eHr/Orzr2C3mpaqgJ1OYlx81ZlcV9WWurOU7j7sxMqG90m4rvxLsH+A3MI86D4CsRj50nQ+oB67A33vAYeAWpTHL19zJoNx+VVkOgU49Z7Sf9fCSRfY+DXdGRptAXeEI3ziG19r6blTJwWPH2jN82ZqCfa2MKK0mrN5Mbufl/P7MIM94KYj1uj1iQRzM7NIaZMXfgJya/F/pfsuCgcfael4Vna9ZVOxWiUBaRadiX0kUg+gBqrrK2ZyCS3W2tyWXchV1YKawUwuosW22j4I28BIrzl+QxU+NtK2sAuZsn5aOyh1samhitdaJj1BOH2wn0eO7+L4QJRTp061fexWsbKywokTJ3jyyScZHh7mwoUL/PiP/zif/OQnd+T4QogtkctHPvIRdF3nj/7oj7Z9XC9y2SZqJVyEEKTTaS5cuICmaZw9e7ZujrRZ5GLYNh/54rO8OLuArSobHVWttRtLKdHmZ8lfubS5mAsFV+/hzQsi0NtHfmFzMW205yhaNiLWgTSMKmLR774Ptbt387wuqTonv65uqQtZy4sYl89Xk2CDayhFia0Si9Lbx/hd9/DTJ+/hobkpHvzmCxyebz3t1whWC0GUBJ5WHuWSNgAR4YhC5hNgFkDVkf6OuiZjtm0zNjZGLrdZ8A8pJq57jm2kilqBMxpbkUrSfFWT+o72WMaxPvCHabPo0ta1RMMhtkqjglT0KtIpz9gUHfXndiHNoqNAEKohJVVjuQhfGlnhSyMrYBXpDz/L247s4nseOcWZOw/taFdXZ2cnxWKRf/Ev/gVHjx5ldXV1W+3qrcK2bT7zmc/wT//pP+Xd7343r776KgcPHuQXf/EXt6TOGsEjl22gcnalpJY6PT3N1atX2b9/P4cPH24YKiuKUlWwrcTFlQTf97mvkczWNnIK0EqtuzZuK4s0DIyRIQoLc7UnrP9mIlEQShWxOAerv7BLXUeuLG+m1XQf/jNvR7ioN1eh3IhgOkuVqiGRGKNXsceuu5xoZ4Jq7dgJtD37sZEshsL81W2381e33Y4GDK6vce/NUd5z/iW61hPl18TaKJ7qwSC4LncO8lLn/829myWj4phCQQbim/+2TVQBKCrCMjClACGwijkmp+eqiAWcWSU37OqKMW6boLRwa7fx+UrbRqgNftM18yxWLomZXHIiiEDEqZE0OHY7SGVyaLHGnWiV1yQtA6Hq2IUMdi6FtAw0zYfdgIidFmfHnqApVB8Lefj0pUU+felLiNwa/+FH3sl3P3Z/y++pEYrFIqZpltUAKlNorwcWFxdJp9P8+q//Or/2a7/GJz7xCT7/+c/zwQ9+kKeffpq3v/3tLR3HI5c24Da7YpomQ0NDrK2tcc8995Sd8hpBVVVXcvnNiyP8h5fO17nZqrvAVFXFEgpBVSFXLGKn1ilefBVyLtMFdQrZorsXmUpC0WW2wq2TTNMQ8S5koVB+XOkbwHfynraJQAAym6Y4dME5Xksv2tAYM2u1fOs/3/fAwyjhCG4lYxOY7Ohk8vT9fOr0/cSlTd/QRR4aG+XOggvZ1UExl4M6GZd5u5M/yL6DvNUkolA0LMkGAStgFTASs0zMr5KndfWGxw+G+Ll/+D38nxeu8tlXxhiaS+2QG2ab36+qV0U2Vi6FNPIEg0GKwo/QKgvkr+cwJyCciFDxh6tnaXIpZ+7HNBGahtggZCufQdF8NdfYGszkMoWZIdZTO0MsAOl0GqDcEPR6o5RVef/7388//If/EIC7776b559/nk9+8pMeuew0pJQkk0ksyyr3pCcSCS5cuEA0GuXs2bP4fK3l0BVFKRsSAeRMk+/5/Nc534avvUNOFllDYs1OY47fcPVRAbamShQFpaQNVs/bvqaTTESiTu/98iKiy3H/026/E2333m1FGNb6GsbFVx1iC9e5aSqP6w8gAkHkeovpAE0n+Mg7kG0sqgmhkLjzbq4ePOzoeBUTPLxwnvdYl3koMONEFi5QHKrc8vdXzcP8TfZ03aa8RsiszjG5mMSivQVOVVX8usaHH72TDz/q+OKU3DD/+sURptKSohJoP23T5nesadUpPjUYhWDUkfjfaDGWRgGh6W1TS3tCAbIusarBaHn4UkqJnUtiZRLO87eRXjRWpiku3gAgts25GTdkMpmy3tkbgZ6eHjRN4447qvXwjh8/zrPPPtvycTxyaQGl2ZUbN26gqirHjh1jbGyMGzducOTIEfbv39/WzVpZc3lpYYUf+MIzZLbRcltKg9kLcxBs8MOruFHUUBhb0zZFJ+stvhWRS3RgF6nFxc1UnFDwPfy4o++lak5k1KL6spQSc3rCEZ0sL1h1Onw2lp1Sm3PLxBKO4jt1T1vEUoKdWENEo6BqrIcjfKZzD5/h7+DPpDi4MMrbsiN8p3qF4/7Na3HrOP5c8T5ezG1V7m0FqxNDzKZsQKXdeoRbW2zJDfPBQZ2enh4sPcyfPDPEyzfgynIRs5lgGBsF/Tauw0Kt34m2Mc9SgplZxcqsIU0DofsdTbRG31075mm2tXVex/WQAjXUgbRMtGg30radek0hA9JG1f0N56QKC9cxVzdreB3RnWsbLrUhv1HT+T6fj7e97W1b9O2uXbvG/v37Wz6ORy4NUDu7oqoqhmFw7tw5crkc999/f3kwqh2UyOVfvzLE710aobgNnS1fNk3y/MubabAGN2NQ18gBoqsHO5Ws7gKr84MVUiIVBdHdQ2p+s4YjOrvxn75vkxgsc7NXoI40fglVpl5VJ6tz4bK6zbkVKAODqLv3IfN5p626jXx+2OcjE+90fawQjnL10D1c5R7+CIisLXFieZSzxavcb1/B0TOAolT57/l3MVfcnGkSQpQ7CxvBNg3mblxizfCx+aG0t6CUVHu7uroIhUJVC5Jt2wgh2NcX52Pfe7b894tj8/yvZ4f5xvUl5jI20q2L7XVsKhWI8iwLgLQMzFSCaMhHuiidYcnKuZQ2PpNWyWXzBRsbGkVBDcfLBmdC2hiZBLKYc6IhTS+rNuenL2OlqqWYOqM7l8JKp9M7Ti7pdJrr1zdTv2NjY5w/f56uri727dvHL/zCL/DhD3+YRx99lMcff5zPf/7z/M3f/A1f/epXWz6HRy514CbhUigUWFhYoL+/n9OnT7vaD7eCjG3z969OMZ5MVz/QQhQgpcSanSI/Mlx9wzf44eUaLdL1SCkQBEVBVph6qUeOo+8/WH+hqZHGR9nodBMK1noC8+LL7u3NbteuaohYhzOj0wqEQDtyHG3v5s5K2rYTtalqXcIrQ9PItNh5BpDu7OXFzl6GV47wu7s/QLiY4e7VUaIFDaOCQ2oJxadIdokl5gohimqoHFXaxRyzU+MkjNZSqzbuEy2hUIjl5WVu3LiBpml0dXVVDey5LVAnDw5w8uCm3tfXLo3zly9e45XxVVYKivO7bLem1sZC6PfpVVL+Tr2mixygBh0Zf0eAU6L4Q+0Nc7bo9VNCJBTALYcghVJWMwCHAK3sOoX50S3EAtAZazCj1Say2eyODlACnDt3jscff7z873/0j/4RAD/8wz/MH/zBH/Dkk0/yyU9+kn/7b/8tP/uzP8uxY8f4i7/4Cx5++OGWz+GRiwtq7YellIyMjDA/P08sFuPkyZPb3kU8M7fID3/9PAW3hawmCgj6fOQsG2FbSNt2dv5Xh7AX57a8VCiKe+46EASfr/7u3+V9iO5e5HpikygqC+PtLDIbC6u5MI29MNfANrn6GpxBTtF6Gsznx3fXaRS3qEPaYFa3Q0d9OinDdMhGVbfqnLWInqlxEn27MP1+OhMWgYIPo0l0UrQFE/Q5d55VRBSS5DNJxheSGK63Y/VnI4HVUJSQUSBobP0NdXZ2cvr0aSzLIplMsrq6yszMDFevXi3/ZjVNIx6Po7uocAoheOzkQR476aT0DMPib14a4XOv3mBoLsNqUWlRcqX1+6NgWA3dnBU9UNVtZhaymMllEKD4Iyi+RgKs7ZFLOttaJ5pDgD0YS+OuTf6dHTtHLul0eksU+lrx2GOPNRw3AHjqqad46qmntn0Oj1wq4GY/nMvluHDhArZtc+DAgXJxbTv4v1+8wH+/eKW1BVpKchtdVBKwMymKQ5cgte7+fDeS6OxGZlIIw6hfNK0sXArh6ImViEgIiETxv+3Mtt6ztCzMG9ewpsZRehtNFG9enUNsa85i76vfJaWpKqZloXV1o95xsnV/F8silXOWgwfXBY8sFLjSoXElKhgL2o7VcrP3JSV2YpWlPU6t7fTsGPsW2rNNBkD1kVhbZXVtDQO3nWn1bImqaUzFulgLhLlt0X1Gp1RzUVW1KmIxDIOXX34ZIQQ3btwgm80SjUbLkU2tjW8Juq7ywbN38MGzTnE3mc3zZ88O88ULk1xbypDD7/7beB3rA0LzV82eWPk0spgFoW4R4Gy3zbndCE3WmT8LB9vzZ2qETCbzhnWK7SQ8ctlAaXal0s1udnaW4eFhdu/ezdGjR5mdnSWZbM8iF2AtX+B9n/3a9nztpcSamcK8NtykaC+q/lvp7d9MKYXq76J8inC0pAJBlIC/KsJRD9yGdvAwwudre3dv53MYl887EVAzpDam8IMhZJX6cQOHSMtC3bMf9cjtbbfZKlLy4Vl457RTrzq2VuQDQEFTGJZJLkckI70h5ru3fm5KIY+Zz6N2diNsm7ffvERHMtHW+cGpBSzevMRSXiPUwi7fEoLr8T4KG4Tr9/vA3Bq51NO5Kkm3Dw4O0tfXR6FQYG1tjdXVVa5cuYJhGGUb366uLqJRd3mXWCjAj73rHn7sXfcAMLua5E+/NsRXh2cYWytiqhuLapsdXe1Are1EC0RgYx6lLMBZzDvpvNcoVtoMQV3FTUNip+sjO50WeyPwbU8ulRIupTSYZVkMDQ2xuLjIyZMn6etzpn5Lntnt4PNTc/zc114itWUosjkU0yR/5dImSTRoj/SpKgWAQIBwOEKmslbR4HduIDYinDR2IlH+u37fQ6gd8Y0nVdRRKupC0rJcD22trWBcerX6dQ2xsbjUzujUW3QUBe22o44ZWC6HaOPGi5rwjyZg7/LWtm2/aXOaCKfXgXXIDc0zba8z1KHyjYP95GUBWyhk412ECnkev34BrVhoq2gPoFk5pm6OslJwbr96X49jNS0gEORavNdRjd5AoVDALVZrJKJYKeHi9/sZGBhgYGBgi43v5KQjkBqPx8uRTb20zGBXjH/05EP8oyedfw9PLvK/nh3m4gRcXS6AtnM7+BJs1LoKapsCnE5kY2bWMDMJMDcFOBum9drkhGxu6+9Ib0Enra1zvA41lzcC39bk4la0T6VSXLhwAZ/Px9mzZ6uE2hpN1rsd+x8+9wr/+8ro5iLZRtuunVrHunweu5KUGqj6GhJEZxcykyFTIckC1PW1RwgIh5GV6seBEP6HHqkfDVTUhQRiw7NFguXUhayJMcwbzS16SziYSfE9Y9eZ8AV4ubePm/GuzSjMhVxEOIJ+4hRKdDMtIgt57GzW6R0IhuqmyA7kBH//Wp6ufGvfYdAf4wgxjhThHS9OY+k6N31FXtmVYiA9Va4p1RKKoigYqoZmGlvy2sHiChOTk6wUmg8RCkD6LIa6turTiTq861ZHKZ+lRh+sfCwXG99a/xFd18tptq6urrq23Hfs6+NXvr8PKSVf+cpXUHv289fnbnJubJWlPDQsrrSKNqICIUGNxMv/lpaJlV4lGvSTKlgtCHA2gYtShrrDEjxeWuwtBjf74cnJSa5du8bBgwe57bbbtvzoWo1c6vrau7Ttlibsy+ZYUmLNTGJe21qbEaJO0V4IZCCAnJ12vyC3m8fnd3b8FdGCMrgX3x13tZGm2OwOk0YRc3qyvlukyyU8tjTPh2Ym0aXkqFHkOzJJslIyoekMxzp4adce1iqIQj1yO9ruvVtaS4U/gFrxPDuTQRby+Hr7ypuBs2uCv3s9i97mRKOUkvW1cTo6Dzj2tr5ZBpITDV9j2zaqXUQCipDsVlYASTqV4txEipzVfIFVsMiE/dzs2Fvvylz/2mrk0ghCiLLZ1YEDB6ok4WdmZrhy5QqhUKgc1bg1B5Tans8c38djpw4DTqPMZ745yt+8fINL0+skTG1bfixtdaL5azvRNNRIF1lADTn6YWYu5Wi9+YK0G7pIF3IxLZOXXnqpTMQdHR3b7iwFJy3mkctbAG4SLoZhcPnyZdbX17n33nvr6va0Erl8amyan3/6BYxm9YmNtt3cxtN0TaNoGI4cSq02WAluN5XfjwhGoIGESu0yJDo6kYUccm0V0em8V+3UvWg9fduaZ7BTSYoXX6mKJlwuvvxfum3zdyfHeGhtecuzQkJw3DI5vrbCB1eXWQNu+gNcPnkPl3oHMFqYWVDCYQiHHZdACU/OCw6mLZaCGgMZo2VRetMskE0vEu86iI3Ni/7rLMk6DRV1YEvBlNVDeG2I1fUMOav5lLVOkenOXhL++rWyekvgTpCL2zEr9awMwyCRSLC6usqNGzfI5XJEo9FyZNPR0VGO2Co19lRV5X0P3s77HrwdgHSuwF88N8yzV6Z4eTpNVm7OjjREG5FBs060WgFOI5/BTC2XBTgVf5Pvy956n/t0nf3797O2tsa1a9fI5/PEYrHy5xOLxdrygMlkMtuap3uz8W1FLm5psLW1NS5evEgsFmsq4dIocpFS8hNfe4nPXLu5rWvLr65iXHrFNcwuoyYtVp5cT6wgeurLm6uKKO/eYoO7Sc5WpMF0H74zb3eIYRvtuObs9KYRWQP/FbkRIfUU8vzU2Ch73TTQaiCEoAvoKha479wLrHzj6/z53fcz9J73tXRtHYbkJ29aHElsFr4zukI2HiRpW3SmDboK7p93Jr+OYpnE4nvJiSLP+0fI2u372yt2EXt+iBdXdY60sPn0izxXeg+S0wLodqs1q028HuRSC13X6e3tpbfX+c0VCoWyUu/w8DCmaRKLORuNdDpNR0eH63kjQT8//MRpfviJ0wAsJtL8yTNDPH15mptrBYrCV6cTrY20U5t7JaGqaNGe8r/tQga7kEUIBRGIoOjV6UC3yEXTVPr7+8ueK7lcrlzPmp2dxTTNcvNEZ2cn0Wi0odBtNptlcHCwvTdyC+DbhlxqZ1fAMcQZGxvj6NGj7Nu3r+mNVy9ymUim+cBnv8pC0t17pBG2pMEamPEoQiln1eKDe0hUpsEaXLsmFExdR4l1VBGL0tu/KTpZIpYW60LSshzpmRbdKmU+x12ZNE/dvEa4VeHJCowVCgwXCmhrrXXcHZxL8A8WAnQUqjcDYcMmvJShRMXLQY0Vv0BZWWZQCRMWGjetFP3+EEGhs6ymeEW7iSns8uaiVQukrFHEmL7MVGbDV6TO88KhMJkshMMK34weRW6kiupUypzH6lxDM3J5PeD3+9m1axe7du0qNwcsLS2RSCS4ePEiQFW9JhgMut5rffEIP/e+B/i59z0AwOjsCn/6zBDPXZtnKmlhbygHtNcd2K4mWnWYUyl26XSipTY60VTUQNR1M6jXpMCCwSDBYJDBwUHX5gkpZVXzRO00/k67UL5R+JYnF7fZlUKhwMWLFykUCjzwwAPlXVYzuPmw/H+j43z82W9SMC2nuC2EY/XbwvCWNAz00WEKc7MVJ6m/OOiqguXzIcLRamLBKa7Xu40Kigq6D7ui0K/dcRJt156tabCaulBJGr/S7MvO5TAuvoJM17Zl17+R9xbyfGh+Gt82pG7OZTIsbLxOGIYj6dHgc3p4ZJEfWAuhi+bfQU/OpCcHqB2Y0uZVcxk/Kkt2npnAMtfErLMoV1y2EKI8XFsvkp1NplidmQZrMxLOighuWmFmIYMWCfNSrFq3SamzYQgW8tT7rJsV9F+ra2IzlJoDFEXh5s2bPPzww6TTadfmgNJiWq854MhgN7/0kUfL/35pZJo/e3aY89PrTKesnWkOqIFl2w000URZgBNAShvpslHyNegWc2ueSKfT5bbwmzdvlm2Qs9ksoVBox2surVgcl/CTP/mT/M7v/A6/+Zu/yc///M+3dZ5vaXIpFe1ffvllent72bt3L0tLS1y6dIm+vj7uueeetgptlTtXW0p++Cvf4Cs3K4q7lWklRWk4/W0l1zEuvUqhVsm4QchfUDVQVGSLu3dwohNpWVCajldVfA89iuIP0HRXVxIrLN1AiuqoGb/yonsKze1wQoCqEs4VOZ3NkNd1JsIRUkIQymXpbJAeK9g2z2Uy5CoI0PEUEU4btD8Alul4jQiBYlp8/8UlHjNiIIpElD9kOWeDOI1fvwch6n/XeWkxaac5rfUgkZwL3GTedlcIKNXtSlAUhbwJadugQ1W4sbRMfnFhS20nl0lBzbCkLkzWI2EuhreKXCrSri6uSEmomCfrD76hNZftoERkiqLUbQ6YmppieHiYcDhcjmw6Ozvr3pP3H9vD/cf2AE4m4kuv3uSvvnmd85MJEqbSmodNM7TV6eWuhu1vQPBbjiAE0WiUaDTKvn37sG273Kn3Z3/2Z/zn//yfEUJQKBSIRqO84x3vYM+ePW1c41Y0szgu4VOf+hTf+MY3tp2S+5YkFzf7YdM0uXr1KjMzM9xxxx3b+sBKN+7VtXU+9PlnGvvaV7gwCkBqGjGfznq+4LTrjtaZ1K+zs1R6+7FNs76s/paL1RCdXdhLCyi9A04EEu/Cd+8D2xork7aNeXMUO7FWtzaz5d2oqiPdb5rl/XrAtjhWoTKwGgqTKBahWEAD9I33v2yafDOb3brPtysk1DdIT7MtdmUKvPdGisMFH7q6QI//v2LaefZGAW5QMP+cRCFKwboNVb0fn364fMiCWcRCclTroIDBc4FrZOwWP2ecTYxPgbhQmEokKboQi/P5VH/yIaXIza5dBFX3NKGiB3BMXkCxbfxmkeyGHbAiFNyioEabpTeaXNzOVdkccNtttzVsDih1WrlFW6qq8p77jvCe+44AkCsY/Ps/+huuJgTXlnLb97Bpq83ZPWr1+7cfUSmKQkdHBx0dHfzKr/wKv/ALv8CZM2fo6+vjv/23/8ZTTz3Fe9/7Xv76r/962+f4zu/8Tr7zO7+z4XNmZmb4mZ/5Gb7whS/wXd/1Xds6z7ccudQW7UvDbRMTE/j9fh566KFt5y8VReGLWZP//akv1nUCdL0mANNkPZfDuHYFu4G9rlBq0lu6DyUa2yCJ/gYC7Js3RSDWQd6ykcubopPKwSP4Dh12e2Hz6y8WKA5dRK4ul7vLXFGZItL1qiFKq85N21Us0AXg8yGlZM2ymDNNXqwzdOpWaziwkOKnJgVxESPie4Ww+r8wa1qO/Rr0ayngPHCedFGQLPaQM4/g084S9vWyqqR50TeK2aipog6yhsHV8UmEUWzJgSWqF3i16xAF1cceyz0StTZ2xr6NgdVchYZWPVmTZuTyRqGyttkItc0B+Xy+nCIaGhoqF79LKbR6ygFBv87bj3Tzj++7j3A4zEoyy/9+doi/uehjbK11QdKWutVK77GO9EugRV+nVhAOh1FVlZ/4iZ/gPe95D+vr60xP1xk52CHYts0P/uAP8gu/8AucOHFi28f5liKX2tkVIQQzMzMsLy8Ti8V44IEHtp1zNmybj/7tCzy/3H7RHjbTYBSa+LZU3Dihzi6y+Tz26taW3VpEdZV1QOnppbC25tRINo6n336HYwpWJYnfWl3IWl/buO6NTqkG61O5BqPpW6bzW3EDEULQpWnkGy2CNdf8+LLkw5M6mlDo9v05Ci+1ZM4V8UkiviVgCVs+x7nUQUY6z2BvYwFeymSZnpzEZ5kYDWpBuVAPpLOEwjbfiB4tR6n1J/ShS9dYLxSxtqRatl6noijbGqJ8PbDdcwUCgS3NAaVOtPHxcYQQdZsDKgmtOxbip977Nr58/cvQBrm0lRarswnp7drZtuF0Ol22OC5FNa8nPvGJT6BpGj/7sz/7mo7zLUEubrMrlmUxPDzM8vIyvb29ZffI7eDSSoIf+/LzTGeyzuJcZ8dS79oC89OsXxlqaYYkrOukcdJg2eWlmsW0/s2aMq2tsvrhKP4Hzm7e5G6S+KqKNIwtRy5rmo0MU7WQNVz4cVJhLkVOu42uHdlg912KXDRb8oPTcHYuB8JkIPBfsew680FN8NXMEcajd1d9r6UUaLPusOnVVVbn5tBb+G5XCxar8V6SodaKs3cFdJR8llkhmZZgNVn4mkULbyS5lIYoXwsqi9979+4t1yPW1tZYXFxkdHQUn89HV1cX8XjctWGhYNbZQFkFzIyzUVQCFcrKbQx1SpcZFwDLalMsswneSPmXl19+mf/4H/8jr7zyymv+/t7y5OI2u5JMJrlw4QLBYJAzZ84wOTlZZSvcDv7jpRH+3Yvna9IQAjTViQQsqzodVHltRhHjymUKtXL3ilp315OFTQviWtTR/BChMFJVkBVdZ+q+g+hHjzcmg426UPkntEE2drGIOXwRe35262sa+KGUZGBcT9XGjjDXPwhr7sV0ISWdBvz0dZMDSec7PRT5BOli+xFlwRZ8Oncf65GtxfTKgr2KAqoACbZpIRWQtmR9aplEqrq+Uu92NBSVuY7usvBkJWb13qrfkAK8uytCDAn+GPtwFutkLs9S0WDGqt+KfCtFLjvdmVZZj6hsDlhdXWVqylGlfvXVV8s1nXg8jmHWSXGqfrTY5nfhKCs7dTYhOhBaC6mtOvdwaAcVkaWUb6j8y9e//nUWFxfZt29f+W+WZfGP//E/5rd+67cYHx9v+VhvaXIp2Q9X7tgmJiYYHR3l0KFDHDp0yGkfVFXybdoI50yTD33hWV6ZcdsNyy2dYYqqYUsbYVnOrj+57gxFup1XdScXEe3AlgJWFre+xnnG1r909SCT6yimVY4N9PseRO3obH/a3rax0ynMsevuxAK45sVK9ZUGEUc7e7lG8x3hjgH++eU8ncXNI8YDaeIBp3egYEGmSFn5oB6WjACft85ihLsbPxGwsCvas0HkbFZmFpnLb01XRqRCvsbhI6v7merqw6yjLmBVEEtQCN7bFUar+e4URSEeDhEPwxHAjIdJp9NkMhnS6XR585RIJMjn81WaeCW80ZHL6932XNkcYBgGX//61zlw4ADr6+uMjo6Sz+dJ51q770vKyo7BHFjZdaRRQGg6WqgD6bI5chugBAgHW7R/aAG5XA7btstpsdcbP/iDP8gTTzxR9bd3v/vd/OAP/iA/+qM/2tax3pLkUms/XJJwuXTpEqlUivvuu6/sYwHOj7BVwUmAc0urfP/nv9byDxPbxradvK4tJdbyIualV+sv7qoCNYGU0tuPvbyE8PvrL61VzpMKSk9lhCMhEMT/4COINqQlKmEuLmAOX0CEG/yQKwsaG23G5fpKIy4rKSy3AK2OlE33dzzF2/2HKNqSm3E/piLozhQ3LkWgCggpENKd30jO9DGxXkAX4Kswur+a6+IF/SwyEGz5mkowc0WmxifRZGufcSIYZjbe47o41WJA13g0FqgblVSiZPgVj8cBWFxcZHFxkUQiwQsvvEAgEKjawZcK/bd6zWW7KM0b9fX1MTDgCH3m83n4+hfB1c5rK6RtlzvM1NBmXUNKGyu9hrQNhObfELtU6kYukWD7v6t6yG40tuxk5NLM4ri7u3rDpes6AwMDHDt2rK3zvOXIxbZtTNOsSoOtrq5y8eJF4vE4Z8+e3ZIaaIdc/u0rQ/yXly9tq7OmlAaTxULjqKFioVF0HRmLVxt01UFIU0kDBIIEQiHyFakz0dmD/87TCL/fIYB26kKWhXlzFGtybOMP9eMMWaho0W3D48VuYxcra7tt/CGOftfPc6oQAglBU3IoUUFALlwohCCkGxzvcYYdV3OStRy8mD/IaPBucPOJb4LCapbxuUkMadIh3HPg+ZAfMhtRRHcfM/7WcuWDfp1Hwr5tabvNzs6yuroKwF133cX+/ftd23sBkskkPp/vdY8qdqLmsp3zVb6vQCCA3UbjvahnHi0U1MjmZrUkdmllEq7HiYZ3jlzS6TSKorhGottFM4vjncJbhlzcZleklFy/fp3x8XGOHTvG3r176/bWNyOXVNHgh778Ai9OtSZnsuUc6SSZCy9DPo9oKOAIfl2jkAMRjaEDhQqDLPexLAdZ00LEu5DZDPnVzfZV7eS9aL2O50xVl1ZJMaBBXcjO5zdMvVq0FG5Uu6qzk1N6+1k9eQ8/fM8D3LY4xyOXz/PI8IUtqZ8SKnfuyuAhHjjzFHtaHzvZejwhiAY1/ky8m3ktDLaJyK0gLBNbC4I/2nS+ITWzxuTaLLJJY4Khaqi6j3xPjJk6BFSLvbrKyfD22lfHxsbIZDbnrVRVRdM0enp66OlxNLLy+TwrKyskk0lGRka4cuVKQ7mRncAboQZQiXppOMtqnaxty0RpYRCzJHYpC+5zbpFwc3HSVlGSfnmjLY4r0U6dpRJvCXKplXARQpDP57l48SKGYfDggw82zEk2I5evzy3xI1/8etlWuB3fFSkl1vQE+dGrm7vOJrL8BQlKbx/2yjKFdszHdB+ystCv6/gfejuiXhG3MqoQG94rFdGGtba6YepV06rZrjVsCS4/WO32E2i79wOSrKpyadceLu3aw29/x9+hK5flrqlx3vXyNziysFnjKZFL4PQ7eXz/O4jkXtt8xqLdwX/PPkHO2lh8FA0Z7N6kCTOHKKRQYru2/E6kLVkam2cx15oqguXzM9kzQD6/NbUXFwUScrPYK4DTIR9HApvfX6tdaqZpcuPGjS2NKm4F/UAgQH9/PyMjIzzwwAMUi0VWV1fLkY2maeXW3kZeLe3gzYhc3Mildt6pyUHaOme9mksssnPkUpJ+eSM/y53CLU8ulbMrpbB3YWGBy5cv09/fz/Hjx5vKVzeSyv+lly7y/14Yrl4Ya31XNA2fEBSLBpVxhZMGu4S9VF2Ab+jbraqIUBi7nqy+Wxi/oSdGcXPBUnr68N19X+tpFCnLUYeUEmtpwakL1XtuLQJBJzIptj4z4HvoUZRQGLdYTAIrwRBfPXoHXz16B5qU7F+Y496pMe4cG6X33T/OI/p+VOO1EctF8xB/lb2XhhtYLYjUguXfiGoIFNPx5ZianmTd3LpD1VUDajKC2f5BJuO9WCl3K2xL08u1Nl3AmUiAAb36t1v5O7Ul5LIZhBD4fL5y3SSXy3Hz5k1X8qnXLVYpgR+JRIhEImW5kVLHVcmrpSTHUluvaQe3SuSiqa0vyrKFua9KBHUVt6rsTpJLSV/srYhbllzcZlds22Z4eJjZ2VnuvPPOcuGuGdwil7V8gfd/7mtcX2qyI91YlEtLqk/TMIXAWFvDOP9N96HIOuQiIlFnmW00SFlzL4iOOLJQQK6tILqdKWbt+F1og3u3lZ+XhoFx5RKyNlqpfE6tSdlGKq5lYtF0fPfcv0EsrcEUghsDg0z1DhLre4iDWZvrmkKsYNKfMVv2YKnEZ4r3883c/uZPrIGlS/K5PAsz86xb7qkPS1ZfUeLAEWaKJqLBxiId6ob1NSKK4JFogJja+F0pgvJ8g5TS6X5Kp5mfn3d/vqLU3WiVvtPaHXBJJLHUAGMYRlmxt9RxFYvFylFNM3n4Em6VyCVfbMNGok1ycbM4BohHd674/nqkxd4o3JLkIqVkfX2d9fV1+vr6UBSFTCbD+fPnUVWVM2fOtMXmtT4sX5qa5ye+/ByFNnbhJRQMA2tqAnt9rT5JuITLSk8f9tqKk2brrN/+qrLZtuvv30Vhcb5MIhKB/sDDqJEo7UqJA9jplKNmnMsiYvEGT6yYuejrx150mbmpAxGN4bvrNCLY/m6rL2fx98ds9qSqUz1Jn8JiWEcC/RmDWLHxImBIhT/Iv4uZ4vbaN7MLSSaWpvGL+nWQpe5OtMU5pKKwcOh2VrIbC02jRUDAQHc3Z2UBrc3vTwhBIpFgebm+WoNt2w39iErHaQRd1+nr66Ovz6nhlbxIVldXmZ6exrbtKkXjUCjkesxbJXJxi1h9qiCbWHKGJ/Xmkjr1T+qeDQn6d25Zfau6UMItSC6l2ZVEIsHNmzfp7+8vh+v79u3jyJEjbf9oS5GLlJJ//MKr/OnQte3t+osbabDlRZS+BlFTZZSkqsR6+0lWzI3U9bQHVCEwNB2lo4NCRepMxDvxn65Ig6mq03Umm9eFAMy5GcfUq3QDNZy0l7BxDe0QizIwiDow6Kgwt9mKeiIt+ImrBcIubyVWtIltpARtYD6skTGTxLNrdCh9SJSNTh9YtSP8j9zjpGTYGSdqw39F2pLE5DIz6ebv2VQ1RCDI9O6DpLOtdRvsjcd4ILVCHbPqhrgxOUk26aTbGn2q9VJY9SKXZqj1InGTzy8RTVdXV5ncbpXIxU3Op2jJsiGYlUshjbxj4dBm5FJvQn/s+ihGaq2KhJuRfj28kQOUO41bhlxqZ1d0Xcc0TS5cuMDq6iqnT58ud7+0C1VVWSmaPPKXX+RmIukUtlso1ldd33qCQqU2WLPJd0CEI0hFqSIWANngpisA+Ku9V9TbjqIfPFxTF7IoF4Y2NMOkaTg3dMXzpG1hjl7Fmp6seUP1r18EAkjLqrqGhhAC7egdaHs2p3qlZcKGgm+lF4wb3rsIHxjLtJT6UoCBjAmEQA0xZ97k6cUfwa+PUvSnec46vLFb3fxuq/xXLNNVP8oyLabH50nlW+uaMwIBpgb2UayTGqmEEIL79u3hUHKZjD9AJp1BBWKagt5kAbYsixs3blAsFltqqq1XcylF7q9lwa+Uh9+/f3/VhPzk5CTDw8NEIhG6urqc670FyKXZvqLSn8VMrWBmEmAWEZoPJRhrqKxcr6D/nu94J0bBEeCcmJhgaGiISCRSTj+2U8fKZDJezeW1wE3CJZ/Pk8vlCIfDnD179jV1sHxmeoFfmE9t1l3KxfoNzxVw1cMqXZs1NY45erWtc4refuTqivu8SZ2bTuntc0LzUmupEPjuP4sSiTaPNMwNfTApN2VcshmM8+eQSRff9zq7NNERR+Zzm0KVzeDz47vrNEq8s+rPQtWqPlMJTldbRbea34anJmzuXWxPPQHAQrJkjrFLOwTAFTXCddO9SaLaf0WgFUDYYCuOl5eZLTI1MUnGrr4OS1Fc5+/Sg/uYDccxXQVFq79bn8/PwwPd9KacOZRwIU94o4hvS0nCtChISUzXCdZENEXD4ProaF1DMjc0ilx2erGvnJAHKBaL5RTa0tISlmVRKBSq6jWvF+HsjCKARAvHN/9lmZjpBJGATsZwNMiqrr9ut1gYIuHyMGLpc6mtY5Uim1gsVvfavcjlNcDNfnh8fJzR0VGEENx7773b/kFKKfnJZ77J34zcqPMEGyqE7YJ+Hzlbom20PjtpsIvYy0sur62z2CuKow2WWK07yLglLaaqiM5u7KVFlJ5e57FwBP8DD2/vvds21vIS1sykO7G4Xb8QTl1oaaGup8yW99HZje/EKWdws9lzoWpGps/S+MC0wZ50GwXXDaQ1QUIpsIdD2Ni8GLjBsl3nfW65EIFZcbmF5QwzC3Nk5VaCU10W9ZVDx5jPFxvsaDc/11gsxiMRP5G0+7UpQhDX1KrXlQry+XyeGzdvtkUszfB6RxI+n6/sHa/rOoVCgY6OjrKdL1DV8hzcwUl2N3Jp97OLhIJV3V9C1dAiXeRxphNsI4+VSwMSJRB2ovMWUPm5QHUda2ZmBtu2icfj5cimsvXYI5dtwM1+uFgscunSpbJT2quv1mmVbQGTqQzv/+xXWVh3bwt1Q67gFPhNwEomMEaGoc7i7JbHF6EwaJqzQAcCjQcON6BGIlgoZe8VKVsUnawDaduYEzexbo4iuuqnEauKl7oPEQptqgS0cF710BG0A7dta8E6tW7zY9dThEznPAm/ylJIx5dN023pRMz6558Pa/gsyZ68n5wo8px/hJzdYpRVg+T0KlOJWfx1HFhMVSm3G9uqxvzBY6yVfGbqfUYbn8eu3l4eEkX0fH2nTTdYlkUul2NlZQVrm2Krbnij5VhKqe09e/awZ8+eKofFhYUFrl27ht/vLxNNZ2dnQ9HNZnAjl3S+vY1LOpNFi9XvcFT0QHUDgEu2o541dSVq61iZTKZsKzA2NlZuYLpy5QozMzMcOnSorffRCI0sjg3D4OMf/zif/exnuXnzJh0dHTzxxBP8+q//+rbMFd8UcnFLgy0vL3Px4kW6uro4c+ZMefG2bbvpHEst/ufoBB975iWsNiRQKq+tnAaL1J+0F7J6VjvWP0ByZWXTTriBllRU1xzvle5erPW1qmFH/chxlGh0Q9yyzbpQsYAxfAm7NPHfiCRKC9dG+kquJyoO1OB1iop6+53ou7ZhfSol370o+O7xfFV9JV6wiBcsQMNGMhvRSflVQkWbwVSx7Gl+o9PPnmQRvyVZVNY575+gYLXf8WdbNstj8yzmVxs+Lx0L4VvNYgbDTA3uL+s8NcPte/dwVzaBso3NQckMaqeFCt8Mcqlc7CsVjQ8ePIhpmiQSifKCevnyZaLRaJlo4vF4W2kuN3JJ5dsk57a/rq0vaDc1J4TYMneUTCZ5+umn+Yu/+AsuXbpEPB5nfX2dJ554gscff7xsrLYdNLI4zmazvPLKK/zSL/0Sp06dYm1tjZ/7uZ/jfe97H+fOnWv7XG8KuZR+5CUJl5GRESYnJzl+/Di7d+9GCFEmHsuy2iKXXzl/ld955XJb2lolqKZBbuhCOQ22xRWyAgrS6U/aSIMlF2pmDxr8yFy9VwIB/A8+6ohOVlgkVxt81S+MW8kkxsWXq9ujGzYdWFvcIptBhCPop+5FCYaQxSKyWHRUggPBpmKZAQv+rwnJ3UuNC+AKMJg2IO1cV1YTzEV0Uj6FvUkDvyW55pvjGrPIkgXwhjFcSSKoEYy8wczYFGmrFaIQ5Hv6mQzGMFop3CsK93XH6RSStXg3wWyGUKG1TjJbSpaXllhcdCLY7XYX1cObISTZ6L6tlagpFArlVNHw8DCmaVZJ1DSbUncjl2S75NImNJeSnNpkdqkZFEUhHo/z5JNP8uSTT/KhD32I3bt3E41G+Tf/5t/wT/7JP2FiYmLb32Uji+OOjg6+9KUvVf3tv/yX/8L999/P5ORklQx/K3jT0mKl0O/ChQvYts1DDz1UlVssLRimabZ1o728nkHp6nYiH8NwhBZbWBis9TXMy+exKyXyGxCEkDYEQwjd5+69Us90KBhCqipyblPDTNm1B9+Jk+5kUMfgqzKqMWenMK+6mJHVJZcNwmqDWJT+QfTbTyBK6ro+H2Lje5G2jZ3Lgi1RwhFqd3QDBfjp0SK7MtuIJAFVwt2LeWxsnguNsWpWd3RVEooQAk2o2EJuGZwtrueZmJ6gIFt739mOTmYNs6Xcus/v55H+bnqS1UO52UCIbCCEIm2i6SS6y7Fyhsn43BxWRQq2uI0ZrFvFy6V0vnZ28X6/n4GBAQYGBqocKFdXV8uposqW51ohRzdyyRTaJZf2QhfD5Tt6reRSi2KxyH333cdP/dRPAU508UZ+j+vr6wghyurb7eBNI5e5uTkuXrzI4OAgx44d27LLKfmwtCOVDxDSlPLr2VgAZSQGto0sFlDyOeyKRVXatpMGuz6y9WANUlum5gczg8zV8Xp3iXqUrm7sVAphmuXHtJP3oPX2t15fqYhqpGVhTk9iXa/XyeZyTKVxd9zm85TyebSjd6Du2Vf3Ry0UpWJoUoIQSGkjNB8n1kx+8lqWYIM6Sj0shjQUCQfWi+SFwXP+EbJm484yKSWGrHCUNEAxBalEkpsrky05YkohWL7tdpY0P7LQvFGgo6ODR0I6YZfCfSifJbRRd7GFIBmKoBtFhGXhs0zW8wXGJybQm30fLcBsoFD9ZkQu2z2fmwNlMplkdXWVubk5RkZGCAaDVXMkrjWXnPtn6lOgyRxua3CZc4lHdtYxstaF8o1sS87n83zsYx/jox/9KLFYYzFeN7ypBf277rqr3EHhhm2Ri0soLjZ8R0QwBMEQPkCxTHKJdYzzL2zWKFxet2UpKnVVZdNbBR+rnqfUvKYfe6kidabr+B96FKFvL/1h57IYF19pPAlfmyLS9OakUvlcRcX/0CMNe/1dISVCwgdmDN47nmUhojPpUwmaFoNJo6Uf3VhMZSBjEbQkK0qKl/TrmHVaPxvBVCVr0wtkc7m6xFLUN/11bN3HzP4jJLNZRKx5F9xgfz8P2nn0FtJfipTEsunyv6eSadYWF1oiFhsnM7pderjVI5dGKKWKSrtn0zTLrb0lSwFd1wkGgyQSiXJrb7rg/nsp2mAXstiFjHNvBqIour+pMnYt3OZcii1aULSKN6tbzDAMvu/7vg8pJb/927+9rWO8aeSye/fuhjstcMil2XNqEdaa12dMAFVDiUTqEguArLk59FAI0+d30mBN5E1CukoGwB9AC4UwK4klHCVw8p6m11kP1vIixuXzYFmNyaWWmNvYHSt9A/huP7GtjrWgBT9+vcjJhHP+XWmDXRurd06FyaCCoQi617L0qNULuC0l1wopjsooihDc0Be4Iqa35a9jGxZzN2dYM5LElfo3aD4UwrdewIh1MNG9i0KLhfvj+/ZyV3p1Wwv+taVl8gvzmIpKK9uL0i+xjuNIGSsrK8Tj8S2ZgLdS5NIMmqbR29tbLmzn83mGhoYwTZNLly6VW3un5+v/3hV/CMXv3DtSyo1J/QJmehU1GHPmtJrBhVx8r6HjrRalTrI3yoWyhBKxTExM8JWvfGVbUQvcAnMujaBpWtuRS6QdBddmO6uKe0N0dmNnM8jERr6/yS46Z0lH8DGXxVzb7ErSbr8TbffezfOratVgYSNI28K8eR1r4mbT5wKO2OQ2oJ04hbp7rxN92fW9YNwwWBD89LUC/dk6uksWHEpvHE/1s2wWWDEL6EKhU/OxZha5PRBDInnZP8Y8a5vT9W1ch5kuMDk5RdZubUAz2z/IpC+E1cLwqKIonOiMsi+XbptYbCm5PD2Lsr6GQvsNSs1igatXr2IYBh0dHeU230gk8paOXJohEAgQCATKHVfpdJq1tTVWrrR2nwghUINRpFlAi3QhbWvDedLcnNR3009zqZ/5d5BcwEmLvZGRS4lYRkdHefrpp7e4UraDW5pc2k2L2baNUW9o0A1NbraIppMSwunsWpyv7gyxmix0gQBydnrz36qK78FHUCqtdSu7wqBs7iUNY8uiJQt5ikMXkWu1Ks71l6dDyQR719c41zdIphWFA0VxZPIDwSp5GWkYjrsmjjRMvV3dvUnBj17LEmjDoKlH89Oj+Vky8uRtC1UIhgprzMVmyJUGGys++FKjRyPNsPxymrH5SSxaI6Nk7y4WsrmW2r79/gCP9HXSveo0ceT9ATLBCEJKIpkkvgbRYRHB8GoCrcKYrdEvUPX7WyK7EhRF4cyZM+Vi+NraGuPj46iqSigUwjRNCoXCjvi1NMObpS1WKVHTeS0DtObDA5ttxEJRXZ0nkfZGxBN2fnsuKhd+386SS0kVeafQyOJ4165dfO/3fi+vvPIKn/70p7Esq6zAXakb1yreNHJp5YfXTlosl8tx4cIFpItJU1002VllbBvREcdedJE4rxe5+HyOtH5FJ4noiOO776Hmu9ySGVrp2jauz1xexrz0SpWfSxl11vHHBXzo5jU0KfnI0gKLQjASivByTx8jXT1biTUSdRQBXI4ldL1sSCal3DRT22iNFlLy5ILgvRPbi5TmjDxxVSeoqKwpGa7oE1VF+UrUdoapQkHJg6FYSA3Wp1aYXp/b2kyhmxvCbZsoKxqL1m6D+EbhPpTZHMwNFPIENtq/JZAKxyj4/OjFAtFMshxppBSVGzNzaCuLWw9cA1VVnXb8NoilBLdi+Pr6OjMzMySTSZ577jnC4XA5qnFLoe0EbgVV5Ew7cvtAPaovOU+Wz1XIYuXdh7MD/p0jF9u2d7zm0sji+Jd/+Zf567/+awDuvvvuqtc9/fTTPPbYY22d65aOXFpNiy0uLnLp0iX6+/u5q2c3/+vy9aavaQYR70LCZhqsFi4pGhHrcHb5qysovf1OG62b6GQrsO2NbrAJx4zMjVhgy3F1AT+YTvPgtaHy31Qh2AXsyqZ5bDJNbuIG45rO5VicFwcGSfXtwve2FsiPjU1BhZlaSCp837RFf84i6VOayuHXIplPM+B3/Com9CUuKZOtqxhLiSkt8IFt2qTGVpnKuHud2EaNKVelonGkeU57z0A/D1h5tAaFewFEM0miGxxrqBrr4RhJ0yJx+QJaRTG/4l1U/cvn85VndtqF24at5Ndimia5XI677767PE9SL4W2ExHHGx25WJa1hVzyhfbIRbaY5FT8obqjBsEdjAqz2SxSyh2tuTSzON7O764ebmlyaZYWs22ba9euMTU1xYkTJxgcHOTGVOsS8a5psYo0WIkg6l+gVh7WDA3sIrswX7HYC3wPPNxcdLIOpGFgjAxhL8yhdPXUvY7KH0OvqvJTk2PsWazncukgKATHLZPja8t8z+oSK9eGuD46zKef+C5SjawEarAnJ/n71/P0ZZ3PwAbmIjrrik3IsBjM1f+BWbZF1sgTC0SQSM77x5mSy9uxqcHKG0yPTSEa8FqxQ4ONfUKhs5vJjp6WFI0B7ti3lzu3UbjXLZP1ZJLllRUCrsQCouL9hkIhisUipmlua7faaDEv1Vwq/VqklORyufI8yfj4eHme5LVaHr/RkYvb+XJGm92FDUYPtjy1jvBrKLiz5ALsaFrsjcQtnxarRy65XI7z589vGcCM6xqCba1R4POjhsNYbmkwFwhVRQqB6IiTna9e0LUTp1A6OyGbbatLCzZMvS69ulmQb/RZbZDLSVXlqcuvEsq3tmCWoAhBzDDIjgzTNzBI6h3u07u1uH9d8MPXcvgrPMoVSp1hDnLYTBaymNJmQPUT050br2AWkBKi/jAmJi8FbrJit64BV4liIsf4zCRFaRAT9TvnVsKdBNfWMQf7uKnEsFscUnxo/172pRrLxNTDFUNijlyA/l1Nn6tGO8imNuuFxjZ0xfx+f11zKVctPCEIhUKEQqGy/ldpnqTS8ng7KbRbwc+l7dO3IzdjuX8/oZrhzteCTCaDpmlvSI3s9cAtH7m41VwWFha4dOkSu3bt4vbbb6/6wXf4W/f4E0I4BGFZiHgnMp/DqujsahpxRKJQyCFd2pmFz+cUxgNB58Y2TWQhv6k9Vgfmwhzm8MWqtFvjq5B8wDJ5z/mXtqVltWQYnMvlnBbXFlKQQko+NC9412Tz+koQhUP+zYWuYBbJFnOoikrYFyKp5HjBd42i7dyo7ci4AKzOrTG3Mots8Rt3FI0LTTv9APyBII90hAgaeZbjPai2RTSdRGvhtQaC4VQWdeJGS9FO2hcgUkEs4E4GEihoOoE6m5U9e/bwi7/4i6iqyv79+zlz5gz3339/+TNttthXzpMcOnSobHm8urrKyMgIhUKhLMnSLIV2K9Rc1jLt1axEG5FLvd9Qd3x7bbtuSKfThMPhN/Rz3Enc0uSiaRqFiqKmbduMjIwwMzPDiRMn2LVr646wq0lHQ1RTSZmbPwzp86NEou4SLg0WLWeQMlufLCp+fEII2CiKy3CkrBZAPleWYJGWhXnjGtbU+NZj1bmBQ4rCU2OjdBgGNw/cRvfKMp3JRN1rrsVIPs/1ysYD0yz720jL2rIwRkz4e2M2x1cLSGkhRHuF4IJZJL7R1jmpLnNJm8CuiHxqCUVVVRRbbCnuS1uyOrHIXKaa1It1vi9b1Vjp6GJ9bQ23oq2ooafOeJyHg2q5cF+asLeEwno0jqHp+As5ItmtrchpoXJ9fgGtcq6p3gIsBGo4QiS9NWqrXbQlsBhxzr0n4bKZEaLs5SKlZHx8nPHxcf7oj/6ISCTC3r17OXz4sOt11MNrSaHdCjWXgum+QdGsHPl0CuELOmZhJbRBLvWMwhKJNWZmZnbEUmCnO8XeaLxl0mLZbJbz588D8NBDD9X90LuadGuUiEVhYyCtswu7smW4Aq7FrZL3yvIiRBvsUuq0KteqBZQ00Ap/+5lqZeKa19ReyT5N46dGh+muaThY6epmNRzFb5oMzM/gc3kPtm3zYi7Hak2koppmuR1XlP6v5uiYdRuSXxjO05Oz8CtjxLT/TqpQJFnsx+IUPv0hVMX9ZrJsm6yRJRZwophL/knG5WLT3KVlWeUu5JKMi2lbzExPsWaktjzfh6B2qsUMR5ga2Edeq59aEPbm7P7egX7ut3JoLrpUqrTpSCXK/y7oftLhCEJCOJsiZdnM3LyJ5kIWtTAVhcmufgYTS7glUip/exKY6uwlFYwQzbXXkaeqKrlcjmvXrjEyMsKnP/1pent7uf/++3nPe97T8nHaTaHtjHlX63A7X6FOzcVUg2gdzm/VLuaxC2lHtcjXRkqrDrnEo1Hm5+e5du0agUCgLE+zHUsBj1xeR5TSYvPz81y+fJnBwUFuv/32hj/acKs54dJ/NMpt29Wrnz8apSBF2XtFiPpu6FpLKlYbxKHrdYnFDQ8rgo+8+pLrTEX36grdq05vf0FRWDNNbCkJCkFIVcnaNs9lMhTdcvBb0mIbw52qyopq83+fCvLU/Jf47rlPbdRMIOqfA+Yw7c+zlg+RMw+iqg+ha0cQQlAwi9jSJuqPYGLzjcA11mz34nYjWDrkC3kWp+dZM7cSy8bVViHf089k2FE0VhpsBOyN38yJvXs4kVlruXDvNwr4E05kPSk0lufm8LlFITUyQVLXGe8aoKBqTQnWRnCzZxcFn0OOaj0H0RY2a0IIhBBMT0/zzW9+sy1yqUWzFFqxWOTatWv09fXtaBdaPbil4Qpm8xSm4gugbJCKtC1nUr+YR6gqSjCKUN0JoZ6Y6d49u7j33ntdLQUq3Sc7Ojqakm+JXN7ICHAn8aaSS7OWSyEEqVSKy5cvc+eddzIw0LyTqe0vokEaTchNghDdvRjJRDUZKfXPZRRb09CCjWuuEIp0eQYAGoIfyKY5O3K5peP6bRt/BdlOFAoMFwp1RwsVtxumJMsvJf9y4r9xavWy63qoKdAbygJDwBDpoiBR6Maw7yTof4S0gOf9IxTs7Qk05pdSjC1M4RP1d39rHSG0hJPCSu49xLQEaZTeU/3vShUqD+zfy95tFu6vFUwK14egjjlbILFa/sykrjPaNYCxMYiqNfj9W4Ego7EerErViboGqK1FCevr60xNTb0mYy431KbQnnnmGbq6ulhfX9/RLrR6cItcinXSYm6QUjrDk8EobKTKpG3js7Jk02mE7nfIppQ6qxO5RMNOU4mbpUBpsLUkVVNZv3IjkXrNGW8V3LKRSyaT4caNG5imycMPP9yWGmgp5dUKGglHakCxZFu8tOAiYlnnhtZabyrYfI1ef5ZFQJeq8lPTE+yfn3F/ThNcKhpMNhnKqy7oO+k7DIOYmeY/X/93xHOtL74RnyTiWwa+yo3cq3xDeSem8G9rhmN9cpmpZKmGUf+1pt+HKgQrB46wUJvWqvOyYDDIyb4u4vkMkvaEIW3bZnx8nGI2iwC0jHtEpuCMBRmBINfifVVdSaLOZ6HGOrlhSqwaNYR6DkOtNEAsLS2xsODUFl/P3XDp2AMDA4TD4R3tQqsHN3Ix2iAXIS2oGaYVikKREFrHhgZZxaS+VXTXn4tH3dNYfr+fXbt2sWvXrrJmWCnSGxsbQ1XVKgtov9+/RRH5rYZbklzm5uYYGhqiu7ubZDLZtsy0IgR2qwtYA3IxpEREY3WK/c6Pr/YsIhJ1Fs9Ca5pWm9dRn1w6bZuPXRsi3o60zQYMCZ/RdfSkk67JB4IE6rQrl9NiJb0zy+TOzCj/6uZ/Q9mmJPw3MnsYDt4PirZZzxGiJb0w27RZHJtluZAo/63htyoE07fdQdJNeNJlLe3q6uRhn0JwQ8qloPtIh6PlGoq/gep1sVhkbGysqmVYK7pHhRLIRGKMx9x0mqrfkRCCIydP4bNMBm2bdL7AYqHItAULTRooVFWlWCy6LtTT09MkEomq87yeqCzot9KFVhrk7O7ubjuFVpIC2hK5NJNoqjyGZaEojZfDykl9K5twfU5HtHmkUek+WWspMDMzw9NPP82//tf/uuxbk0wmty0eWYlGFsfgRG//8l/+S37v936PRCLB2bNn+e3f/m2OHDmyrfPdUmkxy7K4cuUKCwsLnDx5Ep/Px6uvvtr2cVUhMFskF1EnLSY6u528aoMFvfYM/t5+CqvLoOsoLcw2VJ1P110XTqVvgJ5smtuKRSb2HSSl6wRmp+hsYQBwWdP5SrFIeHVTXymvqq4FZNiIXCpk+c+mL/FL479LYRteLJaUfC5zksXI8S2PSVlt5KUJFamAsHAm7gWYOYPp8UnSVvX7rNd2bMTizPYOkltZdn1ctcyqhX/frl28zcigVXTL+Y0i/sTKxnkgFY46Ui75HLFsurzgZTIZJiYmthCjW0Sm+3zsO3KUVDpN0DCYtBUydaa7dZ+PI3ecKBO5oijEQkFioSCHAcM0Seo2OWGRTqer2vQVRSkLVGazWfL5PFJKVFVlfHx8i0Xz613/aNSK3KgLbWJioqwqUNrF1xqD1aL0PdSez2yDXNoRZ230/His/UijlnwPHz6MlJL/9J/+E2NjY3R3d/PAAw/wxBNP8LGPfWzbXWiNLI4B/t2/+3f8p//0n/jDP/xDDh48yC/90i/x7ne/m+Hh4abfgRtumcglnU5z4cKFsvheMBjccgO1iqCqUGjxxyK0mtxzpfeKv/EHGtI1R1Z/I3VWWFpA2bUb34lTbV/zFnLRdZRoB/biPGY0hs80ODI7VX54IRxhNhBE2jY9qXX0ms9pON7F1aVFwjVmZvUkLkxNYfb+OFrhBqYyCELjzuIk/aEN0WYbsgakCs1TjklT4zPGg+Qigy29d1NaZTkZYYO5mufm4jhFF30xt6t3FI3DVW3NtbArFtO79u/leKrxxL0j5ZIimnGaB2wpKRaLpNNp5ufnW0rtRWIxDhw8CJZFMBqhD7hLSrKFAiuFIjPm5rdRfm6DCFHXNLpjMYjFkFKSz+dJp9MkEokyWVdqi4FTY6klltLzXi+UPptW6kCNutBmZ2fLxmAlouns7NwSmdUjF7VBTXTrNbc3zR/UlVqpOgA6W4hcmiEej/MDP/ADXL58Gdu2+djHPsaXv/xlnn/++ddUq2pkcSyl5Ld+67f4+Mc/zvvf/34A/sf/+B/09/fzf/7P/+EjH/lI2+e7JchldnaWoaEh9u3bx5EjR8o/klIrcrty4Vo7901lYdPvJxLtIF2aUWhib5uzqq2OtbtOo/UNOKtxuzuhyq4URQHdh73q7MINl/fTX8jTv5F6K2o6E4N7Sek+gvOzvCIhPT2J3+0aXI6V6vAz9H27Eb4rRJavIBUfZvA2bMtZWIUQ6Cp0qBDzO7FDytKYTxgEtOqFarIQ5SviYezK+YE2kFpIMLe24EossNWzPHHgCDNFEyyzbj0CQCoqqqryaH83fdso3CuKwsrKCuvr6y0RS3f/ALv6ercoLQshCAcChAMB9gFWPEIul0MIQXHD9KrVzq9gMEgul6NYLJZnXNp5P68XSp/PdgisUQrt2rVrVSm0rq4uotFoXTLLtiNc2eb9mq2TOejs2LkCfCaToaenh/379/PUU0/x1FNP7dixazE2Nsb8/DxPPPFE+W8dHR088MADvPDCC289crFtm0uXLrG4uMjdd99dNv8pobRDsW27rYJfO5O2sWCAFShP6KeXK1Rrm0ysS013Ju83ogP9+F2AdAYki+3VKGSxokZj21XDmWaTMnNtVPPs2hpqnQVQ1tzwM4c6mHynD8VXIQNvF9EzV6C4daZCCIEAOjSLjh6FTFGylJXkDRg2dnEx8FA1UbYIaUtWxheYzy6jU/+7zoUCaBnDUTQ+cJSVFlWwNVXh8V29xLPubcyNYNk2l6dnUZMJLE1H3UJx1dh96DCdoUBLmnKqqlZ1BC0uLhKPx1uSN5+bm2NlpbGkfL10xusZuZQiiZ04R2UKDSjbCVSm0Er1iEKhUPV+DRfrB1URFNaXUYIRlIrZp1ZVHsrPr9MtttPyLwcPHtyx4zVCSVq/1hm4v7+//Fi7eFPJ5fLly2SzWc6ePet6E5R2Y6ZptkUu/hbCYRVnF5xCoPT1Yy+6FO3rLQ4b4pbSNKqtjgUIRUMENWSgiWiLbTsNAZaF2JBYr/eKds19haLUJcbKcwyf6SN5ykRR3Hd4xRYWh7BPENQFf1x4JzfzcUQhicjlsbUA+GMtTT0bRYPpsWkyRmbLNW6BqFA0rt091nlhd1cXD1HEVP2kwlGELYnkWpu1yRkmVyYm8W1M6eeFQqOs+qE77yK0PWU7ZmdnWV1dpaOjo+lzx8fHSac330O9hbxYR0OtXW+OdtBOWqxd1KbQUqkUc3OOrt8LL7xQlUKzXNKkli3Rot1O3S+7jjQKCM1XV4iyLrZhud0uvG6x14Djx4+XO4fcUBr6ateN0q82/1GXjigR7sRSQoXyMeD4tYSjjmpy30D1MlJBRs12bWVfekXBTiYaRuXtk4ujl+YKTcfQFM7/nV3Yu7MNY6KtlmVbkZRB/t/su1k3dRAgA/HNz8QsIApJQGKHelwjylwiw+T0FAabn7HVYHE2ghGmw7GWFY0PDO7ivmIatWBDhVx+3hcgGwyjFAuEigV8LkKECUsyduNGQwOwEqQQ9B8/sW1iGRsbI5NxyFVVVUzbRnO5L2zb5vr163VJY8t1uWyQVFXlZ37mZ7Z1na1gJyOXRlAUhY6ODoQQLC0t8eCDD5JIJMopNLPBuiGEQA1tkriZWsZMr4JtInwh1EDj9JbbEKWyw+93p71cGqE0Q7iwsFAlq7WwsLDF26VVvKnk4vf7GxbshRBtu1ECBOp047hBaVYg0zbJRXTEkYXCphtk7Y27TQ8OEYuj+H11C+VtWx65tEiXUIz4OffkIEqwuYxIs+XrpjXAn2QfxrDr3FSaH6ltpDqlRCgKRlGiGgYEVJILa8wszWELl8/R5ZDpwX1Mh6JY9Tzua274U/v3cnud+kqgmCewkYq0hSAZiVHUfPiMItFMknlFZ/HaMHoLxGIqCpOd/fT7/MRC/nI3XEk+vxEsy+L69etVLc22bePb0NUzDANFUQgEApimyY0bN1zvh3o1l1py8fv9/OZv/ibHjh1r+r62i1KN9I2aLC/NuOi6Tm9vbzm9Lv/mL2lHH12LdG0es5jDzmcIB/3k8KHoNeuES+Sy05HaGyn/cvDgQQYGBvjyl79cJpNkMsmLL77IT/3UT23rmLdEQb8R2nGjhI2e93rDiK4naPwRaKqKCY7Hy/JiYwJp0K3UDKJB2s/KtzczI3Tddc5GG9zDd1oWky/pjO7uYGJvGsNfn7gbLatfN+7kK9njbSlQS9tG08BWFFbG51lIr7Q8tegoGhcb20tvbCpUVeOhPQPsbrFwr0hJrEK2ZVTRyQ1dRG1hU5PXdCa7+jE0HUVsRtulxU5KSc6yyaytomla1QJUKBS4ceNG3Vkfv99f7g5Kp9NMTU3V3WjV+3sluUQiEZ566qnyzr40wNhuM0Az3Apy+9Ce8VUkFKzSpVN8QRRfkALOoKuVSzopNEVDCcVcay5qCxmTdrDTkUsji+N9+/bx8z//8/zar/0aR44cKbciDw4OVs3CtIO3BLm0Grlks1kuXLiA2qTLq/oEjX8Qpq4hevrcBylrf7ztdohVokG0Zebq7NTrHcofwEpXF65jd5zkodlJNNtmdzrDQ5NgfkMw1tfN6JEurnevshyrFsE0XNJYEvjT/GOMFHq3PNYKLMNi+voEGTPXgFgqRBsVhblDx1krRyuNF4xQKMyj8TAdqbWGz3ODLSVXDBt57XLLUvlTXf3YpYXNhfiEEIQ0lVBvb3kyu1AokM/nGR8fdz3uFun4xDoz01Ouzy3BsixyuRyBQMB1YR8YGOCf//N/zrFjx8rdV6Ojo+Tz+dc0wOiGW0Fu37mO1o+RzmTR6syoCCFQgzHYGC+Rloltbo3rtR20iy79VnbShbKRxfEf/MEf8E//6T8lk8nwEz/xEyQSCR5++GE+//nPb2vGBd4C5NKu1fHAwACDwuLSfOMumhJEg0VdhCNIRSsLVdaidmckpd22W2EZDQajFCkZCYbYW8gTaoXAtM33JHWd/cfu4K7Jsa1Pk5IjC8scWXBanhOxGCMH+xjdZTMRm6Tg8tH8ofF3GC9sb4irkMkzOTZBAQOlwSdV+lRVqTA2sJ9UZRqswYLRFfBxd2eEWLL9VuOiEFxJpFGnx1t6/mooylxHd1uOVJWT2YuL7r+pWiwuLpafawlRtwvQNE0WFxf5tV/7NZ599llu3LhBLpdDSsk999zDj/3Yj6HrOpqmVaWO3LqvSkTT1dW1rcL/LRO5tHGMdrrFhOpuSKhpO0cusPMF/WYWx0IIfvVXf5Vf/dVf3ZHzvekT+s3QitXx6Ogok5OTZavjyMvDrV9End2G0tOLvbaK0Nwn58EJl8uPKcprK+g16KoqKgrHclkM4EYgQL6zm65ikV0uJmXOpWy8p85uTnd1sduFWNwQTyZ54EKSBy44C9nKySwv90j6fbAn6Ly3pN5DLKa2VVcASC8nmZqfxmpR9U3Hx2hvH1srQ+7fxsHBQe4tplCTaYqaTjocQwqIZBrLuACkhMqNuTm0OpuIWszHuliJbO3o2qnltHRfTE5OkkxupuvqEUsJuq6zd+9ePvrRjwJONDM6Osrtt9/OlStXXO+32u6r9fV1VldXmZqaYnh4mEgkUiaaVpR84daIXNrVrxNtfnuakFtqkvoOpxffyIL+64FbPnJpVHPJ5/NcuHABwzCqrI57fL6WrY5FzY9SKApiQ6gSaKh8HFIEaYBAEOH3YxuG4z65DTSquZTehw7cls/DnCNeuRLrYCESQxeCvYvzBDYWUaGq6PsPcaaQI1JHF60RLEWQeZvgbRHneHYRhvOStATZKV3rCrZtI3IZ0oZE1qwrK5NLzK0vVK2+jb4bTQ1xqbcHy+0zqV00hODufXs4VlFf8ZkGXeubMi7ZQIhsMIxuFImm16m8vEVFY+7G9bqik1WfixBkfX5XYnGupekhymi2aIxNTZGpIJZWUNuur6oqt99+++blteBEWfIeue222ygWi+WoZmhoCMuyiMfjZbIJBoOux7wVIpdcOwOU0HYzjuGyYfH7dk5p2rZtstmsRy6vJ+qlxZaXl7l48SI9PT3cd999VTeWpjSa1a5B5Y8yGMQXCFKoWJAbebZkDBMR70Lmssj1BNb0BOLQUcQ2JBpEhVKAiMaQqc2Fxa5zo3Yn1+ne0D4zFJWbg3vICYVwIMTbRodRt1EDykUCKI/5uSt3o+rvEQUiuKvylrr6iMSI2RJyNlbBIG8bzE3OsJBzK9y7fKoSLH+coZ7O+jd7RdOEpmqc2TPArgaFe4HjJFlykzQVlUS0AykUEskkmeFLqC10hBmqhiVAb/CZ7tRyOjs7S2a9fZHSRrv1dlUuwJmFGRgYYGBgoFwDWFlZYWlpidHRUfx+f5loOjs7q5ww3+zIJV1wJ5egJsgWDESTRp7mJ926JgV0jVwu95odKIFyW/pO1lzeaLzl0mJSSq5fv874+DjHjx9nz549W14T05uom7K5tAU0jRwbQpWZFIW16oWqdqK96jjBEHaFBL5x/hzG+XMovQOoe/ehHb2jocd45WMi3gls2CevVosvtkKUum1xaMNRM7xrN/7ObubiXVjFAt1z01u0x9ywtr+LwRNr9OXcnTmhhQVUERBWUcMqobzuEIsLZM2BFClYj/Qw2Uw+Y+N14XCYR2Khtgv3mm3Rtb7KFRMyibW6fvSVKPiDKKZBwDTJBev/tl7rbl3TNHw+H+vbIJZm598OudQeu1Qv2r9/P5ZllRsDSvWdWCxGV1fXa5bPbxdu5JLKuX+vOVOCEFjpNaRtIPQgSiDSVu0M3OdcTNPkG9/4RtUg53a78Urk4kUuryMqyaVQKHDx4kVyuRwPPvhgXVbvaEIuAD5FICXkLRulbwB7sY7EgduPTtNROuLIlPsiYC/NYy/Nox0+1rDV2UqsIQIBhD+A0HSn3Xkbaawt5xcKvetr9K47C29R05gY3Mu6lERSSToSW3f6Cyd7uWtgjGATqwBRZwbF9bkt3rA+4WOyu58V/+ZnVTetKSW93d2c1Wz8hfa66ABMKRnK5FHHb8DA7qbPz4YiBHIZlBb0stopChdqBFP9fn9Z0Xi7aLSov1ZycTtXpRlWpbLxysoKUkouX75cjmx22hysEu6RS/1Ng1BU1Ejn5uuLeWyjgJlaRglEUPTG3VFSSnCZ6O+Md/DII4+4duN1dnbS3d1NNBpt6XvIZDL4fL4dN3V7I/GWIBfTNFldXeXChQt0dnZy+vTphruBjia5TwkUS+kVVa1PLLBFliUQ6yBvmdgrS4hgE5+ZJp0Zaryz6qn1iKXd6ZnaNJrPNKu0xxZ7+piLd0I+T3x+mvXHBrhPXkRx0WJ6TVfTwloWUsMMdfeQ1WrTKO4vPjQwwEG/RkbaKKl19DZkODJCYWx2BnXDgkBvUujPhGOEMsmWuPRtHWE6LZN8Po+maagbkj71kAhsdgGFQiEKhULbw8K1aJSK2mlyqUUwGGT37t3s3r2b+fl5xsfHCYVCW8zBuru76ejo2NHoxjVyybeu7VeyOtaiPU6jSi6JLOZRdB8iEN3aUVrnNxcM+LZ041WS7tSUcw9W2gnUS6Gl0+m3tMUxvEXSYsvLy8zOznLs2DH27t3b9HWtRC4VF9HwYZ+qlIerlJ5eCmtr5Ulw2aym0UaRUOzgDsVuku/uS6zStxG9zN7Rz20DGaZyB4kV1umsk8YqX2cb5FKb+qpFQO/k5e4ObJemCZUaZQIhOL1vD0dTq7Ch4mILwXqkA0P34c9niebqqw4sKxozYzdRK2pZhu53lciUQpANhglnWiuoP9EVpRsbpKRQKFDYcPzUNA1N0xCqhq+2TXXjdxeNRkmlUhV/dnfqlICFoJHH6ZtJLrXw+XwcOnSorGxcWmCvXLmCYRhVjQGhUOg1XZsbuWTy7RX0S0OUmzMtjhimtEys9CrSNhF6EDUYbSBauTU6qyTdkhba6uoq8/PzXLt2jWAwWCabyrpVJpNp2yTxVsMtHbkUi0Xm5ubI5XI88MADLQn6AXTtYNeGZcuyX8uWyKKRdlGso70OlEbDnEJgQQOt4GrYbSga+AoFTmU3ivc+mNcDJI0ClgF+Q26xL9gJchFATAnzze6YK7GAI6lSSj1oms7Z3X0M1BTuFSnpSG+mJvM+P5lQFGyLaCaFb2MTMCk0EleHUbfocbkIG6oqRd1PKNu8e0wX8N6uKIE6ooemaZY7HfOKQiYaR/H56Co6Rl65PQeghbkaCSxF4oSMPJEGactbhVxqu8V0Xae/v5/+/v5y6m9lZYWVlRVu3LiBruvlqKazs7PtVJArubTZLZbJFVAjW2dKhKqh1sjCmCn3DVgzReSSFlpHRwcHDx7ENM1yCu369evk83lisRif/exnCYVCr2vkYlkWv/zLv8wf//EfMz8/z+DgID/yIz/Cxz/+8R0755tOLvV2aolEgvPnz6PrevkLaRWdO0kuQiAidayO6+xgykX5Nrq1Gg1zgrM4hVs9XhuDb7GFRTix+e8BUWDAB/ggY2mMZmMkDYW4SBNX8m2Ri5utmIZKQOis2xmE7Kn/UlUF0yYcCvFoZ4RYKtH0bIFigcCG9E8pqpnNFzEvnCvXTCohamSChBAIKQnms3XfZenvEU3hPR1h1BbVdKVtE1p3yDGhaszZCkE3YhGialMigel4L8lQhL0rjaXP38iaSyM06harNDPbt28flmWVxSbHxsYYGhoiGo2WySYajTbtPLNtewshZdpIi21cWEtPU3xB1JC75XA41N4ku1sKbXZ2lnPnzvHCCy9gGAbf+73fy7ve9S7e9a53ceDAgbaO3wif+MQn+O3f/m3+8A//kBMnTnDu3Dl+9Ed/lI6ODn72Z392R87xppNLLaSUTExMMDo6yuHDh/H7/UxOTrZ1jHYiFyGE047ssnCLeBcSkMmE+4trXiNUFbq6sZecYTwp6/k+ul1I4xvoSjBMUEoGigW6m3Q4tXHWhiWUsGpxd3SzG2s8HyWRzpDVAsSDzYdGVVH9+fgVDWxBWjq774bvWAj6eno4Iwz8DdJd9SClZGJxiUKxSLBOBBlMrJXpT1EUZwdcKtw3OPYuv49HIz7Xom4z5BCMLC5hqBpu2fbKRgYbGO8eIOd3ntnKEGU9vJmRSyOoqkp3dzfd3Y43faFQYGVlhdXVVaanna7FUjG8nuWx+5xLm/WrNjyg/JriMtwLkTbJpRbBYJDbbruNv/qrv+IP/uAP+P3f/33uvvtu/viP/5if/umf5tKlS1VzS68Fzz//PO9///v5ru/6LgAOHDjAn/zJn/DSSy/tyPHhFiMXwzC4fPkyiUSC++67j87OThYXF9sudAbblWHwB6BGv6vUQab09jfcqwtVc9oSgyF8fj+FpYop73bmTJrVSYwi+zZ22jORKImefiL5HLsX59BqvdzbWENEG5d4IJAGU6crpFI0JYm8gUQQ8ysEdRf5jYoFplPNkLQCWBXJPdFgsTzQ38fbcgmUbYiB5hCMrKyizc3Anv0Nnukcux39uj6/j2Nh37YUsNcVjbHJSbTEKkad6yotyramM9rVj1nVVdb4nG+FyKUZ/H4/g4ODDA4OIqUklUqxsrLC3NxcleVxd3c38XgcVVVdycVotzmiDXLJ1xGSjexgjaRQKDAwMMDHP/5xPv7xj5NMJnd05uXMmTP87u/+LteuXePo0aNcuHCBZ599lt/4jd/YsXO86eRSSoslk0nOnz9PMBjk7NmzZU2j7Ujug2MYVmh1YfL5N8lF1/F3dFIodZA1WUSkqiBiGzMyiRq/+kIeGWotbypqaw+aBhW1k1zFwrE7nWL3hjBlWtOZ8geRAnYXCnRYZpuRS3uLQCkt5tMEfZH/n733DpPkKs++f6dC5zA90xM357yrjdJKIASSLQlJIIIJFgYJLMBGOGCb9BphjDDYvJblF0wyBuzPYMAGjEnCgBJR0obZqM27M7O7E3ti5+6q+v7oqdoOVR1mZ3ZHNvd16dJOd3XVqXTu86T7KUx8hmGgpafw5CcxFA95d2T6ZS3sOyrHGdH8lNsDksgApS+kmA7cL0nHGQ81Y2h5AukUbhuhQDuMCZme3l6U6TRs8rUn5Hqfr4VLlxIOBIDC5Gk+u06qxsUYFCoDp06gJGtbYe6mCPs9IYxy9Ygav6tVRHmlMFsV+kIIQqEQoVCIZcuWlbQ8Pn78ONlslnA4bHWgLCbQyZR9zEVg2L4fjXSvdXKHNzkIX84E5dIvZrfN2cJ73/teJicnWbt2rfUOfOQjH+Gee+6ZtWNcdXIxDIO+vj6OHTtmZZcUP5iKojQkuW8i18CK1+P1kp4YK1TGaxqZIo2pmi9lpAVjsN/2KyEr9b9kRQ+3CEcwMqkSckk7rEoD+Rzrpt1kOtDr9TOeTjGazxOpkQ4LUN5KpeYwbeIoQghkT5Ac0yurfBo1MwaGQbOcYESzLwQrj4OoqsoNnW20TwfuiyVcJv0hMrKCO5chmErYTrQXhELsxDGU4qC3XKUItoFGdCvWrMVblIVYTiiyLBeSP2xcZefyBpOnDtelBCBFWtin+uxjAA73yqyHGBsb4/jx4xWZR3Blq+bn6ljFLY8NwyCVShGLxTh37hx9fX0MDAxYKb7xtP1ixDAMtMRYIfuruClYA+O1K6AE8M9ii+N4PD6nBZRf//rX+fKXv8xXvvIVNmzYQHd3N3/0R39EV1cXb3rTm2blGFedXI4cOcLAwADbtm2z/K7FmKnlIguB7kAMPlkiWSSPnlWU6SB8rGJVIgzd/p1WVKRwGD1eJV21EZ/8tOXi1DcmXcfKSgIWpxKcaInyzclJfEKw1OVikarSrqq47CYsp0ZfDmjWs9TMo1I85JRCN7tRzVk0M+0KWq7DQCDAjWEfwfh4xXYCCBWlBWdUF3F/EPI5gukUrnyOk4ZM+uhBpHIrwu70REGmsJ7VvCzLrFq7riJrrhzmM2oAcX+QjMuNmssxMDlF9vgh24SC0iEJtLZOnlM9jn2BnJIpPB4PixcvRtd1PvWpT9HS0sLy5ctZv369Fau4knpfV+JYQghLdHN4eJj29na8Xi+jo6P09vbSe9GpKFqqyP7S0/HC+yZJSEodxZ4Olkt4Fi2XuW5x/Gd/9me8973v5XWvex0AmzZtoqenh49+9KP/c8ils7OT5cuXO/YMMMmlUZ+xLAQ5hxc6Wd53wx9EP2+fNGBXyyICQQxDR4+NQNDZXJV1B2JyOI5j3xgg3YAWUsuFPs4BScPgaCbD0UwGASxQFRYEQyyUJCJmK9oGY9Jyg9s7uSEKO5NB12mLNHGDCq46A/fuXBb3eMGq0YDDkgsO7qvfGTitZq0JUTWpwOP1smLlyqqxoXIIIJiYwpeY4mgqh36+p2YgXpJlpto6OSdUPHVLrtrsZ3r1HYvFuHjxIt3d3bzxjW/k3Llz6LrO+fPn0XWd5ubmOa38vhraYoqiWFYLQOjoz6C/ttqF2RTM0PIgyWjJCYx8BqG4kL1hWwvSqc4lPIuWRiKRoL29fdb2V45kMllxj8z41WzhqpNLNBqtapmYQUpN0xrS6FEaICIJw1kIvmwVGWzvZGpkyKpxqSZsmde0umtThKI69o0BSDdw7h6b5mIGcD6X50gowjPv/TALz53mxl88zqbeY6xkFLnOCU2qUzLf2l6AU+G/EIJVCxdwTXICqUZsxA4ZA54bnySfz+PskHB+DiqsnCIEw00sWbxoRoH7LIKjY5MoF3oKySJVxqWqLvpbOxicflKqPrVVrmMxEokEZ8+eZd26dWzevBld1/nVr36Foij09PRw5MgRQqGQZdWEQqFZtTTmgypy48liMgiB7LtU8iAMjdzUOBg6ktuP5C7EBw3d3i02lzGX2cZdd93FRz7yERYvXsyGDRvYv38/Dz/8MG9+85tn7RhXnVxqwSSURsglmUw6mq62UJ3rQtyCQoW+EEjRNqbK4ytVJPmNRjKdaryLTjEXO8hVXmzF7WVhQuPikuV8ZekKgvkpfnNP/Q+UM5U6QEi2E7QhBGs62lkfb7yxF8CEkDnbVwjca+1dzhtOHzvrD+CqQ1YfwBsIsHTJYgQ4uladEJckTl0cuNQbpsrvM5EW+jwBJovtJ4db58ukqMeiGR8ft1J4zYWZJElIkkRXVxctLS0l6b59fX0IIaxV/2zogBmGcVnyLplsriH5eltyydf//hu6XtF6A8AQMkrwkqtey8QxMin0tL2F3RyavWyuuSaXT3ziE3zgAx/g93//9xkaGqKrq4u3ve1tPPjgg7N2jKtOLjUDztO9Q+qNu5gdKV2SUr3fevExFOcHOZPLgduD8HjtXVYOsRCprQPqCOAW7ajqt9kG3AxOW05s2srAm/6Yz+4p6Kf8PKLztHyy6r7yuoQiXbqOdgH96mOR0UqFXNDcHvLhCJtEHjXaxrgQGLqBZ3wUpY4W1QOSwuDJEyjTFpqRq3KdBaQWLMZ7ob5aqUgkQmdnJ0aRS7PYeq6GEWQunDmLUi0ON42s28NFIaOXP6Pl74NhEMjniLu9jk+I+Q4Vd62E0or9YrdycbqvKUkSi8UsHbCZNAgrxuVYLt/de5b3fPFHiHyKtR0h7ti1hte8ZAd+j/MC0I5cMvkGnlNdqyugL7sD4A6Qn7T3MERqKXo3gEQiMacxl2AwyCOPPMIjjzwyZ8e46uRSC2avkFovtmEYnDx5kp6eHjZs2ID/cA+jyeoKvxaq+Z89HkgmMMzU1vLxSaVreaG6IBgsiGGu21jf8aFmhXAjefvlxpQAzr78NZy8/W66kpdeuhvGJG5gNVRZqOrA+ckgeUOm2ZNq3HIpQy7UhAG4h/rRVyzDl8tYychaMMCY6iEtJNTEFJ7EVMXvzyCTOHIIueh6CAeLVnN70FUX/rPVCdREe3u7VS1dsp+iY+mAKsskhISaz1vuxPNCYfTYUeQyMUy7eM3E4hVcDDahD1UuVoqz94Rh4M5liLsKrrVq5HL+/HnGx8dLPi+2HpxilsWSJMuXLy9pEHb48GErRlNLaLEYM62p+Zcnj/LQ135asPaEm4ODGQ5+5yAf/fZ+mt0Gu1Z18Nsv2cZ1G5aX/M7Wcsk1YrloCOq3lBRBRRdKAO8sKj8nEonndS8XeB6QC1TvRgkFDbIDBw6QTqctKX730T7H7cvhNDlJre3oE+NQJhNSDFWSML8VwRBC19FHY0hdi5DCzY6/awiqyr91LeKQy81NsSE2p5K0G4ZjhXxxf3qhqOx7x58ysm4TAPmKBVqh9YDTXOCSdBaGLk3yUjxHbiyFUGVkn1pZn1M+liLLLtPWiTI+imxKtJTNu7JhEM1Oq1IqEonWNiaMglXjHo9xIp3DOHG4rsB9LhjGEAKpQk+sEkIIFi5cWJfEkESBbDxo5GWFsUCI4VSaTPce+xhOWcbgyIq1DKYySE7xk2mycksSRjZL2lUUs3FwscXjcXI21lvxBF/vhF/eICwejxOLxRgcHLSEFk2rxixiLIdTT/tq+Lvv7uPT33OoDpdkRnPw6NERHj3638h6lmUtXn7jmhW88dZdtsfzuBpwyzWotGDXhXK2MdeWy5XAVSeXeh54p26UAGNjY3R3d1dI8TekjFzmFpMUBSMcKbjBarwk5qikljb0sRiGrqFs2orS1jEjeZASCFHIqMrlQFE5HGnhcKTgA27KpLllqJ+dkxOs0PK4i66j+Vrp4SZ+/t6HSEcukVz+MsekyAK1qbB61fIaxlQOA5C9KpLNC20SoCJ5MIYHSlbytWwgfzaD+XrFWloxHv+x/YZlk24m2o4yNYmcSZHyVy8+k2WZJUuWzEiBVsrnuDg8QjKZxOuYHFA4f0OS6F++lrHkNHk6PPcCQVCR0YBknTFGO2IBOH78OH/6p3/KqlWriEajbNzYgCVN4d0MBoMEg0GWLl1qCS3GYjGOHTtGLpezFH1bWlqstseNZov9+b/9nK8/daju7TXJxakxjRM/PMg3vv8jHrr31orjxeLOC8JyGI2+Ezau24DPQz6fn1FjsMrxFMQ9f225XAHYucWKNchWrVrFkiVLSoiqkXWToiqWmSt8ftyqSio2XPigRmqeBiVNvlwveDGSmSHUiHClbdGcUVJIWYxxt4f/WLSM/wDUrkXsdru4ft/TrL14HiEEiVVr+cUf/Z8CORUhd5kpon5lBFgJgKzIEJanh2qQT2QxchqSKiP51Ol4mYRPd5EkXWFxNOJgU+qMX6W7FuMeOI8wr32VtYuiKCxfvtxSg2gEOeBoPIXccwYWLnXe0DDQVBfnl6wiXtwIzOHkFygCkUlzxpAq4nnllqqph+YESZLI5XIcPXoUgMcff5y2tja2b9/OzTff7Jj+74RioUU7dWOXy0VLSwvpdLpuRYDf+9yP+cn+Uw2NA0DPJEid3Ue+vcVe/sUh5pJPjkMui1DdSN7pLLkGycUuFTmVzvDTn/7U6sbZSGMwO/zacrlCKCeXfD7P4cOHGRsbszTIytGIvpg8HXMRzVGMyQlS5RIdkmyffeZ2g6yUtDqWTc2oXA6jUWUBp+NA1eQA3eViz3U3sue6GwEIxkaYarFXHNZtK9brr61wCugLIVD8lyZpPauRT+VQDIlJKWU/Fk2vID8nuGziL8UwEKQXLqlUGnZ4ufNCwte5AFVVyWazSJJU96ozJSSODw2jOCgzlBwnEKQvHCVd3mHSRhphW8DDSlVG+N1s0nXi6QxDmSy9OgwjWxaameRiEkstkjEhyzKxWIx//ud/Znx8/LKkPpzUjWOxGIlEglOnTjEyMmKJUtrJx3/6x0d47NgQyCpo9Se/5JMTZHoOAAbq9Hte7p7LOVwPxddk/VvPZdBSU+haFiG7kFx1kq3NO6ooCtddd11JYzAhRIll10gW3lxni10JPC/IpVgCJh6Ps3//ftxuN9dff73jDfPVIBdFgEeSiWsaWSEhtXagDztU9cqVk74INWFk0whdK52WDaOQ1uhyIWqsiA1dL1SLmy+dLDWWQk1B3t8o8gEbuuZILAD5yyw/KFc6dhyXS0ZyyeiyUdb16xJmS+1KzudJdy6wl7C3OUra7eV0pI1tikpTU1Nhq+mVuLnqdioyHDOgp6/vknZZFWRaWjkbiKDZua3KAk4vCvvpKHpkJUki5PMS8nlZCWRzOeJSO/GpKeLxeF1kYqdH1dvby+Tk5Kz3uS9WN47H47S0tCDLMqOjo5w7d8763kwMUFWVixNpJNUNaqHFM7qGns8gZVOOKeD5qVEy5y+50NTpBUE5ceXr6KoqqW4k1Y0WH0NyedCSkxi5dKHluDfk2AbDznJRZNm2MZhZ0Hr8+HF8Pl9d3Tg1TSOdTv+aXC4X9Xaj1DSN/v5+Dh8+zOLFi1m1alVVv26gBrnkDYhb1pBwJpbCAAp+kGkUJFqGC+Z0xfvbQDV30fj1bLbunhKFHxfqbvThQaT2zqJ9FmUI5fMF8ip6iHO2l6x+y6XRIspqNfBGjWSAuvYvBIs7O7h49LDt956y9PGkP8jZcIF81aLrUrwShwLZxJGYcHtwj4/hymXol1SGjj9Xql1W2LjiuImuRfRILgyneovpey2A25oDhGpcf5eq0hyJ0ByJWEQYj8cZHh622bVg0aJFJeSi6zpnz54llSpYkbMRG3CCYRi43W46OjpYuHAhuq4zMTFBLBajp6eHo0ePEgwGiY2VduBEVpBlBdw+iI+jZ5OAgZBdCCHITQySvXis5FjqdGy1fC7IN+CS9rpVsjDdp+VSB0o1FyeVSk4XUBa5qGwtl9L5pjwLzxTdjMViNbtxxuOFeqxfk8sVgCRJDAwMkEgk2LJlC21tbTV/E2jg5anVYtitqmTSKZAkREu0tN6lfGKZofqs5HIVqvTryG4CEE2RS+NwSHawy4LTRcGxVfwqDqWWE1JP41XrWO01eH7VFg+NFJna7UdRFNavX0+mpQ0cyEXR8lbSxWi4mX5/fU3nhBAEMQhmU+g+DyPeKCOP/7gkBdo6jzL35/iSlVzIaYWYW5Xzl2SZlzd5cc3gmnq9Xi5cuFDxnSRJLF26tCRBQdd1Tp48WRL4v5LyL5IkEYlELPe1WcSZetopiC+QAxFkCtvruTT5ieEKYgFwOZCL1sCzlUynUdTSiVzICjk5YH2uZxLomSRIEoaNQrdaY74pF9106sZ54cIFa36bS3K5cOEC73nPe/jBD35AMplk5cqVfPGLX2THjh2zdox5Ty7pdJqRkRGg0IOg3qyeoNqA2V8jyJ0xAI8X4XJhDDtLtAAFd8dMPQ41ulEWwxgrqmxvUA9oyA3DHgm3Bssm06jy/2Fc0xhOPw3GUwTVs4Q9GdtU53rdYhYcrBPN42NkMk6zTyU4nWXUCNxuN5s3b8blcpGtdf5CcDHSxpin9Nkx6rbWwJ/LIpxIfHqiNoCRlesYKq6vciAORZZ5UVcbriJBznqRy+U4depURZKLqqosW7YMIYSVueS07VxaLrVSkc0iTq//LNSWQUVSPY7dH12KYrU/KB1DA4RdB7mXWi+V27sayE61i1eZlt1DDz1Ed3c3Qgg+8pGPcNttt7Fr165ZdWOOjY1xww038OIXv5gf/OAHtLa2cvLkSdvY9eXgqpNLtUklFovR3d2Nx+MhFAo1lC4aasRyqTGpS4EA+mgMY3Ki8stZslyAQsxlBrAT16yGcA46MoXf5IAL2TPkjRwRZR0h+XoywMXkBTTth6jiAFHfJGaWcaNuMdkmXSvX1AxanhN5g32D4/jFOKs9Cou8HqJ+n+3EV/ychEIhNmzYcGkCq+Je04XgbLSTpFoZm5vNDie6LNO/dDXjdRTuCp+fTp8Xj1fBnc+QydSfNptOpzl9+nRFNpaqqmzdurXEIkmn05w7d842jX+uLZd6FgvZBqro3Yps2/3R5VJsiaxR2Z5GYBdzcV/G9ZRl2YpFPfHEE3znO9/hrW99K8ePH+eTn/wkuq7zjW98g5e85CWXM2wLf/3Xf82iRYv44he/aH22bNmyWdl3Ma46uQBWbrwJwzA4c+YMZ86cYd26dWQyGRKJxlrdhhvQJqpmuUit7ejplHMhZdlDfDlRBCHXKx9ZhgaTAPISVnt7VXKxwHWp4nksPU4ym8Et+4h472UgPgJqmFzyCWR+RVY0lntfPsmk27twjY4g5bKIadHXhAH7U3n2p+KI2BRLXTJbmoKEVaUiYaO9vZ2VK1eWH8X22JIkkZNlW2KZTeiSRO/SNSRS9llxxRChMEY6jazl6UymwOPB7XaTFxJ6LksqlXJUYZ6amqKnp6fic8Mw6OzsrCAMj8fjuOKdS3KpV/4lV6c8E0C6PM41Dbeq2pKLV1XI1Z2B1uBbZ0cujcw3NdDU1ERzczP/9m//hq7r7N271+aZnzn+67/+i1tvvZXf+q3f4sknn2TBggX8/u//Pvfff/+sHQMaKwe5Isjlcuzbt4/z58+za9cuFi5cOKOeLqFGiijtVr6ygmhpRR8etBW1M+Evsjaktg70OrSxnMcxM9O3qraWDfJVVnURTxMLQu1E/RFyep5ULsNgfAJd3ITi+iBZzysaOlbxJJNauAT3YD9SlQpnQwjO5nQGQgUBxVwuRyKRIJ1Os2zZMtuXzK7PSUJ1o+k6STG7WVHlyAfDxD2++oilOYoRjxcWKkWPnBACFQO3qtIUCuF2u9E0jVwuZ2WFjY6O2hILVBeKdMqmnA+S+9kGyMXO9Svcfp4d9fDHX36Gd/3DNzh85lIMairdwDvRILfYNQtra25qbCdVYKYhm9JXu3btsloJzAbOnDnDpz/9aVatWsUPf/hDfu/3fo8/+IM/4J//+Z9n7RgwTywXExMTE3R3dxMIBLj++uutF2Am3SibVbX+HKiyYjUlECCPhDFdSFlNVj8+XT0vhcIFPbEZNDazMMvpoU7IK5KzDn4RPIoLj+qiM9iGbujEEmMkXUlwiDMKA4wKXTMBBriEG86XTo5O3iwRDJFT3Qy6fPhTCQLTz0E98iwGkHS58U9bmlq1JmuX6TnJtrQiJxNIddzz4kJbqG7hejweq8DR9MdfvHix6v6dLAUnl9vlKh9XQ73yL/kGyMUwSq+x5AniWbyJnKQygYvvHh7mu4e/g6KlWRH1YlCZjq9KkBofRkhyIdW4gR5Jl8Zh3200dzmLyjLMdQGlruvs2LGDv/qrvwJg69atHD58mM985jOz1igM5onlYrY6fuaZZ1i4cCHbtm0rWVnNxHIJu5W65w612PpojqJlMlCkbFs+YZZASOB2o48Wkg70BvznFZih5dJoQF9rwHc3qhTiTJKQaPFHCHmcM1gMAVqyoD2Wj2cLK2oh4UYlS33XRWqOYiSTSNk07VNjBPJZ4i4Pg8EI4z4fms0kan6iqyopxWURy/SobI8jDIOAy1X/c1V2jdMdC1HGx5BTScdjWMcKRyoUteu9BfJ0/UQtNJIQsXv37lnNCipHvTEXpZEYY9H1l3xNeBZvRsiV1lde9nB8zLBVCMjpoIRaC50ohUCLj5GfHHJs/mU/DvttfZ7ZFa2cy0yxzs5O1q9fX/LZunXr6O2tTzm8Xlx1y8UwDI4cOcLg4OCstjpuqeEDDciyVedi9qkSZatLE06Wi2iJFiyVoj4hogHro/wlFDMM6L++I8bKAw+zN7qNva3bmHJV19PKNUAu5ectGdXHKPtUZF/h2us5DUPXyQgHF0WZO694da8XTb+BbJpAtuBzz0oSo74QhiQIp6Zw5zUEkPcH0FUXvvHa/WEUYHfQQ5tcqCkwq/PN/2wnxqKVeGrhEjzne2oThCwjIi22TeCCqTj46puQqrlla6F8kr3++uu5//77SSaTJbUVs4l6Yy6TSYfnwk5JddpakAMtuBesr3lNarbykGTkQCE7Kj85fKndsZCQvUGEYl8A7UREvgaldKohkUjMSOuuXtxwww0cP3685LMTJ06wZMmSWT3OVScXs1HRihUrqrY6btQtFqlBLvEisjJ0veAPd2gxXAEhkKLt6MMDiEBZgLuBVVDFC9Cgme6W4c8WnueFUwdgCl4w8As0JE6GV7C3dQd7WrdzLrS04nd5qf6iyfJ0XbvsLydIqoxUpZhVqCpkcyUFoU7HNeHSdVoTl7L2Jjw+xiWl4Hqrg1i8QvDCoJtI0bh0XSebzZKdrjFSFIXRpihhLUeoqOugIQTp1g68Ze49WztEVQvtsB26i/rzear2OihGPamyDpNtcSX/Pffcw2/8xm8Qi8U4c+aMpQXW0tJCJBKZtXTXemMujoWOep58ctpidgeQXB4MXUMOteHuWoOo5uqcAdwuF9p0u2OYFrJMT5LPphFKkQbZ9Njs4PfNLrnMpeXyx3/8x1x//fX81V/9Fa95zWt45pln+NznPsfnPve5WT3OVScXwJJLcEI1VWQnuBt5USQJY9qtZQdZKlLUUlUCTRHiZkV/+bguI+ZSb90FQKsPPtR8kBVTpa0FZHTWTpxk7cRJ7jn1bwx7ouyLbmVP63YOtmwiK7sbcouVQ27Qk1pzBauqCK+/wmKs90qE00lwebiQrF0v0SRLvDDoxldj4svn84RGBjCAi14/WX8QSRJkOhbg7T9fsb1RnqDg9YEsY4zXloi5HBRb9MlkEk3TbAlCkiTuuOMO7rvvPqt6v1gL7OTJk6TTaativKWl5bKsmnotF0eJFllFCV6KmWipSXQtj6ut3nTZxp7RTC6HUsQNQkjgCaF4Ch4AU4OsAPsxB55H5LJz506+9a1v8b73vY+//Mu/ZNmyZTzyyCOXpTVnh3lBLrUexEbdYmbjsMKDUPshF0KAojgqEMsIclBYiRo68aJCyvIaE+MyyEVye+qqItmojPKBwGGaktXFHAFa0yPcev5H3Hr+R2QkF7+MXMM+/ysJ5dppy9RxbSr+bmzCsYuRWPuSFXBJGJPjFd/Vq6o7vbXzMab/36nK7A64URucMP2pBKRTnJiYwmNDLDDdIC5fcNuJYKhANvFCNbeT1dHIKOyuRfk7ceHCBd761reSyWQ4cOAAsVgMWZZRVZUPfvCDZLPZkvesWAsMKKkYvxyrxhzrZVku5efqDWHk0iihNgwth5YYx8ilQZKRbOIu1eqebFHjmTA1yAC0hP2CITCLbqy5dosB3Hnnndx5551zeox5QS61YL5I9QQKixuHSY005XV5IG+/+s3qOqKlFWN8tNIyKXeDzXG22EvdPfy+7whqvvFUp/MEOd19ikPXfZnvLhqjM7+R6/oibMuuZJG0rKSxl4nyozTiFgMc+/tlWtsLROxQvyQ5qV3aQDaqXHMDVroVtvpcjs3VqmFMKPT0nEPU4e4UTc0YU5O2/T6KIQFT6QyTipiROoHTYsvn8/GCF7yAm2++GSiknMqyTFtbG7/61a+q7tPn8+Hz+S7bqjE9ELXOac/wKIMMogs3slF71R8KBEkCQlZRQpe6hYpckmx8AvR8QYNMkmi02qwRN5vTjBIKzC65LFiwYNb2d7XwvCEXKKRlVpOtmJiYYP/+/YTDYXbv3o38vZ/VXakr3G4MO9eKEBiqinHRftVaQSaNyuwXo2rMxeCdvsPc6ZlZRsfPpaWcOn4RXyaBMBYB0K8c5lvL4Fv8lHDKzY7YctbE17JBrCUoF1Ihy19TqUFtG7sX1+y5IoWd1ZtzqNg3k62E7jAmA3C5VFYEfKR0jUaTO/sllaETx1DSKfLlsbUySNE2dIf4SjFUIQgpMv15je7BcXxijFVulcW+gjqBnUZVseUiSZKjFV/+bixfXiiOTSaTDRHY5Vg19VguP74wxFsf+wX6gkJquRGPw2QGJaGg5IK2i5ypVAbZX5k1Z6g+1EhhYje0PFpyHD2XRmTT9UvoN0BGusP7HfLPLrk830UrYZ6QS60H33xpqpHL+fPnee6551ixYoWlryQLQa5ecnG5Kp0rqgsRCCKyWWfHS7Fpr6gojRRvlqNKKrJXaNzZPEJvphkpn6NTxKm3nv+b+hpSR5/DNb36FjayGxPeDD9Z+Bw/4TmEJlg+vIAtE6uJGk2lQ9Tt61mcUOxGq+y54jx+o/6cA1voQpBWVFy6xpJQ4UWdyuWZyGbR83n8ho5S5bk7h8TkkUPIddQv6C6XLbGUn4JXllCFIJbL0+4u2HRJQ3AgnedAOg6xKdaLNO3BCF0+D74yq6ZW3xand2OmPe1NNGLVKA4S+Cb+4+x5/uynz5a4k0UgAIEAGpDP52B8AiluoKa9yEbtNGxrP7KCEoyipSYLEvqZOEYmVbuupQHLxa6AUhICn1u97Ots4n9CF0qYJ+RSC6Ywnd2KTdd1jh49apvKHFYV0pk6+12X9V5xhcJk83mMsRiipdXhR+YAZYTXiwHk4nFHV1At2KkYm8gaEovVFIvVQiX4pPBw0ruYVFanZeIC/nyy4jcZZL6SXI7nzOHSEOfoOFQRljZkg9Md5zndcZ4XntnKqvQSBvMjeCUPHo+vbmKBS+5sYQjSXaU9V6rtRpMUDC1b15qyfJu8JBWageWy5F2XMrKCqkJwmvxzuk5W05F1jUw2W7JIGBsbY+rChbKwcOVIDEki3bEQyUHJWjYMy7kXUmRyusFkNbepEAxlU+R7BhlKG7hcLpqbm/F4PCXNwZzgFBeZrUnPPEY1q8asTxsdHaW5ublkTP90/Cwf/tX+qtlvQlEhGsGIFuxWPZ5ATKaRkxlkmuoao8/jJgPI7gC4CwsLQ9dwa0kSiQSSy4tUXK/VSKq3jXtUNwzO9/bwy19KloR+JBKZsThoPB6f85jLlcDzglzA3s+cSqXo7u4GCvn75cVmNdVyi+DzeC19VinaSm6sKL5Sw/oRLVGMsRjk8xjZzMxf5ioPo1E2uYWMNNuTJwDI+yVOeZcyjJ/A1DAtiSGGRID/GgrjHzxaOd68Tt2uAEmj3dVCu6swmfRQ2T+kaJBoyazV4hgKbjHZkJCQKgLiTiOQWtsRWp6U4iLlVjFQCKfiqA5xj+L9ZGQFYRh4algcqiShShKg4HEXmlVpmkZfXx8XL16sHFvZsXXVRTbSgvdiL1Mr1lU9VsjtIpXNkit6jOweKZeRY8HkEPlsgRCz2SwDA1X6DJWfk4Oky2ySSznKrZrBwUGOHTvGqVOnSqyaLw9P8tlDx2vvsAxSwE/25FH0hILb11XXb5LpLLK3NM1bSDIZfCihwqStZ5LomUShjYZcf5trpzqXG19wPZ3NQUZHR61zD4fDVTtxOo7/15bL7KGuat4yCZhYLMaBAwdoa2tj3bp1tqs2lyyVNPmqhrQs29ZbwHTeuwOktg70ifFLsRZ95i9ytQLMavSmoLM21cPawh9cbG3lR8dV/IPn7I/TgI85V3ZkP1X82AJkvws9kyefziMESNM/zwmbyb58hpUkRHOhX44eWIovn8U33TtDA8Y8XjKqh0AmZRVVTu8IgExbJ8rQQN3uwpKhC2FJ1NuiyGWZ9wXQ3W48Q/3mjx332+ZWGc5UulVT2TTFvRlcus7ysWF8kpfJBpWnTVwNcimGLMs0NTUhSRK7d++2rJqHjpzmhwOxGe0z8+wvMCYnUFydtTc2UZeEvg/JfYlotPgYhp5DqF5kr/PEbjjUuUQjIaLRFqLRQhwxmUxaLY+LO3Gacapq2m7xeHxO5V+uFOYFudSD4oyxc+fOcerUKdatW8fChQsdf+OuYe4qgCJJpHUd4fHaynQAFS1pCz9WkcLTemJ+P5a6SZVe9zVRJaDfyHTZlR3BJ6I4ib9LQsGx93AZNFG6UqsnW0xyK0ju6XMZFGgOPWBE8XV1uRE+n1V0WJmlBpF0CtIFt+CUy0tKGMiyiiuXJbVgMZ6L521ELGdXej0bDCHpBq6x4snS/hitboV+BwFFQ9Ot7ECvlmfxSD+ylidxGYWMcxVzaQTFNS6mVfOjg+cKmXSpFGRqC3ya+8k983MMU/2iIQHSxu65pKiF7pfmsbMp/LLGVDKD7A0VXHXWl/aWS3NZS2nz3M1OnOPj44yOjnL27FmOHDlCKBSyWh4Hg0HrmpmNxH4d0L+CkGWZbDZLd3c3ExMT7Nq1q6aQobuGnEqeS7n2BhRSje1Q9kC5g0EyOuix6cLLIhKrKKhrAJfz23JUs4JEA42U8mXkIs1mEeX0/RG+AAZGSdGhUaNEKZhNUVhfpplQXHgvzK4ukh0yrR0o46PIZfep/HoKoN3tYiRTe6ERzGdZMNyPXMU6hvrEW+cDuZRX5xuGAUJCuFyFpBkjBLqGms2SGYuVTtzT0DWN7K9+ai0kAFa0hhnNZ8gIV+1zaVTlWEglj5rk8pIClGAAQ9fJJ8ZByyJUj21AH8DtdrZEJEmy+rWsXLmSdDptWTV9fX2WSsnY2BhLliyZc+HKYnzsYx/jfe97H3/4h3/II488Mqv7nhfkUu+Df/z4cUsx2eWq7Sf1NBCoE1X25xZYVoDU3EJuagqKJphi7bFG5e+LIfmrrVYEml5/P7FqqaCNNJPUpdKNG63Qr8YQwjAKK9r4VIXF14hjaO7E4y8h19SM52IvwiaO1xofZ0gpxPtkCrp2A5ksrhrPdSSbpmOkv+YVVRSFNWvWcOTIkZrb2aGxgtTLQ3l1fqosTiqEAFkh71WQPF6MiTH0+BQYOsLlwdA0sr98qqJ/0ptuvoZ7b3kxR3uH+NcnDvPzk0MMpYSDtV//+RqGUbVZoJAkFH+T9Xeuwd5JdvB4PHR1ddHV1YWu60xNTRGLxfj4xz/Of/7nf6LrOp///OdJpVLs3r17ztojPPvss3z2s59l8+bNc7L/eaGKXAsDAwNMTU0RCATYsWNHXcQC4G3AxWCnsGoinSusVqS2dvTRGHq5hVH8cF4GuVQL6AMkjfrPR3I499HmReiGIJMMkUk2YaSrPwLlLq1GycWoUi1tqCrGxJitK9HINaJUW4WKGpxY7faUWrgUdXzUlljgEn26JEFYVRjK5kq/sEEok6KzDmJxu91s3bq1ZvaQJElVYy71VMzPBsqPlazSbVIIgdTUjLJwCcqiZUhNEfJnTto25psYG2N4eJjVXc381RtfwpMffh3dH30V9230si6s4dLTMyPRRsnCpmBXalQRoOS3EuFwmOXLl/OlL32JAwcOAIWY8m/91m/R0tLCl770pRnv3wnxeJx77rmHf/zHf5z19sYm5oXl4gRd1zl58iR9fX2Ew2Gi0WhD5r2vimhiBarVpxgGUksr+pCDsGXxmC7HtVVjAkgYCkHqexkkGxNnaMF6oheOcbFlGW5foaWAYYA0piMlDQyvQIuIkvPRKI+5NDZJ2cVoCvUuiwtNw5wmBFWCOs9VVGtzjEAzDOQ6n5uSuhwhSHctxnv+HPlAdaVpnywhC8ForkYsyzDoSk7SMjVe0zrz+Xxs2rQJRVEsUU0n6Lo+L9xiFZZLAxmbwu1xTMf3uVwVGWgtLS3cvL6dN/7GNjo6Ojh2fpj/7/FDPH0WLtTZuNbQtcb6uticz2wSt5kl9vnPf55QKER3d3ddfYwaxTve8Q7uuOMObrnlFh566KFZ3z/MY3IplnG57rrrOHv2bMPKyL5GgqMOD5jw+TEUFT3mnILrdylWGrPhmnlfh1oP+cF0GDyTdCi1+7QXk4suyYx0rqHtQiEtWSqaz4UAPSKhm4uXtE42mUNIAiWgoJW5xRqPuZT+rSsK2WhBWTi5fK3j72rFXOpBWlGRRIFcRjJZdKNQ+1Rt0WHylK6oZFva8F4oV0CuhCwEumGQLG9+JUrLKIVh0DU+TFMqQU5U1zoIh8OsX7/emricVuXFKfpPP/00bW1tVq2FSTZXM+aSyDdmGXhkGTteWL18Gbs3bbAy0EZHRzlz5ozVhVOWZVZ2RPjI77yE+/7xKS6cqpIyX4wGeyHZdZptCs5efMRs5+73+5EkiW3bts3avk189atfZd++fTz77LOzvu9izAtyKX/wy2VcFEWZUU8XfwOWi92KSURaMOKTkKosUCxGYlrdVYq2ok9chhKuWt3d16mk6VDSnM35GHFHaXIbLE+dt029NU31rDtAPNxmEQuAHAgB4/YH8Ui4PIVxGJpBKpvmUPIEnWorUTVSsEQamPiL763m8aH5/XgGzHoXZzdGI6+8sNlNUnXhyWXRXC5ckkT7dDMnwzAYy+ZIaTrNLhWPjYWnKArJYAjP4IWK78rh9/tJGJC2SZJwkyc7TcaSrrNobJDAdC/4agH81tZWVq9eXfPY5e/E5s2bGRkZ4cyZMxw5cqTE2r9ScZfKmEtjk3c6bb9w8k+34yivq3n66acRQpRYNZNx+4w0IzGKputI3iCSYj4PDbrFbNxomexluMLLYIpWzlb7g3L09fXxh3/4h/zoRz9ybHEyW5gX5AJYL0BfXx/Hjh1j5cqVLF261HpQq9YgOCDimnmMIty1gImLRZOLEM4uHCEuNbq6DBPZtgGSLwDTmmdJo3C7lqlJlum9kIJRyc+ZpAsFnVWuOH6p8PBLkkQ83A66TvPQmZJd1mt9CFngcqts8hUmuvPZAUbzE1B/zZl1/1yGQlJIuKpYgBZUF5LLxaA3QCCVxJ+v1cWy9L4kXG582QyCym7OQggiLhXTUCt3mSmKgiRJZanG9ggGg0xNTYHfvi7C3Kus5VkyOoi3Dpep2+22JZZycrBbbIXDYcLhMKtWrSKVSlmV86OjhSzI48ePz3rvFrtxFlsu5QH9mr93iIEEvJUeAVmWkSSJRYsW0dzcbFk1qYz9okD4m1Gmx5hPTICWKbiF3fUXONqNT55Ft5hJLnNlae7du5ehoaESi0jTNJ566ik++clPkslkZu3ZmDfkomkaR48etU68vCOlLMuOqxoneBvwpXpcLlKFAyGamkuJBQpuM7saFlUFWUYfmO5xruszd0MU/0aSCkrMRXU3KZu8qGY9QbOnYEpnDcHhdIiU7CHpCeFK9eDKVlpdjaQiu4saWi10dbDQ1cERnHvf6FM5NEND9rmQlIJsj8dQyZBDSZUKg9pZHMLnxxCCfDZLe75wXpNuL0mXB1c2S1M2iVQ20ZpXzRCCpFre5rg6ymMx+XzeNr7hyWVKKoNCoRCTk2YrbPt7LYBgPk57bAx3nT3W67HOncQrTbexEAKXy0VXVxcLFy6kv7+fc+fOIYTgxIkTZLNZIpGIFbeop41yvSi3XNINup2c3FQBj/0YdV23yMy0ahTXMajSVlsIgeIvxDHyiQmMfAYtXXg2i60a+wNW3kf1cvQEyzDXacg333wzhw4dKvnsvvvuY+3atbznPe+Z1UXHvCAXXdd5+umngUJ/b7uHfSbdKEM1brpHksjqOjqQMqYnNlnGsFtdK3IFuYhAsNDFUtNnp1TPdPi73Aivr6IzZkKrvkJyCYONnklgkueSYRI2xAKNkUt5zKUWpKCKhIqhG+TjWbRMnjQ5+/m3LCNMhJsKhXbZDEbR4iKUSRGaLr7LSDKT/gAGEE7GceuFNseFWE47/oHyVWtjd8bJfWQRmhCEgsEiYnFGlCSekUHQ61/ZZjIZq8iuqanJ8r2bC5ZqGmOqqqLrOrqul5CPYRR0ylavXs2qVausFf7w8DAnT57E6/VaRGNW2DeK4XSGP/rhk6yQDV4SvRSATjUYc3FqWRFwIMBicjGRbcAV5/W4yMkeJLXgIjIMg3xyAp8qSOWM0i6U2FsurhlqiNnBrM6fK8slGAyycePGks/8fj8tLS0Vn18u5gW5SJLE6tWriUQijg/2TLpRBmuQS/GqysjnCzUqSYc0k7JceNESxRgfL/TucHCLNAwhCs2m8vlCim4ZUnr9q4pqprrUCLmImeX1FxICXCgel2N8RqgSZKbdeC2t6GMxa+Xq1JXTrWu0xieAQlxmzBsgKSvkwhE8FcTSOKplZUmShOIPVBCL3RVanBsh3B8jYzTgQ5xGOp1G0zR6e3uRZZnm5mYrFbkeVWRzG03T0DTNahxmNgzzeDwsXLiQxYsXk8/nGRsbY2RkhKNHj6JpGpFIhGg0SktLC2537QSVvkSK277zGIl0mp8D/zw0QdOBU+xqjbBsyVLb37hxsC0czi/osR+HHbnkGiCXdCaH7LtEXEIIFF+YLCCr010o04WmfJInaEt+rhot1RvB/xS5fZgn5AKFIGa1F2cmAX21AfeI5PVWTSN2K4r1MljxFScYRs3udrY/y+cxkgnH1VuqkTqXKpWSDVXoS5fRn4ZaBbLTiRBt7RVp3vXEnyUgkooTkGTO1RPLuUx4PB6SU5UWi5rJl7xJS2QIXJyc0TNgHmd8fBwoEMTwcO1zK5fmh8Iq/MiRIySTSbZs2YIsyxVWjSQVlHxbW1sxDIN4PE4sFqO/v5/jx49bq9qWlhZCoVDFRH5sfIqXf/+JgrK0ORZJZsLt5UeTaTjZgxSqTKXNAHoyUSiglWSkcBNCVR1jLk7uGjtyyTeURFD9QSvuQmkYBrpW6Rr3zDK5XGldsSeeeGJO9jtvyKUWGnWL9fX1MXD6FHWfYo2eDlkARUEKN9kQS9kDOsPMHMnlrtrJMm3U766Qq8xriruNoFjKJMcRRnUCzkuXV5Esu51/LwwQ0Tb7+qEGfPVSNemUWfBXSpLEypUrOXq0UmEawHBfui8rhI6nr4fG5EFLUY/LrRxr15amdedyOQ4cOICu6+zcudMqsNSnY4KmTp9hGCWxGp/Ph9/vZ+nSpeRyOUZHRxkZGeHQoUMYhmHpYbW0tHBwIs7rfvjT6u9lFYKVfH7wFSZSQ9PQRkcwGtDmMwzj8smlgedDCAE2z5rH3bh16oSrQS5zhecVudRjuZj9XYaGhrh243rYe6K+A9TwMwu3F0PXL+mJVcXMZrRav0o3YLnINmnYmqwy1r6ClokU/+fkvaREnv92H2J/7il6oyPkg5UjyNvEXBrp42Xk7B8xze1Bc7ktocqK39W5/8K2c1fDoSgKmzdvruoe0iloU63WMyhmYscVxqc+9Snr35lMhv379+Nyudi6dWvJqt+ciM3PTEvGnKjLrZrW1lba29sxDIPJyUlisRjnz5/naweO8P+Gpmr2mKnXehOyjNwcLTSiq9iF/T6cul4uDcuMTmlVm+8V7aWu8Vmwsay8dbgO68Wv3WJzgHq6UdYil3Q6zf79+4FCYsCUkIA6yaXK8UWkBT2fhfiU/dhEaUPemU51QogCyTm8sMlGYi5lg0h7w6R9YaIXj5FafB0AXkPh5emtvJytMAj7LxzhKXkvZ5sHGI1MggSareXSAL3YXNd8IIQuyygZ5+w//TIkNUwYQEqSODIUY4HfQ8jrbShY7Xa72bx5My6Xq+okKgFrM3GkMtdc3ibleybu3VowA/1Q6HG0d+9ewuEwGzZsqHm+kiRZ2xRbNWZigHnekiQRCAQIBoMckD38/XPnS7pJVhldQ+eiUNklw2kPxWMrxpf/8KXEUxn+7anDfH//OU6NZMjLl08AhmHYWi4+jzprKcT/UxSRYR6RSy3UeinHxsbo7u4mGo2yfv16ZFlGaSQN0uGhMOMrUkurY2GfMN1g02nMhqY3phBeDNUFNpOu1Bwlkz3LsUyASd1Fp5JikeosX15MLlORLuRsmqZYQTnYqXBsq7KBrWyAMRiMxXhS2sNZ5QJZLYerSHvNhUymTsn+8quabWlDTsZxxSdJhZvr2kftY1QSnY4grarI+Tw/T2QgkcHDOKs9Kkt8bqJ+v22/ehOBQIBNmzbVnJwVRcGbTTE1HSMphlaoqrD+Ln6Gq7UsNmMjJedYRyHk1NQU+/bto6Ojg9WrVzc80ZVbNV/5ylf45S9/yYIFC3jBC17Atm3bEELwd6cvQKSloAGWSl7qZWSHBufanE3c0+2gmeZELlCoi7n/1u3cf+t2APacvMC/PnmYZ87EGM0pRWKVDVguDvGgbCbDs88+i6qqJT1bZtKJ8n9KLxd4HpJLeQ2JWXh5/Phx1qxZw6JFi6zvVUnCK0n16RuVv4iyXLBYpuMr1R7BrKaD1weyUkhjbjS3vxiqWkouRQ3MsgGZte5LtSJ9WS/9mpeQlGOlK45SVDhiFp7HOlYRGulFLS5EdGh4VIx2qYXXcCvpdAZZkhhKxMhpecLuADlX/Svv4nuVa2pFGR9Fmq75sCMFE4Ykk5eMuhYIFW2OhURekvHlsiRcl6qQ0wgOpvMcTOchFmdL0MsGrwtVVUvcXs3Nzaxdu7bm5OzxeAp1HXWMsV6Lxa6dt/lbJ4IRQliLqyVLlrBs2bLLXkF//vOft7q8nj9/nq9+9at8+ctfJhwOM7n7NxGygvD6wOsrjCmXQxkfJVte49XoOGziJU7CkOZ1qudcd6xawI5VCwCYTKb5yhOHeLS7l34pwGSdr6tTssGCzk5e+MIXMj4+TiwWs9VAq9eqSSQSVsOx5zvmDbnU4xaDwgNV/O+jR48yPDzM9u3baW6uXAnXW8QlFR/f40V2u9CK4wHV3DSKXAjET8vE6Okk8gylFYTqujTlulwIn98iuPKYyyJXikWF0k8mNIVTuQASsMqdQBYwtHAD0fNHkcomcaduenaQhIQsybT5W2pvDJA3Cn5C64SmG0cZLhLjw6VE4MAtUmsbhqaBZDDiCaCpCsF0Cl/OIfmgaD9ZWcEwDDxWVo+zqsKYrOIPBBAUUpBzuZwVY6g4hF56/71eL/l8nlwuVzNd16nosRzFJFL+WTUEAgH279/P6tWrqzbPqweGYfD//t//4+TJk7bji8fjZHI5cF+aOoQQ4HKhtXUgZdLoY6MY2QxCURtPa7CZwDWHd9gM5jdKpCGfh7e/dCdvf+lOXvPJxzjUV6dkk8N7E/B7SzpNwqVOlLFYjDNnztRt1fw65nIVYJrqJrkUx1euv/56R50cSVRKgJhwCUF2eiVorghFOIKRTqFNTJRsKxzW2VJrO3o2VyITLmpohFWDUNWCdNd0gWZxA61MlYB+WM6zXR4HIGcI4rhoO7/HfuMGZMYlmyw6US3mogjyyRxGVkMohUC3V3eRlLIV00xhxV/6qZmWbCxYiIJBNB23mulMuTwk3F48+SzhVML6pXlnsi1tSKPDKHVm62Vz+Uty+S4XLpfL0SUhF/kZ/X4/qVSqZjDbnPRqBr2xJ6B6SMnr9XLPPfewYcMGW1JsBJqm8X//7/+lr6+v6nbVEiiE24PcUeh1b+g62sBFjKmJQqfXULg2EdhcK6eardloJZDN2VhKArITw9OtkC89D47SNL7Kuae4E6WmaZZVc/r0aVKplKNV8+uYy1WAuULRNI3R0VG6u7tpa2srUY61/R0CzWEizBrGJYIRAqlzQUHGpY7JSUzLs+jDg4hQuPQIl9NQSFGQmlvQJycqfNnZOlORVWHQLKpI5Rj1p3tKNpNBrXWi4lPBV/CTG/EEKcmhfqhY+liSCm7IIWc3ZDCbJpgtnFdKUdFVQVL20pSMk+5YiGu4v1IapsqtVKvcp3JtTn06kGvpiZWchr2ryum78u3squ7tYjLlbrFQKMTv/u7vcsMNN1TIJTWKbDbLRz/60bpqaox6M8AkCZfbjd7SCoCeTKLHJ0GSUCPN6GXyTIYDkTqRi10acqPI2CgI6AYoocKYtUwcI5MqZJ45pLwH/dV77dRj1YyOjjI1NcXExMScxVw++tGP8s1vfpNjx47h9Xq5/vrr+eu//mvWrFkzJ8ebN+RSj2kryzJ9fX309vZWxFecoEiCnJPpApblAqBPTToSi19RsKYUlxtvMEjSrHcpmwSMBpVgL/1OQwqFyV88b/t9veQCIFebVRu0XMrjXI24OpyalkGRIr3LhfD4SmR3ak3K3nwO8uAniwa4B87PakKyAIQuQALVpZJOp8v0xC4hlSpNrKgWrC85ho1lY5JNLYslGo1y//33c911181Kv496iQXqJxcANRknM00uks8HRUoD2mgMcjmEz4cUDDk+l/I0+ZYTiaZpl00utar5ZXcA3AVLIjdhnzYfDjRGBnZWzde//nU+8YlPcP78eRKJBGNjY9x+++2sW7du1qRgnnzySd7xjnewc+dO8vk873//+/nN3/xNjh49OieE9rzoRAlYwfzz58+zY8cOFi9eXNdFVxq4MVKVDpcJMwgdDIEskyyudymfCGZouQhZxqgiP5Jt4HYpVQoLDQSpBu68XqO/ezUYVV9+A+Hzg+rCmByf8TFkmJkiQq3vJQMDg2w2a9V51EIjxCLLcgmJmhpitX6/YMECfv/3f58XvOAFs9ZIKpvNEgqF8Pv9NTu9NkIujpAk5OYW5PYOpGAIPRFHGxqwP55u8LOf/YzDhw/T399vSfTMhuWSrdIpsxxuBzmpRsmlGKZV83u/93scOXKEJUuW8IIXvIDHHnuMHTt28Pa3v33G+y7Ho48+yr333suGDRvYsmULX/rSl+jt7WXv3r2zdoxizBvLpRpSqRT79+/HMAzWrVvXUFtOVaq/oyHVGn0ZFFSKx0cryKQi3/8y6hiE4iwlkWugiFJxeOemQp30GjuRdTgREGSmxlmchbDbeZLSDaOksVUjlku1EXsUlWAmzaTN9dIzGWik8rlaS4RZQL2WdSOqxuXFjSapVEs7XrFiBa973evQdZ1jx47R2tpKNBqt2Qa5Goor9BVFQVEUPB4PQghGRkaszy+h/vtf75aSP+C4QPB5PVxzzTXEYjEuXLjAc889RzAYxOv1WioDM13dN1LNn3XoMhoOzvzalyOXy/H617+eG2+8kVQqxdjYZfSHqoGJ6biyXSLUbGDekIvTw1EcX5lJAM/VSDFetUC86sK46BDoLLNULmtdV+UlacRykW2qcoZb1zIwuBzdreMCVscNEGFww2B8kKnsFEFXkDZ/W8n9KLdcGjo/h41da9azTpW4Bkim0wylM/Rq0I9cuAY1Vs8VhxESdi3G9Dq0zWYDdsRiRxJ229VLSlu3buW1r30t11xzDfl8npGREYaHhzlx4gRer5doNEpra2vDysZ28i3m/Y9GoxiGQTKZJJ0u9KmXclm0Oms4GuF7l5bHLlKoyDJ+v59AIMCyZcvIZrPEYjEuXrxIKpXiZz/7mRXTaG5utqRu6kG+AZ09u4C+x+Nm5eKuuvdRC8XyL16vd1bbIRRD13X+6I/+iBtuuGHW1ZBNzBtyKYdhGPT09HDy5EnWrl3LokWLePrppxuubnY18JIJuwltWk+MTJX+ENqllAHRFGlIH6kCTi+GLJM1Ijw6dQ0bPKdYpMbtt5uGUjbR9nXtYvxMS0G0Uqm8hu2BdtopZBslsikm0pMokkKzL4xeNkM00urYbtHg37KdpVrG4h2fx8NSj4elQC6fJ5ZMMTI5Sl4J1V2IZohKe0pT3ZcKXO1+U9ee60Mjqca1PrO7Zi94wQt45StfaQlQulwuFi9ebCkbj46OMjw8zKFDh9B1nebmZsuqqeXmqqXZJ4TA7/dbk96Ln/4xF0ItXGxuY6JzEbq7Stp9IysRh2aAAZerpKZFluWSzLgVK1YQi8Xo6enh6NGjhEIhi2wCgUBVqybfSE1aWSqyoqj8+8MfoK2lfk9KLSQSCYLBWVJZr4J3vOMdHD58mJ/97Gdzdox5SS6apnHkyBFisRg7duyw3GAzkd2PuFR6k/U1GStPIVYDAXII9NgIosW5sMl0i0mt7egjQxiX0fbU1i3m9iDcHsaTOkPpdzCUBl2cIKw+zWr3Uda6RyrkXkxy0YXEmfabSJ9yX3rPqxAlgN/lxe8qrJhyWo5YcgxJSES8IbyqB8kQMzLPDATNO69jQcpeRgdAVRQ6QkE6KFScZ7NZS3qk2iqufAIJef1MphK0SF7ONT7UulGvO8bJOqnneb711lu58847HeVcFEWhra3Nsu6npqYYHh6mr6+Po0ePEgwGLaIJBoMVY260w2uzItOWjbN1IE6+/zQ9ipueQIRY+0IyzeXvSQMPik1DNXcuy/KpUVzTBFOsf5bL5ZAkyep9s2LFCtLptNWBs6enB0VRaG5uJhqN2taXBBWdVO0GoUCp5aKoKt/6+w+ybf2K+s+vBrLZLPl8fs5TkR944AG++93v8tRTT112XVQ1zBtyKdZG2r9/P5IksXv37pL6lZnoMjXSOzzg9Vqd5UWkGT2RuFS/Us18FgKmq+gBjEx65n7gsp7uIhjCyOUwJsfRlUsrGslYzVR2NXuz8OzkMB71Fyx1H2Kz5zw+SUNBJ6d6ORV6EdqZsnE04ApQZZWQN0zI5UU3dGKJcfLhxiv0ZSHTtX4z4SrEUg5Jkqz739vba63GHQ5k/TO1cCmcP1d7bA2YLnYTcL3Be1VVK35vNvaqOj4huPvuu7n11ltZs2ZNXc+TEIJQKEQoFGLFihVkMhmrMdi5c+eQZdkimubmZhRFabgJX/G4FSFYoWVZMTEIE4PEkDjtCdLf0k68s8GJq+zd9uQyLIkN4GoOIMtyidhmIpHg/PnztLa2lsSMVFWls7OTBQsWoOt6zfqSJx58BT870sO//fQ59vSMMamp9u3GwXJ/q6rKtz7xF2xdu7yx86uBeLzgjZgrcjEMg3e+851861vf4oknnmDZsmVzchwT84ZcAGKxGN3d3XR0dLBu3bqKVdpMulF6bdSBnZCYLhg09cRKHnWnjCmXC+ELlBQ7Qv0r2goUKbkWGpKNWS+dLts/9JJoJZt/OSfyL+dYPI2iPI3aMcYJJYPRZ1OD0WDgWzfSgBdJSLT4m1CEs7aYlIVsKo3kU5HUQvzEI7tYtmQZspiZRdfb28vk5CTuti58Lg/+bKUlKoRAlyQynYvwlhCL/bmGNYmVsm+6OLax61FvcaQZI7RzheVyuaotZWVZ5rWvfS0333wzy5cvn/Hz5Ha76erqoqurC13XrcZgJ0+eJJVK0dzc3PC+q23fgk5LegIuTJA5f5zTeTifijPauYh8sHpmmyi6Tp5shqWxAWRDr4ihpNNpS0dw1apVVoadnapzU1MTzc3NVgfO4voSl8tV0CLsbOETb/1NZFlmZCLBvzx2kB8dPk/PRB5DvuTNMHQNRVH59ic/xJY1sz8xx+Nxq+3BXOAd73gHX/nKV/j2t79NMBhkYKCQnRcOh+cktjNvyCWXy3Hw4EHWrFnjaKrNxC3mq9ET2iUK9d05wwBVLfQXsWsEZjORXKqiHwWP55Kca4MEWILp8UqtHejDpamZutdDLb1ISXjQtRcxEDMwYl+z36hBchE5rdA60Py7iqtDd4Hi8hT6hMQz5JJZVi5dAd7GlTx1XefMmTOk0wUy8WaT+LNpJt1eki4PwUwWbzaBBOguN5mmZjwXemruN5qXmFIMUh5jxsRSj0VsFkcWL5LqqboPBoO88pWv5MUvfjGLFi1qaHzVYDYGa2lpYc2aNSQSCUZGRjhxok7l8GnUS0ZuIViaS7J+9AKMXuCikDnrCzMY7STZ3lXZ5mL6uvgyaRaPDiBPX+NickkkEuzdu5f29vYKcU5T1dkkmvJeNSbRmvUlY2NjxGIxjh8/TjabJRKJFNKCb7uGd71iN4Zh8KP9p/n6L47T3TeBpMr83YO/PyfEYp6b2dZ6LvDpT38agJtuuqnk8y9+8Yvce++9s368eUMuqqpy44031lzNNeofriW0XVxEiZAc+4sIXS+ZhgKt7cTHYpeIpGjclxPQF7IyTXCVOf9GA/UmklFFoqPRFhZlKsr1pCILIVACbjxCoPhdaKkc44qHjEvgnRitqKQvRz6f59SpUyWWqmkphDIpQplC4WJaVpn0+tG8fjyDlb1UDEoTHzryMsOKhgYViQrF0HWdZDKJLMuWdthsFEfW+r3X6+X1r389L3rRi+jo6Kh5rMuBGaT3eDwNdSOcqRXVZWh0JUYhMUqy9zlOKV4uRKKMdS5G9/pA1/BnUiweHSx5PsyEhHg8zt69e+nq6mLlypUV42i0V40ZizGz4WKxGENDQ5w8edLKvtu5rIVbrrkdSZLYv38/bW1tMzr3ejBbsv1OaCREMBuYN+QCBcuk2gWQZbmiGroahoeHSYyOUG+tqG222DQkw7Dyr6TWduLl1k3xauMyyMUAR4LTGyjOlKtMYgLI6hquupopVZJaY6nI0zEXr0oLGhiQaWpmzONDm5zAOzlWsaDIZDKcPn26ronco+XwxMfpGR/BLi5bHITtyMYYcDXXdQZmEgEUgu7JZLJuYil/hs3Pav0+FArx5je/mRe+8IWXLefSCNrb2/nIRz7C0aNH+elPf0pvb2/VAsXZmPx8hs7mXILNQwn0wXP0Si56kmmk2GCF0KrL5WJqaoq9e/eyaNGiut2ETr1qiq0bczuPx8PChQtLsu9isRhHjhxB0zSam5tJp9N1PQMzxf+kLpQwz8ilVs+KegP6hmFw9uxZTp8+zYKWKAyO13f8Kmmv+Xy+Qoa/dOyy9UoYDVpX9Y6hkUp5yaHgC2Aq6OaEPkUe6FADdGjVH4PyeyI1QC92BpRbz9ORnARFoDc1kUgkyGQyCCHIZDKcPXu2rnGUjEl3SvkpFFe2Z2MMuGcmZS7Lcl0+aTvLxvys1qqxpaWF+++/n927d89a1X2jWL9+PevXryeXy/Hzn/+cI0eOMDo6SiKRqOpRuFxIQrDUyOGPj3LCxk0phGDPnj0sXbp0xkFoJ6um2JVmHksIQTQatbLv4vG4lYF28uRJ+vv7aWlpIRqNEgqFZs3SMHu5zJXlcqUxr8ilFuqJuWiaxuHDhxkbG2PXrl0cuBirm1yQq1wOWUa4ndvyumQZM8H3csilPFusGIah12022BGAISAecBOcytBhuIhKPtBgPD5MPDGKx+2nOdRVsWKttFwakNSpMalKkkQwGLRy+5361NeGk1KzQWt2lEEbYplNJ4EdsZgZYW63u6rFvWDBAt7ylrewa9euq66Im81m2bdvH+FwmLe//e3Wgu6ZZ57h6aefZnBwsKHJr5FtnepxJicnWb58OUuWLKl7X7XQSAdOn8+H3+9ncHCQpUuXYhgGsViMgwcPYhhGSQFnrZqiavifpIgMzzNyqZUtZqYxy7LM7t27cbvdBIcmHLe3OYDtxyIUnk4Hdt6XNSpZLgj0zRhVXkZZYdQr0ZyoozlVmSswLwkyHoXgVIECs0XKBU2BVpoChRTfZHqKsckBZEmmpWkBquK+LMulUc0vUaW6uurq3yaQJKOhkmPYPfcupoprJElWfDBTpa5o1apV3HvvvWzfvt2xbcSVQjqdZt++fQQCATZu3Fiy2t+9eze7d+8GoK+vj8cff5xTp05ZtSazgayDrl5nZ+esEks56rVq8vk8iqIQiUTo6Oiw9OZisRh9fX2WLI1p1dQq4CxHPB6fs0yxq4F5RS61bkQ1t5gpE9Pe3l6Sxhx2EJuzPb4NuUjRNvTRkZrdJQ1JgMeDcLnRR+pTl7Udg4NbTERa0DNZmhM6Uy6DsfwULkOi1fBVEAmUkkvWJaMLgT95yaLKOMwHPk8Qn6dgReTzWQZiZ0mmp/B5Qvi9BXeNy1AqNekdT6iObYqgVnkGqrrFyiwXlRwSGjmqrCRnwXSZaYMvgG3btvHqV7+arVu3XtaKdzaQTCbZt28fkUiE9evXV30XFy1axBvf+EagsKB78skn6e7uZnx8vMJ91sjkand/Ozs7+eM//uO69zEbsLNqenp60DQNl8tlLXBNqzscDrN8+XKrpigWi9Hb21sitW/WFFXD/6RGYTDPyKUWnNxivb29VpvjxYsXl3wXcdV/im5VvaRtJAThzi4mLl64tIGs2FYRAwXRy0QcY3ICI3QZPnOb5lxm3Y3h8oALgllBkBAAafL0izgIiOo+PNO3VJpuoZX2qSjZPJ586Yubq8PFpiguOlqWMTh6Dp8nSGziAuclhWQ4W12RsvSE6t2wJqqt7IXwwHRXTq/IkTcMMnhQbcP8BTSahlyOy9EJu+6663jFK17Btm3bGtLCmguYWVgdHR0V6b214PV6ue2227jtttswDMOSFDl//jyGYTQUqyl3Ky5cuJAvfvGLV/X6SJJET08PPT09bN26lVAoVGLVlIt+dnR0WDVFExMTxGIxzp49y5EjRwiHw5ZVY5cV9mtyuYoof3F1Xee5555jcHDQsc1xk6v+BzNnToSKigiFS4mlMABbcpFaWtHzeUinQZZxbd6OPhpDuN3gdldVOq7cWRG5CFGwnMzKf5tje1BYaITAAA2dAREnKzQiuodk2It3MoVkM4dmbUQenaAjEEKiJbyAFiAmDePkIJTzgrykI6bdbo3GJu0mNiEEres20hRpxqnQx/xdQHjJGIJcDeJQhECNTzGUK/Q6b9RyuBxiufnmm7nxxhuJx+M8/fTTluBkJBKZsxoHJ0xOTrJv376GsrCcIIRg06ZNbNq0CYCRkRGefPJJjhw5YqV1V0MxuSxdupR/+qd/mtNEgnrQ09PDmTNn2L59O6FQYUFXbNUU/1ee6hwOh4lEIqxcuZJUKmVZNWfPnsXlcpW0PZZl+dfZYlcTxS9vJpOhu7sbTdPYvXu3YzZPpAa5BBSZvG6Q1nUMSSB8fgwhYYyOVG5s5zabtiqk1nZ0nx/37hsLFJXPFepdEnGMUBjJU18FrCU9oaqIQKgkM61WnYuMRIcRsNw9/mTe0fWTaSDnfaypic6iv6vFXDTFwMjpaFOF6V1yXd7kIEkSa9euJRIJAXlI6Yi8AarA8BRPxIKQ8DFlJGvaI25JsDY5iaznOTk+DhQkN6LRKE1NTTVrDWbaklgIwcte9jJuu+021q5di67rluDkkSNHyOfztLS01C04ebkYGxuju7ubZcuWsXTp0lnffzQa5VWvehWvetWryOVy/OpXv+LZZ59laGjIljRMt9jKlSv5x3/8x6ueNWVHLMWolupcbtW4XK6SAk5TlubEiRMcP36cL3/5y+TzeTZv3jyn5/QP//APfPzjH2dgYIAtW7bwiU98gl27ds3JseYVudTsKjntFhsfH6e7u5tIJMLGjRurrm5qkUu8qM2pns8XMr1y9q4Ut6qSMZN+ZAWpqcma/EVTM54t2+2r3xvJjZekaYITGGOx0u8arayXZAzsM9fy9fa4oZKfamWLSaqMFC7cEy2T4+jRo9bEXWvCLH4GFEVh48aNpas5b1EVRFZHZAyQBUHhod8ou16AUpZ9FyLHsskp8pMT6EUTRjwet7SdTFmQSCRCKBQqsSbsrJN6rA1ZlnnNa17DLbfcYlkIps5Xa2urJTg5MjJiCU6GQiGLaBoNDtfCyMgIBw8eZPXq1XMqXmhCVVVe+MIX8sIXvhCAM2fO8OSTT3LmzBny+byVbbd48WLuu+8+Tp06RTQaJRwOX3FrDmoTSzkaLeA01QBWrVrFggULuHDhAv/0T/9Ed3c3v/jFL3jpS1/Ky172Ml784hfP2jl97Wtf413vehef+cxnuPbaa3nkkUe49dZbOX78+JwUh84rcqkF88Y9++yzrFy5kqVLl9Z84ZobcItJbo8jsQBkzFnN4wVVRZ/uRimvWoe6ZJnz5N8IKWSzBYvHLnOmUXJxezAy9orQ2QbiDeVbNpItJiSJsbExq+lRLQvB+lt1sfWaLdXJyCVhTH+dlhxSfYusvVZtkq6JOPl0dVXobDbLxYsXuXjxolXJ7TS5m5NitefQ4/Hwute9jptuuqkiJmiiWHDSDA6b/VqKdbBM99nluIsGBwc5fPgwGzZsmHMVACcsX76c5csLwo8nT57k0UcfZcGCBfzu7/4uo6OjjIyMcODAAQzDIBqNEo1GaWlpuSKJD40Six0aSXVeuHAh73//+zl+/Djbtm1jy5YtfP/73+fzn//8rJLLww8/zP333899990HwGc+8xm+973v8YUvfIH3vve9s3YcE88bcjEMg1OnTgGwYcMGurrqa9AjN7LqqUFUQhIQbsJIp2Gq0PJW3bEbOdxUfeJvhBS8XntimUZWz+OS6rttjmm9QR97WyQiusT6Sb2mfsHlkItUFvApthC8LhnXwiV0BQI0TWsqCSHQ3G76lqzlhgYmknyNyXZBLkbzeJJ8leJSO+i6zsjICCMjpW7SesUrvV4vb3rTm7jxxhvp7Oysum0x3G43CxYsYMGCBZYO1vDwMM899xy5XK6kX4spT1MPLl68yLFjx9i8ebOzwvQVRF9fH319fdxzzz1WzLSjo8NK9Z2YmGBkZISenh4rKG6SzWxbczA7xFKOelOd+/r6uO6663j5y1/Oy1/+8lk5tolsNsvevXt53/veVzKuW265hV/+8pezeiwT84pcnB6UXC7HgQMHrEK0RiuYncrrbAZQ/XufH2Ogv7AalmXcN9xU0QPGFg2Qi7DJFitGhhyuOm+bsCkKzTYHWXBhD3s82/nRmoWEcga7YnmuHcmzNZbDa0M1FeRizBJhZ+PsSaTJpg3UkSnWuBUMXXCsuZO2eApa68+ccXp2DATLs8P4YomqWmJgL43vdKx6dJqCwSBvectbeMELXkA0OjN1AChMSuaEalaMDw8Pl7T8Nd1r1Sbc3t5eTp06xTXXXDNnrW0bgTmRb9u2jaamporvhRA0NTXR1NTEypUrSafTFtEXW3Nm+4DLDf7PBbHYwc6qefTRRzl48CB33XXXnBxzZGQETdNKmqxBQfrn2LFjc3LMeUUudojH4+zbtw+/38/u3bt58sknG1ZGlgRo9czvThPhdNYWmYwVVJcWLELqWoSRzUI6Wb0BVwPkUkVvEoCMkSNInckBZeSSaW9i4ZEf48ok8Rk6Y8CkKvhxh8qPO1TUrMqW8xNcO5zlurSb5ukakfKU3YbkXxzsIj8J0rjIyoVVdw44nMmDKFhbRiNxKpzJJaTkSY3Eay4u/H5/3bp19RCLKedy3XXX2U6cM4UQwlI0KHafjYyMcO7cORRFKenXIsuyJYfU09PD9u3br5q8TDHOnj3LuXPn2LZtW93jMfW/ilWNR0ZGOH78OJlMxhKijEajDUvIXyliKYckSTz22GPcd999fPGLX+See+65Yseea8xrchkaGuLgwYMsWbLEUkGdScMwVUhoDehylUBRkEKFwL1oKXIjZHMFHaLpdGPDMCCfx0gnoXySauDYwklMcjrQv+zQ55hoWk2seR1B7xI8krPlVEwu2c4QS/Z91xK0zNi43nIuhT3LW9izHP5B11ndP8m1AykWTU0ATZeG0kjMxWbTJsnHuA5ylSn/8usbDVpdOSZEE4LqMZZQKMTk5GTNPdZrsXR1dfG7v/u7V0TOpdh9ZvZrGR4e5tixY2SzWZqbm9F1nampKXbs2HFFWuhWg2EYnDlzhr6+vssaT7k1Z7YPGBwc5Pjx4/j9fitGFQ6Hq7rPrhaxADz11FO8/vWv5xOf+AT33HPPnGXIRaNRZFlmcLBUF3FwcHDO4m7zilyKe2WcPn2as2fPsmnTppKTn0nDsIAik87WoWhb9rfk86NLcqFCvzDAS1+WBf6FEIX0YTWMEQhBOkXrQD/jbhfZelxnl3ZU+ZmqFnrHjI2CnuMF55+B88+QQ+JQ2zrOt27E7V9OUC7NkReyXMg6iyos2/Pd0nOrRdCSxIkFTdwx+RW2jTxOLyGGpXWE5F0gNfAClp1PkxRgXC/EXIwqlZgSQN4Apb6XrfilFELQ4hMMJ1y4XNXJoKmpifHpdORqsKvEt8PKlSstOZe5aMBUDeX9WuLxOEePHmVqagrDMDhy5IjlPrNrdzzXMN/rCxcusGPHjlkjXiEEgUCAQCDA0qVLyeVyxGIxRkZG6O7uBrCKF6PRaElR5tUkll/84he85jWv4eMf/zj33nvvnN4Pl8vF9u3b+clPfsLdd98NFFxyP/nJT3jggQfm5JjzilygoN9z6NAhJicnufbaaytu+Ewsl2y9bX2FAJcLsllEUwQ9mYBsouhrYa2o9SpBdyEEeH2MLFuBK5tl1YVejPgkQ81R4v4aL1R59pSVljwKQLrIslHR2TZ0hG1DRwA4HlnC6bbN6MGVNKst4FJRA0nau5+tPEwtgjYM/u++B1kx8hwAHUzQof8K9F8xJF0P6gaH31HB0oJC+nJQ+CxiKWxqf19CmoSKABlEUkNooLsFuJxjPeaLKUkSfr+fkamp6dOorrJtZrFVQ/Ez5zQBSJLExo0bef3rX8+2bduuupyLYRicO3eOfD7PDTfcUOiyOJ19ZvaWN1f2sxGvqGc8J06cYHBwkB07dsxpsaCqqrZJAefOnStJCsjlcpw/f54dO3ZccWJ59tlnefWrX81HPvIR3va2t10Ron/Xu97Fm970Jnbs2MGuXbt45JFHSCQSVvbYbGNekUs6neZXv/oVLpeL3bt3276gM+lGqUrON84nS6Q1/VK9usuDFG4q6INVc4Fkq7tarM1cLoZa25kKBBGaxuL+8yQlmZF2h8yh4hV4UwQjkSixktJVUqvXjPWwZqzQiXGkZRFHPF7EsUpigeqWiyef4lNP/wmRuL0CtKeKpAqAiGsFpXuvBJLAJVRUFCaMRNmWlde3Q/EwQZaUYYAQGL5qzrOiY073T1dVlalpYgEcrdympqaS7ZxQ72Lm2muv5VWvehVbtmypqSE119A0jUOHDpFKpdixY4eVTVbe7nh4eLgkXmHGamZbQNMwDI4fP87w8DA7duy4ouKMTkkBvb29JBIJXC4XFy5csK7BlVAE2L9/P3fffTcf+MAHeOCBB66YBfna176W4eFhHnzwQQYGBrjmmmt49NFHK4L8s4V5RS5ut9tq2ONUODUTy6WaZyWplfXfiEbRz52x3dYly5e0x6rUw5TDTJM1ZJnezksFa4ZhVD5Y5go82oYeqyS4TJ1pyNFYH+FIFKdIgnDQSGtPDfL/nn43rkw5EVyCVE06RoARmH5BNQMR11CETFyvDJaXk0Z7XmbISKMLcNchXqYoikUeqqoiSRLJZLLm71RVZXx8vCYJ1Pus3XLLLdx1111s2rTpqhT8FSOfz3PgwAE0TWPHjh22ulzF7rPieEV/fz/Hjh0jEAhYRHO5/UoMw+C5555jdHSUHTt2XHFXYTk8Hg+appHJZNi5cyf5fL4iRjVXJAtw6NAhXvayl/Hud7+bd73rXVfcNfnAAw/MmRusHPOKXCRJqilD0Si5XLx4sZDRVW8QukqBXXEq621anqemV9e1kHWoN7F9sLQ8UlsH+lBlm2OAdAOTV8DtciQXO8tl4/hR/nLPXzoSj/XbenXJZIERkMmKKvdLN0ASLMjJXFA06zbVEzg3icUsUKsmbW+iWAq/1jHqlXO59dZbWbdu3VWXK8nlclbLiW3bttVlQZXHK7LZLLFYjOHhYXp7e5EkyXKftbS0NCxEefToUSYmJtixY8dVbykA9jGW4qSA4eFhi2T9fr9FNLWSAurB0aNHufPOO3nnO9/Je9/73qv+vMw15hW5QO2MnOLVajWYPt6+vj6CXh9DyfrcWLidfeV5XUcG3piMs/v4EZ56/Zvr2qWmqAhdx6iDGISioo+POn6faeDlTlfJv9blfCGLbbqu5qahn/FH3X9f16QuGY1ZjrIQDiI0hcB9Z07mglq2zwYbUqXT9koExdtA7aJHc9ta10GSJH7rt36LW265xbaf+5WGWSTn8XjYvHnzjN07LpeLzs5OOjs70XWd8fFxhoeHOXHiBJlMhkgkYk241awQXdc5fPgw8Xi8xDV3NVEteF9MssuWLSOXy1kp3mZSQLFSQKNKzcePH+fOO+/k/vvv54Mf/OBVf16uBOYdudRCPZaL6RpIJBJcd911BPYcgzrJpVpRpGIY/NFwPyvP9xbGomlodfrXFS1PrkracAlkBRziGukaRZbFEDaxJl2S0VevxTd6gOaL/03at5tUZgW/NfzfLAwaZDVIZCFepZawUXJx7MWOoCMnc8FduT+jSvDedl9VXlYnsigXmyzOVqwGRVG45557WLRoEQMDA2iadtVUjaEQq9y7dy+hUIgNGzbM2hhM6Zvm5mbWrFljreyL033tVva6rnPo0CGSySQ7duy46skN0HhWmKqqFsmaSQHDw8OcPXuWw4cPEw6HrXOv1Zr49OnT3Hnnndxzzz089NBD/yuIBZ6n5FKtitpseuR2u9m9ezeqquJtYBXnRC4iEKQ9n2ORYdC/Yg2+2DBSPl83uZDLQSMpyQ7INjBxyGVElHd7SLR3Ej52hPDKbYyh403+HC8/R9JGEELgVsCtQMQwyOuQzMFYVpS0K5YbEL0EwKgkdhkJr3BzXM2DTaGlpjd2DKcJTAjhaK0Uf15vDUs4HOa1r30tN954I21tbVZg3FQ1Nl1I5Smvc4VEIsG+fftoaWmZc9ec3+/H7/db6b7myn7//v2W+6y5uZmLFy+Sy+XYvn3785JYylGcFLBq1SpSqZR17qdPn8blcln3vFz37dy5c9x555288pWv5OMf//hVj8ldScw7cqn1ksuy7FhJHYvF6O7upqurizVr1lg30q80Qi42AdDmFvSJCdJ+P0sH+1k6/bnRQFaQyNeWFbG2lR0ypGSZjCxxqKmZpmyGRUnnoDsUlAlMZMJN5N0ewr1nAZjKlE7e5Y5GIQSqDGEZ/B6JQ7lmpvISLbnx+mMu1r5K/3ZL4FJdTGXse81A40WUdi1y680sNMUnayEQCPDGN76RG264wdLlMl0la9euZWpqykr1PXLkCE1NTSWr29nG1NQU+/bto7Ozk1WrVl3RFXHxyr7YfXb06FF0XScSiTAwMEBra+tVDeLPRR2L1+tl0aJFLFq0CE3TLKHN5557jmw2y9DQEBcvXuS6667jrW99K7fffjt///d//7+KWGAekkstOLnFzG6U69atq5AQj7rrX0F6PZ6S+ECgo5P4QD9ARdxA0jWcLmHzWAxJ0xiJFqSsa9aVFMOGtAJ+P4lkkryQ2DQdk4m53PT7fLT6/LQMXEQpmyCl6ckm0d6FnEzgL0oSEGXxmHyViUlBZ6s6AipoHsEP8i768zoBSRCskuZtHatoEzcZdF0wNW3MSOTBphVxo+RSPrGaxba1Jtx6iaW5uZn777+f3bt3O+pgmarGK1asIJ1OMzw8zPDwMCdPnsTn81kFjLMRHJ6YmGD//v0sXryYZcuWXVVXiyRJhEIhzpw5QygUYs2aNYyNjTE0NMSJEycaqpafTVyJAsnytgnxeJxvf/vbfOUrX+HBBx+kubmZlpYWnnnmGXbu3HnVm59dSTzvyKV8NVrcjXLHjh1EIpGK3zQiV2LFNCQJ0Ry1iAUq9cnkKpPSaKQFAM/IEJ7REQwhkWlqLu006YTyB1BViScKVkqu6LuWbIaWbAbGx4h7vJxv60AyDBYN9uPNZpCEYGLJcvz9F1DK6nJErpSgc3W+8LIwaJcTdE6fx4RukNANOkQGSfZgl5VXIDkDLykyqOjFj52uVbRMloCWIguynjjbTHrYq6paMxEACvUhb3nLW9i1a1fdciUej8da3ebzeSsDqzg4bGZgNVoXMzo6Snd3NytXrnSU8L+SKM5S27p1K7IsEwqFWLJkiW21/OWce724GpX3pu7bb/zGb/Dwww/zqle9irvvvpvvf//7vPSlL+XOO+/kX/7lX67IWOYD5h251FrVFMu/ZLNZuru7yeVyVbtRBtQGVguKAi4XwhfAGCktIizXJ5O12ivedLSNdLQNb2wYNT6Ff7CfrNdLcuESx98ISbm0clfVQrxmGhkHogykU6yddnllZZmLi5cx5fIQPHygJF5iwiirTG9EUMeVn7KMjbAkCEsC8OIlSTMT5JEZoRlt+vESoiBUmcBLeXyl3MWmCkFIURgucnOZRGHWsHg8nrrroJxcrKFQiGg0ypkz9jVNJlasWMG99957WTUaiqLQ3t5Oe3s7hmFYLqRTp05x6NAhq7aitbW1Zrru8PAwhw4dYs2aNSxYsGBG45lN5HI59u3bh6qqbNmypWJlXlwtb/aVN2MVhw4dKsk+m63iyqsp6TIyMsJdd93Fli1b+PKXv4yiKLzhDW8gn8/XpQbxPwnzjlxqwZw8TH9zKBSqmdMfbGR1pCigqBg26cDlku1yA0HnhNuNFAgxHppWgNU0tKkJQCAFAgilyHWnSIUZWZZLiAUgW4eF4dI0unrP0rxwKRMOk6tUxov1Wi4AqmFPRSl8XKAwQShkiUgJYuOTeIw0g/iws2pE0fg8koRbkojlcrhs3G3m5KNpGolpS87tdqMoSkOipqb2VrmIXzk2b97Mb//2b7N169ZZS6UVQhCJRIhEIqxevdrKwBoYGOD48eNWAaOd/tfAwABHjhxh48aNc1ZV3Qiy2Sz79u2z0p9rxRTMDoyRSIRVq1aRTCYtSZoTJ05YrsPL6UB5NYlldHSUu+66i1WrVvGv//qvJXOSqVb9vwnPO3JRFIVsNsuvfvUrli1bxooVK2paOyFXA4F3WQGHQHn5UZQaxYYlKNc3k2XkpumeGpqGNjEOuo7k94OsFupPbOI0rgZUZJtU5/MWZeNpiFxEbYstj4sx3YUU8pOTesAhw8xUawspAs2ACasw0nnfsixbAXLDMEilUhWtZJ3Q0dHBihUrqm4jhGD37t288pWvZMuWLXOa9VWcgZXNZq0sJFP/yySaZDLJqVOn2LJly2X1hpktZDIZ9u3bh8/nm7Eygc/nY/HixSxevLjEdXjgwAGg8bqSq0ksExMT3H333SxatIivfvWrVyRTcL5j3pFLNaIwDIOBgQGy2SzXXHNN3VLR4SqTbAWqWDnZMjJRGgnSV58tC90sKZyjAYVYhA2m3PVXOSeqjM8wBIYhEKIwrvrFbECpg1yKUY23hAFNuUkyUohUEeHVG9AXQuD1eusKEi9evJhFixbV3O7mm2/mzjvvZNOmTVc0AOtyuWz1vw4dOkQ+n6epqYlsNks2m72qKb5zUVdT7josryuplXl3NYllamqKV7ziFbS0tPAf//Ef86JgdD5g3pGLEzRN4/Dhw4yOjiKEaKgHQVMjq4gqk4leFmNRG0gvrrdhmBACt6riFGauxy1mwumVzyoKnmQCQ/eSzRRexJRRu5+JCbXBXK7C5GNPluHcJBd97ZSHr5wUk2cCIQTLly+v+cwIIbjrrrssOZermTpqFjCa7QA2btxIKpWir6+Po0ePWkV8ra2t+Hy+K5aBlUql2Lt3L5FIhPXr18/Jce3qSoaHhxkZGeHkyZN4vV6LaJqamujr67tqxJJIJHj1q1+Nz+fjW9/61ryQuJkveF6QSzqdZv/+/Qgh2L59O7/4xS/sRR8dEKmiJFwOu9bAhS8EUlMzfW0dTPoDRMfHeNHPHuPb17+YqY5O5yZf02hkqgyOxxzJJd9Ahb7scFBXPk9oYgpJduP2TRTG14Dp0qjl4pIdkhCIc1FZhGYjxqnX2yahBoQQrFmzhpaWlqrbybLMq1/96nkj52LKFw0MDLBz506r98ny5cstZd/h4WFOnz6Nx+OxMrCamprmjBRTqRR79uyx6nqu1DXyer0V7rORkREOHjyIpmkYhsHy5cuveD1NMpnkNa95DUII/uu//uuKqj0/HzDvyKX8gR0fH2f//v1Eo1E2bNhg+dU1Tas7jTHSQMzFNlVYVRH+ENrwAF3Dgyyarhe5QZJYORZDSqf4+cp1PLt+M2MLFoFSSWaiAXoRwrkbpaIoPLdkBV0jQ4QT1SXjpSrHrIi5VKlXSQFH4oIO1WChu76YS8mxbMbR6jUYTgVKAvrFmC27xTAMxzbD5rOmqipveMMbeNGLXlRTOPVKwFQSjsVi7Ny5s2LSKm/3a8YqDh06hK7r1qo+Go3OWqpvIpFg7969tLe3s3r16qtGvsXus3PnznHmzBk6OjoYHBzkzJkzNDU1WUQ7lz1j0uk0r3/960mn0/zwhz+c846jz0fMO3IpxsWLFzly5AirVq1iyZIlJQ90Pp9vgFxUVCHI1eGaUoUosRqikmDE5cYYjwGQUFVC02myLbFhWmLDALTFRrjlpz9GEhI/234dP9+4leEly2Ha/1qPtIgFR4ILEtc01vWcRgcutHcx7vOxcGKM8Gis4icmRemyTKI5SnC4KDuqjB+yVWqBvMCOQGH85zNwLmswpo7R5G6qa5Ip3kRg0CwnGE4VXkaPUzyswcmr2jh+53d+h+HhYQ4ePEh/f3+hPfX09h6Ph3vvvZcbb7yRrq6uho45FygWfNy5c2dNN4ssy7S1tdHW1lYSqzhz5gyHDx+2Un0vp1I+Ho+zd+9eurq65oVVB4UYy9mzZ0safZmyLGaat9frnROLLpPJ8IY3vIHx8XH++7//+4q74p4vmJfkUqxofM0115Sk8EmShBCiIdn9iEuti1gAFo3FODr972WpJMNeHyQudU+Mq26LXIrRnM3QDGDo3P3sz3nhzx9HKAr7Nm/nqWt2Mtzajr1oTSVEedzH6wNZxhgfRZtOZZaABYMXMSsd+ptbGA1HCMenWDhNIrJhkPN4SUbbCJ/vKT1GObnU+d4tdENU1XhWipDMJZFkncVSihFa0B2iPOZUJKMTktLEtEurPEPL2j6F0WzKSjf2eDyXFViXZRlZltm4cSMvetGLyOVydHd3o+s6d955Z4mcy9WEpmkcPHiQTCYzI8HH8lhFMpm0VALMSnmTaOrt0zI1NcXevXtZtGgRy5cvnzfEYhdjKZZlyefzjI6Ollh0LS0tVvHmTBMicrkc9957LxcvXuQnP/mJbdH2r1HAvCMXsyjLUjS2MTcb7UZZUwKESwv5/DQJrUtMccLrrwhDx90uqC7phVcIml0ufELQeng/u7qf5ZHf+1POtNWXhFAcvwln0ky4PZAqFBA65X91jsbonLZeRoNhRlqijCsquWCogliACr9TI4kC6rQgmE8tuGuGCICWRc2MggF5TzOGfOnllSQJVeTxiBxjeqmLR3VXplZHp8ZpnxrDu2oZkiRZ6caapuF2uxtO81y7dq3VU35oaIjh4WGWLFnCkiVLWLhw4Zy6T+pFPp+nu7sbwzDYvn37rKSy+nw+6zxNocnh4WH27duHJEkW0Th1YJycnGTfvn0sWbKEZcuWXfZ4ZgP1ZoUpilJi0U1OTpbovjWiamwin8/zlre8hdOnT/P444/XjOP9b8e8I5d0Oo0kSZaisR0abRhmGAYFARJ76IbBsot9uLMZssDG+BSHA/b1JPk6XXHydCMxlxC0qyr+auMtbzomFyyAyOQ4E4EgZC456uo56+apCZqnJsh1LsQ3bF8oWB7ryDnmllVCBnRDRypOLpBd5HzT5KlrKMkhhJFHczXhEhoqGlN6pVsmV6z9Yhh0TI7Skihkrum6blmqxS6dVCpFNptFVVUrHlFrcjClOQKBAPl8nnQ6zYIFC5icnOQXv/jFjFb1swVzQaUoiiWfMttwEpo02xybq/poNIrb7bZincuWLZsXcSgoKAyfPXu24awwIQThcJhwOFzS6thMiHC73SWqxnbuM03TePvb387Ro0d57LHH5oWlO98x78glFAqxdevWqtsUS8DUgqZpHDlypCq5IARnFxQ0mqKxYXodiAUglq+P1OSyyUnNO6djCV0jfPokmttNfMFikGRaxkeJhSMVsYdGJr2gViVVuuxiZBp0R1dNFZZk8r626Q0N8oYgadjn/gvDAFG4Xp2jQ4TTl8xCpziV1+u1yCaTyZBOp+tabJidEcfHx9m1a5dFTKb+1dDQEPv27SsRI2xubp7TlOTZKEZsFMV9WopVAi5cuMBzzz2Hz+cjmUyydOlSlixxlim6kpgpsdihPCHCdJ8dPnwYTdMsom1ubrbaIr/zne9kz549PP744w2VQfxvxrwjl3pQr1ssk8mwf/9+DMNAkQTZOtJbczXcEckaKccmyqcId9Z5ojdkhfHV6wCQEwnkVJIBs3q/DFoDeVRGlba/QqfEYnLSLHOCW4J8PUMRAkmSqdSUnv6aQhLFumwCLV3qb6wnCcLtduN2uwkEAkxOmrU6Bu9c3ouiJzk66Wfk1F4iy67h4MGDpNNpdu7cWVLoVq5/ZRYvPvfcc+RyuTnr0WLWjDQ1NbF+/fqrUldT3oFxcHCQQ4cO4ff76enpsWTzq63q5xqzSSzlKFc1Ntsm9Pb28ra3vY2hoSFkWWZkZISf//zn80LP7fmCeUcu9azM63GLmYHISCTChg0bUH7wc7J1TMy5Gg29ckZ9abiSEOiGYcneu3P1FZJofj9Saxs4uLPqIUhrX05N1YRAR2LVp2P0b/UQX+kmFSjEneqdOmQjT75czthpHML5MXMLWD0Zm9ZZK0UjGXZmAzkZnfetOUuzWiDWRYE4PX93G4c0N6nIGtbd9c6qwVxJkmhpabH0x8p7tMxG9hVcSu1tbW29ojUj1TAyMsKRI0dYv349XV1dFav64qD4lWqGNpfEUo7ytgl///d/z1vf+lb2798PwE033cSdd97Jfffdx7Zt2+Z0LP8TMO/IpR7UIpehoSEOHDjA8uXLWbZsGbquo9T58marvDAths7ZdJruVJLFqouILFedFIona1ed5AIgqkj5l4tnVoNss61MYdJ2aRpKDII/TsKPkzR3GUi/WfeuG6rbMRykbNxuN77JMZLxuO33DaVvA25J4wNrT+OTSl2mQgjCSpbw1CHGvvJWLvx/v4cWXUfH7tey4pZ7UVwOLruyycasFC/Ovmpra7MVmawGc+GzYMGCeZPaa6Zqb9iwwXL7lK/qzaD4uXPnSpqhmSoBs40rSSzl0HWdz3/+8/T29nLw4EEWLlzI448/zne+8x1Onz79a3KpA/OSXOrpRmkXczEMg3PnznHq1Ck2bdpEe3s7uq6j6zpqFQmSYuQVFckw0Mte+M6JcfpDIeLpNHtShf/8QrDS7WaJSyUqK5aVYkLHwEzEddukLzvBcFIJACSXi+OLl7F44CLerLPbCwoy/MVQuJRtVm6hiCnn650H+vGwkLTlPGuoG6XN5On1esnlclVrlRohl4CU4U/XnayrwNMnazB2mMT3D/Psdz5AOriElp2vYvVv/i6esLMoZHGleHH2VU9PD6qqWhNtNfeRGShfunTpvMnAGhwc5PDhw1XVlsuD4sVEOxfN0K4msRiGwYc//GG++tWv8sQTT7Bq1SoAXvrSl/LSl770io7l+Yx5SS61YBdz0XWdI0eOMDIywq5duwiFQmiaZmUctXlcxKrEPYqhKgqZ6f0LQ6djcoL+cCGfXSuKuSQMgwPpNAfSadxC0NHcwgZVoT2TQRaiIIQ8/Y55ahBBCRyyhTomIk7XAAAASaBJREFUxkil06zpPUteCE53LcJwu+kY7Cdgo+TsLhLaVHGKehSQq5IfoQCLSBcm++lJw0WOZB2nApVq0n6/n2QyiWEYVUX+6iWXkD7GK9ueQdTpsiyGW4bxobPkn3yYg48/TEKN4l/3Yla99AEii9c5/q48+8p0Hx05csQKCre1tZUo+sZiMQ4cOMCqVavqEtC8Eujv7+e5555j8+bNDWVA2UmyDA8Ps3//fiRJKmkI1mj229Umlo997GN84Qtf4PHHH2ft2rVX9Pj/k/C8JJdyt1g2m2X//v1omsbu3btxuVwlxCKEINVIXcy0y0fN52lKJS1iAdBl+xVpXghu+fP3s/s1r2Gsr49Dn/4MyWefQe4fQBUCT5XgesXxyydcw6Bzcpz+cITgdFqyYhisuNhXGBNw1h8krqp0JhNEp4nM7MDpolL1uHzaztVxeYpXo7pu0CaGUWSJC2kvwuXsFim26ILBIFNTl2Rrqq1wBwcHLRkPp+3a9AFuTHwPYwbEAjAY12kPFO6pIkFYG4HD/87pQ18nLgKoS65l6W/cz4JrbnbchzmZmppbpvvIVPSNRCJ4vV76+/tZt27dvFACgIICxrFjx9iyZctl1WwUS7KYDcFM12Emk7GaoUWj0ZqKA1ebWP7u7/6OT33qU/zkJz9h48aNV/T4/9Nw9WRfq6CRbpRTU1P88pe/xO12s2vXLotYDMOwiAXAXSXLq5xhZSHhy2TwZrMMB0sfcM1mPx63m/d+65vsfs1rAIgsWsSNf/URXvqjH3HNU0+iv/71aI3omxUlFci6TvvUJcvJTrhSApYlptg0Pko0m2FS04jl86R0HZeoT05fkhuTCU/lYUi0clFvQahe9EQMfeICRrpSXdm8B0GRLCEWwNZ9ZH5mxs727NnDmTNnmJiYqOh3f6fxI0Kq3mCuWyF2NZS4RCwVYxCCEAm8PY8x+PnX89PfW8BTH7qVUz/5l6rxPtN9tHLlSnbv3s3111+Py+XiwoUL6LpOb28vp0+fZmpqquGY0mzi/PnzHDt2jGuuuWZWiwHNhmCrV6/mhhtu4LrrriMSidDf38/PfvYznn76ac6cOWN7/lebWD75yU/y8MMP8+ijj3LNNdfM+jGeeuop7rrrLrq6uhBC8J//+Z8l3997772WNJH532233VZzv//wD//A0qVL8Xg8XHvttTzzzDOzPvaZ4HltuZiNhZYsWcKKFStKGkaVT1peB4sDClX5kckx1KFB4tE2XLkcYwImbYKUWtl+Is3NvP+HjxJxWI0Gm5u5/v3vY+TCEF/Zd6yu8zNVAtz5HP5MmsFQ06XjVxGYNBGadkOkDYOsw/xV/HEoHOb//PBRjM/sqGt8QKkLSggk/6UJykiNY2QS4PIi+ZpBQJA4U0al2oLZuthEsVVa3M66v7+f/v7+gouzrY3169eTTCbxy3kUWRByG2gGpHIwmQGtyryt6QZjaYM2f/1rK7+cg+H9TH5rP1/63Ht4y9f66/qd6S7btm0bwWDQNk7T1tY2p2rG5TAJbtu2bY6inrMBIYRtMzQzKaA4TjUxMUFPT89VI5bPfe5zfPSjH+UHP/gBO3funJPjJBIJtmzZwpvf/GZe+cpX2m5z22238cUvftH6u1ZvmK997Wu8613v4jOf+QzXXnstjzzyCLfeeivHjx+nra1tVsffKJ635DI1NUV3dzcbN2606hOK3WDlqEYuCMFYuBnChdqSfLiJ1GRlaiyUWi5L16zhPT/4PmodzYECNfzOnRd6SMoKEx0LMGSZQDoNGIz6Sws6tQYk9+u5uR0LF/LnP/4RnmCQkbr3DKJKQF94mxDeJgCMTAIjn2MKe9XYYkuknhRzXddpamriwQcfJJPJMPHQv4KuIYRAERB0Q8BloCM4GdOQhcCtXHoecprBVNYg6pvZRP7MhTynx+qL3Zkr8eJJ3GwGVpzma2pfRaNRK04zW2rG1cYUDofn5BhOKG6GpmmaVU908OBB8vk8zc3NxONxPB7PFWuGZhgGX/rSl/jgBz/Id7/7XXbv3j1nx7r99tu5/fbbq27jdrsbKtJ8+OGHuf/++7nvvvsA+MxnPsP3vvc9vvCFL/De9773ssZ7uZiX5FI1vVfXGRwcJJFIcO211xIOhyviK3bwKfUHFSf9AXAkl8KktOvWW7n/nz5fd1ZMoEY3zP4FhUpod3wK7/AAo7JExqbmRmtgdVtry9Vbr+FPvv1tK+BqIOpOMa43eC7cfmSXG6gec6pX0mfdunV88pOfBAovoiTJoJdO9kIIZGBttHBeI0md0ZRBVit04Gz2zoxYftabp2+y9vUxDIPTp09z/vx5x5W4XZrv0NAQp0+f5tChQ1acorW1ddYaUJ05c4be3t6rYh2UQ5ZlotEo8XgcwzDYuHEjyWSS3t7eimZoc6X9ZhgG//qv/8p73/te/uu//osbb7xxTo7TCJ544gna2tqIRCK85CUv4aGHHnJ0W2azWfbu3cv73vc+6zNJkrjlllv45S9/eaWG7Ih5SS5OyGazdHd3k0qlCAQCFRlh1SZ6fyMZK1VWjbrbw8ve+QAva3BVEKyT3DKBIINrN5E5/pz9BkKQNcBVB6eVp0YX4/q77uLNn/l0yWdTTetwx47irmOojdS5+D3VLTsnYilPSb/uuuv46Ec/at1nXdcLhao1jh/1SUR9MJJ14zLSDCcMcrqBRxFVr1ExHjubZzBRH7EcP36coaEhduzYUVefj+I0X1PNeGhoiIGBAY4fP04wGLTcZ/WKLJaP6fTp01y4cIHt27cTDDrLG11JmFZUsWz+ihUrSKfTVpqzKZ1vEk1TU31tHmrBMAy+/vWv8yd/8id84xvf4MUvfvFl7/Nycdttt/HKV76SZcuWcfr0ad7//vdz++2388tf/tI2425kZARN0yrSx9vb2zl2rD4X/FzieUMu8Xicffv2EQwGWbNmDadPny6Jr9R64PwNWC7CgVwkWeaPPvRBXnb9tfUPfBqhGpZLMbQa55KWBK46g8HFis9QSAu+6x3v4GXvf1/Ftsv/7HG0XIbBJ7/A1J6v4Rs/jle2t1CqucXKYVTROKu3fcJ1113HLbfcwjPPPGO5jk6fPk0jYhy5TIpoUCLkLlzfVA4G4joZzcCjyo7N1X54KseoU2vQIui6znPPPcfY2Bg7d+6ccQW/z+dj6dKlJXGKoaEhzp49a4ks1tujxDAMTp48SX9/P9u3b583Ta2qBe89Ho+tdP6BAwcAStKcZ+o+/Na3vsUDDzzA17/+dW699dbLPp/ZwOte9zrr35s2bWLz5s2sWLGCJ554gptvds5WnK+Yl+RSThQjIyN0d3ezePFiVq5cycTEBIlEgkOHDlkV0rUeskAD5IJcWaXv8Xj49p+/h23Ll9a/nyKEGngJRJUJQ0gSp5pb2DQyjFqPVA6XyEUSgjf99ce44Z57nLdX3XTd8ntwy+9hGAYXfvYVBh77LC1Txwi6Lx2vkZoSpxbQsizj9XqJO1Tom/id3/kd3vKWt1gT7cDAAKdOnUKSJBZcxirWq8KySOFa5w2J/sk8iVwhJdklCzRd5wenNKbqSLfTdZ1Dhw6RSCTYsWPHrLmyyuMUo6OjDA0NcejQIQzDqDrRmlbU8PCwbUfLq4VGssLKpfPNNOfLcR9+97vf5W1vextf/vKXueOOO2bjlOYEy5cvJxqNcurUKVtyiUajyLLM4GCpVNTg4OC8ENecl+RiwjAMent7OXHiBBs2bKCzsxNN0/D7/Vx77bXWau7o0aM0NzfT3t5Oa2urrebR5qAfNZsh5yD1UYIyIoo2N/PEQw/S3jTzAGhAbYDcHCZjl9vN5/7wAfYkM7z/9FnW/uLn7D60jxXjo7gdJllJCDAMVEXhnf/8JdbfdFPdw0gkEpwxFhH9rc9g/PBPGO3bR07TcSsCYUPATki5osClTpnm4kHTNFIp5xZqsizzwAMPcPfddwOFibalpYWenh5aWloK9SJPzY50iiJ0FoULRKMbhfqXn/bqdRGLpmkcOHCAXC43oyZf9aI8TmNOtKdOneLw4cMlE63L5bJaJe/YseOK95d3wuWkG5c3Q0skEoyMjDA4OMjx48cJBALW+TvJ8Tz66KO8+c1v5ktf+pL1XM1XnD9/nlgsRmdnp+33LpeL7du385Of/MQ6F13X+clPfsIDDzxwBUdqj3lLLqaLYXBwkB07dtDU1FQSXwkGgwSDQVasWEEikWBoaMgKBjY3N1urHfNFf9niDu5c2Mbnf/4rvtYzwDm3j7zHfiUniuRX1q9Yzn8/+F7clynSJ4RAGAZGPSttG8slFAzykw8/yNK2KHcAH7x+O1OvfRn/eOA5Hjzdx6Knf8YN3XtYMzyIr+gYCiD7fLz3v75N1zrnivNyjI2NWdbi8uXLEet/gJbLMfTLf2Xy6a+gjdUfZM0USd/UkvYxoaoqf/7nf86LXvQi67NkMsm+fftKVIRHZNm5g1oZ6qUhSUBnUKIp5OP8ZGXdTjHMrpYA27dvn7Msr3LYTbTDw8NWYaSiKBiGwZYtW2bNirpczHYdi5nmXN4MraenB0VRiEajtLS04Pf7CQQCPPbYY7zxjW/ks5/9LK9+9atn4YwaQzwe59SpU9bfZ8+epbu722p/8KEPfYhXvepVdHR0cPr0ad797nezcuXKErfdzTffzCte8QqLPN71rnfxpje9iR07drBr1y4eeeQREomElT12NTEvySWXy7F3714ymQy7d+/G7XZXDdz7/X6WLVvGsmXLSKVSDA4OWi9ZU1MTbW1tRKNRTp48yQbJ4L9ecSt+v5/HzvXx+edOsyeeJlNMNNMTxJ037OaL73jrrJ3XB5a28bUz5zmhgVHNgiojl4UdHTzx0AcIl7k1gi4X79q5hXft3ELm1bfx/x05Sc/kBNecOMrAf/4n7p4ews3N3P3Zz+CZrp6up5ZicHCQI0eOsHr1ahYuXGh9LqsqnTfeR+eN9yF/9KNQw51lwrxfkiRVFEHaQVVV/vZv/5bNmzdbn01NTbFv3z46OjpYvXq1tU/hacLI1DeORksWM8mpqt9ns1n27duHy+Viy5Ytc9Lkq16YE+3ixYs5ePAgExMTBINB9u/fj8fjmfWAeKOY6wLJcjkeM835O9/5Du9+97tZs2YNx44d42/+5m/47d/+7atyDfbs2VOSOPCud70LgDe96U18+tOf5uDBg/zzP/8z4+PjdHV18Zu/+Zt8+MMfLql1OX36NCMjl4oGXvva1zI8PMyDDz7IwMAA11xzDY8++qijRtyVhDCuZpmwA/r7+zl37hybNm0qySQyq1brRTqdtrJuJiYmkGWZJUuW0NXVVeEm+NWFAT53+AS/nEwS7+vlgeVdvOfuO2f1vExomsa/HzvNPx4+zhmhonsrLajkV78EhsH2dWv53vv/dEYTl6ZpjMZiDE+v6AzDsLKOnFrb9vb2WsKf1bSmPvaxj1VU25tQtSSTWYHL5UKWZQYGBjh79qwtsZRninm9Xj71qU+ViDqaVpQZ5C5+Bkb+ciVkqpOAiYG4TodDRb4dvvlcjpOjla+H8EbY8oYP09nZSTQaZePGjVelz0k5zLhPMplk+/btllqFqfs1PDwMYBHNTHS/ZoKrrW78xS9+kT/5kz9h4cKF9Pb2cu2113LXXXfxp3/6p1fM0vzfiHl5Zdvb22lqasIwjBkTCxSC8E1NTZw7d4729nYikYil+RQIBGhra6O9vR2/3891Czq4bkEhCBbPZAm4566IS9d1VqYm+ciSVq655hp+cmGQLx07TXcyR9YzTXqKwit3X8dn3/7mGR9HlmVa29poLQqGDg4OcuzYMasJlmnVybLMqVOnrHTVWgV21e5FTvbh9RZiZmZL4nosllAoxD/90z+VkJpZZFhuRRUNxHF/ExmDsHt2V6i6K0hm8U388pe/RNd13G43GzZs4I477nD0jV8JaJrGwYMHyWQyFrFA4RkoDoib7Y1N3S+zP4sZp5ltXE1igYK18IEPfICHH36Yd7zjHQwMDPC9732PZ5555qpamv8bMC8tl3Q6TT6fxzAMhBAzXhUODQ1x+PBhqw+4OSHmcjmGh4cZGhoiFovh9XotogkEAnNqMqdSKfbv34/X62Xz5s0VD/jP+i7yuSOn2KSn+bOXNtBgpQEYhkE8HmdwcJDh4WESiYS1yt26dWtdkiAf//jHGR8fr+t4U1NTHDx40PY703Jpa2vjC1/4QkmqrOna3LBhg6OZH/vwaoy0fcErwHjaYCJt4HdBXueyLBfdEyGz9CWgVMYwTC27FStWcNttt11RNV0zoSCfz7N169a6mngZhmHFaYaHh5mcnJz1wsWrTSz79u3jrrvu4gMf+AB//Md/PC/65vxvwrwkl9e//vUcPXqUl7/85dx9992sWbOmoQfDMAx6eno4c+ZM1YkJCvpVZh3ByMgILpeL9vZ22traCIVCs/pATkxM0N3dTXt7e8PnNFfI5/Ps37+fZDKJ2+0mHo9bcaq2tjbHYPDf/u3fMjo6WtcxhoaGOHnypO13siyzePFiPvvZz5asnM2JacuWLTQ327d8Bog9tAYjNV7XOC5MgabruGRo9QnkGjptxeSieaNkl94EdQp86rrOwoULefGLX8x11103Z/da0zSrlffWrVtn7ObJZDIW0YyOjpYULs6kP8vVJpaDBw9yxx138Gd/9me85z3vmRfv2v82zEtyGRsb4z//8z/5xje+wY9//GNWrFjBy172Ml7xilfU7DWu6zrHjh1jeHiYa665piH9JNM/PTQ0xPDwsOVSMN10l/OAmu6dFStWsHjx4nnxsGcyGfbv34+qqmzZsgVFUazq6KGhIcbGxggGgxbRFK9mH374YWKxWJW9X4LphrHD7t27+au/+ivrehiGYbnntm3bVnNiij20FiM1Vtc4RlPQPO11TGswkiioKbf5BapceT9MctH8HWQX32hb/1QLuVyOQCDA3/7t3zb821owFwZCCLZu3Tprbp7i/iwjIyMIISyicYrVFeNqE8vRo0e5/fbbeeCBB3jwwQfnxbv2vxHzklyKMTExwXe+8x2++c1v8uijj7JgwQLuvvtu7r77brZs2VJCNLlcjoMHD5LNZtm6detlpWCaDaCGhoYYGhqyXjAzdtOIq66vr6+QqVbDirqSSCQS7N+/vySttxxm0eLg4KC1mjWJ5gtf+IIVIK6FkZERjh8/XvH5TTfdxF/8xV9Yf5vp56Ojo2zbtq0u10zsI2sxkvWSi26rK5bXYcLwk0pM0eIVeNXCZPTN53Icyy0gu+gFjrVH1ZDNZjl16hRLly7lC1/4QsO/r4ZcLse+ffushcFcxQ90XbfiNMPDw2QyGatwMxqNVsRprjaxHD9+nNtvv523vOUtPPTQQ3NCLE899RQf//jH2bt3L/39/XzrW9+y6kxyuRx//ud/zve//33OnDlDOBzmlltu4WMf+1jVPj5/8Rd/wYc+9KGSz8wMt+cr5mVAvxjhcJg3vOENvOENb2Bqaorvf//7fPOb3+S2224jGo3yspe9jLvvvhu/38/b3vY2PvShD3HTTTdddhZIeQOo8fFxK4ZTnHXV0tLiSDSm9MbFixfnXN68EUxMTLB///6aPdyLq8PN1ezQ0BB79uypWvxYDrv9v/KVr+QP/uAPrL81TbMynXbu3NnAwuDyJw9FghYSEJKsAsqMBjHXYrKd10MDStQmMpkMp06dsuKGswkzBdrtdtvG7WYTkiRZdRirV68mHo8zPDxMX1+fJTBpqmSYRc1Xi1hOnTrFnXfeyRve8AY+/OEPz5nFUk0636zF+sAHPsCWLVsYGxvjD//wD3nZy17Gnj17qu53w4YN/PjHP7b+fr5nsj2vRh8MBnnta1/La1/7WpLJJD/84Q/5xje+wV133UUymWT16tWoqjrrD1XxC7ZmzZqKrCuTaMysKyhMlocPH2Zqaopdu3bNG+kN0z23cuVKFi9eXPfvyrsNer1eHnvsMSYmJuoKIJsQQnD//ffz27/929Zn+Xye7u5udF1n586dDe2vWrZYxaZ1bCMJLnWm9G4jmId8apwsCppSny5XKpXizJkzVrHobD6PphKuz+dj06ZNVzQFWghhFS8vX768RGDSdHt2dXVhGMackGo1nDt3jjvvvJNXvepV/M3f/M2cXpdq0vnhcJgf/ehHJZ998pOfZNeuXfT29lZ95xRFmReyLbOF5xW5FMPn8/GKV7yCeDzOt771Ld7+9reTSqV4wxvegMvl4q677uLuu+/mhhtuaGyyqoHiyujVq1czNTXF4OCgJcERjUZpbm7m4sWLSJJkdcecD7hw4QLHjh1j48aNl+WekySJ3bt3s3v3bgzD4Nlnn+XJJ59keHgYRVEqJpXiIsp3v/vdJd31zLiPy+WaUdwg7WrBnagv9tMojHwaydeJyxfBBRiZKfKJMXK6TFaxVydOJBKcPXu25LPZmmTT6bQl3rphw4arXltjCkxqmsbExARLly61BGYlSbIWXZFIZE6tq76+Pu644w5e+tKX8sgjj1z161KOiYkJa96ohpMnT9LV1YXH42H37t189KMfbWgBON8w72Mu1XDgwAFuuukmvv71r/Mbv/EbQMHn+fjjj/Mf//EffPvb30bXde644w5e8YpX8KIXvWjOJnoztfP8+fOcP38ewzBoaWmx9M6uJsEYhmH18qiVfXW5xzl69Cg/+tGP6O/vR5ZlhBCMjY1x/PhxHnrooZJmTKlUir179xIOh2c8WRqGQWz/dxn96T+h9O8jJDv3jRlL6UQa6OXyheTNTPiW2X6Xz+eZmpoin8+jKAqSJDE1NUVPT0/FtgsXLuRv/uZvHHXv6kE6nWbPnj1EIhHWr18/b4LU586d49y5cyXJF8UV8sPDw+RyOVpaWizrfjYXe/39/dx6663ceOON/OM//uMVr10RQpTEXMqRTqe54YYbWLt2LV/+8pcd9/ODH/yAeDzOmjVr6O/v50Mf+hAXLlzg8OHD86ZFQqN4XpMLFILF0WjU9rt8Ps9Pf/pT/v3f/51vf/vbJJNJ7rjjDl7+8pdz8803z7rm0vj4ON3d3XR1dbFgwQIrGWBqaopIJGIFw2u1Lp1NmNlzIyMjbNu27YpKrp87d44f/OAHnD59ms2bN7NhwwbLP28GpGc7LXv8+C8YfuLTiJ5fEGKqpF/LbJJLMXRdZ2JigqNHj9p+v3TpUt7+9rcTj8eJRCLWir7e5y+VSrFnzx5aWlpYt27dvCaWcpg1VWYGZnGqe2tr62UJag4ODnL77bezc+dOvvSlL12Voshq5JLL5XjVq17F+fPneeKJJxqKQ42Pj7NkyRIefvhh3vKWt8ziiK8cnvfkUi+0/7+9M4+K6kq3+C4HBkVBZBBQEAiCI5QoqFHBOCAKVmE7YXfEhOQZp9a27STPZyKJSaPGuEzUdlrdkpdoFKUQo5EWGSQKamRQEEFEmcSqYpB5KKg67w/fvV3FJAU1Cee3FmtJ1a3LqRLuvuec79tbKkVSUhIiIiIQGRmJyspKLFy4EHw+H/Pnz+/xngjjx+Xk5IRRo0YpPNfQ0MAKTVVVFYyNjdkZjTrdauU3ySdPnqxVA8OGhgaFEmcAMDU1hYuLi9qSBuueP4Iw5ntIn8TDWPoS1U3qERfglcB0lP7n4uKCY8eOsZ9BaWkpXr58ybpEdBYCVldXh9TUVJibm+tMbxTQNWFpj9afweDBg1mx7cjJuD3KysqwaNEijB8/HqdPn9ba5ndH4tLc3IwVK1bg6dOniIuL6zBNsjOmTp2KefPmITQ0VEWj1Sx9RlzkkclkuHv3Lis0QqEQCxYsAI/Hw8KFC5Wahso3bL7Ojwt4tcfACI18H4mlpaVKN/2Z1E4OhwM3NzeVLkX0BCYz3cLCgq1AGzx4MHuRVZdDQmPFc5RcP4aWR5cxpLEEA7ugMcqIi1Qqxe3bt9t9buzYsTh6VDH1k3GJYHpJ9PX12c+AaVqsra1FSkoKrKys4OTk9MYLS2vknYzLy8vZSAFmn6ajZdKKigosXrwYDg4OCA8P1+rvdnviwghLbm4u4uPjX3tNaI/a2lrY2toiJCREoaryTaJPios8MpkM6enpuHDhAgQCAQoKCjBv3jzweDwsWrSo0+5kmUzGRtpyuVyl/9AkEomCDQ1zkWX8zrp7MWloaEBqaiqMjIwwYcIEnfFQevHiBbKyshQKCtpzSGD6ibrTGd4Vmuur8CL2GBruR8KoNh/6/dv/E1CVuCxfvhwbN27s9LXy5pLM5m9FRQVsbGx6pbC0htmnYZbPpFIp63smv09TWVkJf39/WFlZQSAQaGUvU946n8vl4sCBA5gzZw5MTU1hZWWFZcuWITU1FZcvX1YonDE1NWXH29o6f/v27fD394ednR1KSkqwa9cupKenIysrq1vipAv0eXGRhxCCzMxMVmgeP36Md955BzweD4sXL4apqSn7R97U1ISsrCw0NDSAy+X2eHmLuYtjLrIGBgasDY0yywWMNb0uWcwA/3FbdnV17XCJQD5pkbnIdrdxtStIpVKkpdxF88PLGCZKwqDKbAySi3VWhbgsXLgQn376aZfHJJPJUFJSgpycHPTr108hbVLVm+HKoi5haQ0hBDU1NezvgVAoxMGDB+Ht7Y2YmBhYWloiKipKa8u8CQkJCtb5DEFBQQgJCVFw9JYnPj4e3v8f1jd69GisXbuWbSJetWoVEhMTUV5eDnNzc8ycORNff/01HB0d1fU21A4Vlw5gImIjIiIgEAiQkZGBWbNmgc/ng8vlIjg4GOvWrUNwcLDK/+ClUinbGc/czbdeMmmP8vJyPHjwoF1rem1BCEFeXh6Ki4vB5XK7bMfDdIYzS4hSqVShcbWns7Hm5makpaWhX79+cHNzY8O1Sn8XoPJWGAaK0nFO6oMava6VbLcnLnw+H1u3blVqXFVVVUhNTYW9vT3s7OzYzXCxWIy6urpuxfqqAk0JS3uIRCIcOXIEx48fR11dHSZOnIiAgADweDy4ubnpxO85pS1UXLoAU8p74cIFnD59ms3u/vjjj/GHP/wBVlZWajUmrKioYB2M5S3Uhw0bxv5cZslp7NixndpMaBJCCBu121U7l47OU11dzV5kGxsb2bv57pT3drXDPTvrIeISbqCoqOi1kQ8tLS24c+cO+31gYCDWrVun1LiY3BrGf6419fX17DJqVVUVhg4dygquuooiAO0KC/DqfS9btgyEEPz4449ITExEVFQUrl27hsePH+uMpRJFESouShAXF4elS5di7dq1sLW1RWRkJJKTk+Hh4QEejwcej4dRo0apTWiYdWlGaAghbE4Hk0LXnaoUdcAEV9XV1am0Uo3pJ2KEhinv7WqZd2NjI1JSUjBkyBClQr4KCgoQGxuLp0+fQiaTtfk/lheXtWvXYu3atUq9r4qKCqSnp3ecW9MK+f06eRdjVbt5a1tYGhsbsXLlStTV1SE6OlphDM3NzTpTqEJpCxWXLtLY2Ihx48bh888/Zy8chBCUlJQgMjISERERuHnzJtzc3FihcXBwUJvQEELY5sTa2lqFGY2mEgY7oqWlBffv34dUKoWbm5taN11bl3kPHTqU/RxaV9/V19cjJSWlx/0iZWVliImJQXZ2NiQSCfr168eKy/r167Fy5Uqlz/fgwQO4uLh0a9Yp72LMzG67UnX1OrQtLE1NTfjjH/+IsrIyXLt2TWe8+Shdg4qLEtTX13dYLkwIgVgsZqMCEhISMG7cODaTRj73XRXIZDJkZmaiuroaXC4XLS0tEIlEEIvFkEgkCimTmuwBkM+VnzRpkkZ/NpNJwtzNy5c4A6/Co1Rd1ltbW4vY2Fjcv38frq6u4PF4Sr2eKc0eN26cSpIs5bvjmb0q5ndh+PDhXf7/0LawSCQSrFmzBkVFRYiNjVWbqwRFfVBxUQOEEFRUVCAqKgoRERGIjY3FW2+9xWbSjB07tkeVT83NzezMgMvlKswM5FMmxWIxGhoaWOuNntiPdAWmBFrZJSd10Lr6TiaTwcTEBE5OTmorcVYWkUiEzMzMHnu9dQSzV8UITUNDg0JBQEdLiNoWlpaWFrz//vvIyclBXFycWkpxO7PNB159drt27cLJkydRWVmJt99+G0ePHoWTk1On5z1y5Ai++eYbCIVCuLq64tChQ/Dw8FD5+N8EqLhogMrKSjaT5t///jdGjhwJHo+HgIAATJo0SamLcGNjI9LS0mBgYNAlu3X5aqPa2lqYmpqyd/OqXK5iDAvNzc3h4uKiExdv4D97GZaWlq+qwVS4bNQThEIhHj58iEmTJmmsj4GJNRaLxQqxxvJLiLogLOvWrcP9+/cRFxenNpfgq1ev4tatW3B3d8fSpUvbiMvevXsRGhqKH374Afb29vjss8+QkZGBrKysDvcPz507hzVr1uDYsWPw9PTEwYMHcf78eeTk5LCz574EFRcNU1NTgytXrkAgEODq1aswMzNjl86mTJnS6YWutrYWaWlpMDU17dbsp76+nhWa6upqmJiYsDY0PdlwZzzVRo0apdZ9JmVh4gWcnZ1hY2MDQLFZTywWQyaTqbTEuSuUlJQgOzsbkyZN6tAXT920t4Sop6eH6upqTJ48WakEV1UhlUqxadMmJCcnIyEhQWNVj6277AkhsLa2xl//+lds374dwKsScUtLS4SFhWHVqlXtnsfT0xNTp07F4cOHAbz6XRs1ahQ2b96sVK9Tb4GKixapr69HdHQ0IiIicOXKFQwdOhRLliwBj8fDtGnTFC50ZWVlyMjIgK2trUou4I2NjRCLxRCJROxGONO0qUxDKLMZ3Z6nmjZhZgbjx4/v8O6XEIKqqipWaCQSidrcexmKi4vx+PFjuLm56cw+QktLCx49egSRSAQOh8O6JFhYWMDExEQjMzuZTIatW7ciPj4e8fHxGrWaby0uT58+haOjI9LS0uDm5sYe5+XlBTc3N3z33XdtziGRSDBo0CBcuHBBYQYUFBSEyspKREVFqfld6B5vbJ5Lb2DQoEFYunQpli5disbGRsTExCAiIgIrV66Evr4+/P39ERAQgKdPn+LAgQO4dOlSh92/ymJgYABbW1vY2tqyd7EikQi5ubkwMjJihaaz/gmmt6azC7g2eP78OXJycl675CSfzePk5MQuIebn5+Phw4cqX0IsLCxEXl4euFwuhg0b1uPzqYri4mKUl5fDw8MDRkZGrEtCRkYG6xCgzpmdTCbDxx9/jJiYGCQkJGg9w0QoFAJAm30wS0tL9rnWlJWVQSqVtvuaNzmquCdQcdERDAwM4O/vD39/f0gkEjaTZsWKFaitrcXMmTORl5cHGxsblZf26uvrY+TIkRg5ciRrqCgSiZCXl9ehqSRj56JLvTUAWBNRZWcG8imLjo6O7BIis4TFxPkqO7NjYLLluVyuTpXUtrfHwsR7MzO70tJS5ObmIiMjQ2Fmp4rfQ5lMhv/5n//BpUuXEB8fr7KbJ4r2oeKig+jp6WHBggVITEyEnp4evvvuOzx69AgfffQRGhsbsXjxYvD5fMyZM0flFiADBw6EtbU1rK2tWVNJkUiE/Px8GBgYwMLCAhKJBGKxGO7u7lpZm28PxkWhqKhIJXsGgwYNYm10mDhfsVjMzuxeZ5Uvz7Nnz1BQUKC1bPmOeN3mvfzM7q233mILAoqKipCVldXjXBZCCL788kuEh4cjPj7+tZVYmoKZhYtEIoXycJFIpLBMJg8TcS4SiRQeF4lEOjWr1yRUXHSUq1ev4vTp07h16xZcXFwAvMrivnXrFiIiIvCXv/wFVVVV8PX1BZ/Px7x581Rq2Q/8J9N7xIgRrN/ZkydPUF9fDz09PQiFQrbEV5ub+IQQ5Obm4sWLF5gyZYrKA9GYON9Ro0axMzuxWIxnz56xgtteZ7y8r5q7u7tOJQoqWxXG4XBgZGQEIyMj2NvbKwju48ePYWRkxO7TdCU2gRCC0NBQhIWFIS4ujv0d1wXs7e0xYsQIxMbGsmJSXV3NNsm2h56eHtzd3REbG8vuuchkMsTGxrLOx30NuqGvozA9Ch3dgctkMty5c4fNpBGJRPDx8WEzaVR9gWWaNmtqauDm5sYuGzHuxfJ+Z5os7ZX3L3N3d1e5wHYGI7hML82AAQPYC6yxsTGePn2KkpISuLu7azQB9HWouty4dU+Rvr6+QkFAa6EhhODAgQM4ePAg4uLi4Orq2uMxKEtntvm2trbYu3cv9uzZo1CK/ODBA4VS5Na2+efOnUNQUBCOHz8ODw8PHDx4EOHh4cjOzu6T/mdUXHoBMpkMaWlpbFRAUVGRQiZNT72mGDuXlpaWNk2brUt7CSEKpb3qFBp5wXN3d9dq0qZMJlOIC2hpaQEAjBkzBtbW1jqTqaPuPpbWsQkAYG5uziZODho0CIcOHcK+fftw7do1TJkyReVj6Aqd2eaHhYWxTZQnTpxAZWUlZs6ciX/84x8YM2YMe2xr23zg1eoC00Tp5uaG77//Hp6enpp4SzoHFZdeBpNJc/78eQgEAuTm5rKZNH5+fgpOyl1BIpEgLS0NAwYMgKura6f2IYQQBZv8lpYWmJmZwdLSUuWVRlKpFA8ePEBTUxMmT56sldCo9mBmUqWlpTAzM0NFRQWam5u1Zscjj6YbJOV/H06dOoWTJ09i1KhRKC4uxsWLF7FgwQK1j4GiPbQuLsraJZw/fx6fffYZ8vPz4eTkhL1792LRokUaHPGbAyEE2dnZuHDhAiIjI5GZmYnZs2eDz+fD398fZmZmnQpNQ0MD0tLSMHjwYEycOFGpWYi8Tb5IJEJTUxMrND29wLa0tCA9PR0ymQxcLldnnHEJIcjKysLLly/h7u4OQ0NDheAreQsWZiNcU6Ko7c57qVSKXbt24fDhwxg9ejSePXsGb29vLFu2TOloAsqbgVbFRVm7hKSkJMyePRuhoaHw8/PDmTNnsHfvXqSmpmLChAlaeAdvDszmMiM0qampmDFjBvh8PpYsWYIRI0YoCI0q7VwYvzNGaJgLLOMOoIw4MCFf/fv3h5ubm84sN8lkMjx8+BA1NTWdRgzIxwXU1NSwFVcWFhZqW9bTtrAQQvDTTz9h+/btuHTpEubMmYP8/HxERUWhsLAQ3377rcbHRFE/WhUXZe0SmFyHy5cvs49NmzYNbm5uOHbsmMbG/aZDCEFBQQEEAgEEAgFu374NT09PNiogNzcXu3fvxj/+8Q+1+IQxF1iRSKSU31lTUxNSU1NhaGiIiRMn6pSwZGRkoL6+HpMnT35tpgwD45IgFotRWVmJIUOGKJQ4qwJdEJbw8HBs3rwZAoGALoX1IbQmLt2xS7C1tcW2bdsUomN37dqFixcv4v79+xoYde+DyaQRCASIiIjAb7/9BgDw9vbGd999B3t7e7WWGTN5LCKRiPU7a+9OnnFcNjY2xrhx47TquCyPTCbDgwcP0NjY2KO9n/bCv5jPYciQId36P9C2sACAQCDARx99hHPnzmHx4sVaGQNFO2itz6U7dglCoVApSwbK6+FwOLCxscHmzZthYWGBu3fvYsWKFXj+/DkmT56M8ePHszMaVWfSAIChoSHs7OxgZ2fH9k6IRCI8fvyYDf4aMmQIsrKyYGZmplOOy1KpFPfv30dzczPc3d17tPejp6cHGxsb2NjYsM2rYrEY9+7dw8CBA1mh6WpPkS4Iyy+//IJ169bh9OnTGhOW0aNHo6CgoM3jGzZswJEjR9o8HhYWhvfee0/hMX19fTQ2NqptjH0F2kRJAQDcuHEDH3zwASIiIuDr68tm0ly8eBECgQChoaFwcnJiowJ6kuTYEfLNiowLQElJCXJzc6Gnpwc9PT3U1dXpRM+IVCpliwrc3d1VWgHWunmVKe29f/8+OBwOW+ptamra7gxOF4Tl6tWrCA4ORlhYmMLKhLr5/fffIZVK2e8zMzMxf/58LF++vMPXDB06FDk5Oez3unLz8qajNXHpjl3CiBEjqL2Cmpg5cybu3r2LsWPHAnj1BzZ8+HAEBwfj/fffR1VVFS5dugSBQIADBw7A1taWFRplK8m6gp6eHoyMjFBXVwd7e3sMGjSINZVklowsLS271A2ualpaWpCWlgYOhwMul6vW0mIme8bc3BwymYwt7X306BFb6i2fMqkLwhIbG4ugoCCcOHGi04u6OmhtVLpnzx44OjrCy8urw9dwOBx6DVEDWt/Q9/DwwKFDhwC8Wr+2tbXFpk2bOtzQr6+vxy+//MI+NmPGDEyaNIlu6GuQ6upqhUwaCwsLNpPG3d1dJULDhHy1tvKXXzIqKyuDnp4eKzQ9bRbtCrpSrSZf6i0Wi9HY2AhDQ0M0NjZq1c4/MTERy5cvx6FDhxAUFKTVWYBEIoG1tTW2bduGHTt2tHtMWFgYPvjgA9jY2EAmk2Hy5Mn4+9//jvHjx2t4tL0PrZcid2aXsGbNGtjY2CA0NBTAq1JkLy8v7NmzB4sXL8bZs2fx97//nZYia5G6ujqFTBoTExM2k8bT07NbF18m5MvFxaXTwCipVIry8nK2G7x///6s0KjD76y5uRkpKSnQ19fvUgqoJnn8+DGKiopgaGiI+vp6DBs2jO2l0ZRzwa1bt/CHP/wB+/fvx4cffqj15aXw8HCsXr0ahYWFHf4eJScnIzc3F5MmTUJVVRX279+PxMREPHz4ECNHjtTwiHsXWm+i7MwuwdvbG6NHj0ZYWBh7/Pnz57Fz5062iXLfvn2vbaIMDQ2FQCBAdnY2DA0NMWPGDOzduxfOzs4dvoZu9ClPQ0MDm0nzyy+/sDECAQEBmDFjRpeWj5iMGGVz5eXtV8RiMbs3YWlpqRK/M4lEgpSUFAwaNEgty4A9ofVSWENDA1sYwQTBMQUB6vJeu3v3Lng8Hr7++mts3LhR68ICAD4+PtDT01NY6Xgdzc3NGDt2LAIDA7F79241jq73o3Vx0QQLFy7EqlWrMHXqVLS0tGDHjh3IzMxEVlZWh/0EYWFh2LJlS5uNvr5oQNcdJBIJ4uLicOHCBURFRYHD4cDPzw8BAQGYNWtWuyW7TEpjT+N/5fcmxGIxpFIpe3E1NTVVesbR1NSElJQUGBkZYcKECTotLK1hCiPk44zby+fpCampqfD398fnn3+OrVu36oSwFBQUwMHBAQKBADweT6nXLl++HAMGDMDPP/+sptH1DfqEuLSmtLQUFhYWuHHjBmbPnt3uMWFhYdi6dSsqKys1O7heSEtLC27cuIHz588jKioKTU1N8PPzA4/HwzvvvAN9fX3s27cPDg4OmDt3rkpTGuWjjEUiEevzxdjQvE5oGhsbkZKSAmNjY4wfP14nLpwMym7eM+7FpaWlCvtVjItzd97bgwcPsGjRInz88cf45JNPdObzCQkJwfHjx1FUVKRUwYVUKsX48eOxaNEiHDhwQI0j7P30SXF58uQJnJyckJGR0eFeDd3oUw9SqRQ3b95kowKqq6sxYsQIFBcX4/z58/D29lbbz5b3+RKJRGhsbFQwlGzdp9LQ0ICUlBSYmpqqpfS6J/S0Kqy1e3F3YhOysrLg6+uLzZs347PPPtOZz0cmk8He3h6BgYHYs2ePwnOt93G//PJLTJs2DW+99RYqKyvxzTff4OLFi0hJScG4ceO0MfxeQ58TF5lMhiVLlqCyshI3b97s8Di60ad+WlpasHr1avz6668wNjZGdXU1m0nj4+Oj1n4WQgjq6uogEokgFotRV1fHRviam5ujpaUFKSkpMDc3h7Ozs85cOIH/CIuqAsjaW0aUj01ob3aXk5MDX19fBAcH46uvvtKpz+fatWvw8fFBTk6OgkU+0HYf9y9/+QsEAgGEQiGGDRsGd3d3fPXVV+ByuVoYee+iz4nL+vXrcfXqVdy8eVMpkaAbfaqFEILg4GDcuHED169fh52dHVJTU9lMmuLiYsyfPx88Hg++vr5qj1Our69nhaampgYAYGJiggkTJmg1J6Y1qhaW1nTkZs3Y8QwbNgxPnjyBr68vVq9ejb179+rUHhRFd+hT4rJp0yZERUUhMTER9vb2Sr+ebvSpliNHjiAgIKBNmShjBMk4OD958oTNpFm8eLHSmTTKUFtbi3v37mHIkCGQyWSoqqqCsbExu2TUnax4VfHs2TMUFBRoLDKZmd2JxWJkZ2cjMDAQ48ePR0FBAZYuXYqTJ09SYaF0SJ8QF0IINm/ejMjISCQkJMDJyUnpc9CNPu3AhG8xQvPw4UN4eXmBz+fDz8/vtZk0ylBdXY3U1FTY2trCwcEBwKtKMWa56OXLl6xzsaWlpUYjlTUtLO0RHx+P1atXw9DQEGVlZZg2bRqWLl2KNWvW9Ki6j9I76RPismHDBpw5cwZRUVEKvS3GxsbsnSjd6NN9CCF48uQJKzRpaWl4++23wePx2s2kUYaqqiqkpqbC3t4eo0ePbvcYeefi8vJytqzX0tISgwcPVttsSheE5cWLF/Dx8YGXlxdOnDiB0tJSREVFQSAQ4Pvvv++0Z4zSN+kT4tLRH/2pU6ewdu1aAHSj702DyaSJiIiAQCDAnTt3MG3aNNYdYOTIkV2+2FdWViItLQ2Ojo6wtbXt0muYsl7GhsbAwIAVmu5a5LeHLgiLUCiEr68vPD09cerUKZ1yJqDoLn1CXDRNSEgIvvjiC4XHnJ2dO4wSAGh8c08ghOD58+dsJk1SUhImT57MRgWMHj26w4t9Rx5myiCVSlmhKS0tZS3yLS0tu90/AuiGsJSWlmLRokWYOHEifvrpJ7WadFJ6F3Q3Tk2MHz8eL168YL86K3tOSkpCYGAggoODkZaWBj6fDz6fj8zMTA2O+M2Fw+Fg5MiR+POf/4yEhAQUFRVh7dq1iIuLA5fLxaxZs/DNN9/g8ePHkL+XevToEdLT0+Hs7NxtYQFeORdbWlpi4sSJ8PLygouLC+uc/NtvvyE7OxsVFRWQyWRdPqcuCEt5eTn8/f3h7OyMH3/8USPCEhISAg6Ho/Dl4uLS6WvOnz8PFxcXGBgYYOLEifj111/VPk7K66EzFzUQEhKCixcvIj09vUvH0/hm9UAIQXl5OaKiohAREYHY2FiMGTMGPB4PhoaG+PrrrxEdHY0pU6ao5efLZDK8fPkSIpEIpaWlIIQo2NB0VGmlC8JSWVkJPz8/2NjYICIiotsJm8oSEhKCCxcu4Pr16+xjAwYM6LBgICkpCbNnz0ZoaCj8/Pxw5swZ7N27l5rZ6gB0jqsmcnNzYW1tDQMDA0yfPh2hoaEdrucnJydj27ZtCo/5+Pjg4sWLGhhp74XD4cDMzIzNpKmsrMSlS5dw5MgR/P7777C0tMSVK1cwcOBAtZhR9uvXD8OHD8fw4cNBCEFlZSVEIhGysrI6bFTUBWGprq5GQEAALCwscP78eY0JCwMTltYVvvvuOyxcuBB/+9vfAAC7d+9GTEwMDh8+TG/MtAwVFzXg6emJsLAwODs748WLF/jiiy8wa9YsZGZmtnvBoPHN6ofD4WDYsGEwNDTEw4cPcebMGRBCIBAIMH/+fFhaWmLJkiUICAjA5MmTVS40zM8fNmwYnJ2dUV1dzcY5SyQS9s68vLwcU6ZM0Zqw1NbWYtmyZTAyMkJkZKRWGkjpjVnvgIqLGvD19WX/PWnSJHh6esLOzg7h4eEIDg7W4sj6NnV1dfj0009x4cIF9v9o9erVqKurw9WrVxEREQE/Pz8MGzYMS5YsAZ/Ph4eHh8qrozgcDoyNjWFsbAwnJyfU1tYiJycHL1++BIfDQV5eHmtD09rvTJ3U19dj+fLl6N+/P6KiorTSMEpvzHoPVFw0gImJCcaMGYMnT560+zyNb9YMgwcPxqNHj6Cvr9/m8WXLlmHZsmVoaGjAtWvXEBERgeXLl8PQ0BD+/v7g8/ldzqRRBg6Hg7KyMtTW1mLatGngcDgQi8UoLCxEVlYWTE1N2X0adS5PNTQ0YNWqVWhubkZ0dLRafd06g96Y9R5otZgGqK2tRV5eHqysrNp9fvr06YiNjVV4LCYmBtOnT9fE8PoUrYWlNYaGhuDxePjf//1fCIVCnDx5Es3NzXj33Xfh5OSEzZs3Iy4uDs3NzSoZT+s9FiMjIzg4OGDatGmYMWMGTE1NUVJSgsTERNy7dw+FhYUqD6xramrCn/70J1RXV+PXX3/tlsuyuqA3Zm8uVFzUwPbt23Hjxg3k5+cjKSkJAQEB6N+/PwIDAwG8cgP47//+b/b4LVu2IDo6Gt9++y2ys7MREhKCe/fuYdOmTdp6CxQAenp6WLRoEf75z3+ipKQEp0+fxsCBA/HBBx/AwcEB69evR3R0NJqamrp1/tdt3g8aNAijR4+Gh4cHZs6cCQsLC4jFYty8eRN3795Ffn4+GhoaevQeJRIJ1qxZA6FQiOjoaJiYmPTofKqG3pi9wRCKylm5ciWxsrIienp6xMbGhqxcuZI8efKEfd7Ly4sEBQUpvCY8PJyMGTOG6OnpkfHjx5MrV650+efZ2dkRAG2+NmzY0O7xp06danOsvr5+t95rX6SlpYXEx8eTTZs2ERsbG2JsbEwCAwPJ2bNnSVlZGamrq3vtV2ZmJrly5QoRCoVdOl7+6+XLlyQnJ4f89ttvJCoqisTGxpLMzEwiFouVOk9lZSVZunQpmTBhAiktLdX2x0oIIeSvf/0rSUhIIM+ePSO3bt0i8+bNI2ZmZkQsFhNCCHn33XfJp59+yh5/69YtMmDAALJ//37y6NEjsmvXLjJw4ECSkZGhrbdA+X9on0svoLS0FFKplP0+MzMT8+fPR3x8fLvhWzTCWXVIpVLcvn2bDT8rKyuDj48P+Hw+fHx82o3RVmW5cXNzM0pLSyESiVBRUQFDQ0NYWlq+Nsa4paUF69atw/379xEfH68z//erVq1CYmIiysvLYW5ujpkzZ+Lrr7+Go6MjgLY2TcCrJsqdO3ey7hb79u2j7hY6ABWXXsjWrVtx+fJl5ObmtntxoRHO6kEmkyElJYU11nz+/DnmzZsHPp8PX19fDB06FF999RXs7OzA5/NVXm7c0tKiYEOjr6/PCs3QoUPZ3wWpVIqNGzfi9u3bSEhIaBN5QKGoAiouvQyJRAJra2ts27YNO3bsaPcYGuGsfmQyGR48eMAKTV5eHkaOHInnz5/j7NmzmDdvnlrTG6VSKcrLy1mhkUgkiIiIQEBAAC5fvozExETEx8d32aiTQlEWKi69jPDwcKxevRqFhYUd3pHSCGfNQgjBtm3bcPz4cdjY2KCgoADe3t5sJs3w4cPVKjQymQyPHj3C7t278e9//xstLS1YtWoV3nvvPXh7e1MzSopaoNVivYx//vOf8PX17XSpY/r06VizZg3c3Nzg5eUFgUAAc3NzHD9+XIMj7Tvs27cPP/74I5KTk/H48WNkZmbC29sbp06dgqOjI/z8/HDixAkIhUKo416vX79+GDt2LOzt7WFmZoZ//etfMDY2xrvvvgtLS0tkZGSo/GdSKHTm0osoKCiAg4MDBAIBeDyeUq+lEc7qIywsDFwuF66urgqPE0KQn5/PZtLcvXsX06dPZzNpbGxsVDKjIYTgiy++wI8//oj4+HjWZVgmkyEpKQlTp059bf8PhaIsVFx6ESEhITh+/DiKioqUWuqgEc7ahxCC4uJiCAQCCAQCNpOGz+eDx+PBzs6uW0JDCEFoaChOnDiB+Ph4uq9G0Rh0WayXIJPJcOrUKQQFBbURltZNm19++SWuXbuGp0+fIjU1FX/6059QUFCADz74QNPDpvw/HA4Ho0aNwpYtW5CQkIDCwkIEBQXh+vXrcHV1xaxZs7B//37k5uZ2eemMEIJvv/0Wx44dQ0xMjMaEJTQ0FFOnTsWQIUNgYWEBPp+vUPbeHmFhYW1yXLRhmklRHVRcegnXr19HYWEh3n///TbPFRYW4sWLF+z3L1++xIcffoixY8di0aJFqK6uRlJSEsaNG6fJIVM6gMPhwMrKChs2bMD169dRUlKCDRs2IDk5GR4eHqxTcFZWVodCQwjB999/j4MHDyI6OrrNkpw6uXHjBlvqHBMTg+bmZixYsAB1dXWdvm7o0KEKAXsFBQUaGjFFLWiyY5Py5nLjxg3i5+dHrKysCAASGRmp8LxMJiOfffYZGTFiBDEwMCBz584ljx8/fu15Dx8+TOzs7Ii+vj7x8PAgd+7cUdM7ePORyWSkoqKCnDp1ivj7+xMDAwPi4uJCPvnkE5KcnExqampIXV0dqa2tJfv37yfGxsYkOTlZ28MmYrGYACA3btzo8JhTp04RY2NjzQ2KonbozIXSJerq6uDq6oojR460+/y+ffvw/fff49ixY7hz5w4GDx4MHx+fTk0Wz507h23btmHXrl1ITU2Fq6srfHx8IBaL1fU23miYTJi1a9fi0qVLEAqF2LlzJ3JzczF37ly4ublh586dCAkJwRdffIHLly9j2rRp2h42qqqqAACmpqadHldbWws7OzuMGjUKPB4PDx8+1MTwKOpC2+pGefNAq5mLTCYjI0aMIN988w37WGVlJdHX1yc///xzh+fx8PAgGzduZL+XSqXE2tqahIaGqmXcvZmamhoSHh5O+Hw+4XA4bWaW2kIqlZLFixeTt99+u9PjkpKSyA8//EDS0tJIQkIC8fPzI0OHDiVFRUUaGilF1VBxoShNa3HJy8sjAEhaWprCcbNnzyZ//vOf2z1HU1MT6d+/f5uL4Jo1a8iSJUtUPOK+RVVVlbaHwPLRRx8ROzs7pUVCIpEQR0dHsnPnTjWNjKJu6LIYpccwqX/KJAKWlZVBKpXSFEE1oCt5LJs2bcLly5cRHx+vtPPDwIEDweVyO8xxoeg+VFwoFIpKIYRg06ZNiIyMRFxcHOzt7ZU+h1QqRUZGRoc5LhTdh4oLpccwqX/KJAKamZmhf//+NEWwF7Jx40b89NNPOHPmDIYMGQKhUAihUKgQbEZ7r3o/VFwoPcbe3h4jRoxQSASsrq7GnTt3OkwE1NPTg7u7u8JrZDIZYmNjaYrgG87Ro0dRVVUFb29vWFlZsV/nzp1jj6G9V30AbW/6UN4MampqSFpaGklLSyMAyIEDB0haWhopKCgghBCyZ88eYmJiQqKiosiDBw8Ij8cj9vb2pKGhgT3HO++8Qw4dOsR+f/bsWaKvr0/CwsJIVlYW+a//+i9iYmJChEKhxt8fhUJRLVRcKF0iPj6+3ShlJq6ZaaK0tLQk+vr6ZO7cuSQnJ0fhHHZ2dmTXrl0Kjx06dIjY2toSPT094uHhQW7fvk0I6bxpUyKRkI8//phMmDCBDBo0iFhZWZF3332XPH/+vNP3sGvXrjbjd3Z27vFnQ6FQ2kKNKyk6ydWrV3Hr1i24u7tj6dKliIyMBJ/PB/CqKW/ZsmX48MMP4erqipcvX2LLli2QSqW4d+9eh+cMCQnBhQsXcP36dfaxAQMGwMzMTN1vh0Lpc9CUIIpO4uvrC19f33afMzY2RkxMjMJjhw8fhoeHBwoLCztNVxwwYAAtGKBQNADd0Kf0CqqqqsDhcGBiYtLpcbm5ubC2toaDgwP++Mc/orCwUDMDpFD6GFRcKG88jY2N+OSTTxAYGNhpA6GnpyfCwsIQHR2No0eP4tmzZ5g1axZqamo0OFoKpW9Al8UobzTNzc1YsWIFCCE4evRop8fKL7NNmjQJnp6esLOzQ3h4OIKDg9U9VAqlT0FnLpQ3FkZYCgoKEBMTo7TtiYmJCcaMGUMtRjrgyJEjGD16NAwMDODp6Ym7d+92evz58+fh4uICAwMDTJw4Eb/++quGRkrRRai4UN5IGGHJzc3F9evXMXz4cKXPUVtbi7y8PGox0g7KxiEkJSUhMDAQwcHBSEtLA5/PB5/PR2ZmpoZHTtEVaCkyRSepra1lZxRcLhcHDhzAnDlzYGpqCisrKyxbtgypqam4fPmygvmlqakp9PT0AABz585FQEAANm3aBADYvn07/P39YWdnh5KSEuzatQvp6enIysqCubm55t+kDuPp6YmpU6fi8OHDAF65J4waNQqbN2/Gp59+2ub4lStXoq6uDpcvX2YfmzZtGtzc3HDs2DGNjZuiO9CZC0UnuXfvHrhcLrhcLgBg27Zt4HK5+Pzzz/H8+XNcunQJxcXFcHNzU7AYSUpKYs+Rl5eHsrIy9vvi4mIEBgbC2dkZK1aswPDhw3H79m0qLK2QSCRISUnBvHnz2Mf69euHefPmITk5ud3XJCcnKxwPAD4+Ph0eT+n9UHGh6CTe3t4grxwkFL7CwsIwevTodp8jhMDb25s9R35+PkJCQtjvz549i5KSEjQ1NaG4uBhnz56Fo6Ojws9NTEyEv78/rK2tweFwcPHiRYXn165dCw6Ho/C1cOHC174fZfcvtEl34hCEQiGNT6AoQMWFQpHjdXHOALBw4UK8ePGC/fr55587PSeNc6b0RWgpMoUiR2fOAAz6+vpKdfkfOHAAH374Id577z0AwLFjx3DlyhX861//anf/Qtt0Jw5hxIgRND6BogCduVAoSpKQkAALCws4Oztj/fr1KC8v7/DY7uxfaJvuxCFMnz5d4XgAiImJofEJfRg6c6FQlGDhwoVYunQp7O3tkZeXhx07dsDX1xfJycno379/m+M727/Izs7W1LCVZtu2bQgKCsKUKVPg4eGBgwcPoq6ujp19rVmzBjY2NggNDQUAbNmyBV5eXvj222+xePFinD17Fvfu3cOJEye0+TYoWoSKC4WiBKtWrWL/PXHiREyaNAmOjo5ISEjA3LlztTgy1bJy5UqUlpbi888/h1AohJubG6Kjo1mRLCwsRL9+/1n4mDFjBs6cOYOdO3dix44dcHJywsWLFzFhwgRtvQWKlqHiQqH0AAcHB5iZmeHJkyftisubHOe8adMmtkeoNQkJCW0eW758OZYvX67mUVHeFOieC4XSA4qLi1FeXt5hlz+Nc6b0Vai4UChy1NbWIj09Henp6QCAZ8+eIT09HYWFhaitrcXf/vY33L59G/n5+YiNjQWPx8Nbb70FHx8f9hxz585lO9uBV/sXJ0+exA8//IBHjx5h/fr1CvsXFEpvhC6LUShy3Lt3D3PmzGG/37ZtGwAgKCgIR48exYMHD/DDDz+gsrIS1tbWWLBgAXbv3g19fX32Na2dAV63f0Gh9EaotxiFQqFQVA5dFqNQKBSKyqHiQqFQKBSVQ8WFQqFQKCqHiguFQqFQVA4VFwqFQqGoHCouFAqFQlE5VFwoFAqFonKouFAoFApF5VBxoVAoFIrKoeJCoVAoFJVDxYVCoVAoKuf/AAY3C1J3u6/lAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "display_voxels(squeezed_onnx_output, zero_block=\"minecraft:air\")" ] diff --git a/minecraft_copilot_ml/model.py b/minecraft_copilot_ml/model.py index ba2c105..acf8213 100644 --- a/minecraft_copilot_ml/model.py +++ b/minecraft_copilot_ml/model.py @@ -1,5 +1,5 @@ # flake8: noqa: E203 -from typing import Any, Dict, Optional, Tuple +from typing import Any, Dict, Iterable, List, Optional, Tuple, cast import numpy as np import pytorch_lightning as pl @@ -9,96 +9,55 @@ from minecraft_copilot_ml.data_loader import MinecraftSchematicsDatasetItemType +from torchcfm.models.unet import UNetModel # type: ignore[import-untyped] +from torchcfm import ExactOptimalTransportConditionalFlowMatcher # type: ignore[import-untyped] -class ConvBlock3d(nn.Module): - def __init__(self, in_channels: int, out_channels: int, kernel_size: int = 3, padding: int = 1): - super(ConvBlock3d, self).__init__() - self.conv = nn.Conv3d(in_channels, out_channels, kernel_size=kernel_size, padding=padding) - self.bn = nn.BatchNorm3d(out_channels) - self.relu = nn.LeakyReLU() - def forward(self, x: torch.Tensor) -> torch.Tensor: - result: torch.Tensor = self.relu(self.bn(self.conv(x))) - return result +def ema(source: nn.Module, target: nn.Module, decay: float): + source_dict = source.state_dict() + target_dict = target.state_dict() + for key in source_dict.keys(): + target_dict[key].data.copy_(target_dict[key].data * decay + source_dict[key].data * (1 - decay)) -class UNet3d(pl.LightningModule): - def __init__( - self, - unique_blocks_dict: Dict[str, int], - unique_counts_coefficients: Optional[np.ndarray] = None, - latent_dim: int = 64, - ): - super(UNet3d, self).__init__() +class LightningUNetModel(pl.LightningModule): + def __init__(self, model: UNetModel, unique_blocks_dict: Dict[str, int]) -> None: # type: ignore[no-any-unimported] + super(LightningUNetModel, self).__init__() + self.model = model + self.flow_matcher = ExactOptimalTransportConditionalFlowMatcher(sigma=0.0) self.unique_blocks_dict = unique_blocks_dict - self.reverse_unique_blocks_dict = {v: k for k, v in unique_blocks_dict.items()} - self.latent_dim = latent_dim - if unique_counts_coefficients is None: - unique_counts_coefficients = np.ones(len(unique_blocks_dict)) - self.unique_counts_coefficients = ( - torch.from_numpy(unique_counts_coefficients).float().to("cuda" if torch.cuda.is_available() else "cpu") - ) - self.conv_input = ConvBlock3d(1, 32) - self.conv1 = ConvBlock3d(32, 64) - self.conv2 = ConvBlock3d(64, 128) - self.conv3 = ConvBlock3d(128, 256) - self.conv4 = ConvBlock3d(256, 512) - - self.conv6 = ConvBlock3d(512, 256) - self.conv7 = ConvBlock3d(256, 128) - self.conv8 = ConvBlock3d(128, 64) - self.conv9 = ConvBlock3d(64, 32) - self.conv_output = nn.Conv3d(32, len(unique_blocks_dict), kernel_size=3, padding=1) - - def ml_core(self, x: torch.Tensor) -> torch.Tensor: - # Encode input - out_conv_input = self.conv_input(x) - out_conv_1 = self.conv1(out_conv_input) - out_conv_2 = self.conv2(out_conv_1) - out_conv_3 = self.conv3(out_conv_2) - out_conv_4 = self.conv4(out_conv_3) + self.automatic_optimization = False - # Decode input - out_conv_6 = self.conv6(out_conv_4) + out_conv_3 - out_conv_7 = self.conv7(out_conv_6) + out_conv_2 - out_conv_8 = self.conv8(out_conv_7) + out_conv_1 - out_conv_9 = self.conv9(out_conv_8) + out_conv_input - out_conv_output: torch.Tensor = self.conv_output(out_conv_9) - return out_conv_output - - def forward(self, x: torch.Tensor) -> torch.Tensor: - reconstruction = self.ml_core(x) - reconstruction = F.softmax(reconstruction, dim=1) - return reconstruction + def forward( + self, t: torch.Tensor, x: torch.Tensor, y: Optional[torch.Tensor] = None, *args: Any, **kwargs: Any + ) -> torch.Tensor: + return self.model(t, x, y=y) # type: ignore[no-any-return] def step(self, batch: MinecraftSchematicsDatasetItemType, batch_idx: int, mode: str) -> torch.Tensor: - block_maps, noisy_block_maps, block_map_masks, loss_masks = batch + block_maps, _, block_map_masks, _ = batch + tensor_block_map_masks = ( + torch.from_numpy(block_map_masks).float().to("cuda" if torch.cuda.is_available() else "cpu") + ) + tensor_block_map_masks_for_one_hot = torch.zeros( + (len(self.unique_blocks_dict), block_maps.shape[0], 16, 16, 16) + ).to("cuda" if torch.cuda.is_available() else "cpu") + tensor_block_map_masks_for_one_hot[:, tensor_block_map_masks == 1] = 1 + tensor_block_map_masks_for_one_hot = tensor_block_map_masks_for_one_hot.permute(1, 0, 2, 3, 4) pre_processed_block_maps = self.pre_process(block_maps) - pre_processed_noisy_block_maps = self.pre_process(noisy_block_maps).float().unsqueeze(1) - tensor_block_map_masks = torch.from_numpy(block_map_masks).float().to("cuda" if torch.cuda.is_available() else "cpu").long() - tensor_loss_masks = ( - torch.from_numpy(loss_masks).float().to("cuda" if torch.cuda.is_available() else "cpu").long() + x1 = pre_processed_block_maps + x0 = torch.randn_like(x1) + sample_location_and_conditional_flow: Tuple[torch.Tensor, torch.Tensor, torch.Tensor] = cast( + Tuple[torch.Tensor, torch.Tensor, torch.Tensor], + (self.flow_matcher.sample_location_and_conditional_flow(x0, x1)), ) - reconstruction = self.ml_core(pre_processed_noisy_block_maps) - - # Compute accuracy - accuracy_truth_map = (reconstruction.argmax(dim=1) == pre_processed_block_maps).float() - accuracy_on_block_map = accuracy_truth_map[tensor_block_map_masks.bool()].mean() - accuracy_on_loss_map = accuracy_truth_map[tensor_loss_masks.bool()].mean() - - # Compute reconstruction loss using categorical cross-entropy - reconstruction_loss = F.cross_entropy(reconstruction, pre_processed_block_maps, reduction="none") - reconstruction_loss = reconstruction_loss * tensor_block_map_masks - reconstruction_loss = reconstruction_loss * torch.where(tensor_loss_masks == 1, reconstruction_loss, 1) - reconstruction_loss = reconstruction_loss * self.unique_counts_coefficients[pre_processed_block_maps] - loss = reconstruction_loss.mean() - - # Total loss + t, xt, ut = sample_location_and_conditional_flow + vt = self(t, xt) + loss = (vt - ut) ** 2 + loss = loss * tensor_block_map_masks_for_one_hot + loss = torch.mean(loss) loss_dict = { "loss": loss, - "accuracy_on_block_map": accuracy_on_block_map, - "accuracy_on_loss_map": accuracy_on_loss_map, - "learning_rate": self.trainer.optimizers[0].param_groups[0]["lr"], + "lr": self.trainer.optimizers[0].param_groups[0]["lr"], } for name, value in loss_dict.items(): self.log( @@ -110,21 +69,25 @@ def step(self, batch: MinecraftSchematicsDatasetItemType, batch_idx: int, mode: logger=True, batch_size=block_maps.shape[0], ) - return loss + # Optimization + optimizer = self.optimizers()[0] + optimizer.zero_grad() + self.manual_backward(loss) + torch.nn.utils.clip_grad_norm_(net_model.parameters(), 1.0) # new + optimizer.step() + ema(self, ema_model, 0.9999) # new def pre_process(self, x: np.ndarray) -> torch.Tensor: - vectorized_x = np.vectorize(lambda x: self.unique_blocks_dict.get(x, self.unique_blocks_dict["minecraft:air"]))( - x - ) - vectorized_x = vectorized_x.astype(np.int64) + # vectorized_x = np.vectorize(lambda x: self.unique_blocks_dict.get(x, self.unique_blocks_dict["minecraft:air"]))( + # x + # ) + vectorized_x = x.astype(np.int64) x_tensor = torch.from_numpy(vectorized_x) x_tensor = x_tensor.to("cuda" if torch.cuda.is_available() else "cpu") + x_tensor = torch.nn.functional.one_hot(x_tensor, num_classes=len(self.unique_blocks_dict)) + x_tensor = x_tensor.permute(0, 4, 1, 2, 3).float() return x_tensor - def post_process(self, x: torch.Tensor) -> np.ndarray: - predicted_block_maps: np.ndarray = np.vectorize(self.reverse_unique_blocks_dict.get)(x.argmax(dim=1).numpy()) - return predicted_block_maps - def training_step(self, batch: MinecraftSchematicsDatasetItemType, batch_idx: int) -> torch.Tensor: return self.step(batch, batch_idx, "train") @@ -132,7 +95,7 @@ def validation_step(self, batch: MinecraftSchematicsDatasetItemType, batch_idx: return self.step(batch, batch_idx, "val") def configure_optimizers(self) -> Any: - return torch.optim.Adam(self.parameters(), lr=1e-3) + return torch.optim.Adam(self.model.parameters(), lr=2e-4) def on_train_start(self) -> None: print(self) diff --git a/minecraft_copilot_ml/notebook.ipynb b/minecraft_copilot_ml/notebook.ipynb index b887d59..72f3453 100644 --- a/minecraft_copilot_ml/notebook.ipynb +++ b/minecraft_copilot_ml/notebook.ipynb @@ -232,6 +232,27 @@ "np.random.randint(0, 8)" ] }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(tensor(-1.5528),)" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import torch\n", + "tuple(torch.randn(1))" + ] + }, { "cell_type": "code", "execution_count": null, diff --git a/poetry.lock b/poetry.lock index dd49214..72c30b9 100644 --- a/poetry.lock +++ b/poetry.lock @@ -1,89 +1,101 @@ # This file is automatically @generated by Poetry 1.4.1 and should not be changed by hand. +[[package]] +name = "absl-py" +version = "2.1.0" +description = "Abseil Python Common Libraries, see https://github.com/abseil/abseil-py." +category = "main" +optional = false +python-versions = ">=3.7" +files = [ + {file = "absl-py-2.1.0.tar.gz", hash = "sha256:7820790efbb316739cde8b4e19357243fc3608a152024288513dd968d7d959ff"}, + {file = "absl_py-2.1.0-py3-none-any.whl", hash = "sha256:526a04eadab8b4ee719ce68f204172ead1027549089702d99b9059f129ff1308"}, +] + [[package]] name = "aiohttp" -version = "3.9.3" +version = "3.9.5" description = "Async http client/server framework (asyncio)" category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "aiohttp-3.9.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:939677b61f9d72a4fa2a042a5eee2a99a24001a67c13da113b2e30396567db54"}, - {file = "aiohttp-3.9.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1f5cd333fcf7590a18334c90f8c9147c837a6ec8a178e88d90a9b96ea03194cc"}, - {file = "aiohttp-3.9.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:82e6aa28dd46374f72093eda8bcd142f7771ee1eb9d1e223ff0fa7177a96b4a5"}, - {file = "aiohttp-3.9.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f56455b0c2c7cc3b0c584815264461d07b177f903a04481dfc33e08a89f0c26b"}, - {file = "aiohttp-3.9.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bca77a198bb6e69795ef2f09a5f4c12758487f83f33d63acde5f0d4919815768"}, - {file = "aiohttp-3.9.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e083c285857b78ee21a96ba1eb1b5339733c3563f72980728ca2b08b53826ca5"}, - {file = "aiohttp-3.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ab40e6251c3873d86ea9b30a1ac6d7478c09277b32e14745d0d3c6e76e3c7e29"}, - {file = "aiohttp-3.9.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:df822ee7feaaeffb99c1a9e5e608800bd8eda6e5f18f5cfb0dc7eeb2eaa6bbec"}, - {file = "aiohttp-3.9.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:acef0899fea7492145d2bbaaaec7b345c87753168589cc7faf0afec9afe9b747"}, - {file = "aiohttp-3.9.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:cd73265a9e5ea618014802ab01babf1940cecb90c9762d8b9e7d2cc1e1969ec6"}, - {file = "aiohttp-3.9.3-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:a78ed8a53a1221393d9637c01870248a6f4ea5b214a59a92a36f18151739452c"}, - {file = "aiohttp-3.9.3-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:6b0e029353361f1746bac2e4cc19b32f972ec03f0f943b390c4ab3371840aabf"}, - {file = "aiohttp-3.9.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:7cf5c9458e1e90e3c390c2639f1017a0379a99a94fdfad3a1fd966a2874bba52"}, - {file = "aiohttp-3.9.3-cp310-cp310-win32.whl", hash = "sha256:3e59c23c52765951b69ec45ddbbc9403a8761ee6f57253250c6e1536cacc758b"}, - {file = "aiohttp-3.9.3-cp310-cp310-win_amd64.whl", hash = "sha256:055ce4f74b82551678291473f66dc9fb9048a50d8324278751926ff0ae7715e5"}, - {file = "aiohttp-3.9.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:6b88f9386ff1ad91ace19d2a1c0225896e28815ee09fc6a8932fded8cda97c3d"}, - {file = "aiohttp-3.9.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c46956ed82961e31557b6857a5ca153c67e5476972e5f7190015018760938da2"}, - {file = "aiohttp-3.9.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:07b837ef0d2f252f96009e9b8435ec1fef68ef8b1461933253d318748ec1acdc"}, - {file = "aiohttp-3.9.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dad46e6f620574b3b4801c68255492e0159d1712271cc99d8bdf35f2043ec266"}, - {file = "aiohttp-3.9.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5ed3e046ea7b14938112ccd53d91c1539af3e6679b222f9469981e3dac7ba1ce"}, - {file = "aiohttp-3.9.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:039df344b45ae0b34ac885ab5b53940b174530d4dd8a14ed8b0e2155b9dddccb"}, - {file = "aiohttp-3.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7943c414d3a8d9235f5f15c22ace69787c140c80b718dcd57caaade95f7cd93b"}, - {file = "aiohttp-3.9.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:84871a243359bb42c12728f04d181a389718710129b36b6aad0fc4655a7647d4"}, - {file = "aiohttp-3.9.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:5eafe2c065df5401ba06821b9a054d9cb2848867f3c59801b5d07a0be3a380ae"}, - {file = "aiohttp-3.9.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:9d3c9b50f19704552f23b4eaea1fc082fdd82c63429a6506446cbd8737823da3"}, - {file = "aiohttp-3.9.3-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:f033d80bc6283092613882dfe40419c6a6a1527e04fc69350e87a9df02bbc283"}, - {file = "aiohttp-3.9.3-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:2c895a656dd7e061b2fd6bb77d971cc38f2afc277229ce7dd3552de8313a483e"}, - {file = "aiohttp-3.9.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:1f5a71d25cd8106eab05f8704cd9167b6e5187bcdf8f090a66c6d88b634802b4"}, - {file = "aiohttp-3.9.3-cp311-cp311-win32.whl", hash = "sha256:50fca156d718f8ced687a373f9e140c1bb765ca16e3d6f4fe116e3df7c05b2c5"}, - {file = "aiohttp-3.9.3-cp311-cp311-win_amd64.whl", hash = "sha256:5fe9ce6c09668063b8447f85d43b8d1c4e5d3d7e92c63173e6180b2ac5d46dd8"}, - {file = "aiohttp-3.9.3-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:38a19bc3b686ad55804ae931012f78f7a534cce165d089a2059f658f6c91fa60"}, - {file = "aiohttp-3.9.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:770d015888c2a598b377bd2f663adfd947d78c0124cfe7b959e1ef39f5b13869"}, - {file = "aiohttp-3.9.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ee43080e75fc92bf36219926c8e6de497f9b247301bbf88c5c7593d931426679"}, - {file = "aiohttp-3.9.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:52df73f14ed99cee84865b95a3d9e044f226320a87af208f068ecc33e0c35b96"}, - {file = "aiohttp-3.9.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dc9b311743a78043b26ffaeeb9715dc360335e5517832f5a8e339f8a43581e4d"}, - {file = "aiohttp-3.9.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b955ed993491f1a5da7f92e98d5dad3c1e14dc175f74517c4e610b1f2456fb11"}, - {file = "aiohttp-3.9.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:504b6981675ace64c28bf4a05a508af5cde526e36492c98916127f5a02354d53"}, - {file = "aiohttp-3.9.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a6fe5571784af92b6bc2fda8d1925cccdf24642d49546d3144948a6a1ed58ca5"}, - {file = "aiohttp-3.9.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:ba39e9c8627edc56544c8628cc180d88605df3892beeb2b94c9bc857774848ca"}, - {file = "aiohttp-3.9.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:e5e46b578c0e9db71d04c4b506a2121c0cb371dd89af17a0586ff6769d4c58c1"}, - {file = "aiohttp-3.9.3-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:938a9653e1e0c592053f815f7028e41a3062e902095e5a7dc84617c87267ebd5"}, - {file = "aiohttp-3.9.3-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:c3452ea726c76e92f3b9fae4b34a151981a9ec0a4847a627c43d71a15ac32aa6"}, - {file = "aiohttp-3.9.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:ff30218887e62209942f91ac1be902cc80cddb86bf00fbc6783b7a43b2bea26f"}, - {file = "aiohttp-3.9.3-cp312-cp312-win32.whl", hash = "sha256:38f307b41e0bea3294a9a2a87833191e4bcf89bb0365e83a8be3a58b31fb7f38"}, - {file = "aiohttp-3.9.3-cp312-cp312-win_amd64.whl", hash = "sha256:b791a3143681a520c0a17e26ae7465f1b6f99461a28019d1a2f425236e6eedb5"}, - {file = "aiohttp-3.9.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:0ed621426d961df79aa3b963ac7af0d40392956ffa9be022024cd16297b30c8c"}, - {file = "aiohttp-3.9.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:7f46acd6a194287b7e41e87957bfe2ad1ad88318d447caf5b090012f2c5bb528"}, - {file = "aiohttp-3.9.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:feeb18a801aacb098220e2c3eea59a512362eb408d4afd0c242044c33ad6d542"}, - {file = "aiohttp-3.9.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f734e38fd8666f53da904c52a23ce517f1b07722118d750405af7e4123933511"}, - {file = "aiohttp-3.9.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b40670ec7e2156d8e57f70aec34a7216407848dfe6c693ef131ddf6e76feb672"}, - {file = "aiohttp-3.9.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fdd215b7b7fd4a53994f238d0f46b7ba4ac4c0adb12452beee724ddd0743ae5d"}, - {file = "aiohttp-3.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:017a21b0df49039c8f46ca0971b3a7fdc1f56741ab1240cb90ca408049766168"}, - {file = "aiohttp-3.9.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e99abf0bba688259a496f966211c49a514e65afa9b3073a1fcee08856e04425b"}, - {file = "aiohttp-3.9.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:648056db9a9fa565d3fa851880f99f45e3f9a771dd3ff3bb0c048ea83fb28194"}, - {file = "aiohttp-3.9.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8aacb477dc26797ee089721536a292a664846489c49d3ef9725f992449eda5a8"}, - {file = "aiohttp-3.9.3-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:522a11c934ea660ff8953eda090dcd2154d367dec1ae3c540aff9f8a5c109ab4"}, - {file = "aiohttp-3.9.3-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:5bce0dc147ca85caa5d33debc4f4d65e8e8b5c97c7f9f660f215fa74fc49a321"}, - {file = "aiohttp-3.9.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:4b4af9f25b49a7be47c0972139e59ec0e8285c371049df1a63b6ca81fdd216a2"}, - {file = "aiohttp-3.9.3-cp38-cp38-win32.whl", hash = "sha256:298abd678033b8571995650ccee753d9458dfa0377be4dba91e4491da3f2be63"}, - {file = "aiohttp-3.9.3-cp38-cp38-win_amd64.whl", hash = "sha256:69361bfdca5468c0488d7017b9b1e5ce769d40b46a9f4a2eed26b78619e9396c"}, - {file = "aiohttp-3.9.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:0fa43c32d1643f518491d9d3a730f85f5bbaedcbd7fbcae27435bb8b7a061b29"}, - {file = "aiohttp-3.9.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:835a55b7ca49468aaaac0b217092dfdff370e6c215c9224c52f30daaa735c1c1"}, - {file = "aiohttp-3.9.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:06a9b2c8837d9a94fae16c6223acc14b4dfdff216ab9b7202e07a9a09541168f"}, - {file = "aiohttp-3.9.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:abf151955990d23f84205286938796c55ff11bbfb4ccfada8c9c83ae6b3c89a3"}, - {file = "aiohttp-3.9.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:59c26c95975f26e662ca78fdf543d4eeaef70e533a672b4113dd888bd2423caa"}, - {file = "aiohttp-3.9.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f95511dd5d0e05fd9728bac4096319f80615aaef4acbecb35a990afebe953b0e"}, - {file = "aiohttp-3.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:595f105710293e76b9dc09f52e0dd896bd064a79346234b521f6b968ffdd8e58"}, - {file = "aiohttp-3.9.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c7c8b816c2b5af5c8a436df44ca08258fc1a13b449393a91484225fcb7545533"}, - {file = "aiohttp-3.9.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:f1088fa100bf46e7b398ffd9904f4808a0612e1d966b4aa43baa535d1b6341eb"}, - {file = "aiohttp-3.9.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f59dfe57bb1ec82ac0698ebfcdb7bcd0e99c255bd637ff613760d5f33e7c81b3"}, - {file = "aiohttp-3.9.3-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:361a1026c9dd4aba0109e4040e2aecf9884f5cfe1b1b1bd3d09419c205e2e53d"}, - {file = "aiohttp-3.9.3-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:363afe77cfcbe3a36353d8ea133e904b108feea505aa4792dad6585a8192c55a"}, - {file = "aiohttp-3.9.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8e2c45c208c62e955e8256949eb225bd8b66a4c9b6865729a786f2aa79b72e9d"}, - {file = "aiohttp-3.9.3-cp39-cp39-win32.whl", hash = "sha256:f7217af2e14da0856e082e96ff637f14ae45c10a5714b63c77f26d8884cf1051"}, - {file = "aiohttp-3.9.3-cp39-cp39-win_amd64.whl", hash = "sha256:27468897f628c627230dba07ec65dc8d0db566923c48f29e084ce382119802bc"}, - {file = "aiohttp-3.9.3.tar.gz", hash = "sha256:90842933e5d1ff760fae6caca4b2b3edba53ba8f4b71e95dacf2818a2aca06f7"}, + {file = "aiohttp-3.9.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:fcde4c397f673fdec23e6b05ebf8d4751314fa7c24f93334bf1f1364c1c69ac7"}, + {file = "aiohttp-3.9.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:5d6b3f1fabe465e819aed2c421a6743d8debbde79b6a8600739300630a01bf2c"}, + {file = "aiohttp-3.9.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6ae79c1bc12c34082d92bf9422764f799aee4746fd7a392db46b7fd357d4a17a"}, + {file = "aiohttp-3.9.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d3ebb9e1316ec74277d19c5f482f98cc65a73ccd5430540d6d11682cd857430"}, + {file = "aiohttp-3.9.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:84dabd95154f43a2ea80deffec9cb44d2e301e38a0c9d331cc4aa0166fe28ae3"}, + {file = "aiohttp-3.9.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c8a02fbeca6f63cb1f0475c799679057fc9268b77075ab7cf3f1c600e81dd46b"}, + {file = "aiohttp-3.9.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c26959ca7b75ff768e2776d8055bf9582a6267e24556bb7f7bd29e677932be72"}, + {file = "aiohttp-3.9.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:714d4e5231fed4ba2762ed489b4aec07b2b9953cf4ee31e9871caac895a839c0"}, + {file = "aiohttp-3.9.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e7a6a8354f1b62e15d48e04350f13e726fa08b62c3d7b8401c0a1314f02e3558"}, + {file = "aiohttp-3.9.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:c413016880e03e69d166efb5a1a95d40f83d5a3a648d16486592c49ffb76d0db"}, + {file = "aiohttp-3.9.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:ff84aeb864e0fac81f676be9f4685f0527b660f1efdc40dcede3c251ef1e867f"}, + {file = "aiohttp-3.9.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:ad7f2919d7dac062f24d6f5fe95d401597fbb015a25771f85e692d043c9d7832"}, + {file = "aiohttp-3.9.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:702e2c7c187c1a498a4e2b03155d52658fdd6fda882d3d7fbb891a5cf108bb10"}, + {file = "aiohttp-3.9.5-cp310-cp310-win32.whl", hash = "sha256:67c3119f5ddc7261d47163ed86d760ddf0e625cd6246b4ed852e82159617b5fb"}, + {file = "aiohttp-3.9.5-cp310-cp310-win_amd64.whl", hash = "sha256:471f0ef53ccedec9995287f02caf0c068732f026455f07db3f01a46e49d76bbb"}, + {file = "aiohttp-3.9.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:e0ae53e33ee7476dd3d1132f932eeb39bf6125083820049d06edcdca4381f342"}, + {file = "aiohttp-3.9.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c088c4d70d21f8ca5c0b8b5403fe84a7bc8e024161febdd4ef04575ef35d474d"}, + {file = "aiohttp-3.9.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:639d0042b7670222f33b0028de6b4e2fad6451462ce7df2af8aee37dcac55424"}, + {file = "aiohttp-3.9.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f26383adb94da5e7fb388d441bf09c61e5e35f455a3217bfd790c6b6bc64b2ee"}, + {file = "aiohttp-3.9.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:66331d00fb28dc90aa606d9a54304af76b335ae204d1836f65797d6fe27f1ca2"}, + {file = "aiohttp-3.9.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4ff550491f5492ab5ed3533e76b8567f4b37bd2995e780a1f46bca2024223233"}, + {file = "aiohttp-3.9.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f22eb3a6c1080d862befa0a89c380b4dafce29dc6cd56083f630073d102eb595"}, + {file = "aiohttp-3.9.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a81b1143d42b66ffc40a441379387076243ef7b51019204fd3ec36b9f69e77d6"}, + {file = "aiohttp-3.9.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f64fd07515dad67f24b6ea4a66ae2876c01031de91c93075b8093f07c0a2d93d"}, + {file = "aiohttp-3.9.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:93e22add827447d2e26d67c9ac0161756007f152fdc5210277d00a85f6c92323"}, + {file = "aiohttp-3.9.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:55b39c8684a46e56ef8c8d24faf02de4a2b2ac60d26cee93bc595651ff545de9"}, + {file = "aiohttp-3.9.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4715a9b778f4293b9f8ae7a0a7cef9829f02ff8d6277a39d7f40565c737d3771"}, + {file = "aiohttp-3.9.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:afc52b8d969eff14e069a710057d15ab9ac17cd4b6753042c407dcea0e40bf75"}, + {file = "aiohttp-3.9.5-cp311-cp311-win32.whl", hash = "sha256:b3df71da99c98534be076196791adca8819761f0bf6e08e07fd7da25127150d6"}, + {file = "aiohttp-3.9.5-cp311-cp311-win_amd64.whl", hash = "sha256:88e311d98cc0bf45b62fc46c66753a83445f5ab20038bcc1b8a1cc05666f428a"}, + {file = "aiohttp-3.9.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:c7a4b7a6cf5b6eb11e109a9755fd4fda7d57395f8c575e166d363b9fc3ec4678"}, + {file = "aiohttp-3.9.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:0a158704edf0abcac8ac371fbb54044f3270bdbc93e254a82b6c82be1ef08f3c"}, + {file = "aiohttp-3.9.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d153f652a687a8e95ad367a86a61e8d53d528b0530ef382ec5aaf533140ed00f"}, + {file = "aiohttp-3.9.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:82a6a97d9771cb48ae16979c3a3a9a18b600a8505b1115cfe354dfb2054468b4"}, + {file = "aiohttp-3.9.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:60cdbd56f4cad9f69c35eaac0fbbdf1f77b0ff9456cebd4902f3dd1cf096464c"}, + {file = "aiohttp-3.9.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8676e8fd73141ded15ea586de0b7cda1542960a7b9ad89b2b06428e97125d4fa"}, + {file = "aiohttp-3.9.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da00da442a0e31f1c69d26d224e1efd3a1ca5bcbf210978a2ca7426dfcae9f58"}, + {file = "aiohttp-3.9.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18f634d540dd099c262e9f887c8bbacc959847cfe5da7a0e2e1cf3f14dbf2daf"}, + {file = "aiohttp-3.9.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:320e8618eda64e19d11bdb3bd04ccc0a816c17eaecb7e4945d01deee2a22f95f"}, + {file = "aiohttp-3.9.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:2faa61a904b83142747fc6a6d7ad8fccff898c849123030f8e75d5d967fd4a81"}, + {file = "aiohttp-3.9.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:8c64a6dc3fe5db7b1b4d2b5cb84c4f677768bdc340611eca673afb7cf416ef5a"}, + {file = "aiohttp-3.9.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:393c7aba2b55559ef7ab791c94b44f7482a07bf7640d17b341b79081f5e5cd1a"}, + {file = "aiohttp-3.9.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:c671dc117c2c21a1ca10c116cfcd6e3e44da7fcde37bf83b2be485ab377b25da"}, + {file = "aiohttp-3.9.5-cp312-cp312-win32.whl", hash = "sha256:5a7ee16aab26e76add4afc45e8f8206c95d1d75540f1039b84a03c3b3800dd59"}, + {file = "aiohttp-3.9.5-cp312-cp312-win_amd64.whl", hash = "sha256:5ca51eadbd67045396bc92a4345d1790b7301c14d1848feaac1d6a6c9289e888"}, + {file = "aiohttp-3.9.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:694d828b5c41255e54bc2dddb51a9f5150b4eefa9886e38b52605a05d96566e8"}, + {file = "aiohttp-3.9.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0605cc2c0088fcaae79f01c913a38611ad09ba68ff482402d3410bf59039bfb8"}, + {file = "aiohttp-3.9.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4558e5012ee03d2638c681e156461d37b7a113fe13970d438d95d10173d25f78"}, + {file = "aiohttp-3.9.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9dbc053ac75ccc63dc3a3cc547b98c7258ec35a215a92bd9f983e0aac95d3d5b"}, + {file = "aiohttp-3.9.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4109adee842b90671f1b689901b948f347325045c15f46b39797ae1bf17019de"}, + {file = "aiohttp-3.9.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a6ea1a5b409a85477fd8e5ee6ad8f0e40bf2844c270955e09360418cfd09abac"}, + {file = "aiohttp-3.9.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3c2890ca8c59ee683fd09adf32321a40fe1cf164e3387799efb2acebf090c11"}, + {file = "aiohttp-3.9.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3916c8692dbd9d55c523374a3b8213e628424d19116ac4308e434dbf6d95bbdd"}, + {file = "aiohttp-3.9.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:8d1964eb7617907c792ca00b341b5ec3e01ae8c280825deadbbd678447b127e1"}, + {file = "aiohttp-3.9.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:d5ab8e1f6bee051a4bf6195e38a5c13e5e161cb7bad83d8854524798bd9fcd6e"}, + {file = "aiohttp-3.9.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:52c27110f3862a1afbcb2af4281fc9fdc40327fa286c4625dfee247c3ba90156"}, + {file = "aiohttp-3.9.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:7f64cbd44443e80094309875d4f9c71d0401e966d191c3d469cde4642bc2e031"}, + {file = "aiohttp-3.9.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8b4f72fbb66279624bfe83fd5eb6aea0022dad8eec62b71e7bf63ee1caadeafe"}, + {file = "aiohttp-3.9.5-cp38-cp38-win32.whl", hash = "sha256:6380c039ec52866c06d69b5c7aad5478b24ed11696f0e72f6b807cfb261453da"}, + {file = "aiohttp-3.9.5-cp38-cp38-win_amd64.whl", hash = "sha256:da22dab31d7180f8c3ac7c7635f3bcd53808f374f6aa333fe0b0b9e14b01f91a"}, + {file = "aiohttp-3.9.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:1732102949ff6087589408d76cd6dea656b93c896b011ecafff418c9661dc4ed"}, + {file = "aiohttp-3.9.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c6021d296318cb6f9414b48e6a439a7f5d1f665464da507e8ff640848ee2a58a"}, + {file = "aiohttp-3.9.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:239f975589a944eeb1bad26b8b140a59a3a320067fb3cd10b75c3092405a1372"}, + {file = "aiohttp-3.9.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3b7b30258348082826d274504fbc7c849959f1989d86c29bc355107accec6cfb"}, + {file = "aiohttp-3.9.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cd2adf5c87ff6d8b277814a28a535b59e20bfea40a101db6b3bdca7e9926bc24"}, + {file = "aiohttp-3.9.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e9a3d838441bebcf5cf442700e3963f58b5c33f015341f9ea86dcd7d503c07e2"}, + {file = "aiohttp-3.9.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e3a1ae66e3d0c17cf65c08968a5ee3180c5a95920ec2731f53343fac9bad106"}, + {file = "aiohttp-3.9.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9c69e77370cce2d6df5d12b4e12bdcca60c47ba13d1cbbc8645dd005a20b738b"}, + {file = "aiohttp-3.9.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0cbf56238f4bbf49dab8c2dc2e6b1b68502b1e88d335bea59b3f5b9f4c001475"}, + {file = "aiohttp-3.9.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:d1469f228cd9ffddd396d9948b8c9cd8022b6d1bf1e40c6f25b0fb90b4f893ed"}, + {file = "aiohttp-3.9.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:45731330e754f5811c314901cebdf19dd776a44b31927fa4b4dbecab9e457b0c"}, + {file = "aiohttp-3.9.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:3fcb4046d2904378e3aeea1df51f697b0467f2aac55d232c87ba162709478c46"}, + {file = "aiohttp-3.9.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8cf142aa6c1a751fcb364158fd710b8a9be874b81889c2bd13aa8893197455e2"}, + {file = "aiohttp-3.9.5-cp39-cp39-win32.whl", hash = "sha256:7b179eea70833c8dee51ec42f3b4097bd6370892fa93f510f76762105568cf09"}, + {file = "aiohttp-3.9.5-cp39-cp39-win_amd64.whl", hash = "sha256:38d80498e2e169bc61418ff36170e0aad0cd268da8b38a17c4cf29d254a8b3f1"}, + {file = "aiohttp-3.9.5.tar.gz", hash = "sha256:edea7d15772ceeb29db4aff55e482d4bcfb6ae160ce144f2682de02f6d693551"}, ] [package.dependencies] @@ -112,6 +124,34 @@ files = [ [package.dependencies] frozenlist = ">=1.1.0" +[[package]] +name = "anndata" +version = "0.10.7" +description = "Annotated data." +category = "main" +optional = false +python-versions = ">=3.9" +files = [ + {file = "anndata-0.10.7-py3-none-any.whl", hash = "sha256:8b50af790f9a73414d0b94fd7b8e005f5cc6c53c33eb09206d2bd6720115bffc"}, + {file = "anndata-0.10.7.tar.gz", hash = "sha256:9b186bea18956fefdc35e7464d822a17e9faa456ca2d20c7a0966a4837b822a2"}, +] + +[package.dependencies] +array-api-compat = ">1.4,<1.5 || >1.5" +exceptiongroup = {version = "*", markers = "python_version < \"3.11\""} +h5py = ">=3.1" +natsort = "*" +numpy = ">=1.23" +packaging = ">=20.0" +pandas = ">=1.4,<2.1.0rc0 || >2.1.0rc0,<2.1.2 || >2.1.2" +scipy = ">1.8" + +[package.extras] +dev = ["pytest-xdist", "setuptools-scm"] +doc = ["awkward (>=2.0.7)", "ipython", "myst-parser", "nbsphinx", "readthedocs-sphinx-search", "scanpydoc[theme,typehints] (>=0.13.4)", "sphinx (>=4.4)", "sphinx-autodoc-typehints (>=1.11.0)", "sphinx-book-theme (>=1.1.0)", "sphinx-copybutton", "sphinx-design (>=0.5.0)", "sphinx-issues", "sphinxext-opengraph", "zarr"] +gpu = ["cupy"] +test = ["awkward (>=2.3)", "boltons", "dask[array,distributed] (>=2022.09.2)", "httpx", "joblib", "loompy (>=3.0.5)", "matplotlib", "openpyxl", "pyarrow", "pytest (>=7.3)", "pytest-cov (>=2.10)", "pytest-memray", "pytest-mock", "scanpy", "scikit-learn", "zarr"] + [[package]] name = "annotated-types" version = "0.6.0" @@ -128,7 +168,7 @@ files = [ name = "appnope" version = "0.1.4" description = "Disable App Nap on macOS >= 10.9" -category = "dev" +category = "main" optional = false python-versions = ">=3.6" files = [ @@ -136,11 +176,30 @@ files = [ {file = "appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee"}, ] +[[package]] +name = "array-api-compat" +version = "1.6" +description = "A wrapper around NumPy and other array libraries to make them compatible with the Array API standard" +category = "main" +optional = false +python-versions = "*" +files = [ + {file = "array_api_compat-1.6-py3-none-any.whl", hash = "sha256:0f132e698952bcebccfa941b4fc02cbc754802474b13a564208cf6cdbffb51e1"}, + {file = "array_api_compat-1.6.tar.gz", hash = "sha256:74a1e355cdabb9cf6c48922a5d07976d9230025d65731bef17174151b64876af"}, +] + +[package.extras] +cupy = ["cupy"] +dask = ["dask"] +jax = ["jax"] +numpy = ["numpy"] +pytorch = ["pytorch"] + [[package]] name = "asttokens" version = "2.4.1" description = "Annotate AST trees with source code positions" -category = "dev" +category = "main" optional = false python-versions = "*" files = [ @@ -211,34 +270,34 @@ lxml = ["lxml"] [[package]] name = "black" -version = "24.2.0" +version = "24.4.0" description = "The uncompromising code formatter." category = "dev" optional = false python-versions = ">=3.8" files = [ - {file = "black-24.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6981eae48b3b33399c8757036c7f5d48a535b962a7c2310d19361edeef64ce29"}, - {file = "black-24.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d533d5e3259720fdbc1b37444491b024003e012c5173f7d06825a77508085430"}, - {file = "black-24.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:61a0391772490ddfb8a693c067df1ef5227257e72b0e4108482b8d41b5aee13f"}, - {file = "black-24.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:992e451b04667116680cb88f63449267c13e1ad134f30087dec8527242e9862a"}, - {file = "black-24.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:163baf4ef40e6897a2a9b83890e59141cc8c2a98f2dda5080dc15c00ee1e62cd"}, - {file = "black-24.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e37c99f89929af50ffaf912454b3e3b47fd64109659026b678c091a4cd450fb2"}, - {file = "black-24.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4f9de21bafcba9683853f6c96c2d515e364aee631b178eaa5145fc1c61a3cc92"}, - {file = "black-24.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:9db528bccb9e8e20c08e716b3b09c6bdd64da0dd129b11e160bf082d4642ac23"}, - {file = "black-24.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d84f29eb3ee44859052073b7636533ec995bd0f64e2fb43aeceefc70090e752b"}, - {file = "black-24.2.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:1e08fb9a15c914b81dd734ddd7fb10513016e5ce7e6704bdd5e1251ceee51ac9"}, - {file = "black-24.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:810d445ae6069ce64030c78ff6127cd9cd178a9ac3361435708b907d8a04c693"}, - {file = "black-24.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:ba15742a13de85e9b8f3239c8f807723991fbfae24bad92d34a2b12e81904982"}, - {file = "black-24.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:7e53a8c630f71db01b28cd9602a1ada68c937cbf2c333e6ed041390d6968faf4"}, - {file = "black-24.2.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:93601c2deb321b4bad8f95df408e3fb3943d85012dddb6121336b8e24a0d1218"}, - {file = "black-24.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0057f800de6acc4407fe75bb147b0c2b5cbb7c3ed110d3e5999cd01184d53b0"}, - {file = "black-24.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:faf2ee02e6612577ba0181f4347bcbcf591eb122f7841ae5ba233d12c39dcb4d"}, - {file = "black-24.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:057c3dc602eaa6fdc451069bd027a1b2635028b575a6c3acfd63193ced20d9c8"}, - {file = "black-24.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:08654d0797e65f2423f850fc8e16a0ce50925f9337fb4a4a176a7aa4026e63f8"}, - {file = "black-24.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ca610d29415ee1a30a3f30fab7a8f4144e9d34c89a235d81292a1edb2b55f540"}, - {file = "black-24.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:4dd76e9468d5536abd40ffbc7a247f83b2324f0c050556d9c371c2b9a9a95e31"}, - {file = "black-24.2.0-py3-none-any.whl", hash = "sha256:e8a6ae970537e67830776488bca52000eaa37fa63b9988e8c487458d9cd5ace6"}, - {file = "black-24.2.0.tar.gz", hash = "sha256:bce4f25c27c3435e4dace4815bcb2008b87e167e3bf4ee47ccdc5ce906eb4894"}, + {file = "black-24.4.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6ad001a9ddd9b8dfd1b434d566be39b1cd502802c8d38bbb1ba612afda2ef436"}, + {file = "black-24.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e3a3a092b8b756c643fe45f4624dbd5a389f770a4ac294cf4d0fce6af86addaf"}, + {file = "black-24.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dae79397f367ac8d7adb6c779813328f6d690943f64b32983e896bcccd18cbad"}, + {file = "black-24.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:71d998b73c957444fb7c52096c3843875f4b6b47a54972598741fe9a7f737fcb"}, + {file = "black-24.4.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8e5537f456a22cf5cfcb2707803431d2feeb82ab3748ade280d6ccd0b40ed2e8"}, + {file = "black-24.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:64e60a7edd71fd542a10a9643bf369bfd2644de95ec71e86790b063aa02ff745"}, + {file = "black-24.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5cd5b4f76056cecce3e69b0d4c228326d2595f506797f40b9233424e2524c070"}, + {file = "black-24.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:64578cf99b6b46a6301bc28bdb89f9d6f9b592b1c5837818a177c98525dbe397"}, + {file = "black-24.4.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f95cece33329dc4aa3b0e1a771c41075812e46cf3d6e3f1dfe3d91ff09826ed2"}, + {file = "black-24.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4396ca365a4310beef84d446ca5016f671b10f07abdba3e4e4304218d2c71d33"}, + {file = "black-24.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:44d99dfdf37a2a00a6f7a8dcbd19edf361d056ee51093b2445de7ca09adac965"}, + {file = "black-24.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:21f9407063ec71c5580b8ad975653c66508d6a9f57bd008bb8691d273705adcd"}, + {file = "black-24.4.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:652e55bb722ca026299eb74e53880ee2315b181dfdd44dca98e43448620ddec1"}, + {file = "black-24.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7f2966b9b2b3b7104fca9d75b2ee856fe3fdd7ed9e47c753a4bb1a675f2caab8"}, + {file = "black-24.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1bb9ca06e556a09f7f7177bc7cb604e5ed2d2df1e9119e4f7d2f1f7071c32e5d"}, + {file = "black-24.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:d4e71cdebdc8efeb6deaf5f2deb28325f8614d48426bed118ecc2dcaefb9ebf3"}, + {file = "black-24.4.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6644f97a7ef6f401a150cca551a1ff97e03c25d8519ee0bbc9b0058772882665"}, + {file = "black-24.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:75a2d0b4f5eb81f7eebc31f788f9830a6ce10a68c91fbe0fade34fff7a2836e6"}, + {file = "black-24.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eb949f56a63c5e134dfdca12091e98ffb5fd446293ebae123d10fc1abad00b9e"}, + {file = "black-24.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:7852b05d02b5b9a8c893ab95863ef8986e4dda29af80bbbda94d7aee1abf8702"}, + {file = "black-24.4.0-py3-none-any.whl", hash = "sha256:74eb9b5420e26b42c00a3ff470dc0cd144b80a766128b1771d07643165e08d0e"}, + {file = "black-24.4.0.tar.gz", hash = "sha256:f07b69fda20578367eaebbd670ff8fc653ab181e1ff95d84497f9fa20e7d0641"}, ] [package.dependencies] @@ -258,18 +317,18 @@ uvloop = ["uvloop (>=0.15.2)"] [[package]] name = "boto3" -version = "1.34.55" +version = "1.34.86" description = "The AWS SDK for Python" category = "main" optional = false -python-versions = ">= 3.8" +python-versions = ">=3.8" files = [ - {file = "boto3-1.34.55-py3-none-any.whl", hash = "sha256:ee2c96e8a4a741ecb3380e0a406baa67bfea6186be99b75bdeca3e1b5044c088"}, - {file = "boto3-1.34.55.tar.gz", hash = "sha256:9a6d59e035fac4366dbdaf909c4f66fc817dfbec044fa71564dcf036ad46bb19"}, + {file = "boto3-1.34.86-py3-none-any.whl", hash = "sha256:be594c449a0079bd1898ba1b7d90e0e5ac6b5803b2ada03993da01179073808d"}, + {file = "boto3-1.34.86.tar.gz", hash = "sha256:992ba74459fef2bf1572050408db73d33c43e7531d81bda85a027f39156926a1"}, ] [package.dependencies] -botocore = ">=1.34.55,<1.35.0" +botocore = ">=1.34.86,<1.35.0" jmespath = ">=0.7.1,<2.0.0" s3transfer = ">=0.10.0,<0.11.0" @@ -278,14 +337,14 @@ crt = ["botocore[crt] (>=1.21.0,<2.0a0)"] [[package]] name = "boto3-stubs" -version = "1.34.55" -description = "Type annotations for boto3 1.34.55 generated with mypy-boto3-builder 7.23.2" +version = "1.34.86" +description = "Type annotations for boto3 1.34.86 generated with mypy-boto3-builder 7.23.2" category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "boto3-stubs-1.34.55.tar.gz", hash = "sha256:cbbae1b811b97e4e1f1d00eba237ff987678e652502226b87e6276f7963935b4"}, - {file = "boto3_stubs-1.34.55-py3-none-any.whl", hash = "sha256:5ee40bdfba94fcdba26f36869339c849e918827ed1fb2f8e470474e6b1e923ff"}, + {file = "boto3_stubs-1.34.86-py3-none-any.whl", hash = "sha256:325b3c6a765aa9ffb0123c7700938f39560c37f9e5174f717749ffc9994ee34f"}, + {file = "boto3_stubs-1.34.86.tar.gz", hash = "sha256:d6b77891a52d5c160cc8c6a5958d96d54e2a964f881d65fa4b09dc85c376ef54"}, ] [package.dependencies] @@ -306,7 +365,7 @@ account = ["mypy-boto3-account (>=1.34.0,<1.35.0)"] acm = ["mypy-boto3-acm (>=1.34.0,<1.35.0)"] acm-pca = ["mypy-boto3-acm-pca (>=1.34.0,<1.35.0)"] alexaforbusiness = ["mypy-boto3-alexaforbusiness (>=1.34.0,<1.35.0)"] -all = ["mypy-boto3-accessanalyzer (>=1.34.0,<1.35.0)", "mypy-boto3-account (>=1.34.0,<1.35.0)", "mypy-boto3-acm (>=1.34.0,<1.35.0)", "mypy-boto3-acm-pca (>=1.34.0,<1.35.0)", "mypy-boto3-alexaforbusiness (>=1.34.0,<1.35.0)", "mypy-boto3-amp (>=1.34.0,<1.35.0)", "mypy-boto3-amplify (>=1.34.0,<1.35.0)", "mypy-boto3-amplifybackend (>=1.34.0,<1.35.0)", "mypy-boto3-amplifyuibuilder (>=1.34.0,<1.35.0)", "mypy-boto3-apigateway (>=1.34.0,<1.35.0)", "mypy-boto3-apigatewaymanagementapi (>=1.34.0,<1.35.0)", "mypy-boto3-apigatewayv2 (>=1.34.0,<1.35.0)", "mypy-boto3-appconfig (>=1.34.0,<1.35.0)", "mypy-boto3-appconfigdata (>=1.34.0,<1.35.0)", "mypy-boto3-appfabric (>=1.34.0,<1.35.0)", "mypy-boto3-appflow (>=1.34.0,<1.35.0)", "mypy-boto3-appintegrations (>=1.34.0,<1.35.0)", "mypy-boto3-application-autoscaling (>=1.34.0,<1.35.0)", "mypy-boto3-application-insights (>=1.34.0,<1.35.0)", "mypy-boto3-applicationcostprofiler (>=1.34.0,<1.35.0)", "mypy-boto3-appmesh (>=1.34.0,<1.35.0)", "mypy-boto3-apprunner (>=1.34.0,<1.35.0)", "mypy-boto3-appstream (>=1.34.0,<1.35.0)", "mypy-boto3-appsync (>=1.34.0,<1.35.0)", "mypy-boto3-arc-zonal-shift (>=1.34.0,<1.35.0)", "mypy-boto3-artifact (>=1.34.0,<1.35.0)", "mypy-boto3-athena (>=1.34.0,<1.35.0)", "mypy-boto3-auditmanager (>=1.34.0,<1.35.0)", "mypy-boto3-autoscaling (>=1.34.0,<1.35.0)", "mypy-boto3-autoscaling-plans (>=1.34.0,<1.35.0)", "mypy-boto3-b2bi (>=1.34.0,<1.35.0)", "mypy-boto3-backup (>=1.34.0,<1.35.0)", "mypy-boto3-backup-gateway (>=1.34.0,<1.35.0)", "mypy-boto3-backupstorage (>=1.34.0,<1.35.0)", "mypy-boto3-batch (>=1.34.0,<1.35.0)", "mypy-boto3-bcm-data-exports (>=1.34.0,<1.35.0)", "mypy-boto3-bedrock (>=1.34.0,<1.35.0)", "mypy-boto3-bedrock-agent (>=1.34.0,<1.35.0)", "mypy-boto3-bedrock-agent-runtime (>=1.34.0,<1.35.0)", "mypy-boto3-bedrock-runtime (>=1.34.0,<1.35.0)", "mypy-boto3-billingconductor (>=1.34.0,<1.35.0)", "mypy-boto3-braket (>=1.34.0,<1.35.0)", "mypy-boto3-budgets (>=1.34.0,<1.35.0)", "mypy-boto3-ce (>=1.34.0,<1.35.0)", "mypy-boto3-chatbot (>=1.34.0,<1.35.0)", "mypy-boto3-chime (>=1.34.0,<1.35.0)", "mypy-boto3-chime-sdk-identity (>=1.34.0,<1.35.0)", "mypy-boto3-chime-sdk-media-pipelines (>=1.34.0,<1.35.0)", "mypy-boto3-chime-sdk-meetings (>=1.34.0,<1.35.0)", "mypy-boto3-chime-sdk-messaging (>=1.34.0,<1.35.0)", "mypy-boto3-chime-sdk-voice (>=1.34.0,<1.35.0)", "mypy-boto3-cleanrooms (>=1.34.0,<1.35.0)", "mypy-boto3-cleanroomsml (>=1.34.0,<1.35.0)", "mypy-boto3-cloud9 (>=1.34.0,<1.35.0)", "mypy-boto3-cloudcontrol (>=1.34.0,<1.35.0)", "mypy-boto3-clouddirectory (>=1.34.0,<1.35.0)", "mypy-boto3-cloudformation (>=1.34.0,<1.35.0)", "mypy-boto3-cloudfront (>=1.34.0,<1.35.0)", "mypy-boto3-cloudfront-keyvaluestore (>=1.34.0,<1.35.0)", "mypy-boto3-cloudhsm (>=1.34.0,<1.35.0)", "mypy-boto3-cloudhsmv2 (>=1.34.0,<1.35.0)", "mypy-boto3-cloudsearch (>=1.34.0,<1.35.0)", "mypy-boto3-cloudsearchdomain (>=1.34.0,<1.35.0)", "mypy-boto3-cloudtrail (>=1.34.0,<1.35.0)", "mypy-boto3-cloudtrail-data (>=1.34.0,<1.35.0)", "mypy-boto3-cloudwatch (>=1.34.0,<1.35.0)", "mypy-boto3-codeartifact (>=1.34.0,<1.35.0)", "mypy-boto3-codebuild (>=1.34.0,<1.35.0)", "mypy-boto3-codecatalyst (>=1.34.0,<1.35.0)", "mypy-boto3-codecommit (>=1.34.0,<1.35.0)", "mypy-boto3-codedeploy (>=1.34.0,<1.35.0)", "mypy-boto3-codeguru-reviewer (>=1.34.0,<1.35.0)", "mypy-boto3-codeguru-security (>=1.34.0,<1.35.0)", "mypy-boto3-codeguruprofiler (>=1.34.0,<1.35.0)", "mypy-boto3-codepipeline (>=1.34.0,<1.35.0)", "mypy-boto3-codestar (>=1.34.0,<1.35.0)", "mypy-boto3-codestar-connections (>=1.34.0,<1.35.0)", "mypy-boto3-codestar-notifications (>=1.34.0,<1.35.0)", "mypy-boto3-cognito-identity (>=1.34.0,<1.35.0)", "mypy-boto3-cognito-idp (>=1.34.0,<1.35.0)", "mypy-boto3-cognito-sync (>=1.34.0,<1.35.0)", "mypy-boto3-comprehend (>=1.34.0,<1.35.0)", "mypy-boto3-comprehendmedical (>=1.34.0,<1.35.0)", "mypy-boto3-compute-optimizer (>=1.34.0,<1.35.0)", "mypy-boto3-config (>=1.34.0,<1.35.0)", "mypy-boto3-connect (>=1.34.0,<1.35.0)", "mypy-boto3-connect-contact-lens (>=1.34.0,<1.35.0)", "mypy-boto3-connectcampaigns (>=1.34.0,<1.35.0)", "mypy-boto3-connectcases (>=1.34.0,<1.35.0)", "mypy-boto3-connectparticipant (>=1.34.0,<1.35.0)", "mypy-boto3-controltower (>=1.34.0,<1.35.0)", "mypy-boto3-cost-optimization-hub (>=1.34.0,<1.35.0)", "mypy-boto3-cur (>=1.34.0,<1.35.0)", "mypy-boto3-customer-profiles (>=1.34.0,<1.35.0)", "mypy-boto3-databrew (>=1.34.0,<1.35.0)", "mypy-boto3-dataexchange (>=1.34.0,<1.35.0)", "mypy-boto3-datapipeline (>=1.34.0,<1.35.0)", "mypy-boto3-datasync (>=1.34.0,<1.35.0)", "mypy-boto3-datazone (>=1.34.0,<1.35.0)", "mypy-boto3-dax (>=1.34.0,<1.35.0)", "mypy-boto3-detective (>=1.34.0,<1.35.0)", "mypy-boto3-devicefarm (>=1.34.0,<1.35.0)", "mypy-boto3-devops-guru (>=1.34.0,<1.35.0)", "mypy-boto3-directconnect (>=1.34.0,<1.35.0)", "mypy-boto3-discovery (>=1.34.0,<1.35.0)", "mypy-boto3-dlm (>=1.34.0,<1.35.0)", "mypy-boto3-dms (>=1.34.0,<1.35.0)", "mypy-boto3-docdb (>=1.34.0,<1.35.0)", "mypy-boto3-docdb-elastic (>=1.34.0,<1.35.0)", "mypy-boto3-drs (>=1.34.0,<1.35.0)", "mypy-boto3-ds (>=1.34.0,<1.35.0)", "mypy-boto3-dynamodb (>=1.34.0,<1.35.0)", "mypy-boto3-dynamodbstreams (>=1.34.0,<1.35.0)", "mypy-boto3-ebs (>=1.34.0,<1.35.0)", "mypy-boto3-ec2 (>=1.34.0,<1.35.0)", "mypy-boto3-ec2-instance-connect (>=1.34.0,<1.35.0)", "mypy-boto3-ecr (>=1.34.0,<1.35.0)", "mypy-boto3-ecr-public (>=1.34.0,<1.35.0)", "mypy-boto3-ecs (>=1.34.0,<1.35.0)", "mypy-boto3-efs (>=1.34.0,<1.35.0)", "mypy-boto3-eks (>=1.34.0,<1.35.0)", "mypy-boto3-eks-auth (>=1.34.0,<1.35.0)", "mypy-boto3-elastic-inference (>=1.34.0,<1.35.0)", "mypy-boto3-elasticache (>=1.34.0,<1.35.0)", "mypy-boto3-elasticbeanstalk (>=1.34.0,<1.35.0)", "mypy-boto3-elastictranscoder (>=1.34.0,<1.35.0)", "mypy-boto3-elb (>=1.34.0,<1.35.0)", "mypy-boto3-elbv2 (>=1.34.0,<1.35.0)", "mypy-boto3-emr (>=1.34.0,<1.35.0)", "mypy-boto3-emr-containers (>=1.34.0,<1.35.0)", "mypy-boto3-emr-serverless (>=1.34.0,<1.35.0)", "mypy-boto3-entityresolution (>=1.34.0,<1.35.0)", "mypy-boto3-es (>=1.34.0,<1.35.0)", "mypy-boto3-events (>=1.34.0,<1.35.0)", "mypy-boto3-evidently (>=1.34.0,<1.35.0)", "mypy-boto3-finspace (>=1.34.0,<1.35.0)", "mypy-boto3-finspace-data (>=1.34.0,<1.35.0)", "mypy-boto3-firehose (>=1.34.0,<1.35.0)", "mypy-boto3-fis (>=1.34.0,<1.35.0)", "mypy-boto3-fms (>=1.34.0,<1.35.0)", "mypy-boto3-forecast (>=1.34.0,<1.35.0)", "mypy-boto3-forecastquery (>=1.34.0,<1.35.0)", "mypy-boto3-frauddetector (>=1.34.0,<1.35.0)", "mypy-boto3-freetier (>=1.34.0,<1.35.0)", "mypy-boto3-fsx (>=1.34.0,<1.35.0)", "mypy-boto3-gamelift (>=1.34.0,<1.35.0)", "mypy-boto3-glacier (>=1.34.0,<1.35.0)", "mypy-boto3-globalaccelerator (>=1.34.0,<1.35.0)", "mypy-boto3-glue (>=1.34.0,<1.35.0)", "mypy-boto3-grafana (>=1.34.0,<1.35.0)", "mypy-boto3-greengrass (>=1.34.0,<1.35.0)", "mypy-boto3-greengrassv2 (>=1.34.0,<1.35.0)", "mypy-boto3-groundstation (>=1.34.0,<1.35.0)", "mypy-boto3-guardduty (>=1.34.0,<1.35.0)", "mypy-boto3-health (>=1.34.0,<1.35.0)", "mypy-boto3-healthlake (>=1.34.0,<1.35.0)", "mypy-boto3-honeycode (>=1.34.0,<1.35.0)", "mypy-boto3-iam (>=1.34.0,<1.35.0)", "mypy-boto3-identitystore (>=1.34.0,<1.35.0)", "mypy-boto3-imagebuilder (>=1.34.0,<1.35.0)", "mypy-boto3-importexport (>=1.34.0,<1.35.0)", "mypy-boto3-inspector (>=1.34.0,<1.35.0)", "mypy-boto3-inspector-scan (>=1.34.0,<1.35.0)", "mypy-boto3-inspector2 (>=1.34.0,<1.35.0)", "mypy-boto3-internetmonitor (>=1.34.0,<1.35.0)", "mypy-boto3-iot (>=1.34.0,<1.35.0)", "mypy-boto3-iot-data (>=1.34.0,<1.35.0)", "mypy-boto3-iot-jobs-data (>=1.34.0,<1.35.0)", "mypy-boto3-iot-roborunner (>=1.34.0,<1.35.0)", "mypy-boto3-iot1click-devices (>=1.34.0,<1.35.0)", "mypy-boto3-iot1click-projects (>=1.34.0,<1.35.0)", "mypy-boto3-iotanalytics (>=1.34.0,<1.35.0)", "mypy-boto3-iotdeviceadvisor (>=1.34.0,<1.35.0)", "mypy-boto3-iotevents (>=1.34.0,<1.35.0)", "mypy-boto3-iotevents-data (>=1.34.0,<1.35.0)", "mypy-boto3-iotfleethub (>=1.34.0,<1.35.0)", "mypy-boto3-iotfleetwise (>=1.34.0,<1.35.0)", "mypy-boto3-iotsecuretunneling (>=1.34.0,<1.35.0)", "mypy-boto3-iotsitewise (>=1.34.0,<1.35.0)", "mypy-boto3-iotthingsgraph (>=1.34.0,<1.35.0)", "mypy-boto3-iottwinmaker (>=1.34.0,<1.35.0)", "mypy-boto3-iotwireless (>=1.34.0,<1.35.0)", "mypy-boto3-ivs (>=1.34.0,<1.35.0)", "mypy-boto3-ivs-realtime (>=1.34.0,<1.35.0)", "mypy-boto3-ivschat (>=1.34.0,<1.35.0)", "mypy-boto3-kafka (>=1.34.0,<1.35.0)", "mypy-boto3-kafkaconnect (>=1.34.0,<1.35.0)", "mypy-boto3-kendra (>=1.34.0,<1.35.0)", "mypy-boto3-kendra-ranking (>=1.34.0,<1.35.0)", "mypy-boto3-keyspaces (>=1.34.0,<1.35.0)", "mypy-boto3-kinesis (>=1.34.0,<1.35.0)", "mypy-boto3-kinesis-video-archived-media (>=1.34.0,<1.35.0)", "mypy-boto3-kinesis-video-media (>=1.34.0,<1.35.0)", "mypy-boto3-kinesis-video-signaling (>=1.34.0,<1.35.0)", "mypy-boto3-kinesis-video-webrtc-storage (>=1.34.0,<1.35.0)", "mypy-boto3-kinesisanalytics (>=1.34.0,<1.35.0)", "mypy-boto3-kinesisanalyticsv2 (>=1.34.0,<1.35.0)", "mypy-boto3-kinesisvideo (>=1.34.0,<1.35.0)", "mypy-boto3-kms (>=1.34.0,<1.35.0)", "mypy-boto3-lakeformation (>=1.34.0,<1.35.0)", "mypy-boto3-lambda (>=1.34.0,<1.35.0)", "mypy-boto3-launch-wizard (>=1.34.0,<1.35.0)", "mypy-boto3-lex-models (>=1.34.0,<1.35.0)", "mypy-boto3-lex-runtime (>=1.34.0,<1.35.0)", "mypy-boto3-lexv2-models (>=1.34.0,<1.35.0)", "mypy-boto3-lexv2-runtime (>=1.34.0,<1.35.0)", "mypy-boto3-license-manager (>=1.34.0,<1.35.0)", "mypy-boto3-license-manager-linux-subscriptions (>=1.34.0,<1.35.0)", "mypy-boto3-license-manager-user-subscriptions (>=1.34.0,<1.35.0)", "mypy-boto3-lightsail (>=1.34.0,<1.35.0)", "mypy-boto3-location (>=1.34.0,<1.35.0)", "mypy-boto3-logs (>=1.34.0,<1.35.0)", "mypy-boto3-lookoutequipment (>=1.34.0,<1.35.0)", "mypy-boto3-lookoutmetrics (>=1.34.0,<1.35.0)", "mypy-boto3-lookoutvision (>=1.34.0,<1.35.0)", "mypy-boto3-m2 (>=1.34.0,<1.35.0)", "mypy-boto3-machinelearning (>=1.34.0,<1.35.0)", "mypy-boto3-macie2 (>=1.34.0,<1.35.0)", "mypy-boto3-managedblockchain (>=1.34.0,<1.35.0)", "mypy-boto3-managedblockchain-query (>=1.34.0,<1.35.0)", "mypy-boto3-marketplace-agreement (>=1.34.0,<1.35.0)", "mypy-boto3-marketplace-catalog (>=1.34.0,<1.35.0)", "mypy-boto3-marketplace-deployment (>=1.34.0,<1.35.0)", "mypy-boto3-marketplace-entitlement (>=1.34.0,<1.35.0)", "mypy-boto3-marketplacecommerceanalytics (>=1.34.0,<1.35.0)", "mypy-boto3-mediaconnect (>=1.34.0,<1.35.0)", "mypy-boto3-mediaconvert (>=1.34.0,<1.35.0)", "mypy-boto3-medialive (>=1.34.0,<1.35.0)", "mypy-boto3-mediapackage (>=1.34.0,<1.35.0)", "mypy-boto3-mediapackage-vod (>=1.34.0,<1.35.0)", "mypy-boto3-mediapackagev2 (>=1.34.0,<1.35.0)", "mypy-boto3-mediastore (>=1.34.0,<1.35.0)", "mypy-boto3-mediastore-data (>=1.34.0,<1.35.0)", "mypy-boto3-mediatailor (>=1.34.0,<1.35.0)", "mypy-boto3-medical-imaging (>=1.34.0,<1.35.0)", "mypy-boto3-memorydb (>=1.34.0,<1.35.0)", "mypy-boto3-meteringmarketplace (>=1.34.0,<1.35.0)", "mypy-boto3-mgh (>=1.34.0,<1.35.0)", "mypy-boto3-mgn (>=1.34.0,<1.35.0)", "mypy-boto3-migration-hub-refactor-spaces (>=1.34.0,<1.35.0)", "mypy-boto3-migrationhub-config (>=1.34.0,<1.35.0)", "mypy-boto3-migrationhuborchestrator (>=1.34.0,<1.35.0)", "mypy-boto3-migrationhubstrategy (>=1.34.0,<1.35.0)", "mypy-boto3-mobile (>=1.34.0,<1.35.0)", "mypy-boto3-mq (>=1.34.0,<1.35.0)", "mypy-boto3-mturk (>=1.34.0,<1.35.0)", "mypy-boto3-mwaa (>=1.34.0,<1.35.0)", "mypy-boto3-neptune (>=1.34.0,<1.35.0)", "mypy-boto3-neptune-graph (>=1.34.0,<1.35.0)", "mypy-boto3-neptunedata (>=1.34.0,<1.35.0)", "mypy-boto3-network-firewall (>=1.34.0,<1.35.0)", "mypy-boto3-networkmanager (>=1.34.0,<1.35.0)", "mypy-boto3-networkmonitor (>=1.34.0,<1.35.0)", "mypy-boto3-nimble (>=1.34.0,<1.35.0)", "mypy-boto3-oam (>=1.34.0,<1.35.0)", "mypy-boto3-omics (>=1.34.0,<1.35.0)", "mypy-boto3-opensearch (>=1.34.0,<1.35.0)", "mypy-boto3-opensearchserverless (>=1.34.0,<1.35.0)", "mypy-boto3-opsworks (>=1.34.0,<1.35.0)", "mypy-boto3-opsworkscm (>=1.34.0,<1.35.0)", "mypy-boto3-organizations (>=1.34.0,<1.35.0)", "mypy-boto3-osis (>=1.34.0,<1.35.0)", "mypy-boto3-outposts (>=1.34.0,<1.35.0)", "mypy-boto3-panorama (>=1.34.0,<1.35.0)", "mypy-boto3-payment-cryptography (>=1.34.0,<1.35.0)", "mypy-boto3-payment-cryptography-data (>=1.34.0,<1.35.0)", "mypy-boto3-pca-connector-ad (>=1.34.0,<1.35.0)", "mypy-boto3-personalize (>=1.34.0,<1.35.0)", "mypy-boto3-personalize-events (>=1.34.0,<1.35.0)", "mypy-boto3-personalize-runtime (>=1.34.0,<1.35.0)", "mypy-boto3-pi (>=1.34.0,<1.35.0)", "mypy-boto3-pinpoint (>=1.34.0,<1.35.0)", "mypy-boto3-pinpoint-email (>=1.34.0,<1.35.0)", "mypy-boto3-pinpoint-sms-voice (>=1.34.0,<1.35.0)", "mypy-boto3-pinpoint-sms-voice-v2 (>=1.34.0,<1.35.0)", "mypy-boto3-pipes (>=1.34.0,<1.35.0)", "mypy-boto3-polly (>=1.34.0,<1.35.0)", "mypy-boto3-pricing (>=1.34.0,<1.35.0)", "mypy-boto3-privatenetworks (>=1.34.0,<1.35.0)", "mypy-boto3-proton (>=1.34.0,<1.35.0)", "mypy-boto3-qbusiness (>=1.34.0,<1.35.0)", "mypy-boto3-qconnect (>=1.34.0,<1.35.0)", "mypy-boto3-qldb (>=1.34.0,<1.35.0)", "mypy-boto3-qldb-session (>=1.34.0,<1.35.0)", "mypy-boto3-quicksight (>=1.34.0,<1.35.0)", "mypy-boto3-ram (>=1.34.0,<1.35.0)", "mypy-boto3-rbin (>=1.34.0,<1.35.0)", "mypy-boto3-rds (>=1.34.0,<1.35.0)", "mypy-boto3-rds-data (>=1.34.0,<1.35.0)", "mypy-boto3-redshift (>=1.34.0,<1.35.0)", "mypy-boto3-redshift-data (>=1.34.0,<1.35.0)", "mypy-boto3-redshift-serverless (>=1.34.0,<1.35.0)", "mypy-boto3-rekognition (>=1.34.0,<1.35.0)", "mypy-boto3-repostspace (>=1.34.0,<1.35.0)", "mypy-boto3-resiliencehub (>=1.34.0,<1.35.0)", "mypy-boto3-resource-explorer-2 (>=1.34.0,<1.35.0)", "mypy-boto3-resource-groups (>=1.34.0,<1.35.0)", "mypy-boto3-resourcegroupstaggingapi (>=1.34.0,<1.35.0)", "mypy-boto3-robomaker (>=1.34.0,<1.35.0)", "mypy-boto3-rolesanywhere (>=1.34.0,<1.35.0)", "mypy-boto3-route53 (>=1.34.0,<1.35.0)", "mypy-boto3-route53-recovery-cluster (>=1.34.0,<1.35.0)", "mypy-boto3-route53-recovery-control-config (>=1.34.0,<1.35.0)", "mypy-boto3-route53-recovery-readiness (>=1.34.0,<1.35.0)", "mypy-boto3-route53domains (>=1.34.0,<1.35.0)", "mypy-boto3-route53resolver (>=1.34.0,<1.35.0)", "mypy-boto3-rum (>=1.34.0,<1.35.0)", "mypy-boto3-s3 (>=1.34.0,<1.35.0)", "mypy-boto3-s3control (>=1.34.0,<1.35.0)", "mypy-boto3-s3outposts (>=1.34.0,<1.35.0)", "mypy-boto3-sagemaker (>=1.34.0,<1.35.0)", "mypy-boto3-sagemaker-a2i-runtime (>=1.34.0,<1.35.0)", "mypy-boto3-sagemaker-edge (>=1.34.0,<1.35.0)", "mypy-boto3-sagemaker-featurestore-runtime (>=1.34.0,<1.35.0)", "mypy-boto3-sagemaker-geospatial (>=1.34.0,<1.35.0)", "mypy-boto3-sagemaker-metrics (>=1.34.0,<1.35.0)", "mypy-boto3-sagemaker-runtime (>=1.34.0,<1.35.0)", "mypy-boto3-savingsplans (>=1.34.0,<1.35.0)", "mypy-boto3-scheduler (>=1.34.0,<1.35.0)", "mypy-boto3-schemas (>=1.34.0,<1.35.0)", "mypy-boto3-sdb (>=1.34.0,<1.35.0)", "mypy-boto3-secretsmanager (>=1.34.0,<1.35.0)", "mypy-boto3-securityhub (>=1.34.0,<1.35.0)", "mypy-boto3-securitylake (>=1.34.0,<1.35.0)", "mypy-boto3-serverlessrepo (>=1.34.0,<1.35.0)", "mypy-boto3-service-quotas (>=1.34.0,<1.35.0)", "mypy-boto3-servicecatalog (>=1.34.0,<1.35.0)", "mypy-boto3-servicecatalog-appregistry (>=1.34.0,<1.35.0)", "mypy-boto3-servicediscovery (>=1.34.0,<1.35.0)", "mypy-boto3-ses (>=1.34.0,<1.35.0)", "mypy-boto3-sesv2 (>=1.34.0,<1.35.0)", "mypy-boto3-shield (>=1.34.0,<1.35.0)", "mypy-boto3-signer (>=1.34.0,<1.35.0)", "mypy-boto3-simspaceweaver (>=1.34.0,<1.35.0)", "mypy-boto3-sms (>=1.34.0,<1.35.0)", "mypy-boto3-sms-voice (>=1.34.0,<1.35.0)", "mypy-boto3-snow-device-management (>=1.34.0,<1.35.0)", "mypy-boto3-snowball (>=1.34.0,<1.35.0)", "mypy-boto3-sns (>=1.34.0,<1.35.0)", "mypy-boto3-sqs (>=1.34.0,<1.35.0)", "mypy-boto3-ssm (>=1.34.0,<1.35.0)", "mypy-boto3-ssm-contacts (>=1.34.0,<1.35.0)", "mypy-boto3-ssm-incidents (>=1.34.0,<1.35.0)", "mypy-boto3-ssm-sap (>=1.34.0,<1.35.0)", "mypy-boto3-sso (>=1.34.0,<1.35.0)", "mypy-boto3-sso-admin (>=1.34.0,<1.35.0)", "mypy-boto3-sso-oidc (>=1.34.0,<1.35.0)", "mypy-boto3-stepfunctions (>=1.34.0,<1.35.0)", "mypy-boto3-storagegateway (>=1.34.0,<1.35.0)", "mypy-boto3-sts (>=1.34.0,<1.35.0)", "mypy-boto3-supplychain (>=1.34.0,<1.35.0)", "mypy-boto3-support (>=1.34.0,<1.35.0)", "mypy-boto3-support-app (>=1.34.0,<1.35.0)", "mypy-boto3-swf (>=1.34.0,<1.35.0)", "mypy-boto3-synthetics (>=1.34.0,<1.35.0)", "mypy-boto3-textract (>=1.34.0,<1.35.0)", "mypy-boto3-timestream-query (>=1.34.0,<1.35.0)", "mypy-boto3-timestream-write (>=1.34.0,<1.35.0)", "mypy-boto3-tnb (>=1.34.0,<1.35.0)", "mypy-boto3-transcribe (>=1.34.0,<1.35.0)", "mypy-boto3-transfer (>=1.34.0,<1.35.0)", "mypy-boto3-translate (>=1.34.0,<1.35.0)", "mypy-boto3-trustedadvisor (>=1.34.0,<1.35.0)", "mypy-boto3-verifiedpermissions (>=1.34.0,<1.35.0)", "mypy-boto3-voice-id (>=1.34.0,<1.35.0)", "mypy-boto3-vpc-lattice (>=1.34.0,<1.35.0)", "mypy-boto3-waf (>=1.34.0,<1.35.0)", "mypy-boto3-waf-regional (>=1.34.0,<1.35.0)", "mypy-boto3-wafv2 (>=1.34.0,<1.35.0)", "mypy-boto3-wellarchitected (>=1.34.0,<1.35.0)", "mypy-boto3-wisdom (>=1.34.0,<1.35.0)", "mypy-boto3-workdocs (>=1.34.0,<1.35.0)", "mypy-boto3-worklink (>=1.34.0,<1.35.0)", "mypy-boto3-workmail (>=1.34.0,<1.35.0)", "mypy-boto3-workmailmessageflow (>=1.34.0,<1.35.0)", "mypy-boto3-workspaces (>=1.34.0,<1.35.0)", "mypy-boto3-workspaces-thin-client (>=1.34.0,<1.35.0)", "mypy-boto3-workspaces-web (>=1.34.0,<1.35.0)", "mypy-boto3-xray (>=1.34.0,<1.35.0)"] +all = ["mypy-boto3-accessanalyzer (>=1.34.0,<1.35.0)", "mypy-boto3-account (>=1.34.0,<1.35.0)", "mypy-boto3-acm (>=1.34.0,<1.35.0)", "mypy-boto3-acm-pca (>=1.34.0,<1.35.0)", "mypy-boto3-alexaforbusiness (>=1.34.0,<1.35.0)", "mypy-boto3-amp (>=1.34.0,<1.35.0)", "mypy-boto3-amplify (>=1.34.0,<1.35.0)", "mypy-boto3-amplifybackend (>=1.34.0,<1.35.0)", "mypy-boto3-amplifyuibuilder (>=1.34.0,<1.35.0)", "mypy-boto3-apigateway (>=1.34.0,<1.35.0)", "mypy-boto3-apigatewaymanagementapi (>=1.34.0,<1.35.0)", "mypy-boto3-apigatewayv2 (>=1.34.0,<1.35.0)", "mypy-boto3-appconfig (>=1.34.0,<1.35.0)", "mypy-boto3-appconfigdata (>=1.34.0,<1.35.0)", "mypy-boto3-appfabric (>=1.34.0,<1.35.0)", "mypy-boto3-appflow (>=1.34.0,<1.35.0)", "mypy-boto3-appintegrations (>=1.34.0,<1.35.0)", "mypy-boto3-application-autoscaling (>=1.34.0,<1.35.0)", "mypy-boto3-application-insights (>=1.34.0,<1.35.0)", "mypy-boto3-applicationcostprofiler (>=1.34.0,<1.35.0)", "mypy-boto3-appmesh (>=1.34.0,<1.35.0)", "mypy-boto3-apprunner (>=1.34.0,<1.35.0)", "mypy-boto3-appstream (>=1.34.0,<1.35.0)", "mypy-boto3-appsync (>=1.34.0,<1.35.0)", "mypy-boto3-arc-zonal-shift (>=1.34.0,<1.35.0)", "mypy-boto3-artifact (>=1.34.0,<1.35.0)", "mypy-boto3-athena (>=1.34.0,<1.35.0)", "mypy-boto3-auditmanager (>=1.34.0,<1.35.0)", "mypy-boto3-autoscaling (>=1.34.0,<1.35.0)", "mypy-boto3-autoscaling-plans (>=1.34.0,<1.35.0)", "mypy-boto3-b2bi (>=1.34.0,<1.35.0)", "mypy-boto3-backup (>=1.34.0,<1.35.0)", "mypy-boto3-backup-gateway (>=1.34.0,<1.35.0)", "mypy-boto3-backupstorage (>=1.34.0,<1.35.0)", "mypy-boto3-batch (>=1.34.0,<1.35.0)", "mypy-boto3-bcm-data-exports (>=1.34.0,<1.35.0)", "mypy-boto3-bedrock (>=1.34.0,<1.35.0)", "mypy-boto3-bedrock-agent (>=1.34.0,<1.35.0)", "mypy-boto3-bedrock-agent-runtime (>=1.34.0,<1.35.0)", "mypy-boto3-bedrock-runtime (>=1.34.0,<1.35.0)", "mypy-boto3-billingconductor (>=1.34.0,<1.35.0)", "mypy-boto3-braket (>=1.34.0,<1.35.0)", "mypy-boto3-budgets (>=1.34.0,<1.35.0)", "mypy-boto3-ce (>=1.34.0,<1.35.0)", "mypy-boto3-chatbot (>=1.34.0,<1.35.0)", "mypy-boto3-chime (>=1.34.0,<1.35.0)", "mypy-boto3-chime-sdk-identity (>=1.34.0,<1.35.0)", "mypy-boto3-chime-sdk-media-pipelines (>=1.34.0,<1.35.0)", "mypy-boto3-chime-sdk-meetings (>=1.34.0,<1.35.0)", "mypy-boto3-chime-sdk-messaging (>=1.34.0,<1.35.0)", "mypy-boto3-chime-sdk-voice (>=1.34.0,<1.35.0)", "mypy-boto3-cleanrooms (>=1.34.0,<1.35.0)", "mypy-boto3-cleanroomsml (>=1.34.0,<1.35.0)", "mypy-boto3-cloud9 (>=1.34.0,<1.35.0)", "mypy-boto3-cloudcontrol (>=1.34.0,<1.35.0)", "mypy-boto3-clouddirectory (>=1.34.0,<1.35.0)", "mypy-boto3-cloudformation (>=1.34.0,<1.35.0)", "mypy-boto3-cloudfront (>=1.34.0,<1.35.0)", "mypy-boto3-cloudfront-keyvaluestore (>=1.34.0,<1.35.0)", "mypy-boto3-cloudhsm (>=1.34.0,<1.35.0)", "mypy-boto3-cloudhsmv2 (>=1.34.0,<1.35.0)", "mypy-boto3-cloudsearch (>=1.34.0,<1.35.0)", "mypy-boto3-cloudsearchdomain (>=1.34.0,<1.35.0)", "mypy-boto3-cloudtrail (>=1.34.0,<1.35.0)", "mypy-boto3-cloudtrail-data (>=1.34.0,<1.35.0)", "mypy-boto3-cloudwatch (>=1.34.0,<1.35.0)", "mypy-boto3-codeartifact (>=1.34.0,<1.35.0)", "mypy-boto3-codebuild (>=1.34.0,<1.35.0)", "mypy-boto3-codecatalyst (>=1.34.0,<1.35.0)", "mypy-boto3-codecommit (>=1.34.0,<1.35.0)", "mypy-boto3-codeconnections (>=1.34.0,<1.35.0)", "mypy-boto3-codedeploy (>=1.34.0,<1.35.0)", "mypy-boto3-codeguru-reviewer (>=1.34.0,<1.35.0)", "mypy-boto3-codeguru-security (>=1.34.0,<1.35.0)", "mypy-boto3-codeguruprofiler (>=1.34.0,<1.35.0)", "mypy-boto3-codepipeline (>=1.34.0,<1.35.0)", "mypy-boto3-codestar (>=1.34.0,<1.35.0)", "mypy-boto3-codestar-connections (>=1.34.0,<1.35.0)", "mypy-boto3-codestar-notifications (>=1.34.0,<1.35.0)", "mypy-boto3-cognito-identity (>=1.34.0,<1.35.0)", "mypy-boto3-cognito-idp (>=1.34.0,<1.35.0)", "mypy-boto3-cognito-sync (>=1.34.0,<1.35.0)", "mypy-boto3-comprehend (>=1.34.0,<1.35.0)", "mypy-boto3-comprehendmedical (>=1.34.0,<1.35.0)", "mypy-boto3-compute-optimizer (>=1.34.0,<1.35.0)", "mypy-boto3-config (>=1.34.0,<1.35.0)", "mypy-boto3-connect (>=1.34.0,<1.35.0)", "mypy-boto3-connect-contact-lens (>=1.34.0,<1.35.0)", "mypy-boto3-connectcampaigns (>=1.34.0,<1.35.0)", "mypy-boto3-connectcases (>=1.34.0,<1.35.0)", "mypy-boto3-connectparticipant (>=1.34.0,<1.35.0)", "mypy-boto3-controlcatalog (>=1.34.0,<1.35.0)", "mypy-boto3-controltower (>=1.34.0,<1.35.0)", "mypy-boto3-cost-optimization-hub (>=1.34.0,<1.35.0)", "mypy-boto3-cur (>=1.34.0,<1.35.0)", "mypy-boto3-customer-profiles (>=1.34.0,<1.35.0)", "mypy-boto3-databrew (>=1.34.0,<1.35.0)", "mypy-boto3-dataexchange (>=1.34.0,<1.35.0)", "mypy-boto3-datapipeline (>=1.34.0,<1.35.0)", "mypy-boto3-datasync (>=1.34.0,<1.35.0)", "mypy-boto3-datazone (>=1.34.0,<1.35.0)", "mypy-boto3-dax (>=1.34.0,<1.35.0)", "mypy-boto3-deadline (>=1.34.0,<1.35.0)", "mypy-boto3-detective (>=1.34.0,<1.35.0)", "mypy-boto3-devicefarm (>=1.34.0,<1.35.0)", "mypy-boto3-devops-guru (>=1.34.0,<1.35.0)", "mypy-boto3-directconnect (>=1.34.0,<1.35.0)", "mypy-boto3-discovery (>=1.34.0,<1.35.0)", "mypy-boto3-dlm (>=1.34.0,<1.35.0)", "mypy-boto3-dms (>=1.34.0,<1.35.0)", "mypy-boto3-docdb (>=1.34.0,<1.35.0)", "mypy-boto3-docdb-elastic (>=1.34.0,<1.35.0)", "mypy-boto3-drs (>=1.34.0,<1.35.0)", "mypy-boto3-ds (>=1.34.0,<1.35.0)", "mypy-boto3-dynamodb (>=1.34.0,<1.35.0)", "mypy-boto3-dynamodbstreams (>=1.34.0,<1.35.0)", "mypy-boto3-ebs (>=1.34.0,<1.35.0)", "mypy-boto3-ec2 (>=1.34.0,<1.35.0)", "mypy-boto3-ec2-instance-connect (>=1.34.0,<1.35.0)", "mypy-boto3-ecr (>=1.34.0,<1.35.0)", "mypy-boto3-ecr-public (>=1.34.0,<1.35.0)", "mypy-boto3-ecs (>=1.34.0,<1.35.0)", "mypy-boto3-efs (>=1.34.0,<1.35.0)", "mypy-boto3-eks (>=1.34.0,<1.35.0)", "mypy-boto3-eks-auth (>=1.34.0,<1.35.0)", "mypy-boto3-elastic-inference (>=1.34.0,<1.35.0)", "mypy-boto3-elasticache (>=1.34.0,<1.35.0)", "mypy-boto3-elasticbeanstalk (>=1.34.0,<1.35.0)", "mypy-boto3-elastictranscoder (>=1.34.0,<1.35.0)", "mypy-boto3-elb (>=1.34.0,<1.35.0)", "mypy-boto3-elbv2 (>=1.34.0,<1.35.0)", "mypy-boto3-emr (>=1.34.0,<1.35.0)", "mypy-boto3-emr-containers (>=1.34.0,<1.35.0)", "mypy-boto3-emr-serverless (>=1.34.0,<1.35.0)", "mypy-boto3-entityresolution (>=1.34.0,<1.35.0)", "mypy-boto3-es (>=1.34.0,<1.35.0)", "mypy-boto3-events (>=1.34.0,<1.35.0)", "mypy-boto3-evidently (>=1.34.0,<1.35.0)", "mypy-boto3-finspace (>=1.34.0,<1.35.0)", "mypy-boto3-finspace-data (>=1.34.0,<1.35.0)", "mypy-boto3-firehose (>=1.34.0,<1.35.0)", "mypy-boto3-fis (>=1.34.0,<1.35.0)", "mypy-boto3-fms (>=1.34.0,<1.35.0)", "mypy-boto3-forecast (>=1.34.0,<1.35.0)", "mypy-boto3-forecastquery (>=1.34.0,<1.35.0)", "mypy-boto3-frauddetector (>=1.34.0,<1.35.0)", "mypy-boto3-freetier (>=1.34.0,<1.35.0)", "mypy-boto3-fsx (>=1.34.0,<1.35.0)", "mypy-boto3-gamelift (>=1.34.0,<1.35.0)", "mypy-boto3-glacier (>=1.34.0,<1.35.0)", "mypy-boto3-globalaccelerator (>=1.34.0,<1.35.0)", "mypy-boto3-glue (>=1.34.0,<1.35.0)", "mypy-boto3-grafana (>=1.34.0,<1.35.0)", "mypy-boto3-greengrass (>=1.34.0,<1.35.0)", "mypy-boto3-greengrassv2 (>=1.34.0,<1.35.0)", "mypy-boto3-groundstation (>=1.34.0,<1.35.0)", "mypy-boto3-guardduty (>=1.34.0,<1.35.0)", "mypy-boto3-health (>=1.34.0,<1.35.0)", "mypy-boto3-healthlake (>=1.34.0,<1.35.0)", "mypy-boto3-honeycode (>=1.34.0,<1.35.0)", "mypy-boto3-iam (>=1.34.0,<1.35.0)", "mypy-boto3-identitystore (>=1.34.0,<1.35.0)", "mypy-boto3-imagebuilder (>=1.34.0,<1.35.0)", "mypy-boto3-importexport (>=1.34.0,<1.35.0)", "mypy-boto3-inspector (>=1.34.0,<1.35.0)", "mypy-boto3-inspector-scan (>=1.34.0,<1.35.0)", "mypy-boto3-inspector2 (>=1.34.0,<1.35.0)", "mypy-boto3-internetmonitor (>=1.34.0,<1.35.0)", "mypy-boto3-iot (>=1.34.0,<1.35.0)", "mypy-boto3-iot-data (>=1.34.0,<1.35.0)", "mypy-boto3-iot-jobs-data (>=1.34.0,<1.35.0)", "mypy-boto3-iot1click-devices (>=1.34.0,<1.35.0)", "mypy-boto3-iot1click-projects (>=1.34.0,<1.35.0)", "mypy-boto3-iotanalytics (>=1.34.0,<1.35.0)", "mypy-boto3-iotdeviceadvisor (>=1.34.0,<1.35.0)", "mypy-boto3-iotevents (>=1.34.0,<1.35.0)", "mypy-boto3-iotevents-data (>=1.34.0,<1.35.0)", "mypy-boto3-iotfleethub (>=1.34.0,<1.35.0)", "mypy-boto3-iotfleetwise (>=1.34.0,<1.35.0)", "mypy-boto3-iotsecuretunneling (>=1.34.0,<1.35.0)", "mypy-boto3-iotsitewise (>=1.34.0,<1.35.0)", "mypy-boto3-iotthingsgraph (>=1.34.0,<1.35.0)", "mypy-boto3-iottwinmaker (>=1.34.0,<1.35.0)", "mypy-boto3-iotwireless (>=1.34.0,<1.35.0)", "mypy-boto3-ivs (>=1.34.0,<1.35.0)", "mypy-boto3-ivs-realtime (>=1.34.0,<1.35.0)", "mypy-boto3-ivschat (>=1.34.0,<1.35.0)", "mypy-boto3-kafka (>=1.34.0,<1.35.0)", "mypy-boto3-kafkaconnect (>=1.34.0,<1.35.0)", "mypy-boto3-kendra (>=1.34.0,<1.35.0)", "mypy-boto3-kendra-ranking (>=1.34.0,<1.35.0)", "mypy-boto3-keyspaces (>=1.34.0,<1.35.0)", "mypy-boto3-kinesis (>=1.34.0,<1.35.0)", "mypy-boto3-kinesis-video-archived-media (>=1.34.0,<1.35.0)", "mypy-boto3-kinesis-video-media (>=1.34.0,<1.35.0)", "mypy-boto3-kinesis-video-signaling (>=1.34.0,<1.35.0)", "mypy-boto3-kinesis-video-webrtc-storage (>=1.34.0,<1.35.0)", "mypy-boto3-kinesisanalytics (>=1.34.0,<1.35.0)", "mypy-boto3-kinesisanalyticsv2 (>=1.34.0,<1.35.0)", "mypy-boto3-kinesisvideo (>=1.34.0,<1.35.0)", "mypy-boto3-kms (>=1.34.0,<1.35.0)", "mypy-boto3-lakeformation (>=1.34.0,<1.35.0)", "mypy-boto3-lambda (>=1.34.0,<1.35.0)", "mypy-boto3-launch-wizard (>=1.34.0,<1.35.0)", "mypy-boto3-lex-models (>=1.34.0,<1.35.0)", "mypy-boto3-lex-runtime (>=1.34.0,<1.35.0)", "mypy-boto3-lexv2-models (>=1.34.0,<1.35.0)", "mypy-boto3-lexv2-runtime (>=1.34.0,<1.35.0)", "mypy-boto3-license-manager (>=1.34.0,<1.35.0)", "mypy-boto3-license-manager-linux-subscriptions (>=1.34.0,<1.35.0)", "mypy-boto3-license-manager-user-subscriptions (>=1.34.0,<1.35.0)", "mypy-boto3-lightsail (>=1.34.0,<1.35.0)", "mypy-boto3-location (>=1.34.0,<1.35.0)", "mypy-boto3-logs (>=1.34.0,<1.35.0)", "mypy-boto3-lookoutequipment (>=1.34.0,<1.35.0)", "mypy-boto3-lookoutmetrics (>=1.34.0,<1.35.0)", "mypy-boto3-lookoutvision (>=1.34.0,<1.35.0)", "mypy-boto3-m2 (>=1.34.0,<1.35.0)", "mypy-boto3-machinelearning (>=1.34.0,<1.35.0)", "mypy-boto3-macie2 (>=1.34.0,<1.35.0)", "mypy-boto3-managedblockchain (>=1.34.0,<1.35.0)", "mypy-boto3-managedblockchain-query (>=1.34.0,<1.35.0)", "mypy-boto3-marketplace-agreement (>=1.34.0,<1.35.0)", "mypy-boto3-marketplace-catalog (>=1.34.0,<1.35.0)", "mypy-boto3-marketplace-deployment (>=1.34.0,<1.35.0)", "mypy-boto3-marketplace-entitlement (>=1.34.0,<1.35.0)", "mypy-boto3-marketplacecommerceanalytics (>=1.34.0,<1.35.0)", "mypy-boto3-mediaconnect (>=1.34.0,<1.35.0)", "mypy-boto3-mediaconvert (>=1.34.0,<1.35.0)", "mypy-boto3-medialive (>=1.34.0,<1.35.0)", "mypy-boto3-mediapackage (>=1.34.0,<1.35.0)", "mypy-boto3-mediapackage-vod (>=1.34.0,<1.35.0)", "mypy-boto3-mediapackagev2 (>=1.34.0,<1.35.0)", "mypy-boto3-mediastore (>=1.34.0,<1.35.0)", "mypy-boto3-mediastore-data (>=1.34.0,<1.35.0)", "mypy-boto3-mediatailor (>=1.34.0,<1.35.0)", "mypy-boto3-medical-imaging (>=1.34.0,<1.35.0)", "mypy-boto3-memorydb (>=1.34.0,<1.35.0)", "mypy-boto3-meteringmarketplace (>=1.34.0,<1.35.0)", "mypy-boto3-mgh (>=1.34.0,<1.35.0)", "mypy-boto3-mgn (>=1.34.0,<1.35.0)", "mypy-boto3-migration-hub-refactor-spaces (>=1.34.0,<1.35.0)", "mypy-boto3-migrationhub-config (>=1.34.0,<1.35.0)", "mypy-boto3-migrationhuborchestrator (>=1.34.0,<1.35.0)", "mypy-boto3-migrationhubstrategy (>=1.34.0,<1.35.0)", "mypy-boto3-mobile (>=1.34.0,<1.35.0)", "mypy-boto3-mq (>=1.34.0,<1.35.0)", "mypy-boto3-mturk (>=1.34.0,<1.35.0)", "mypy-boto3-mwaa (>=1.34.0,<1.35.0)", "mypy-boto3-neptune (>=1.34.0,<1.35.0)", "mypy-boto3-neptune-graph (>=1.34.0,<1.35.0)", "mypy-boto3-neptunedata (>=1.34.0,<1.35.0)", "mypy-boto3-network-firewall (>=1.34.0,<1.35.0)", "mypy-boto3-networkmanager (>=1.34.0,<1.35.0)", "mypy-boto3-networkmonitor (>=1.34.0,<1.35.0)", "mypy-boto3-nimble (>=1.34.0,<1.35.0)", "mypy-boto3-oam (>=1.34.0,<1.35.0)", "mypy-boto3-omics (>=1.34.0,<1.35.0)", "mypy-boto3-opensearch (>=1.34.0,<1.35.0)", "mypy-boto3-opensearchserverless (>=1.34.0,<1.35.0)", "mypy-boto3-opsworks (>=1.34.0,<1.35.0)", "mypy-boto3-opsworkscm (>=1.34.0,<1.35.0)", "mypy-boto3-organizations (>=1.34.0,<1.35.0)", "mypy-boto3-osis (>=1.34.0,<1.35.0)", "mypy-boto3-outposts (>=1.34.0,<1.35.0)", "mypy-boto3-panorama (>=1.34.0,<1.35.0)", "mypy-boto3-payment-cryptography (>=1.34.0,<1.35.0)", "mypy-boto3-payment-cryptography-data (>=1.34.0,<1.35.0)", "mypy-boto3-pca-connector-ad (>=1.34.0,<1.35.0)", "mypy-boto3-personalize (>=1.34.0,<1.35.0)", "mypy-boto3-personalize-events (>=1.34.0,<1.35.0)", "mypy-boto3-personalize-runtime (>=1.34.0,<1.35.0)", "mypy-boto3-pi (>=1.34.0,<1.35.0)", "mypy-boto3-pinpoint (>=1.34.0,<1.35.0)", "mypy-boto3-pinpoint-email (>=1.34.0,<1.35.0)", "mypy-boto3-pinpoint-sms-voice (>=1.34.0,<1.35.0)", "mypy-boto3-pinpoint-sms-voice-v2 (>=1.34.0,<1.35.0)", "mypy-boto3-pipes (>=1.34.0,<1.35.0)", "mypy-boto3-polly (>=1.34.0,<1.35.0)", "mypy-boto3-pricing (>=1.34.0,<1.35.0)", "mypy-boto3-privatenetworks (>=1.34.0,<1.35.0)", "mypy-boto3-proton (>=1.34.0,<1.35.0)", "mypy-boto3-qbusiness (>=1.34.0,<1.35.0)", "mypy-boto3-qconnect (>=1.34.0,<1.35.0)", "mypy-boto3-qldb (>=1.34.0,<1.35.0)", "mypy-boto3-qldb-session (>=1.34.0,<1.35.0)", "mypy-boto3-quicksight (>=1.34.0,<1.35.0)", "mypy-boto3-ram (>=1.34.0,<1.35.0)", "mypy-boto3-rbin (>=1.34.0,<1.35.0)", "mypy-boto3-rds (>=1.34.0,<1.35.0)", "mypy-boto3-rds-data (>=1.34.0,<1.35.0)", "mypy-boto3-redshift (>=1.34.0,<1.35.0)", "mypy-boto3-redshift-data (>=1.34.0,<1.35.0)", "mypy-boto3-redshift-serverless (>=1.34.0,<1.35.0)", "mypy-boto3-rekognition (>=1.34.0,<1.35.0)", "mypy-boto3-repostspace (>=1.34.0,<1.35.0)", "mypy-boto3-resiliencehub (>=1.34.0,<1.35.0)", "mypy-boto3-resource-explorer-2 (>=1.34.0,<1.35.0)", "mypy-boto3-resource-groups (>=1.34.0,<1.35.0)", "mypy-boto3-resourcegroupstaggingapi (>=1.34.0,<1.35.0)", "mypy-boto3-robomaker (>=1.34.0,<1.35.0)", "mypy-boto3-rolesanywhere (>=1.34.0,<1.35.0)", "mypy-boto3-route53 (>=1.34.0,<1.35.0)", "mypy-boto3-route53-recovery-cluster (>=1.34.0,<1.35.0)", "mypy-boto3-route53-recovery-control-config (>=1.34.0,<1.35.0)", "mypy-boto3-route53-recovery-readiness (>=1.34.0,<1.35.0)", "mypy-boto3-route53domains (>=1.34.0,<1.35.0)", "mypy-boto3-route53resolver (>=1.34.0,<1.35.0)", "mypy-boto3-rum (>=1.34.0,<1.35.0)", "mypy-boto3-s3 (>=1.34.0,<1.35.0)", "mypy-boto3-s3control (>=1.34.0,<1.35.0)", "mypy-boto3-s3outposts (>=1.34.0,<1.35.0)", "mypy-boto3-sagemaker (>=1.34.0,<1.35.0)", "mypy-boto3-sagemaker-a2i-runtime (>=1.34.0,<1.35.0)", "mypy-boto3-sagemaker-edge (>=1.34.0,<1.35.0)", "mypy-boto3-sagemaker-featurestore-runtime (>=1.34.0,<1.35.0)", "mypy-boto3-sagemaker-geospatial (>=1.34.0,<1.35.0)", "mypy-boto3-sagemaker-metrics (>=1.34.0,<1.35.0)", "mypy-boto3-sagemaker-runtime (>=1.34.0,<1.35.0)", "mypy-boto3-savingsplans (>=1.34.0,<1.35.0)", "mypy-boto3-scheduler (>=1.34.0,<1.35.0)", "mypy-boto3-schemas (>=1.34.0,<1.35.0)", "mypy-boto3-sdb (>=1.34.0,<1.35.0)", "mypy-boto3-secretsmanager (>=1.34.0,<1.35.0)", "mypy-boto3-securityhub (>=1.34.0,<1.35.0)", "mypy-boto3-securitylake (>=1.34.0,<1.35.0)", "mypy-boto3-serverlessrepo (>=1.34.0,<1.35.0)", "mypy-boto3-service-quotas (>=1.34.0,<1.35.0)", "mypy-boto3-servicecatalog (>=1.34.0,<1.35.0)", "mypy-boto3-servicecatalog-appregistry (>=1.34.0,<1.35.0)", "mypy-boto3-servicediscovery (>=1.34.0,<1.35.0)", "mypy-boto3-ses (>=1.34.0,<1.35.0)", "mypy-boto3-sesv2 (>=1.34.0,<1.35.0)", "mypy-boto3-shield (>=1.34.0,<1.35.0)", "mypy-boto3-signer (>=1.34.0,<1.35.0)", "mypy-boto3-simspaceweaver (>=1.34.0,<1.35.0)", "mypy-boto3-sms (>=1.34.0,<1.35.0)", "mypy-boto3-sms-voice (>=1.34.0,<1.35.0)", "mypy-boto3-snow-device-management (>=1.34.0,<1.35.0)", "mypy-boto3-snowball (>=1.34.0,<1.35.0)", "mypy-boto3-sns (>=1.34.0,<1.35.0)", "mypy-boto3-sqs (>=1.34.0,<1.35.0)", "mypy-boto3-ssm (>=1.34.0,<1.35.0)", "mypy-boto3-ssm-contacts (>=1.34.0,<1.35.0)", "mypy-boto3-ssm-incidents (>=1.34.0,<1.35.0)", "mypy-boto3-ssm-sap (>=1.34.0,<1.35.0)", "mypy-boto3-sso (>=1.34.0,<1.35.0)", "mypy-boto3-sso-admin (>=1.34.0,<1.35.0)", "mypy-boto3-sso-oidc (>=1.34.0,<1.35.0)", "mypy-boto3-stepfunctions (>=1.34.0,<1.35.0)", "mypy-boto3-storagegateway (>=1.34.0,<1.35.0)", "mypy-boto3-sts (>=1.34.0,<1.35.0)", "mypy-boto3-supplychain (>=1.34.0,<1.35.0)", "mypy-boto3-support (>=1.34.0,<1.35.0)", "mypy-boto3-support-app (>=1.34.0,<1.35.0)", "mypy-boto3-swf (>=1.34.0,<1.35.0)", "mypy-boto3-synthetics (>=1.34.0,<1.35.0)", "mypy-boto3-textract (>=1.34.0,<1.35.0)", "mypy-boto3-timestream-influxdb (>=1.34.0,<1.35.0)", "mypy-boto3-timestream-query (>=1.34.0,<1.35.0)", "mypy-boto3-timestream-write (>=1.34.0,<1.35.0)", "mypy-boto3-tnb (>=1.34.0,<1.35.0)", "mypy-boto3-transcribe (>=1.34.0,<1.35.0)", "mypy-boto3-transfer (>=1.34.0,<1.35.0)", "mypy-boto3-translate (>=1.34.0,<1.35.0)", "mypy-boto3-trustedadvisor (>=1.34.0,<1.35.0)", "mypy-boto3-verifiedpermissions (>=1.34.0,<1.35.0)", "mypy-boto3-voice-id (>=1.34.0,<1.35.0)", "mypy-boto3-vpc-lattice (>=1.34.0,<1.35.0)", "mypy-boto3-waf (>=1.34.0,<1.35.0)", "mypy-boto3-waf-regional (>=1.34.0,<1.35.0)", "mypy-boto3-wafv2 (>=1.34.0,<1.35.0)", "mypy-boto3-wellarchitected (>=1.34.0,<1.35.0)", "mypy-boto3-wisdom (>=1.34.0,<1.35.0)", "mypy-boto3-workdocs (>=1.34.0,<1.35.0)", "mypy-boto3-worklink (>=1.34.0,<1.35.0)", "mypy-boto3-workmail (>=1.34.0,<1.35.0)", "mypy-boto3-workmailmessageflow (>=1.34.0,<1.35.0)", "mypy-boto3-workspaces (>=1.34.0,<1.35.0)", "mypy-boto3-workspaces-thin-client (>=1.34.0,<1.35.0)", "mypy-boto3-workspaces-web (>=1.34.0,<1.35.0)", "mypy-boto3-xray (>=1.34.0,<1.35.0)"] amp = ["mypy-boto3-amp (>=1.34.0,<1.35.0)"] amplify = ["mypy-boto3-amplify (>=1.34.0,<1.35.0)"] amplifybackend = ["mypy-boto3-amplifybackend (>=1.34.0,<1.35.0)"] @@ -343,7 +402,7 @@ bedrock-agent = ["mypy-boto3-bedrock-agent (>=1.34.0,<1.35.0)"] bedrock-agent-runtime = ["mypy-boto3-bedrock-agent-runtime (>=1.34.0,<1.35.0)"] bedrock-runtime = ["mypy-boto3-bedrock-runtime (>=1.34.0,<1.35.0)"] billingconductor = ["mypy-boto3-billingconductor (>=1.34.0,<1.35.0)"] -boto3 = ["boto3 (==1.34.55)", "botocore (==1.34.55)"] +boto3 = ["boto3 (==1.34.86)", "botocore (==1.34.86)"] braket = ["mypy-boto3-braket (>=1.34.0,<1.35.0)"] budgets = ["mypy-boto3-budgets (>=1.34.0,<1.35.0)"] ce = ["mypy-boto3-ce (>=1.34.0,<1.35.0)"] @@ -373,6 +432,7 @@ codeartifact = ["mypy-boto3-codeartifact (>=1.34.0,<1.35.0)"] codebuild = ["mypy-boto3-codebuild (>=1.34.0,<1.35.0)"] codecatalyst = ["mypy-boto3-codecatalyst (>=1.34.0,<1.35.0)"] codecommit = ["mypy-boto3-codecommit (>=1.34.0,<1.35.0)"] +codeconnections = ["mypy-boto3-codeconnections (>=1.34.0,<1.35.0)"] codedeploy = ["mypy-boto3-codedeploy (>=1.34.0,<1.35.0)"] codeguru-reviewer = ["mypy-boto3-codeguru-reviewer (>=1.34.0,<1.35.0)"] codeguru-security = ["mypy-boto3-codeguru-security (>=1.34.0,<1.35.0)"] @@ -393,6 +453,7 @@ connect-contact-lens = ["mypy-boto3-connect-contact-lens (>=1.34.0,<1.35.0)"] connectcampaigns = ["mypy-boto3-connectcampaigns (>=1.34.0,<1.35.0)"] connectcases = ["mypy-boto3-connectcases (>=1.34.0,<1.35.0)"] connectparticipant = ["mypy-boto3-connectparticipant (>=1.34.0,<1.35.0)"] +controlcatalog = ["mypy-boto3-controlcatalog (>=1.34.0,<1.35.0)"] controltower = ["mypy-boto3-controltower (>=1.34.0,<1.35.0)"] cost-optimization-hub = ["mypy-boto3-cost-optimization-hub (>=1.34.0,<1.35.0)"] cur = ["mypy-boto3-cur (>=1.34.0,<1.35.0)"] @@ -403,6 +464,7 @@ datapipeline = ["mypy-boto3-datapipeline (>=1.34.0,<1.35.0)"] datasync = ["mypy-boto3-datasync (>=1.34.0,<1.35.0)"] datazone = ["mypy-boto3-datazone (>=1.34.0,<1.35.0)"] dax = ["mypy-boto3-dax (>=1.34.0,<1.35.0)"] +deadline = ["mypy-boto3-deadline (>=1.34.0,<1.35.0)"] detective = ["mypy-boto3-detective (>=1.34.0,<1.35.0)"] devicefarm = ["mypy-boto3-devicefarm (>=1.34.0,<1.35.0)"] devops-guru = ["mypy-boto3-devops-guru (>=1.34.0,<1.35.0)"] @@ -472,7 +534,6 @@ internetmonitor = ["mypy-boto3-internetmonitor (>=1.34.0,<1.35.0)"] iot = ["mypy-boto3-iot (>=1.34.0,<1.35.0)"] iot-data = ["mypy-boto3-iot-data (>=1.34.0,<1.35.0)"] iot-jobs-data = ["mypy-boto3-iot-jobs-data (>=1.34.0,<1.35.0)"] -iot-roborunner = ["mypy-boto3-iot-roborunner (>=1.34.0,<1.35.0)"] iot1click-devices = ["mypy-boto3-iot1click-devices (>=1.34.0,<1.35.0)"] iot1click-projects = ["mypy-boto3-iot1click-projects (>=1.34.0,<1.35.0)"] iotanalytics = ["mypy-boto3-iotanalytics (>=1.34.0,<1.35.0)"] @@ -660,6 +721,7 @@ support-app = ["mypy-boto3-support-app (>=1.34.0,<1.35.0)"] swf = ["mypy-boto3-swf (>=1.34.0,<1.35.0)"] synthetics = ["mypy-boto3-synthetics (>=1.34.0,<1.35.0)"] textract = ["mypy-boto3-textract (>=1.34.0,<1.35.0)"] +timestream-influxdb = ["mypy-boto3-timestream-influxdb (>=1.34.0,<1.35.0)"] timestream-query = ["mypy-boto3-timestream-query (>=1.34.0,<1.35.0)"] timestream-write = ["mypy-boto3-timestream-write (>=1.34.0,<1.35.0)"] tnb = ["mypy-boto3-tnb (>=1.34.0,<1.35.0)"] @@ -686,34 +748,34 @@ xray = ["mypy-boto3-xray (>=1.34.0,<1.35.0)"] [[package]] name = "botocore" -version = "1.34.55" +version = "1.34.86" description = "Low-level, data-driven core of boto 3." category = "main" optional = false -python-versions = ">= 3.8" +python-versions = ">=3.8" files = [ - {file = "botocore-1.34.55-py3-none-any.whl", hash = "sha256:07044c3cbfb86d0ecb9c56d887b8ad63a72eff0e4f6ab329cf335f1fd867ea0b"}, - {file = "botocore-1.34.55.tar.gz", hash = "sha256:bb333e3845bfe65600f36bf92d09668306e224fa9f4e4f87b77f6957192ae59f"}, + {file = "botocore-1.34.86-py3-none-any.whl", hash = "sha256:57c1e3b2e1db745d22c45cbd761bbc0c143d2cfc2b532e3245cf5d874aa30b6d"}, + {file = "botocore-1.34.86.tar.gz", hash = "sha256:2fd62b63d8788e15629bfc95be1bd2d99c0da6c1d45ef1f40c0a0101e412f6b5"}, ] [package.dependencies] jmespath = ">=0.7.1,<2.0.0" python-dateutil = ">=2.1,<3.0.0" -urllib3 = {version = ">=1.25.4,<2.1", markers = "python_version >= \"3.10\""} +urllib3 = {version = ">=1.25.4,<2.2.0 || >2.2.0,<3", markers = "python_version >= \"3.10\""} [package.extras] -crt = ["awscrt (==0.19.19)"] +crt = ["awscrt (==0.20.9)"] [[package]] name = "botocore-stubs" -version = "1.34.55" +version = "1.34.86" description = "Type annotations and code completion for botocore" category = "main" optional = false -python-versions = ">=3.8,<4.0" +python-versions = "<4.0,>=3.8" files = [ - {file = "botocore_stubs-1.34.55-py3-none-any.whl", hash = "sha256:99ce54567618a2c4287b3778a9c03c23f3db1e8a836b02da7d2119059a308b74"}, - {file = "botocore_stubs-1.34.55.tar.gz", hash = "sha256:8580108ea4772a4b03bf882880a2f63bba7667477d1708f06cc6524958993471"}, + {file = "botocore_stubs-1.34.86-py3-none-any.whl", hash = "sha256:24276781a437702c96e05cba01a808ef6d9c5d2df8f615e540cf2e55987fe7bf"}, + {file = "botocore_stubs-1.34.86.tar.gz", hash = "sha256:2e0d170d627454a1d8b685ef3f4eed8c0adf634f19e9c96f195ca3aef737a62e"}, ] [package.dependencies] @@ -811,6 +873,126 @@ files = [ {file = "cfgv-3.4.0.tar.gz", hash = "sha256:e52591d4c5f5dead8e0f673fb16db7949d2cfb3f7da4582893288f0ded8fe560"}, ] +[[package]] +name = "charset-normalizer" +version = "3.3.2" +description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." +category = "main" +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "charset-normalizer-3.3.2.tar.gz", hash = "sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-win32.whl", hash = "sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:802fe99cca7457642125a8a88a084cef28ff0cf9407060f7b93dca5aa25480db"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:573f6eac48f4769d667c4442081b1794f52919e7edada77495aaed9236d13a96"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:549a3a73da901d5bc3ce8d24e0600d1fa85524c10287f6004fbab87672bf3e1e"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f27273b60488abe721a075bcca6d7f3964f9f6f067c8c4c605743023d7d3944f"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ceae2f17a9c33cb48e3263960dc5fc8005351ee19db217e9b1bb15d28c02574"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65f6f63034100ead094b8744b3b97965785388f308a64cf8d7c34f2f2e5be0c4"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753f10e867343b4511128c6ed8c82f7bec3bd026875576dfd88483c5c73b2fd8"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a78b2b446bd7c934f5dcedc588903fb2f5eec172f3d29e52a9096a43722adfc"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e537484df0d8f426ce2afb2d0f8e1c3d0b114b83f8850e5f2fbea0e797bd82ae"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:eb6904c354526e758fda7167b33005998fb68c46fbc10e013ca97f21ca5c8887"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:deb6be0ac38ece9ba87dea880e438f25ca3eddfac8b002a2ec3d9183a454e8ae"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4ab2fe47fae9e0f9dee8c04187ce5d09f48eabe611be8259444906793ab7cbce"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:80402cd6ee291dcb72644d6eac93785fe2c8b9cb30893c1af5b8fdd753b9d40f"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-win32.whl", hash = "sha256:7cd13a2e3ddeed6913a65e66e94b51d80a041145a026c27e6bb76c31a853c6ab"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:663946639d296df6a2bb2aa51b60a2454ca1cb29835324c640dafb5ff2131a77"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-win32.whl", hash = "sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:95f2a5796329323b8f0512e09dbb7a1860c46a39da62ecb2324f116fa8fdc85c"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c002b4ffc0be611f0d9da932eb0f704fe2602a9a949d1f738e4c34c75b0863d5"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a981a536974bbc7a512cf44ed14938cf01030a99e9b3a06dd59578882f06f985"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3287761bc4ee9e33561a7e058c72ac0938c4f57fe49a09eae428fd88aafe7bb6"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42cb296636fcc8b0644486d15c12376cb9fa75443e00fb25de0b8602e64c1714"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a55554a2fa0d408816b3b5cedf0045f4b8e1a6065aec45849de2d6f3f8e9786"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c083af607d2515612056a31f0a8d9e0fcb5876b7bfc0abad3ecd275bc4ebc2d5"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:87d1351268731db79e0f8e745d92493ee2841c974128ef629dc518b937d9194c"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:bd8f7df7d12c2db9fab40bdd87a7c09b1530128315d047a086fa3ae3435cb3a8"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:c180f51afb394e165eafe4ac2936a14bee3eb10debc9d9e4db8958fe36afe711"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8c622a5fe39a48f78944a87d4fb8a53ee07344641b0562c540d840748571b811"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-win32.whl", hash = "sha256:db364eca23f876da6f9e16c9da0df51aa4f104a972735574842618b8c6d999d4"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:86216b5cee4b06df986d214f664305142d9c76df9b6512be2738aa72a2048f99"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6463effa3186ea09411d50efc7d85360b38d5f09b870c48e4600f63af490e56a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6c4caeef8fa63d06bd437cd4bdcf3ffefe6738fb1b25951440d80dc7df8c03ac"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:37e55c8e51c236f95b033f6fb391d7d7970ba5fe7ff453dad675e88cf303377a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb69256e180cb6c8a894fee62b3afebae785babc1ee98b81cdf68bbca1987f33"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae5f4161f18c61806f411a13b0310bea87f987c7d2ecdbdaad0e94eb2e404238"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b2b0a0c0517616b6869869f8c581d4eb2dd83a4d79e0ebcb7d373ef9956aeb0a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45485e01ff4d3630ec0d9617310448a8702f70e9c01906b0d0118bdf9d124cf2"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb00ed941194665c332bf8e078baf037d6c35d7c4f3102ea2d4f16ca94a26dc8"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:2127566c664442652f024c837091890cb1942c30937add288223dc895793f898"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a50aebfa173e157099939b17f18600f72f84eed3049e743b68ad15bd69b6bf99"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4d0d1650369165a14e14e1e47b372cfcb31d6ab44e6e33cb2d4e57265290044d"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:923c0c831b7cfcb071580d3f46c4baf50f174be571576556269530f4bbd79d04"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:06a81e93cd441c56a9b65d8e1d043daeb97a3d0856d177d5c90ba85acb3db087"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-win32.whl", hash = "sha256:6ef1d82a3af9d3eecdba2321dc1b3c238245d890843e040e41e470ffa64c3e25"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb8821e09e916165e160797a6c17edda0679379a4be5c716c260e836e122f54b"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c235ebd9baae02f1b77bcea61bce332cb4331dc3617d254df3323aa01ab47bd4"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5b4c145409bef602a690e7cfad0a15a55c13320ff7a3ad7ca59c13bb8ba4d45d"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:68d1f8a9e9e37c1223b656399be5d6b448dea850bed7d0f87a8311f1ff3dabb0"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22afcb9f253dac0696b5a4be4a1c0f8762f8239e21b99680099abd9b2b1b2269"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e27ad930a842b4c5eb8ac0016b0a54f5aebbe679340c26101df33424142c143c"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1f79682fbe303db92bc2b1136016a38a42e835d932bab5b3b1bfcfbf0640e519"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b261ccdec7821281dade748d088bb6e9b69e6d15b30652b74cbbac25e280b796"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:122c7fa62b130ed55f8f285bfd56d5f4b4a5b503609d181f9ad85e55c89f4185"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d0eccceffcb53201b5bfebb52600a5fb483a20b61da9dbc885f8b103cbe7598c"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f96df6923e21816da7e0ad3fd47dd8f94b2a5ce594e00677c0013018b813458"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:7f04c839ed0b6b98b1a7501a002144b76c18fb1c1850c8b98d458ac269e26ed2"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:34d1c8da1e78d2e001f363791c98a272bb734000fcef47a491c1e3b0505657a8"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ff8fa367d09b717b2a17a052544193ad76cd49979c805768879cb63d9ca50561"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-win32.whl", hash = "sha256:aed38f6e4fb3f5d6bf81bfa990a07806be9d83cf7bacef998ab1a9bd660a581f"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:b01b88d45a6fcb69667cd6d2f7a9aeb4bf53760d7fc536bf679ec94fe9f3ff3d"}, + {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"}, +] + +[[package]] +name = "clean-fid" +version = "0.1.35" +description = "FID calculation in PyTorch with proper image resizing and quantization steps" +category = "main" +optional = false +python-versions = "*" +files = [ + {file = "clean_fid-0.1.35-py3-none-any.whl", hash = "sha256:757cf49d75debe9b07ab14955fe59c845a296deaf0616153b40c5e75b3cf87fb"}, +] + +[package.dependencies] +numpy = ">=1.14.3" +pillow = ">=8.1" +requests = "*" +scipy = ">=1.0.1" +torch = "*" +torchvision = "*" +tqdm = ">=4.28.1" + [[package]] name = "click" version = "8.1.7" @@ -858,14 +1040,14 @@ cron = ["capturer (>=2.4)"] [[package]] name = "comm" -version = "0.2.1" +version = "0.2.2" description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." -category = "dev" +category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "comm-0.2.1-py3-none-any.whl", hash = "sha256:87928485c0dfc0e7976fd89fc1e187023cf587e7c353e4a9b417555b44adf021"}, - {file = "comm-0.2.1.tar.gz", hash = "sha256:0bc91edae1344d39d3661dcbc36937181fdaddb304790458f8b044dbc064b89a"}, + {file = "comm-0.2.2-py3-none-any.whl", hash = "sha256:e6fb86cb70ff661ee8c9c14e7d36d6de3b4066f1441be4063df9c5009f0a64d3"}, + {file = "comm-0.2.2.tar.gz", hash = "sha256:3fd7a84065306e07bea1773df6eb8282de51ba82f77c72f9c85716ab11fe980e"}, ] [package.dependencies] @@ -876,128 +1058,128 @@ test = ["pytest"] [[package]] name = "contourpy" -version = "1.2.0" +version = "1.2.1" description = "Python library for calculating contours of 2D quadrilateral grids" category = "main" optional = false python-versions = ">=3.9" files = [ - {file = "contourpy-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0274c1cb63625972c0c007ab14dd9ba9e199c36ae1a231ce45d725cbcbfd10a8"}, - {file = "contourpy-1.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ab459a1cbbf18e8698399c595a01f6dcc5c138220ca3ea9e7e6126232d102bb4"}, - {file = "contourpy-1.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6fdd887f17c2f4572ce548461e4f96396681212d858cae7bd52ba3310bc6f00f"}, - {file = "contourpy-1.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5d16edfc3fc09968e09ddffada434b3bf989bf4911535e04eada58469873e28e"}, - {file = "contourpy-1.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1c203f617abc0dde5792beb586f827021069fb6d403d7f4d5c2b543d87edceb9"}, - {file = "contourpy-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b69303ceb2e4d4f146bf82fda78891ef7bcd80c41bf16bfca3d0d7eb545448aa"}, - {file = "contourpy-1.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:884c3f9d42d7218304bc74a8a7693d172685c84bd7ab2bab1ee567b769696df9"}, - {file = "contourpy-1.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4a1b1208102be6e851f20066bf0e7a96b7d48a07c9b0cfe6d0d4545c2f6cadab"}, - {file = "contourpy-1.2.0-cp310-cp310-win32.whl", hash = "sha256:34b9071c040d6fe45d9826cbbe3727d20d83f1b6110d219b83eb0e2a01d79488"}, - {file = "contourpy-1.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:bd2f1ae63998da104f16a8b788f685e55d65760cd1929518fd94cd682bf03e41"}, - {file = "contourpy-1.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:dd10c26b4eadae44783c45ad6655220426f971c61d9b239e6f7b16d5cdaaa727"}, - {file = "contourpy-1.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5c6b28956b7b232ae801406e529ad7b350d3f09a4fde958dfdf3c0520cdde0dd"}, - {file = "contourpy-1.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ebeac59e9e1eb4b84940d076d9f9a6cec0064e241818bcb6e32124cc5c3e377a"}, - {file = "contourpy-1.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:139d8d2e1c1dd52d78682f505e980f592ba53c9f73bd6be102233e358b401063"}, - {file = "contourpy-1.2.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1e9dc350fb4c58adc64df3e0703ab076f60aac06e67d48b3848c23647ae4310e"}, - {file = "contourpy-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18fc2b4ed8e4a8fe849d18dce4bd3c7ea637758c6343a1f2bae1e9bd4c9f4686"}, - {file = "contourpy-1.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:16a7380e943a6d52472096cb7ad5264ecee36ed60888e2a3d3814991a0107286"}, - {file = "contourpy-1.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:8d8faf05be5ec8e02a4d86f616fc2a0322ff4a4ce26c0f09d9f7fb5330a35c95"}, - {file = "contourpy-1.2.0-cp311-cp311-win32.whl", hash = "sha256:67b7f17679fa62ec82b7e3e611c43a016b887bd64fb933b3ae8638583006c6d6"}, - {file = "contourpy-1.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:99ad97258985328b4f207a5e777c1b44a83bfe7cf1f87b99f9c11d4ee477c4de"}, - {file = "contourpy-1.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:575bcaf957a25d1194903a10bc9f316c136c19f24e0985a2b9b5608bdf5dbfe0"}, - {file = "contourpy-1.2.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9e6c93b5b2dbcedad20a2f18ec22cae47da0d705d454308063421a3b290d9ea4"}, - {file = "contourpy-1.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:464b423bc2a009088f19bdf1f232299e8b6917963e2b7e1d277da5041f33a779"}, - {file = "contourpy-1.2.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:68ce4788b7d93e47f84edd3f1f95acdcd142ae60bc0e5493bfd120683d2d4316"}, - {file = "contourpy-1.2.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3d7d1f8871998cdff5d2ff6a087e5e1780139abe2838e85b0b46b7ae6cc25399"}, - {file = "contourpy-1.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6e739530c662a8d6d42c37c2ed52a6f0932c2d4a3e8c1f90692ad0ce1274abe0"}, - {file = "contourpy-1.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:247b9d16535acaa766d03037d8e8fb20866d054d3c7fbf6fd1f993f11fc60ca0"}, - {file = "contourpy-1.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:461e3ae84cd90b30f8d533f07d87c00379644205b1d33a5ea03381edc4b69431"}, - {file = "contourpy-1.2.0-cp312-cp312-win32.whl", hash = "sha256:1c2559d6cffc94890b0529ea7eeecc20d6fadc1539273aa27faf503eb4656d8f"}, - {file = "contourpy-1.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:491b1917afdd8638a05b611a56d46587d5a632cabead889a5440f7c638bc6ed9"}, - {file = "contourpy-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5fd1810973a375ca0e097dee059c407913ba35723b111df75671a1976efa04bc"}, - {file = "contourpy-1.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:999c71939aad2780f003979b25ac5b8f2df651dac7b38fb8ce6c46ba5abe6ae9"}, - {file = "contourpy-1.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b7caf9b241464c404613512d5594a6e2ff0cc9cb5615c9475cc1d9b514218ae8"}, - {file = "contourpy-1.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:266270c6f6608340f6c9836a0fb9b367be61dde0c9a9a18d5ece97774105ff3e"}, - {file = "contourpy-1.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dbd50d0a0539ae2e96e537553aff6d02c10ed165ef40c65b0e27e744a0f10af8"}, - {file = "contourpy-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:11f8d2554e52f459918f7b8e6aa20ec2a3bce35ce95c1f0ef4ba36fbda306df5"}, - {file = "contourpy-1.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ce96dd400486e80ac7d195b2d800b03e3e6a787e2a522bfb83755938465a819e"}, - {file = "contourpy-1.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6d3364b999c62f539cd403f8123ae426da946e142312a514162adb2addd8d808"}, - {file = "contourpy-1.2.0-cp39-cp39-win32.whl", hash = "sha256:1c88dfb9e0c77612febebb6ac69d44a8d81e3dc60f993215425b62c1161353f4"}, - {file = "contourpy-1.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:78e6ad33cf2e2e80c5dfaaa0beec3d61face0fb650557100ee36db808bfa6843"}, - {file = "contourpy-1.2.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:be16975d94c320432657ad2402f6760990cb640c161ae6da1363051805fa8108"}, - {file = "contourpy-1.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b95a225d4948b26a28c08307a60ac00fb8671b14f2047fc5476613252a129776"}, - {file = "contourpy-1.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:0d7e03c0f9a4f90dc18d4e77e9ef4ec7b7bbb437f7f675be8e530d65ae6ef956"}, - {file = "contourpy-1.2.0.tar.gz", hash = "sha256:171f311cb758de7da13fc53af221ae47a5877be5a0843a9fe150818c51ed276a"}, + {file = "contourpy-1.2.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bd7c23df857d488f418439686d3b10ae2fbf9bc256cd045b37a8c16575ea1040"}, + {file = "contourpy-1.2.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5b9eb0ca724a241683c9685a484da9d35c872fd42756574a7cfbf58af26677fd"}, + {file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4c75507d0a55378240f781599c30e7776674dbaf883a46d1c90f37e563453480"}, + {file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:11959f0ce4a6f7b76ec578576a0b61a28bdc0696194b6347ba3f1c53827178b9"}, + {file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:eb3315a8a236ee19b6df481fc5f997436e8ade24a9f03dfdc6bd490fea20c6da"}, + {file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39f3ecaf76cd98e802f094e0d4fbc6dc9c45a8d0c4d185f0f6c2234e14e5f75b"}, + {file = "contourpy-1.2.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:94b34f32646ca0414237168d68a9157cb3889f06b096612afdd296003fdd32fd"}, + {file = "contourpy-1.2.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:457499c79fa84593f22454bbd27670227874cd2ff5d6c84e60575c8b50a69619"}, + {file = "contourpy-1.2.1-cp310-cp310-win32.whl", hash = "sha256:ac58bdee53cbeba2ecad824fa8159493f0bf3b8ea4e93feb06c9a465d6c87da8"}, + {file = "contourpy-1.2.1-cp310-cp310-win_amd64.whl", hash = "sha256:9cffe0f850e89d7c0012a1fb8730f75edd4320a0a731ed0c183904fe6ecfc3a9"}, + {file = "contourpy-1.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6022cecf8f44e36af10bd9118ca71f371078b4c168b6e0fab43d4a889985dbb5"}, + {file = "contourpy-1.2.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ef5adb9a3b1d0c645ff694f9bca7702ec2c70f4d734f9922ea34de02294fdf72"}, + {file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6150ffa5c767bc6332df27157d95442c379b7dce3a38dff89c0f39b63275696f"}, + {file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4c863140fafc615c14a4bf4efd0f4425c02230eb8ef02784c9a156461e62c965"}, + {file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:00e5388f71c1a0610e6fe56b5c44ab7ba14165cdd6d695429c5cd94021e390b2"}, + {file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d4492d82b3bc7fbb7e3610747b159869468079fe149ec5c4d771fa1f614a14df"}, + {file = "contourpy-1.2.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:49e70d111fee47284d9dd867c9bb9a7058a3c617274900780c43e38d90fe1205"}, + {file = "contourpy-1.2.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:b59c0ffceff8d4d3996a45f2bb6f4c207f94684a96bf3d9728dbb77428dd8cb8"}, + {file = "contourpy-1.2.1-cp311-cp311-win32.whl", hash = "sha256:7b4182299f251060996af5249c286bae9361fa8c6a9cda5efc29fe8bfd6062ec"}, + {file = "contourpy-1.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:2855c8b0b55958265e8b5888d6a615ba02883b225f2227461aa9127c578a4922"}, + {file = "contourpy-1.2.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:62828cada4a2b850dbef89c81f5a33741898b305db244904de418cc957ff05dc"}, + {file = "contourpy-1.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:309be79c0a354afff9ff7da4aaed7c3257e77edf6c1b448a779329431ee79d7e"}, + {file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e785e0f2ef0d567099b9ff92cbfb958d71c2d5b9259981cd9bee81bd194c9a4"}, + {file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1cac0a8f71a041aa587410424ad46dfa6a11f6149ceb219ce7dd48f6b02b87a7"}, + {file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:af3f4485884750dddd9c25cb7e3915d83c2db92488b38ccb77dd594eac84c4a0"}, + {file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ce6889abac9a42afd07a562c2d6d4b2b7134f83f18571d859b25624a331c90b"}, + {file = "contourpy-1.2.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:a1eea9aecf761c661d096d39ed9026574de8adb2ae1c5bd7b33558af884fb2ce"}, + {file = "contourpy-1.2.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:187fa1d4c6acc06adb0fae5544c59898ad781409e61a926ac7e84b8f276dcef4"}, + {file = "contourpy-1.2.1-cp312-cp312-win32.whl", hash = "sha256:c2528d60e398c7c4c799d56f907664673a807635b857df18f7ae64d3e6ce2d9f"}, + {file = "contourpy-1.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:1a07fc092a4088ee952ddae19a2b2a85757b923217b7eed584fdf25f53a6e7ce"}, + {file = "contourpy-1.2.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bb6834cbd983b19f06908b45bfc2dad6ac9479ae04abe923a275b5f48f1a186b"}, + {file = "contourpy-1.2.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1d59e739ab0e3520e62a26c60707cc3ab0365d2f8fecea74bfe4de72dc56388f"}, + {file = "contourpy-1.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bd3db01f59fdcbce5b22afad19e390260d6d0222f35a1023d9adc5690a889364"}, + {file = "contourpy-1.2.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a12a813949e5066148712a0626895c26b2578874e4cc63160bb007e6df3436fe"}, + {file = "contourpy-1.2.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fe0ccca550bb8e5abc22f530ec0466136379c01321fd94f30a22231e8a48d985"}, + {file = "contourpy-1.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1d59258c3c67c865435d8fbeb35f8c59b8bef3d6f46c1f29f6123556af28445"}, + {file = "contourpy-1.2.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:f32c38afb74bd98ce26de7cc74a67b40afb7b05aae7b42924ea990d51e4dac02"}, + {file = "contourpy-1.2.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d31a63bc6e6d87f77d71e1abbd7387ab817a66733734883d1fc0021ed9bfa083"}, + {file = "contourpy-1.2.1-cp39-cp39-win32.whl", hash = "sha256:ddcb8581510311e13421b1f544403c16e901c4e8f09083c881fab2be80ee31ba"}, + {file = "contourpy-1.2.1-cp39-cp39-win_amd64.whl", hash = "sha256:10a37ae557aabf2509c79715cd20b62e4c7c28b8cd62dd7d99e5ed3ce28c3fd9"}, + {file = "contourpy-1.2.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a31f94983fecbac95e58388210427d68cd30fe8a36927980fab9c20062645609"}, + {file = "contourpy-1.2.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef2b055471c0eb466033760a521efb9d8a32b99ab907fc8358481a1dd29e3bd3"}, + {file = "contourpy-1.2.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:b33d2bc4f69caedcd0a275329eb2198f560b325605810895627be5d4b876bf7f"}, + {file = "contourpy-1.2.1.tar.gz", hash = "sha256:4d8908b3bee1c889e547867ca4cdc54e5ab6be6d3e078556814a22457f49423c"}, ] [package.dependencies] -numpy = ">=1.20,<2.0" +numpy = ">=1.20" [package.extras] bokeh = ["bokeh", "selenium"] docs = ["furo", "sphinx (>=7.2)", "sphinx-copybutton"] -mypy = ["contourpy[bokeh,docs]", "docutils-stubs", "mypy (==1.6.1)", "types-Pillow"] +mypy = ["contourpy[bokeh,docs]", "docutils-stubs", "mypy (==1.8.0)", "types-Pillow"] test = ["Pillow", "contourpy[test-no-images]", "matplotlib"] test-no-images = ["pytest", "pytest-cov", "pytest-xdist", "wurlitzer"] [[package]] name = "coverage" -version = "7.4.3" +version = "7.4.4" description = "Code coverage measurement for Python" category = "dev" optional = false python-versions = ">=3.8" files = [ - {file = "coverage-7.4.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8580b827d4746d47294c0e0b92854c85a92c2227927433998f0d3320ae8a71b6"}, - {file = "coverage-7.4.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:718187eeb9849fc6cc23e0d9b092bc2348821c5e1a901c9f8975df0bc785bfd4"}, - {file = "coverage-7.4.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:767b35c3a246bcb55b8044fd3a43b8cd553dd1f9f2c1eeb87a302b1f8daa0524"}, - {file = "coverage-7.4.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ae7f19afe0cce50039e2c782bff379c7e347cba335429678450b8fe81c4ef96d"}, - {file = "coverage-7.4.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba3a8aaed13770e970b3df46980cb068d1c24af1a1968b7818b69af8c4347efb"}, - {file = "coverage-7.4.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:ee866acc0861caebb4f2ab79f0b94dbfbdbfadc19f82e6e9c93930f74e11d7a0"}, - {file = "coverage-7.4.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:506edb1dd49e13a2d4cac6a5173317b82a23c9d6e8df63efb4f0380de0fbccbc"}, - {file = "coverage-7.4.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fd6545d97c98a192c5ac995d21c894b581f1fd14cf389be90724d21808b657e2"}, - {file = "coverage-7.4.3-cp310-cp310-win32.whl", hash = "sha256:f6a09b360d67e589236a44f0c39218a8efba2593b6abdccc300a8862cffc2f94"}, - {file = "coverage-7.4.3-cp310-cp310-win_amd64.whl", hash = "sha256:18d90523ce7553dd0b7e23cbb28865db23cddfd683a38fb224115f7826de78d0"}, - {file = "coverage-7.4.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cbbe5e739d45a52f3200a771c6d2c7acf89eb2524890a4a3aa1a7fa0695d2a47"}, - {file = "coverage-7.4.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:489763b2d037b164846ebac0cbd368b8a4ca56385c4090807ff9fad817de4113"}, - {file = "coverage-7.4.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:451f433ad901b3bb00184d83fd83d135fb682d780b38af7944c9faeecb1e0bfe"}, - {file = "coverage-7.4.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fcc66e222cf4c719fe7722a403888b1f5e1682d1679bd780e2b26c18bb648cdc"}, - {file = "coverage-7.4.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b3ec74cfef2d985e145baae90d9b1b32f85e1741b04cd967aaf9cfa84c1334f3"}, - {file = "coverage-7.4.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:abbbd8093c5229c72d4c2926afaee0e6e3140de69d5dcd918b2921f2f0c8baba"}, - {file = "coverage-7.4.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:35eb581efdacf7b7422af677b92170da4ef34500467381e805944a3201df2079"}, - {file = "coverage-7.4.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:8249b1c7334be8f8c3abcaaa996e1e4927b0e5a23b65f5bf6cfe3180d8ca7840"}, - {file = "coverage-7.4.3-cp311-cp311-win32.whl", hash = "sha256:cf30900aa1ba595312ae41978b95e256e419d8a823af79ce670835409fc02ad3"}, - {file = "coverage-7.4.3-cp311-cp311-win_amd64.whl", hash = "sha256:18c7320695c949de11a351742ee001849912fd57e62a706d83dfc1581897fa2e"}, - {file = "coverage-7.4.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b51bfc348925e92a9bd9b2e48dad13431b57011fd1038f08316e6bf1df107d10"}, - {file = "coverage-7.4.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d6cdecaedea1ea9e033d8adf6a0ab11107b49571bbb9737175444cea6eb72328"}, - {file = "coverage-7.4.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3b2eccb883368f9e972e216c7b4c7c06cabda925b5f06dde0650281cb7666a30"}, - {file = "coverage-7.4.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6c00cdc8fa4e50e1cc1f941a7f2e3e0f26cb2a1233c9696f26963ff58445bac7"}, - {file = "coverage-7.4.3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b9a4a8dd3dcf4cbd3165737358e4d7dfbd9d59902ad11e3b15eebb6393b0446e"}, - {file = "coverage-7.4.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:062b0a75d9261e2f9c6d071753f7eef0fc9caf3a2c82d36d76667ba7b6470003"}, - {file = "coverage-7.4.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:ebe7c9e67a2d15fa97b77ea6571ce5e1e1f6b0db71d1d5e96f8d2bf134303c1d"}, - {file = "coverage-7.4.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:c0a120238dd71c68484f02562f6d446d736adcc6ca0993712289b102705a9a3a"}, - {file = "coverage-7.4.3-cp312-cp312-win32.whl", hash = "sha256:37389611ba54fd6d278fde86eb2c013c8e50232e38f5c68235d09d0a3f8aa352"}, - {file = "coverage-7.4.3-cp312-cp312-win_amd64.whl", hash = "sha256:d25b937a5d9ffa857d41be042b4238dd61db888533b53bc76dc082cb5a15e914"}, - {file = "coverage-7.4.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:28ca2098939eabab044ad68850aac8f8db6bf0b29bc7f2887d05889b17346454"}, - {file = "coverage-7.4.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:280459f0a03cecbe8800786cdc23067a8fc64c0bd51dc614008d9c36e1659d7e"}, - {file = "coverage-7.4.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6c0cdedd3500e0511eac1517bf560149764b7d8e65cb800d8bf1c63ebf39edd2"}, - {file = "coverage-7.4.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9a9babb9466fe1da12417a4aed923e90124a534736de6201794a3aea9d98484e"}, - {file = "coverage-7.4.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dec9de46a33cf2dd87a5254af095a409ea3bf952d85ad339751e7de6d962cde6"}, - {file = "coverage-7.4.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:16bae383a9cc5abab9bb05c10a3e5a52e0a788325dc9ba8499e821885928968c"}, - {file = "coverage-7.4.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:2c854ce44e1ee31bda4e318af1dbcfc929026d12c5ed030095ad98197eeeaed0"}, - {file = "coverage-7.4.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:ce8c50520f57ec57aa21a63ea4f325c7b657386b3f02ccaedeccf9ebe27686e1"}, - {file = "coverage-7.4.3-cp38-cp38-win32.whl", hash = "sha256:708a3369dcf055c00ddeeaa2b20f0dd1ce664eeabde6623e516c5228b753654f"}, - {file = "coverage-7.4.3-cp38-cp38-win_amd64.whl", hash = "sha256:1bf25fbca0c8d121a3e92a2a0555c7e5bc981aee5c3fdaf4bb7809f410f696b9"}, - {file = "coverage-7.4.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3b253094dbe1b431d3a4ac2f053b6d7ede2664ac559705a704f621742e034f1f"}, - {file = "coverage-7.4.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:77fbfc5720cceac9c200054b9fab50cb2a7d79660609200ab83f5db96162d20c"}, - {file = "coverage-7.4.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6679060424faa9c11808598504c3ab472de4531c571ab2befa32f4971835788e"}, - {file = "coverage-7.4.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4af154d617c875b52651dd8dd17a31270c495082f3d55f6128e7629658d63765"}, - {file = "coverage-7.4.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8640f1fde5e1b8e3439fe482cdc2b0bb6c329f4bb161927c28d2e8879c6029ee"}, - {file = "coverage-7.4.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:69b9f6f66c0af29642e73a520b6fed25ff9fd69a25975ebe6acb297234eda501"}, - {file = "coverage-7.4.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:0842571634f39016a6c03e9d4aba502be652a6e4455fadb73cd3a3a49173e38f"}, - {file = "coverage-7.4.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a78ed23b08e8ab524551f52953a8a05d61c3a760781762aac49f8de6eede8c45"}, - {file = "coverage-7.4.3-cp39-cp39-win32.whl", hash = "sha256:c0524de3ff096e15fcbfe8f056fdb4ea0bf497d584454f344d59fce069d3e6e9"}, - {file = "coverage-7.4.3-cp39-cp39-win_amd64.whl", hash = "sha256:0209a6369ccce576b43bb227dc8322d8ef9e323d089c6f3f26a597b09cb4d2aa"}, - {file = "coverage-7.4.3-pp38.pp39.pp310-none-any.whl", hash = "sha256:7cbde573904625509a3f37b6fecea974e363460b556a627c60dc2f47e2fffa51"}, - {file = "coverage-7.4.3.tar.gz", hash = "sha256:276f6077a5c61447a48d133ed13e759c09e62aff0dc84274a68dc18660104d52"}, + {file = "coverage-7.4.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e0be5efd5127542ef31f165de269f77560d6cdef525fffa446de6f7e9186cfb2"}, + {file = "coverage-7.4.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ccd341521be3d1b3daeb41960ae94a5e87abe2f46f17224ba5d6f2b8398016cf"}, + {file = "coverage-7.4.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:09fa497a8ab37784fbb20ab699c246053ac294d13fc7eb40ec007a5043ec91f8"}, + {file = "coverage-7.4.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b1a93009cb80730c9bca5d6d4665494b725b6e8e157c1cb7f2db5b4b122ea562"}, + {file = "coverage-7.4.4-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:690db6517f09336559dc0b5f55342df62370a48f5469fabf502db2c6d1cffcd2"}, + {file = "coverage-7.4.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:09c3255458533cb76ef55da8cc49ffab9e33f083739c8bd4f58e79fecfe288f7"}, + {file = "coverage-7.4.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:8ce1415194b4a6bd0cdcc3a1dfbf58b63f910dcb7330fe15bdff542c56949f87"}, + {file = "coverage-7.4.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b91cbc4b195444e7e258ba27ac33769c41b94967919f10037e6355e998af255c"}, + {file = "coverage-7.4.4-cp310-cp310-win32.whl", hash = "sha256:598825b51b81c808cb6f078dcb972f96af96b078faa47af7dfcdf282835baa8d"}, + {file = "coverage-7.4.4-cp310-cp310-win_amd64.whl", hash = "sha256:09ef9199ed6653989ebbcaacc9b62b514bb63ea2f90256e71fea3ed74bd8ff6f"}, + {file = "coverage-7.4.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0f9f50e7ef2a71e2fae92774c99170eb8304e3fdf9c8c3c7ae9bab3e7229c5cf"}, + {file = "coverage-7.4.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:623512f8ba53c422fcfb2ce68362c97945095b864cda94a92edbaf5994201083"}, + {file = "coverage-7.4.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0513b9508b93da4e1716744ef6ebc507aff016ba115ffe8ecff744d1322a7b63"}, + {file = "coverage-7.4.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:40209e141059b9370a2657c9b15607815359ab3ef9918f0196b6fccce8d3230f"}, + {file = "coverage-7.4.4-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8a2b2b78c78293782fd3767d53e6474582f62443d0504b1554370bde86cc8227"}, + {file = "coverage-7.4.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:73bfb9c09951125d06ee473bed216e2c3742f530fc5acc1383883125de76d9cd"}, + {file = "coverage-7.4.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:1f384c3cc76aeedce208643697fb3e8437604b512255de6d18dae3f27655a384"}, + {file = "coverage-7.4.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:54eb8d1bf7cacfbf2a3186019bcf01d11c666bd495ed18717162f7eb1e9dd00b"}, + {file = "coverage-7.4.4-cp311-cp311-win32.whl", hash = "sha256:cac99918c7bba15302a2d81f0312c08054a3359eaa1929c7e4b26ebe41e9b286"}, + {file = "coverage-7.4.4-cp311-cp311-win_amd64.whl", hash = "sha256:b14706df8b2de49869ae03a5ccbc211f4041750cd4a66f698df89d44f4bd30ec"}, + {file = "coverage-7.4.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:201bef2eea65e0e9c56343115ba3814e896afe6d36ffd37bab783261db430f76"}, + {file = "coverage-7.4.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:41c9c5f3de16b903b610d09650e5e27adbfa7f500302718c9ffd1c12cf9d6818"}, + {file = "coverage-7.4.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d898fe162d26929b5960e4e138651f7427048e72c853607f2b200909794ed978"}, + {file = "coverage-7.4.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3ea79bb50e805cd6ac058dfa3b5c8f6c040cb87fe83de10845857f5535d1db70"}, + {file = "coverage-7.4.4-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce4b94265ca988c3f8e479e741693d143026632672e3ff924f25fab50518dd51"}, + {file = "coverage-7.4.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:00838a35b882694afda09f85e469c96367daa3f3f2b097d846a7216993d37f4c"}, + {file = "coverage-7.4.4-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:fdfafb32984684eb03c2d83e1e51f64f0906b11e64482df3c5db936ce3839d48"}, + {file = "coverage-7.4.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:69eb372f7e2ece89f14751fbcbe470295d73ed41ecd37ca36ed2eb47512a6ab9"}, + {file = "coverage-7.4.4-cp312-cp312-win32.whl", hash = "sha256:137eb07173141545e07403cca94ab625cc1cc6bc4c1e97b6e3846270e7e1fea0"}, + {file = "coverage-7.4.4-cp312-cp312-win_amd64.whl", hash = "sha256:d71eec7d83298f1af3326ce0ff1d0ea83c7cb98f72b577097f9083b20bdaf05e"}, + {file = "coverage-7.4.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d5ae728ff3b5401cc320d792866987e7e7e880e6ebd24433b70a33b643bb0384"}, + {file = "coverage-7.4.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cc4f1358cb0c78edef3ed237ef2c86056206bb8d9140e73b6b89fbcfcbdd40e1"}, + {file = "coverage-7.4.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8130a2aa2acb8788e0b56938786c33c7c98562697bf9f4c7d6e8e5e3a0501e4a"}, + {file = "coverage-7.4.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cf271892d13e43bc2b51e6908ec9a6a5094a4df1d8af0bfc360088ee6c684409"}, + {file = "coverage-7.4.4-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a4cdc86d54b5da0df6d3d3a2f0b710949286094c3a6700c21e9015932b81447e"}, + {file = "coverage-7.4.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:ae71e7ddb7a413dd60052e90528f2f65270aad4b509563af6d03d53e979feafd"}, + {file = "coverage-7.4.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:38dd60d7bf242c4ed5b38e094baf6401faa114fc09e9e6632374388a404f98e7"}, + {file = "coverage-7.4.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa5b1c1bfc28384f1f53b69a023d789f72b2e0ab1b3787aae16992a7ca21056c"}, + {file = "coverage-7.4.4-cp38-cp38-win32.whl", hash = "sha256:dfa8fe35a0bb90382837b238fff375de15f0dcdb9ae68ff85f7a63649c98527e"}, + {file = "coverage-7.4.4-cp38-cp38-win_amd64.whl", hash = "sha256:b2991665420a803495e0b90a79233c1433d6ed77ef282e8e152a324bbbc5e0c8"}, + {file = "coverage-7.4.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3b799445b9f7ee8bf299cfaed6f5b226c0037b74886a4e11515e569b36fe310d"}, + {file = "coverage-7.4.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b4d33f418f46362995f1e9d4f3a35a1b6322cb959c31d88ae56b0298e1c22357"}, + {file = "coverage-7.4.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aadacf9a2f407a4688d700e4ebab33a7e2e408f2ca04dbf4aef17585389eff3e"}, + {file = "coverage-7.4.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7c95949560050d04d46b919301826525597f07b33beba6187d04fa64d47ac82e"}, + {file = "coverage-7.4.4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff7687ca3d7028d8a5f0ebae95a6e4827c5616b31a4ee1192bdfde697db110d4"}, + {file = "coverage-7.4.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:5fc1de20b2d4a061b3df27ab9b7c7111e9a710f10dc2b84d33a4ab25065994ec"}, + {file = "coverage-7.4.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:c74880fc64d4958159fbd537a091d2a585448a8f8508bf248d72112723974cbd"}, + {file = "coverage-7.4.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:742a76a12aa45b44d236815d282b03cfb1de3b4323f3e4ec933acfae08e54ade"}, + {file = "coverage-7.4.4-cp39-cp39-win32.whl", hash = "sha256:d89d7b2974cae412400e88f35d86af72208e1ede1a541954af5d944a8ba46c57"}, + {file = "coverage-7.4.4-cp39-cp39-win_amd64.whl", hash = "sha256:9ca28a302acb19b6af89e90f33ee3e1906961f94b54ea37de6737b7ca9d8827c"}, + {file = "coverage-7.4.4-pp38.pp39.pp310-none-any.whl", hash = "sha256:b2c5edc4ac10a7ef6605a966c58929ec6c1bd0917fb8c15cb3363f65aa40e677"}, + {file = "coverage-7.4.4.tar.gz", hash = "sha256:c901df83d097649e257e803be22592aedfd5182f07b3cc87d640bbb9afd50f49"}, ] [package.extras] @@ -1023,7 +1205,7 @@ tests = ["pytest", "pytest-cov", "pytest-xdist"] name = "debugpy" version = "1.8.1" description = "An implementation of the Debug Adapter Protocol for Python" -category = "dev" +category = "main" optional = false python-versions = ">=3.8" files = [ @@ -1055,7 +1237,7 @@ files = [ name = "decorator" version = "5.1.1" description = "Decorators for Humans" -category = "dev" +category = "main" optional = false python-versions = ">=3.5" files = [ @@ -1105,7 +1287,7 @@ test = ["pytest (>=6)"] name = "executing" version = "2.0.1" description = "Get the currently executing AST node of a frame, and other information" -category = "dev" +category = "main" optional = false python-versions = ">=3.5" files = [ @@ -1118,19 +1300,19 @@ tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipyth [[package]] name = "filelock" -version = "3.13.1" +version = "3.13.4" description = "A platform independent file lock." category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "filelock-3.13.1-py3-none-any.whl", hash = "sha256:57dbda9b35157b05fb3e58ee91448612eb674172fab98ee235ccb0b5bee19a1c"}, - {file = "filelock-3.13.1.tar.gz", hash = "sha256:521f5f56c50f8426f5e03ad3b281b490a87ef15bc6c526f168290f0c7148d44e"}, + {file = "filelock-3.13.4-py3-none-any.whl", hash = "sha256:404e5e9253aa60ad457cae1be07c0f0ca90a63931200a47d9b6a6af84fd7b45f"}, + {file = "filelock-3.13.4.tar.gz", hash = "sha256:d13f466618bfde72bd2c18255e269f72542c6e70e7bac83a0232d6b1cc5c8cf4"}, ] [package.extras] -docs = ["furo (>=2023.9.10)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.24)"] -testing = ["covdefaults (>=2.3)", "coverage (>=7.3.2)", "diff-cover (>=8)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)", "pytest-timeout (>=2.2)"] +docs = ["furo (>=2023.9.10)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] +testing = ["covdefaults (>=2.3)", "coverage (>=7.3.2)", "diff-cover (>=8.0.1)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)", "pytest-timeout (>=2.2)"] typing = ["typing-extensions (>=4.8)"] [[package]] @@ -1152,66 +1334,66 @@ pyflakes = ">=3.1.0,<3.2.0" [[package]] name = "flatbuffers" -version = "23.5.26" +version = "24.3.25" description = "The FlatBuffers serialization format for Python" category = "main" optional = false python-versions = "*" files = [ - {file = "flatbuffers-23.5.26-py2.py3-none-any.whl", hash = "sha256:c0ff356da363087b915fde4b8b45bdda73432fc17cddb3c8157472eab1422ad1"}, - {file = "flatbuffers-23.5.26.tar.gz", hash = "sha256:9ea1144cac05ce5d86e2859f431c6cd5e66cd9c78c558317c7955fb8d4c78d89"}, + {file = "flatbuffers-24.3.25-py2.py3-none-any.whl", hash = "sha256:8dbdec58f935f3765e4f7f3cf635ac3a77f83568138d6a2311f524ec96364812"}, + {file = "flatbuffers-24.3.25.tar.gz", hash = "sha256:de2ec5b203f21441716617f38443e0a8ebf3d25bf0d9c0bb0ce68fa00ad546a4"}, ] [[package]] name = "fonttools" -version = "4.49.0" +version = "4.51.0" description = "Tools to manipulate font files" category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "fonttools-4.49.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:d970ecca0aac90d399e458f0b7a8a597e08f95de021f17785fb68e2dc0b99717"}, - {file = "fonttools-4.49.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ac9a745b7609f489faa65e1dc842168c18530874a5f5b742ac3dd79e26bca8bc"}, - {file = "fonttools-4.49.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ba0e00620ca28d4ca11fc700806fd69144b463aa3275e1b36e56c7c09915559"}, - {file = "fonttools-4.49.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdee3ab220283057e7840d5fb768ad4c2ebe65bdba6f75d5d7bf47f4e0ed7d29"}, - {file = "fonttools-4.49.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:ce7033cb61f2bb65d8849658d3786188afd80f53dad8366a7232654804529532"}, - {file = "fonttools-4.49.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:07bc5ea02bb7bc3aa40a1eb0481ce20e8d9b9642a9536cde0218290dd6085828"}, - {file = "fonttools-4.49.0-cp310-cp310-win32.whl", hash = "sha256:86eef6aab7fd7c6c8545f3ebd00fd1d6729ca1f63b0cb4d621bccb7d1d1c852b"}, - {file = "fonttools-4.49.0-cp310-cp310-win_amd64.whl", hash = "sha256:1fac1b7eebfce75ea663e860e7c5b4a8831b858c17acd68263bc156125201abf"}, - {file = "fonttools-4.49.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:edc0cce355984bb3c1d1e89d6a661934d39586bb32191ebff98c600f8957c63e"}, - {file = "fonttools-4.49.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:83a0d9336de2cba86d886507dd6e0153df333ac787377325a39a2797ec529814"}, - {file = "fonttools-4.49.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:36c8865bdb5cfeec88f5028e7e592370a0657b676c6f1d84a2108e0564f90e22"}, - {file = "fonttools-4.49.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:33037d9e56e2562c710c8954d0f20d25b8386b397250d65581e544edc9d6b942"}, - {file = "fonttools-4.49.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:8fb022d799b96df3eaa27263e9eea306bd3d437cc9aa981820850281a02b6c9a"}, - {file = "fonttools-4.49.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:33c584c0ef7dc54f5dd4f84082eabd8d09d1871a3d8ca2986b0c0c98165f8e86"}, - {file = "fonttools-4.49.0-cp311-cp311-win32.whl", hash = "sha256:cbe61b158deb09cffdd8540dc4a948d6e8f4d5b4f3bf5cd7db09bd6a61fee64e"}, - {file = "fonttools-4.49.0-cp311-cp311-win_amd64.whl", hash = "sha256:fc11e5114f3f978d0cea7e9853627935b30d451742eeb4239a81a677bdee6bf6"}, - {file = "fonttools-4.49.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:d647a0e697e5daa98c87993726da8281c7233d9d4ffe410812a4896c7c57c075"}, - {file = "fonttools-4.49.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f3bbe672df03563d1f3a691ae531f2e31f84061724c319652039e5a70927167e"}, - {file = "fonttools-4.49.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bebd91041dda0d511b0d303180ed36e31f4f54b106b1259b69fade68413aa7ff"}, - {file = "fonttools-4.49.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4145f91531fd43c50f9eb893faa08399816bb0b13c425667c48475c9f3a2b9b5"}, - {file = "fonttools-4.49.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:ea329dafb9670ffbdf4dbc3b0e5c264104abcd8441d56de77f06967f032943cb"}, - {file = "fonttools-4.49.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:c076a9e548521ecc13d944b1d261ff3d7825048c338722a4bd126d22316087b7"}, - {file = "fonttools-4.49.0-cp312-cp312-win32.whl", hash = "sha256:b607ea1e96768d13be26d2b400d10d3ebd1456343eb5eaddd2f47d1c4bd00880"}, - {file = "fonttools-4.49.0-cp312-cp312-win_amd64.whl", hash = "sha256:a974c49a981e187381b9cc2c07c6b902d0079b88ff01aed34695ec5360767034"}, - {file = "fonttools-4.49.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:b85ec0bdd7bdaa5c1946398cbb541e90a6dfc51df76dfa88e0aaa41b335940cb"}, - {file = "fonttools-4.49.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:af20acbe198a8a790618ee42db192eb128afcdcc4e96d99993aca0b60d1faeb4"}, - {file = "fonttools-4.49.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d418b1fee41a1d14931f7ab4b92dc0bc323b490e41d7a333eec82c9f1780c75"}, - {file = "fonttools-4.49.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b44a52b8e6244b6548851b03b2b377a9702b88ddc21dcaf56a15a0393d425cb9"}, - {file = "fonttools-4.49.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:7c7125068e04a70739dad11857a4d47626f2b0bd54de39e8622e89701836eabd"}, - {file = "fonttools-4.49.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:29e89d0e1a7f18bc30f197cfadcbef5a13d99806447c7e245f5667579a808036"}, - {file = "fonttools-4.49.0-cp38-cp38-win32.whl", hash = "sha256:9d95fa0d22bf4f12d2fb7b07a46070cdfc19ef5a7b1c98bc172bfab5bf0d6844"}, - {file = "fonttools-4.49.0-cp38-cp38-win_amd64.whl", hash = "sha256:768947008b4dc552d02772e5ebd49e71430a466e2373008ce905f953afea755a"}, - {file = "fonttools-4.49.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:08877e355d3dde1c11973bb58d4acad1981e6d1140711230a4bfb40b2b937ccc"}, - {file = "fonttools-4.49.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:fdb54b076f25d6b0f0298dc706acee5052de20c83530fa165b60d1f2e9cbe3cb"}, - {file = "fonttools-4.49.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0af65c720520710cc01c293f9c70bd69684365c6015cc3671db2b7d807fe51f2"}, - {file = "fonttools-4.49.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1f255ce8ed7556658f6d23f6afd22a6d9bbc3edb9b96c96682124dc487e1bf42"}, - {file = "fonttools-4.49.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d00af0884c0e65f60dfaf9340e26658836b935052fdd0439952ae42e44fdd2be"}, - {file = "fonttools-4.49.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:263832fae27481d48dfafcc43174644b6706639661e242902ceb30553557e16c"}, - {file = "fonttools-4.49.0-cp39-cp39-win32.whl", hash = "sha256:0404faea044577a01bb82d47a8fa4bc7a54067fa7e324785dd65d200d6dd1133"}, - {file = "fonttools-4.49.0-cp39-cp39-win_amd64.whl", hash = "sha256:b050d362df50fc6e38ae3954d8c29bf2da52be384649ee8245fdb5186b620836"}, - {file = "fonttools-4.49.0-py3-none-any.whl", hash = "sha256:af281525e5dd7fa0b39fb1667b8d5ca0e2a9079967e14c4bfe90fd1cd13e0f18"}, - {file = "fonttools-4.49.0.tar.gz", hash = "sha256:ebf46e7f01b7af7861310417d7c49591a85d99146fc23a5ba82fdb28af156321"}, + {file = "fonttools-4.51.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:84d7751f4468dd8cdd03ddada18b8b0857a5beec80bce9f435742abc9a851a74"}, + {file = "fonttools-4.51.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8b4850fa2ef2cfbc1d1f689bc159ef0f45d8d83298c1425838095bf53ef46308"}, + {file = "fonttools-4.51.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b5b48a1121117047d82695d276c2af2ee3a24ffe0f502ed581acc2673ecf1037"}, + {file = "fonttools-4.51.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:180194c7fe60c989bb627d7ed5011f2bef1c4d36ecf3ec64daec8302f1ae0716"}, + {file = "fonttools-4.51.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:96a48e137c36be55e68845fc4284533bda2980f8d6f835e26bca79d7e2006438"}, + {file = "fonttools-4.51.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:806e7912c32a657fa39d2d6eb1d3012d35f841387c8fc6cf349ed70b7c340039"}, + {file = "fonttools-4.51.0-cp310-cp310-win32.whl", hash = "sha256:32b17504696f605e9e960647c5f64b35704782a502cc26a37b800b4d69ff3c77"}, + {file = "fonttools-4.51.0-cp310-cp310-win_amd64.whl", hash = "sha256:c7e91abdfae1b5c9e3a543f48ce96013f9a08c6c9668f1e6be0beabf0a569c1b"}, + {file = "fonttools-4.51.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a8feca65bab31479d795b0d16c9a9852902e3a3c0630678efb0b2b7941ea9c74"}, + {file = "fonttools-4.51.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8ac27f436e8af7779f0bb4d5425aa3535270494d3bc5459ed27de3f03151e4c2"}, + {file = "fonttools-4.51.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e19bd9e9964a09cd2433a4b100ca7f34e34731e0758e13ba9a1ed6e5468cc0f"}, + {file = "fonttools-4.51.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b2b92381f37b39ba2fc98c3a45a9d6383bfc9916a87d66ccb6553f7bdd129097"}, + {file = "fonttools-4.51.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:5f6bc991d1610f5c3bbe997b0233cbc234b8e82fa99fc0b2932dc1ca5e5afec0"}, + {file = "fonttools-4.51.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9696fe9f3f0c32e9a321d5268208a7cc9205a52f99b89479d1b035ed54c923f1"}, + {file = "fonttools-4.51.0-cp311-cp311-win32.whl", hash = "sha256:3bee3f3bd9fa1d5ee616ccfd13b27ca605c2b4270e45715bd2883e9504735034"}, + {file = "fonttools-4.51.0-cp311-cp311-win_amd64.whl", hash = "sha256:0f08c901d3866a8905363619e3741c33f0a83a680d92a9f0e575985c2634fcc1"}, + {file = "fonttools-4.51.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:4060acc2bfa2d8e98117828a238889f13b6f69d59f4f2d5857eece5277b829ba"}, + {file = "fonttools-4.51.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:1250e818b5f8a679ad79660855528120a8f0288f8f30ec88b83db51515411fcc"}, + {file = "fonttools-4.51.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76f1777d8b3386479ffb4a282e74318e730014d86ce60f016908d9801af9ca2a"}, + {file = "fonttools-4.51.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b5ad456813d93b9c4b7ee55302208db2b45324315129d85275c01f5cb7e61a2"}, + {file = "fonttools-4.51.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:68b3fb7775a923be73e739f92f7e8a72725fd333eab24834041365d2278c3671"}, + {file = "fonttools-4.51.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8e2f1a4499e3b5ee82c19b5ee57f0294673125c65b0a1ff3764ea1f9db2f9ef5"}, + {file = "fonttools-4.51.0-cp312-cp312-win32.whl", hash = "sha256:278e50f6b003c6aed19bae2242b364e575bcb16304b53f2b64f6551b9c000e15"}, + {file = "fonttools-4.51.0-cp312-cp312-win_amd64.whl", hash = "sha256:b3c61423f22165541b9403ee39874dcae84cd57a9078b82e1dce8cb06b07fa2e"}, + {file = "fonttools-4.51.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:1621ee57da887c17312acc4b0e7ac30d3a4fb0fec6174b2e3754a74c26bbed1e"}, + {file = "fonttools-4.51.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e9d9298be7a05bb4801f558522adbe2feea1b0b103d5294ebf24a92dd49b78e5"}, + {file = "fonttools-4.51.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee1af4be1c5afe4c96ca23badd368d8dc75f611887fb0c0dac9f71ee5d6f110e"}, + {file = "fonttools-4.51.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c18b49adc721a7d0b8dfe7c3130c89b8704baf599fb396396d07d4aa69b824a1"}, + {file = "fonttools-4.51.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:de7c29bdbdd35811f14493ffd2534b88f0ce1b9065316433b22d63ca1cd21f14"}, + {file = "fonttools-4.51.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:cadf4e12a608ef1d13e039864f484c8a968840afa0258b0b843a0556497ea9ed"}, + {file = "fonttools-4.51.0-cp38-cp38-win32.whl", hash = "sha256:aefa011207ed36cd280babfaa8510b8176f1a77261833e895a9d96e57e44802f"}, + {file = "fonttools-4.51.0-cp38-cp38-win_amd64.whl", hash = "sha256:865a58b6e60b0938874af0968cd0553bcd88e0b2cb6e588727117bd099eef836"}, + {file = "fonttools-4.51.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:60a3409c9112aec02d5fb546f557bca6efa773dcb32ac147c6baf5f742e6258b"}, + {file = "fonttools-4.51.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f7e89853d8bea103c8e3514b9f9dc86b5b4120afb4583b57eb10dfa5afbe0936"}, + {file = "fonttools-4.51.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:56fc244f2585d6c00b9bcc59e6593e646cf095a96fe68d62cd4da53dd1287b55"}, + {file = "fonttools-4.51.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0d145976194a5242fdd22df18a1b451481a88071feadf251221af110ca8f00ce"}, + {file = "fonttools-4.51.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:c5b8cab0c137ca229433570151b5c1fc6af212680b58b15abd797dcdd9dd5051"}, + {file = "fonttools-4.51.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:54dcf21a2f2d06ded676e3c3f9f74b2bafded3a8ff12f0983160b13e9f2fb4a7"}, + {file = "fonttools-4.51.0-cp39-cp39-win32.whl", hash = "sha256:0118ef998a0699a96c7b28457f15546815015a2710a1b23a7bf6c1be60c01636"}, + {file = "fonttools-4.51.0-cp39-cp39-win_amd64.whl", hash = "sha256:599bdb75e220241cedc6faebfafedd7670335d2e29620d207dd0378a4e9ccc5a"}, + {file = "fonttools-4.51.0-py3-none-any.whl", hash = "sha256:15c94eeef6b095831067f72c825eb0e2d48bb4cea0647c1b05c981ecba2bf39f"}, + {file = "fonttools-4.51.0.tar.gz", hash = "sha256:dc0673361331566d7a663d7ce0f6fdcbfbdc1f59c6e3ed1165ad7202ca183c68"}, ] [package.extras] @@ -1317,14 +1499,14 @@ files = [ [[package]] name = "fsspec" -version = "2024.2.0" +version = "2024.3.1" description = "File-system specification" category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "fsspec-2024.2.0-py3-none-any.whl", hash = "sha256:817f969556fa5916bc682e02ca2045f96ff7f586d45110fcb76022063ad2c7d8"}, - {file = "fsspec-2024.2.0.tar.gz", hash = "sha256:b6ad1a679f760dda52b1168c859d01b7b80648ea6f7f7c7f5a8a91dc3f3ecb84"}, + {file = "fsspec-2024.3.1-py3-none-any.whl", hash = "sha256:918d18d41bf73f0e2b261824baeb1b124bcf771767e3a26425cd7dec3332f512"}, + {file = "fsspec-2024.3.1.tar.gz", hash = "sha256:f39780e282d7d117ffb42bb96992f8a90795e4d0fb0f661a70ca39fe9c43ded9"}, ] [package.dependencies] @@ -1354,6 +1536,73 @@ smb = ["smbprotocol"] ssh = ["paramiko"] tqdm = ["tqdm"] +[[package]] +name = "grpcio" +version = "1.62.1" +description = "HTTP/2-based RPC framework" +category = "main" +optional = false +python-versions = ">=3.7" +files = [ + {file = "grpcio-1.62.1-cp310-cp310-linux_armv7l.whl", hash = "sha256:179bee6f5ed7b5f618844f760b6acf7e910988de77a4f75b95bbfaa8106f3c1e"}, + {file = "grpcio-1.62.1-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:48611e4fa010e823ba2de8fd3f77c1322dd60cb0d180dc6630a7e157b205f7ea"}, + {file = "grpcio-1.62.1-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:b2a0e71b0a2158aa4bce48be9f8f9eb45cbd17c78c7443616d00abbe2a509f6d"}, + {file = "grpcio-1.62.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fbe80577c7880911d3ad65e5ecc997416c98f354efeba2f8d0f9112a67ed65a5"}, + {file = "grpcio-1.62.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:58f6c693d446964e3292425e1d16e21a97a48ba9172f2d0df9d7b640acb99243"}, + {file = "grpcio-1.62.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:77c339403db5a20ef4fed02e4d1a9a3d9866bf9c0afc77a42234677313ea22f3"}, + {file = "grpcio-1.62.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b5a4ea906db7dec694098435d84bf2854fe158eb3cd51e1107e571246d4d1d70"}, + {file = "grpcio-1.62.1-cp310-cp310-win32.whl", hash = "sha256:4187201a53f8561c015bc745b81a1b2d278967b8de35f3399b84b0695e281d5f"}, + {file = "grpcio-1.62.1-cp310-cp310-win_amd64.whl", hash = "sha256:844d1f3fb11bd1ed362d3fdc495d0770cfab75761836193af166fee113421d66"}, + {file = "grpcio-1.62.1-cp311-cp311-linux_armv7l.whl", hash = "sha256:833379943d1728a005e44103f17ecd73d058d37d95783eb8f0b28ddc1f54d7b2"}, + {file = "grpcio-1.62.1-cp311-cp311-macosx_10_10_universal2.whl", hash = "sha256:c7fcc6a32e7b7b58f5a7d27530669337a5d587d4066060bcb9dee7a8c833dfb7"}, + {file = "grpcio-1.62.1-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:fa7d28eb4d50b7cbe75bb8b45ed0da9a1dc5b219a0af59449676a29c2eed9698"}, + {file = "grpcio-1.62.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:48f7135c3de2f298b833be8b4ae20cafe37091634e91f61f5a7eb3d61ec6f660"}, + {file = "grpcio-1.62.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:71f11fd63365ade276c9d4a7b7df5c136f9030e3457107e1791b3737a9b9ed6a"}, + {file = "grpcio-1.62.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4b49fd8fe9f9ac23b78437da94c54aa7e9996fbb220bac024a67469ce5d0825f"}, + {file = "grpcio-1.62.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:482ae2ae78679ba9ed5752099b32e5fe580443b4f798e1b71df412abf43375db"}, + {file = "grpcio-1.62.1-cp311-cp311-win32.whl", hash = "sha256:1faa02530b6c7426404372515fe5ddf66e199c2ee613f88f025c6f3bd816450c"}, + {file = "grpcio-1.62.1-cp311-cp311-win_amd64.whl", hash = "sha256:5bd90b8c395f39bc82a5fb32a0173e220e3f401ff697840f4003e15b96d1befc"}, + {file = "grpcio-1.62.1-cp312-cp312-linux_armv7l.whl", hash = "sha256:b134d5d71b4e0837fff574c00e49176051a1c532d26c052a1e43231f252d813b"}, + {file = "grpcio-1.62.1-cp312-cp312-macosx_10_10_universal2.whl", hash = "sha256:d1f6c96573dc09d50dbcbd91dbf71d5cf97640c9427c32584010fbbd4c0e0037"}, + {file = "grpcio-1.62.1-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:359f821d4578f80f41909b9ee9b76fb249a21035a061a327f91c953493782c31"}, + {file = "grpcio-1.62.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a485f0c2010c696be269184bdb5ae72781344cb4e60db976c59d84dd6354fac9"}, + {file = "grpcio-1.62.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b50b09b4dc01767163d67e1532f948264167cd27f49e9377e3556c3cba1268e1"}, + {file = "grpcio-1.62.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:3227c667dccbe38f2c4d943238b887bac588d97c104815aecc62d2fd976e014b"}, + {file = "grpcio-1.62.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:3952b581eb121324853ce2b191dae08badb75cd493cb4e0243368aa9e61cfd41"}, + {file = "grpcio-1.62.1-cp312-cp312-win32.whl", hash = "sha256:83a17b303425104d6329c10eb34bba186ffa67161e63fa6cdae7776ff76df73f"}, + {file = "grpcio-1.62.1-cp312-cp312-win_amd64.whl", hash = "sha256:6696ffe440333a19d8d128e88d440f91fb92c75a80ce4b44d55800e656a3ef1d"}, + {file = "grpcio-1.62.1-cp37-cp37m-linux_armv7l.whl", hash = "sha256:e3393b0823f938253370ebef033c9fd23d27f3eae8eb9a8f6264900c7ea3fb5a"}, + {file = "grpcio-1.62.1-cp37-cp37m-macosx_10_10_universal2.whl", hash = "sha256:83e7ccb85a74beaeae2634f10eb858a0ed1a63081172649ff4261f929bacfd22"}, + {file = "grpcio-1.62.1-cp37-cp37m-manylinux_2_17_aarch64.whl", hash = "sha256:882020c87999d54667a284c7ddf065b359bd00251fcd70279ac486776dbf84ec"}, + {file = "grpcio-1.62.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a10383035e864f386fe096fed5c47d27a2bf7173c56a6e26cffaaa5a361addb1"}, + {file = "grpcio-1.62.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:960edebedc6b9ada1ef58e1c71156f28689978188cd8cff3b646b57288a927d9"}, + {file = "grpcio-1.62.1-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:23e2e04b83f347d0aadde0c9b616f4726c3d76db04b438fd3904b289a725267f"}, + {file = "grpcio-1.62.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:978121758711916d34fe57c1f75b79cdfc73952f1481bb9583399331682d36f7"}, + {file = "grpcio-1.62.1-cp37-cp37m-win_amd64.whl", hash = "sha256:9084086190cc6d628f282e5615f987288b95457292e969b9205e45b442276407"}, + {file = "grpcio-1.62.1-cp38-cp38-linux_armv7l.whl", hash = "sha256:22bccdd7b23c420a27fd28540fb5dcbc97dc6be105f7698cb0e7d7a420d0e362"}, + {file = "grpcio-1.62.1-cp38-cp38-macosx_10_10_universal2.whl", hash = "sha256:8999bf1b57172dbc7c3e4bb3c732658e918f5c333b2942243f10d0d653953ba9"}, + {file = "grpcio-1.62.1-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:d9e52558b8b8c2f4ac05ac86344a7417ccdd2b460a59616de49eb6933b07a0bd"}, + {file = "grpcio-1.62.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1714e7bc935780bc3de1b3fcbc7674209adf5208ff825799d579ffd6cd0bd505"}, + {file = "grpcio-1.62.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c8842ccbd8c0e253c1f189088228f9b433f7a93b7196b9e5b6f87dba393f5d5d"}, + {file = "grpcio-1.62.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:1f1e7b36bdff50103af95a80923bf1853f6823dd62f2d2a2524b66ed74103e49"}, + {file = "grpcio-1.62.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:bba97b8e8883a8038606480d6b6772289f4c907f6ba780fa1f7b7da7dfd76f06"}, + {file = "grpcio-1.62.1-cp38-cp38-win32.whl", hash = "sha256:a7f615270fe534548112a74e790cd9d4f5509d744dd718cd442bf016626c22e4"}, + {file = "grpcio-1.62.1-cp38-cp38-win_amd64.whl", hash = "sha256:e6c8c8693df718c5ecbc7babb12c69a4e3677fd11de8886f05ab22d4e6b1c43b"}, + {file = "grpcio-1.62.1-cp39-cp39-linux_armv7l.whl", hash = "sha256:73db2dc1b201d20ab7083e7041946910bb991e7e9761a0394bbc3c2632326483"}, + {file = "grpcio-1.62.1-cp39-cp39-macosx_10_10_universal2.whl", hash = "sha256:407b26b7f7bbd4f4751dbc9767a1f0716f9fe72d3d7e96bb3ccfc4aace07c8de"}, + {file = "grpcio-1.62.1-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:f8de7c8cef9261a2d0a62edf2ccea3d741a523c6b8a6477a340a1f2e417658de"}, + {file = "grpcio-1.62.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9bd5c8a1af40ec305d001c60236308a67e25419003e9bb3ebfab5695a8d0b369"}, + {file = "grpcio-1.62.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:be0477cb31da67846a33b1a75c611f88bfbcd427fe17701b6317aefceee1b96f"}, + {file = "grpcio-1.62.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:60dcd824df166ba266ee0cfaf35a31406cd16ef602b49f5d4dfb21f014b0dedd"}, + {file = "grpcio-1.62.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:973c49086cabab773525f6077f95e5a993bfc03ba8fc32e32f2c279497780585"}, + {file = "grpcio-1.62.1-cp39-cp39-win32.whl", hash = "sha256:12859468e8918d3bd243d213cd6fd6ab07208195dc140763c00dfe901ce1e1b4"}, + {file = "grpcio-1.62.1-cp39-cp39-win_amd64.whl", hash = "sha256:b7209117bbeebdfa5d898205cc55153a51285757902dd73c47de498ad4d11332"}, + {file = "grpcio-1.62.1.tar.gz", hash = "sha256:6c455e008fa86d9e9a9d85bb76da4277c0d7d9668a3bfa70dbe86e9f3c759947"}, +] + +[package.extras] +protobuf = ["grpcio-tools (>=1.62.1)"] + [[package]] name = "h11" version = "0.14.0" @@ -1366,6 +1615,40 @@ files = [ {file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"}, ] +[[package]] +name = "h5py" +version = "3.11.0" +description = "Read and write HDF5 files from Python" +category = "main" +optional = false +python-versions = ">=3.8" +files = [ + {file = "h5py-3.11.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1625fd24ad6cfc9c1ccd44a66dac2396e7ee74940776792772819fc69f3a3731"}, + {file = "h5py-3.11.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c072655ad1d5fe9ef462445d3e77a8166cbfa5e599045f8aa3c19b75315f10e5"}, + {file = "h5py-3.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:77b19a40788e3e362b54af4dcf9e6fde59ca016db2c61360aa30b47c7b7cef00"}, + {file = "h5py-3.11.0-cp310-cp310-win_amd64.whl", hash = "sha256:ef4e2f338fc763f50a8113890f455e1a70acd42a4d083370ceb80c463d803972"}, + {file = "h5py-3.11.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:bbd732a08187a9e2a6ecf9e8af713f1d68256ee0f7c8b652a32795670fb481ba"}, + {file = "h5py-3.11.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:75bd7b3d93fbeee40860fd70cdc88df4464e06b70a5ad9ce1446f5f32eb84007"}, + {file = "h5py-3.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:52c416f8eb0daae39dabe71415cb531f95dce2d81e1f61a74537a50c63b28ab3"}, + {file = "h5py-3.11.0-cp311-cp311-win_amd64.whl", hash = "sha256:083e0329ae534a264940d6513f47f5ada617da536d8dccbafc3026aefc33c90e"}, + {file = "h5py-3.11.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a76cae64080210389a571c7d13c94a1a6cf8cb75153044fd1f822a962c97aeab"}, + {file = "h5py-3.11.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f3736fe21da2b7d8a13fe8fe415f1272d2a1ccdeff4849c1421d2fb30fd533bc"}, + {file = "h5py-3.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa6ae84a14103e8dc19266ef4c3e5d7c00b68f21d07f2966f0ca7bdb6c2761fb"}, + {file = "h5py-3.11.0-cp312-cp312-win_amd64.whl", hash = "sha256:21dbdc5343f53b2e25404673c4f00a3335aef25521bd5fa8c707ec3833934892"}, + {file = "h5py-3.11.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:754c0c2e373d13d6309f408325343b642eb0f40f1a6ad21779cfa9502209e150"}, + {file = "h5py-3.11.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:731839240c59ba219d4cb3bc5880d438248533366f102402cfa0621b71796b62"}, + {file = "h5py-3.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ec9df3dd2018904c4cc06331951e274f3f3fd091e6d6cc350aaa90fa9b42a76"}, + {file = "h5py-3.11.0-cp38-cp38-win_amd64.whl", hash = "sha256:55106b04e2c83dfb73dc8732e9abad69d83a436b5b82b773481d95d17b9685e1"}, + {file = "h5py-3.11.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f4e025e852754ca833401777c25888acb96889ee2c27e7e629a19aee288833f0"}, + {file = "h5py-3.11.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6c4b760082626120031d7902cd983d8c1f424cdba2809f1067511ef283629d4b"}, + {file = "h5py-3.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:67462d0669f8f5459529de179f7771bd697389fcb3faab54d63bf788599a48ea"}, + {file = "h5py-3.11.0-cp39-cp39-win_amd64.whl", hash = "sha256:d9c944d364688f827dc889cf83f1fca311caf4fa50b19f009d1f2b525edd33a3"}, + {file = "h5py-3.11.0.tar.gz", hash = "sha256:7b7e8f78072a2edec87c9836f25f34203fd492a4475709a18b417a33cfb21fa9"}, +] + +[package.dependencies] +numpy = ">=1.17.3" + [[package]] name = "humanfriendly" version = "10.0" @@ -1398,14 +1681,14 @@ license = ["ukkonen"] [[package]] name = "idna" -version = "3.6" +version = "3.7" description = "Internationalized Domain Names in Applications (IDNA)" category = "main" optional = false python-versions = ">=3.5" files = [ - {file = "idna-3.6-py3-none-any.whl", hash = "sha256:c05567e9c24a6b9faaa835c4821bad0590fbb9d5779e7caa6e1cc4978e7eb24f"}, - {file = "idna-3.6.tar.gz", hash = "sha256:9ecdbbd083b06798ae1e86adcbfe8ab1479cf864e4ee30fe4e46a003d12491ca"}, + {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"}, + {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"}, ] [[package]] @@ -1422,14 +1705,14 @@ files = [ [[package]] name = "ipykernel" -version = "6.29.3" +version = "6.29.4" description = "IPython Kernel for Jupyter" -category = "dev" +category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "ipykernel-6.29.3-py3-none-any.whl", hash = "sha256:5aa086a4175b0229d4eca211e181fb473ea78ffd9869af36ba7694c947302a21"}, - {file = "ipykernel-6.29.3.tar.gz", hash = "sha256:e14c250d1f9ea3989490225cc1a542781b095a18a19447fcf2b5eaf7d0ac5bd2"}, + {file = "ipykernel-6.29.4-py3-none-any.whl", hash = "sha256:1181e653d95c6808039c509ef8e67c4126b3b3af7781496c7cbfb5ed938a27da"}, + {file = "ipykernel-6.29.4.tar.gz", hash = "sha256:3d44070060f9475ac2092b760123fadf105d2e2493c24848b6691a7c4f42af5c"}, ] [package.dependencies] @@ -1456,14 +1739,14 @@ test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio [[package]] name = "ipympl" -version = "0.9.3" +version = "0.9.4" description = "Matplotlib Jupyter Extension" category = "dev" optional = false -python-versions = "*" +python-versions = ">=3.9" files = [ - {file = "ipympl-0.9.3-py2.py3-none-any.whl", hash = "sha256:d113cd55891bafe9b27ef99b6dd111a87beb6bb2ae550c404292272103be8013"}, - {file = "ipympl-0.9.3.tar.gz", hash = "sha256:49bab75c05673a6881d1aaec5d8ac81d4624f73d292d154c5fb7096f10236a2b"}, + {file = "ipympl-0.9.4-py3-none-any.whl", hash = "sha256:5b0c08c6f4f6ea655ba58239363457c10fb921557f5038c1a46db4457d6d6b0e"}, + {file = "ipympl-0.9.4.tar.gz", hash = "sha256:cfb53c5b4fcbcee6d18f095eecfc6c6c474303d5b744e72cc66e7a2804708907"}, ] [package.dependencies] @@ -1476,18 +1759,18 @@ pillow = "*" traitlets = "<6" [package.extras] -docs = ["Sphinx (>=1.5)", "myst-nb", "sphinx-book-theme", "sphinx-copybutton", "sphinx-thebe", "sphinx-togglebutton"] +docs = ["myst-nb", "sphinx (>=1.5)", "sphinx-book-theme", "sphinx-copybutton", "sphinx-thebe", "sphinx-togglebutton"] [[package]] name = "ipython" -version = "8.22.2" +version = "8.23.0" description = "IPython: Productive Interactive Computing" -category = "dev" +category = "main" optional = false python-versions = ">=3.10" files = [ - {file = "ipython-8.22.2-py3-none-any.whl", hash = "sha256:3c86f284c8f3d8f2b6c662f885c4889a91df7cd52056fd02b7d8d6195d7f56e9"}, - {file = "ipython-8.22.2.tar.gz", hash = "sha256:2dcaad9049f9056f1fef63514f176c7d41f930daa78d05b82a176202818f2c14"}, + {file = "ipython-8.23.0-py3-none-any.whl", hash = "sha256:07232af52a5ba146dc3372c7bf52a0f890a23edf38d77caef8d53f9cdc2584c1"}, + {file = "ipython-8.23.0.tar.gz", hash = "sha256:7468edaf4f6de3e1b912e57f66c241e6fd3c7099f2ec2136e239e142e800274d"}, ] [package.dependencies] @@ -1501,12 +1784,14 @@ prompt-toolkit = ">=3.0.41,<3.1.0" pygments = ">=2.4.0" stack-data = "*" traitlets = ">=5.13.0" +typing-extensions = {version = "*", markers = "python_version < \"3.12\""} [package.extras] -all = ["ipython[black,doc,kernel,nbconvert,nbformat,notebook,parallel,qtconsole,terminal]", "ipython[test,test-extra]"] +all = ["ipython[black,doc,kernel,matplotlib,nbconvert,nbformat,notebook,parallel,qtconsole]", "ipython[test,test-extra]"] black = ["black"] doc = ["docrepr", "exceptiongroup", "ipykernel", "ipython[test]", "matplotlib", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "sphinxcontrib-jquery", "stack-data", "typing-extensions"] kernel = ["ipykernel"] +matplotlib = ["matplotlib"] nbconvert = ["nbconvert"] nbformat = ["nbformat"] notebook = ["ipywidgets", "notebook"] @@ -1531,7 +1816,7 @@ files = [ name = "ipywidgets" version = "8.1.2" description = "Jupyter interactive widgets" -category = "dev" +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -1568,7 +1853,7 @@ colors = ["colorama (>=0.4.6)"] name = "jedi" version = "0.19.1" description = "An autocompletion tool for Python that can be used for text editors." -category = "dev" +category = "main" optional = false python-versions = ">=3.6" files = [ @@ -1616,26 +1901,26 @@ files = [ [[package]] name = "joblib" -version = "1.3.2" +version = "1.4.0" description = "Lightweight pipelining with Python functions" category = "main" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "joblib-1.3.2-py3-none-any.whl", hash = "sha256:ef4331c65f239985f3f2220ecc87db222f08fd22097a3dd5698f693875f8cbb9"}, - {file = "joblib-1.3.2.tar.gz", hash = "sha256:92f865e621e17784e7955080b6d042489e3b8e294949cc44c6eac304f59772b1"}, + {file = "joblib-1.4.0-py3-none-any.whl", hash = "sha256:42942470d4062537be4d54c83511186da1fc14ba354961a2114da91efa9a4ed7"}, + {file = "joblib-1.4.0.tar.gz", hash = "sha256:1eb0dc091919cd384490de890cb5dfd538410a6d4b3b54eef09fb8c50b409b1c"}, ] [[package]] name = "jupyter-client" -version = "8.6.0" +version = "8.6.1" description = "Jupyter protocol implementation and client libraries" -category = "dev" +category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "jupyter_client-8.6.0-py3-none-any.whl", hash = "sha256:909c474dbe62582ae62b758bca86d6518c85234bdee2d908c778db6d72f39d99"}, - {file = "jupyter_client-8.6.0.tar.gz", hash = "sha256:0642244bb83b4764ae60d07e010e15f0e2d275ec4e918a8f7b80fbbef3ca60c7"}, + {file = "jupyter_client-8.6.1-py3-none-any.whl", hash = "sha256:3b7bd22f058434e3b9a7ea4b1500ed47de2713872288c0d511d19926f99b459f"}, + {file = "jupyter_client-8.6.1.tar.gz", hash = "sha256:e842515e2bab8e19186d89fdfea7abd15e39dd581f94e399f00e2af5a1652d3f"}, ] [package.dependencies] @@ -1651,14 +1936,14 @@ test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pyt [[package]] name = "jupyter-core" -version = "5.7.1" +version = "5.7.2" description = "Jupyter core package. A base package on which Jupyter projects rely." -category = "dev" +category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "jupyter_core-5.7.1-py3-none-any.whl", hash = "sha256:c65c82126453a723a2804aa52409930434598fd9d35091d63dfb919d2b765bb7"}, - {file = "jupyter_core-5.7.1.tar.gz", hash = "sha256:de61a9d7fc71240f688b2fb5ab659fbb56979458dc66a71decd098e03c79e218"}, + {file = "jupyter_core-5.7.2-py3-none-any.whl", hash = "sha256:4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409"}, + {file = "jupyter_core-5.7.2.tar.gz", hash = "sha256:aa5f8d32bbf6b431ac830496da7392035d6f61b4f54872f15c4bd2a9c3f536d9"}, ] [package.dependencies] @@ -1668,13 +1953,13 @@ traitlets = ">=5.3" [package.extras] docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] -test = ["ipykernel", "pre-commit", "pytest", "pytest-cov", "pytest-timeout"] +test = ["ipykernel", "pre-commit", "pytest (<8)", "pytest-cov", "pytest-timeout"] [[package]] name = "jupyterlab-widgets" version = "3.0.10" description = "Jupyter interactive widgets for JupyterLab" -category = "dev" +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -1796,16 +2081,31 @@ files = [ {file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"}, ] +[[package]] +name = "legacy-api-wrap" +version = "1.4" +description = "" +category = "main" +optional = false +python-versions = ">=3.8" +files = [ + {file = "legacy_api_wrap-1.4-py3-none-any.whl", hash = "sha256:bf81b8ee432d80e7203aa079c26fc3a0f228d158db808868f10c2e36a8f64dbd"}, + {file = "legacy_api_wrap-1.4.tar.gz", hash = "sha256:92dfa274cedb26d6e6f70fac85c856fbdcc05058066656d76a665fb4bf11b785"}, +] + +[package.extras] +test = ["coverage", "coverage-rich", "pytest", "toml"] + [[package]] name = "lightning" -version = "2.2.1" +version = "2.2.2" description = "The Deep Learning framework to train, deploy, and ship AI products Lightning fast." category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "lightning-2.2.1-py3-none-any.whl", hash = "sha256:fec9b49d29a6019e8fe49e825082bab8d5ea3fde8e4b36dcf5c8896c2bdb86c3"}, - {file = "lightning-2.2.1.tar.gz", hash = "sha256:b3e46d596b32cafd1fb9b21fdba1b1767df97b1af5cc702693d1c51df60b19aa"}, + {file = "lightning-2.2.2-py3-none-any.whl", hash = "sha256:7292f9858fee48e4654bfa3e5770061328346aff0449c8e12e7aa24b72bb0e66"}, + {file = "lightning-2.2.2.tar.gz", hash = "sha256:799e933bf51f3f10516b3f1acf3650e4bc063682eb5b5dc9dcbd1ebd38e03e3a"}, ] [package.dependencies] @@ -1821,51 +2121,74 @@ tqdm = ">=4.57.0,<6.0" typing-extensions = ">=4.4.0,<6.0" [package.extras] -all = ["Jinja2 (<4.0)", "Pillow (>=9.5.0)", "PyYAML (<7.0)", "aiohttp (>=3.8.0,<4.0)", "arrow (>=1.2.0,<2.0)", "backoff (>=2.2.1,<3.0)", "beautifulsoup4 (>=4.8.0,<5.0)", "bitsandbytes (==0.41.0)", "click (<9.0)", "croniter (>=1.3.0,<1.5.0)", "dateutils (<1.0)", "deepdiff (>=5.7.0,<7.0)", "deepspeed (>=0.8.2,<=0.9.3)", "docker (>=5.0.0,<7.0)", "fastapi (>=0.92.0,<1.0)", "filelock", "fsspec[http] (>=2022.5.0,<2024.0)", "gym[classic-control] (>=0.17.0,<1.0)", "hydra-core (>=1.0.5,<2.0)", "inquirer (>=2.10.0,<4.0)", "ipython[all] (<9.0)", "jsonargparse[signatures] (>=4.26.1,<5.0)", "lightning-api-access (>=0.0.3)", "lightning-cloud", "lightning-cloud (==0.5.64)", "lightning-fabric (>=1.9.0)", "lightning-utilities (>=0.8.0,<1.0)", "matplotlib (>3.1,<4.0)", "omegaconf (>=2.0.5,<3.0)", "packaging", "psutil (<6.0)", "pydantic (>=1.7.4)", "python-multipart (>=0.0.5,<1.0)", "pytorch-lightning (>=1.9.0)", "redis (>=4.0.1,<6.0)", "requests (<3.0)", "rich (>=12.3.0,<14.0)", "s3fs (>=2022.5.0,<2024.0)", "starlette", "tensorboardX (>=2.2,<3.0)", "torch (>0.14.0,<3.0)", "torchmetrics (>=0.10.0,<2.0)", "torchvision (>=0.14.0,<1.0)", "torchvision (>=0.15.2,<1.0)", "traitlets (>=5.3.0,<6.0)", "typing-extensions (>=4.4.0,<5.0)", "urllib3 (<3.0)", "uvicorn (<1.0)", "websocket-client (<2.0)", "websockets (<12.0)"] -app = ["Jinja2 (<4.0)", "PyYAML (<7.0)", "arrow (>=1.2.0,<2.0)", "backoff (>=2.2.1,<3.0)", "beautifulsoup4 (>=4.8.0,<5.0)", "click (<9.0)", "croniter (>=1.3.0,<1.5.0)", "dateutils (<1.0)", "deepdiff (>=5.7.0,<7.0)", "fastapi (>=0.92.0,<1.0)", "fsspec[http] (>=2022.5.0,<2024.0)", "inquirer (>=2.10.0,<4.0)", "lightning-cloud (==0.5.64)", "lightning-utilities (>=0.8.0,<1.0)", "packaging", "psutil (<6.0)", "pydantic (>=1.7.4)", "python-multipart (>=0.0.5,<1.0)", "requests (<3.0)", "rich (>=12.3.0,<14.0)", "starlette", "traitlets (>=5.3.0,<6.0)", "typing-extensions (>=4.4.0,<5.0)", "urllib3 (<3.0)", "uvicorn (<1.0)", "websocket-client (<2.0)", "websockets (<12.0)"] -app-all = ["Jinja2 (<4.0)", "PyYAML (<7.0)", "aiohttp (>=3.8.0,<4.0)", "arrow (>=1.2.0,<2.0)", "backoff (>=2.2.1,<3.0)", "beautifulsoup4 (>=4.8.0,<5.0)", "click (<9.0)", "croniter (>=1.3.0,<1.5.0)", "dateutils (<1.0)", "deepdiff (>=5.7.0,<7.0)", "docker (>=5.0.0,<7.0)", "fastapi (>=0.92.0,<1.0)", "fsspec[http] (>=2022.5.0,<2024.0)", "inquirer (>=2.10.0,<4.0)", "lightning-api-access (>=0.0.3)", "lightning-cloud (==0.5.64)", "lightning-fabric (>=1.9.0)", "lightning-utilities (>=0.8.0,<1.0)", "packaging", "psutil (<6.0)", "pydantic (>=1.7.4)", "python-multipart (>=0.0.5,<1.0)", "pytorch-lightning (>=1.9.0)", "redis (>=4.0.1,<6.0)", "requests (<3.0)", "rich (>=12.3.0,<14.0)", "s3fs (>=2022.5.0,<2024.0)", "starlette", "traitlets (>=5.3.0,<6.0)", "typing-extensions (>=4.4.0,<5.0)", "urllib3 (<3.0)", "uvicorn (<1.0)", "websocket-client (<2.0)", "websockets (<12.0)"] +all = ["Jinja2 (<4.0)", "PyYAML (<7.0)", "aiohttp (>=3.8.0,<4.0)", "arrow (>=1.2.0,<2.0)", "backoff (>=2.2.1,<3.0)", "beautifulsoup4 (>=4.8.0,<5.0)", "bitsandbytes (==0.41.0)", "click (<9.0)", "croniter (>=1.3.0,<1.5.0)", "dateutils (<1.0)", "deepdiff (>=5.7.0,<7.0)", "deepspeed (>=0.8.2,<=0.9.3)", "docker (>=5.0.0,<7.0)", "fastapi (>=0.92.0,<1.0)", "fsspec[http] (>=2022.5.0,<2024.0)", "gym[classic-control] (>=0.17.0,<1.0)", "hydra-core (>=1.0.5,<2.0)", "inquirer (>=2.10.0,<4.0)", "ipython[all] (<9.0)", "jsonargparse[signatures] (>=4.27.7,<5.0)", "lightning-api-access (>=0.0.3)", "lightning-cloud (==0.5.65)", "lightning-fabric (>=1.9.0)", "lightning-utilities (>=0.8.0,<1.0)", "matplotlib (>3.1,<4.0)", "omegaconf (>=2.0.5,<3.0)", "packaging", "psutil (<6.0)", "pydantic (>=1.7.4)", "python-multipart (>=0.0.5,<1.0)", "pytorch-lightning (>=1.9.0)", "redis (>=4.0.1,<6.0)", "requests (<3.0)", "rich (>=12.3.0,<14.0)", "s3fs (>=2022.5.0,<2024.0)", "starlette", "tensorboardX (>=2.2,<3.0)", "torchmetrics (>=0.10.0,<2.0)", "torchvision (>=0.14.0,<1.0)", "traitlets (>=5.3.0,<6.0)", "typing-extensions (>=4.4.0,<5.0)", "urllib3 (<3.0)", "uvicorn (<1.0)", "websocket-client (<2.0)", "websockets (<12.0)"] +app = ["Jinja2 (<4.0)", "PyYAML (<7.0)", "arrow (>=1.2.0,<2.0)", "backoff (>=2.2.1,<3.0)", "beautifulsoup4 (>=4.8.0,<5.0)", "click (<9.0)", "croniter (>=1.3.0,<1.5.0)", "dateutils (<1.0)", "deepdiff (>=5.7.0,<7.0)", "fastapi (>=0.92.0,<1.0)", "fsspec[http] (>=2022.5.0,<2024.0)", "inquirer (>=2.10.0,<4.0)", "lightning-cloud (==0.5.65)", "lightning-utilities (>=0.8.0,<1.0)", "packaging", "psutil (<6.0)", "pydantic (>=1.7.4)", "python-multipart (>=0.0.5,<1.0)", "requests (<3.0)", "rich (>=12.3.0,<14.0)", "starlette", "traitlets (>=5.3.0,<6.0)", "typing-extensions (>=4.4.0,<5.0)", "urllib3 (<3.0)", "uvicorn (<1.0)", "websocket-client (<2.0)", "websockets (<12.0)"] +app-all = ["Jinja2 (<4.0)", "PyYAML (<7.0)", "aiohttp (>=3.8.0,<4.0)", "arrow (>=1.2.0,<2.0)", "backoff (>=2.2.1,<3.0)", "beautifulsoup4 (>=4.8.0,<5.0)", "click (<9.0)", "croniter (>=1.3.0,<1.5.0)", "dateutils (<1.0)", "deepdiff (>=5.7.0,<7.0)", "docker (>=5.0.0,<7.0)", "fastapi (>=0.92.0,<1.0)", "fsspec[http] (>=2022.5.0,<2024.0)", "inquirer (>=2.10.0,<4.0)", "lightning-api-access (>=0.0.3)", "lightning-cloud (==0.5.65)", "lightning-fabric (>=1.9.0)", "lightning-utilities (>=0.8.0,<1.0)", "packaging", "psutil (<6.0)", "pydantic (>=1.7.4)", "python-multipart (>=0.0.5,<1.0)", "pytorch-lightning (>=1.9.0)", "redis (>=4.0.1,<6.0)", "requests (<3.0)", "rich (>=12.3.0,<14.0)", "s3fs (>=2022.5.0,<2024.0)", "starlette", "traitlets (>=5.3.0,<6.0)", "typing-extensions (>=4.4.0,<5.0)", "urllib3 (<3.0)", "uvicorn (<1.0)", "websocket-client (<2.0)", "websockets (<12.0)"] app-cloud = ["docker (>=5.0.0,<7.0)", "redis (>=4.0.1,<6.0)", "s3fs (>=2022.5.0,<2024.0)"] app-components = ["aiohttp (>=3.8.0,<4.0)", "lightning-api-access (>=0.0.3)", "lightning-fabric (>=1.9.0)", "pytorch-lightning (>=1.9.0)"] -app-dev = ["Jinja2 (<4.0)", "PyYAML (<7.0)", "aiohttp (>=3.8.0,<4.0)", "arrow (>=1.2.0,<2.0)", "backoff (>=2.2.1,<3.0)", "beautifulsoup4 (>=4.8.0,<5.0)", "click (<9.0)", "coverage (==7.3.1)", "croniter (>=1.3.0,<1.5.0)", "dateutils (<1.0)", "deepdiff (>=5.7.0,<7.0)", "docker (>=5.0.0,<7.0)", "fastapi (>=0.92.0,<1.0)", "fsspec[http] (>=2022.5.0,<2024.0)", "httpx (==0.25.0)", "inquirer (>=2.10.0,<4.0)", "lightning-api-access (>=0.0.3)", "lightning-cloud (==0.5.64)", "lightning-fabric (>=1.9.0)", "lightning-utilities (>=0.8.0,<1.0)", "packaging", "pandas", "playwright (==1.38.0)", "psutil (<6.0)", "pydantic (>=1.7.4)", "pympler", "pytest (==7.4.0)", "pytest-asyncio (==0.21.1)", "pytest-cov (==4.1.0)", "pytest-doctestplus (==1.0.0)", "pytest-rerunfailures (==12.0)", "pytest-timeout (==2.1.0)", "pytest-xdist (==3.3.1)", "python-multipart (>=0.0.5,<1.0)", "pytorch-lightning (>=1.9.0)", "redis (>=4.0.1,<6.0)", "requests (<3.0)", "requests-mock (==1.11.0)", "rich (>=12.3.0,<14.0)", "s3fs (>=2022.5.0,<2024.0)", "setuptools (<69.0)", "starlette", "traitlets (>=5.3.0,<6.0)", "trio (<0.22.0)", "typing-extensions (>=4.4.0,<5.0)", "urllib3 (<3.0)", "uvicorn (<1.0)", "websocket-client (<2.0)", "websockets (<12.0)"] -app-extra = ["Jinja2 (<4.0)", "PyYAML (<7.0)", "aiohttp (>=3.8.0,<4.0)", "arrow (>=1.2.0,<2.0)", "backoff (>=2.2.1,<3.0)", "beautifulsoup4 (>=4.8.0,<5.0)", "click (<9.0)", "croniter (>=1.3.0,<1.5.0)", "dateutils (<1.0)", "deepdiff (>=5.7.0,<7.0)", "docker (>=5.0.0,<7.0)", "fastapi (>=0.92.0,<1.0)", "fsspec[http] (>=2022.5.0,<2024.0)", "inquirer (>=2.10.0,<4.0)", "lightning-api-access (>=0.0.3)", "lightning-cloud (==0.5.64)", "lightning-fabric (>=1.9.0)", "lightning-utilities (>=0.8.0,<1.0)", "packaging", "psutil (<6.0)", "pydantic (>=1.7.4)", "python-multipart (>=0.0.5,<1.0)", "pytorch-lightning (>=1.9.0)", "redis (>=4.0.1,<6.0)", "requests (<3.0)", "rich (>=12.3.0,<14.0)", "s3fs (>=2022.5.0,<2024.0)", "starlette", "traitlets (>=5.3.0,<6.0)", "typing-extensions (>=4.4.0,<5.0)", "urllib3 (<3.0)", "uvicorn (<1.0)", "websocket-client (<2.0)", "websockets (<12.0)"] +app-dev = ["Jinja2 (<4.0)", "PyYAML (<7.0)", "aiohttp (>=3.8.0,<4.0)", "arrow (>=1.2.0,<2.0)", "backoff (>=2.2.1,<3.0)", "beautifulsoup4 (>=4.8.0,<5.0)", "click (<9.0)", "coverage (==7.3.1)", "croniter (>=1.3.0,<1.5.0)", "dateutils (<1.0)", "deepdiff (>=5.7.0,<7.0)", "docker (>=5.0.0,<7.0)", "fastapi (>=0.92.0,<1.0)", "fsspec[http] (>=2022.5.0,<2024.0)", "httpx (==0.25.0)", "inquirer (>=2.10.0,<4.0)", "lightning-api-access (>=0.0.3)", "lightning-cloud (==0.5.65)", "lightning-fabric (>=1.9.0)", "lightning-utilities (>=0.8.0,<1.0)", "packaging", "pandas", "playwright (==1.38.0)", "psutil (<6.0)", "pydantic (>=1.7.4)", "pympler", "pytest (==7.4.0)", "pytest-asyncio (==0.21.1)", "pytest-cov (==4.1.0)", "pytest-doctestplus (==1.0.0)", "pytest-rerunfailures (==12.0)", "pytest-timeout (==2.1.0)", "pytest-xdist (==3.3.1)", "python-multipart (>=0.0.5,<1.0)", "pytorch-lightning (>=1.9.0)", "redis (>=4.0.1,<6.0)", "requests (<3.0)", "requests-mock (==1.11.0)", "rich (>=12.3.0,<14.0)", "s3fs (>=2022.5.0,<2024.0)", "setuptools (<69.0)", "starlette", "traitlets (>=5.3.0,<6.0)", "trio (<0.22.0)", "typing-extensions (>=4.4.0,<5.0)", "urllib3 (<3.0)", "uvicorn (<1.0)", "websocket-client (<2.0)", "websockets (<12.0)"] +app-extra = ["Jinja2 (<4.0)", "PyYAML (<7.0)", "aiohttp (>=3.8.0,<4.0)", "arrow (>=1.2.0,<2.0)", "backoff (>=2.2.1,<3.0)", "beautifulsoup4 (>=4.8.0,<5.0)", "click (<9.0)", "croniter (>=1.3.0,<1.5.0)", "dateutils (<1.0)", "deepdiff (>=5.7.0,<7.0)", "docker (>=5.0.0,<7.0)", "fastapi (>=0.92.0,<1.0)", "fsspec[http] (>=2022.5.0,<2024.0)", "inquirer (>=2.10.0,<4.0)", "lightning-api-access (>=0.0.3)", "lightning-cloud (==0.5.65)", "lightning-fabric (>=1.9.0)", "lightning-utilities (>=0.8.0,<1.0)", "packaging", "psutil (<6.0)", "pydantic (>=1.7.4)", "python-multipart (>=0.0.5,<1.0)", "pytorch-lightning (>=1.9.0)", "redis (>=4.0.1,<6.0)", "requests (<3.0)", "rich (>=12.3.0,<14.0)", "s3fs (>=2022.5.0,<2024.0)", "starlette", "traitlets (>=5.3.0,<6.0)", "typing-extensions (>=4.4.0,<5.0)", "urllib3 (<3.0)", "uvicorn (<1.0)", "websocket-client (<2.0)", "websockets (<12.0)"] app-test = ["coverage (==7.3.1)", "httpx (==0.25.0)", "pandas", "playwright (==1.38.0)", "psutil (<6.0)", "pympler", "pytest (==7.4.0)", "pytest-asyncio (==0.21.1)", "pytest-cov (==4.1.0)", "pytest-doctestplus (==1.0.0)", "pytest-rerunfailures (==12.0)", "pytest-timeout (==2.1.0)", "pytest-xdist (==3.3.1)", "requests-mock (==1.11.0)", "setuptools (<69.0)", "trio (<0.22.0)"] -cloud = ["docker (>=5.0.0,<7.0)", "fsspec[http] (>=2022.5.0,<2024.0)", "redis (>=4.0.1,<6.0)", "s3fs (>=2022.5.0,<2024.0)"] +cloud = ["docker (>=5.0.0,<7.0)", "redis (>=4.0.1,<6.0)", "s3fs (>=2022.5.0,<2024.0)"] components = ["aiohttp (>=3.8.0,<4.0)", "lightning-api-access (>=0.0.3)", "lightning-fabric (>=1.9.0)", "pytorch-lightning (>=1.9.0)"] -data = ["filelock", "lightning-cloud", "lightning-utilities (>=0.8.0,<1.0)", "torch (>0.14.0,<3.0)"] -data-all = ["Pillow (>=9.5.0)", "filelock", "fsspec[http] (>=2022.5.0,<2024.0)", "lightning-cloud", "lightning-utilities (>=0.8.0,<1.0)", "s3fs (>=2022.5.0,<2024.0)", "torch (>0.14.0,<3.0)", "torchvision (>=0.15.2,<1.0)"] -data-cloud = ["fsspec[http] (>=2022.5.0,<2024.0)", "s3fs (>=2022.5.0,<2024.0)"] -data-dev = ["Pillow (>=9.5.0)", "coverage (==7.3.1)", "filelock", "fsspec[http] (>=2022.5.0,<2024.0)", "lightning-cloud", "lightning-utilities (>=0.8.0,<1.0)", "polars", "pyarrow", "pytest (==7.4.0)", "pytest-cov (==4.1.0)", "pytest-random-order (==1.1.0)", "pytest-rerunfailures (==12.0)", "pytest-timeout (==2.1.0)", "s3fs (>=2022.5.0,<2024.0)", "torch (>0.14.0,<3.0)", "torchvision (>=0.15.2,<1.0)", "viztracer"] -data-examples = ["Pillow (>=9.5.0)", "torchvision (>=0.15.2,<1.0)"] -data-test = ["coverage (==7.3.1)", "polars", "pyarrow", "pytest (==7.4.0)", "pytest-cov (==4.1.0)", "pytest-random-order (==1.1.0)", "pytest-rerunfailures (==12.0)", "pytest-timeout (==2.1.0)", "viztracer"] -dev = ["Jinja2 (<4.0)", "Pillow (>=9.5.0)", "PyYAML (<7.0)", "aiohttp (>=3.8.0,<4.0)", "arrow (>=1.2.0,<2.0)", "backoff (>=2.2.1,<3.0)", "beautifulsoup4 (>=4.8.0,<5.0)", "bitsandbytes (==0.41.0)", "click (<9.0)", "click (==8.1.7)", "cloudpickle (>=1.3,<3.0)", "coverage (==7.3.1)", "croniter (>=1.3.0,<1.5.0)", "dateutils (<1.0)", "deepdiff (>=5.7.0,<7.0)", "deepspeed (>=0.8.2,<=0.9.3)", "docker (>=5.0.0,<7.0)", "fastapi", "fastapi (>=0.92.0,<1.0)", "filelock", "fsspec[http] (>=2022.5.0,<2024.0)", "gym[classic-control] (>=0.17.0,<1.0)", "httpx (==0.25.0)", "hydra-core (>=1.0.5,<2.0)", "inquirer (>=2.10.0,<4.0)", "ipython[all] (<9.0)", "jsonargparse[signatures] (>=4.26.1,<5.0)", "lightning-api-access (>=0.0.3)", "lightning-cloud", "lightning-cloud (==0.5.64)", "lightning-fabric (>=1.9.0)", "lightning-utilities (>=0.8.0,<1.0)", "matplotlib (>3.1,<4.0)", "omegaconf (>=2.0.5,<3.0)", "onnx (>=0.14.0,<2.0)", "onnxruntime (>=0.15.0,<2.0)", "packaging", "pandas", "pandas (>1.0,<3.0)", "playwright (==1.38.0)", "polars", "psutil (<6.0)", "pyarrow", "pydantic (>=1.7.4)", "pympler", "pytest (==7.4.0)", "pytest-asyncio (==0.21.1)", "pytest-cov (==4.1.0)", "pytest-doctestplus (==1.0.0)", "pytest-random-order (==1.1.0)", "pytest-rerunfailures (==12.0)", "pytest-timeout (==2.1.0)", "pytest-xdist (==3.3.1)", "python-multipart (>=0.0.5,<1.0)", "pytorch-lightning (>=1.9.0)", "redis (>=4.0.1,<6.0)", "requests (<3.0)", "requests-mock (==1.11.0)", "rich (>=12.3.0,<14.0)", "s3fs (>=2022.5.0,<2024.0)", "scikit-learn (>0.22.1,<2.0)", "setuptools (<69.0)", "starlette", "tensorboard (>=2.9.1,<3.0)", "tensorboardX (>=2.2,<3.0)", "torch (>0.14.0,<3.0)", "torchmetrics (>=0.10.0,<2.0)", "torchmetrics (>=0.7.0,<2.0)", "torchvision (>=0.14.0,<1.0)", "torchvision (>=0.15.2,<1.0)", "traitlets (>=5.3.0,<6.0)", "trio (<0.22.0)", "typing-extensions (>=4.4.0,<5.0)", "urllib3 (<3.0)", "uvicorn", "uvicorn (<1.0)", "viztracer", "websocket-client (<2.0)", "websockets (<12.0)"] -examples = ["Pillow (>=9.5.0)", "gym[classic-control] (>=0.17.0,<1.0)", "ipython[all] (<9.0)", "lightning-utilities (>=0.8.0,<1.0)", "requests (<3.0)", "torchmetrics (>=0.10.0,<2.0)", "torchvision (>=0.14.0,<1.0)", "torchvision (>=0.15.2,<1.0)"] -extra = ["Jinja2 (<4.0)", "PyYAML (<7.0)", "aiohttp (>=3.8.0,<4.0)", "arrow (>=1.2.0,<2.0)", "backoff (>=2.2.1,<3.0)", "beautifulsoup4 (>=4.8.0,<5.0)", "bitsandbytes (==0.41.0)", "click (<9.0)", "croniter (>=1.3.0,<1.5.0)", "dateutils (<1.0)", "deepdiff (>=5.7.0,<7.0)", "docker (>=5.0.0,<7.0)", "fastapi (>=0.92.0,<1.0)", "fsspec[http] (>=2022.5.0,<2024.0)", "hydra-core (>=1.0.5,<2.0)", "inquirer (>=2.10.0,<4.0)", "jsonargparse[signatures] (>=4.26.1,<5.0)", "lightning-api-access (>=0.0.3)", "lightning-cloud (==0.5.64)", "lightning-fabric (>=1.9.0)", "lightning-utilities (>=0.8.0,<1.0)", "matplotlib (>3.1,<4.0)", "omegaconf (>=2.0.5,<3.0)", "packaging", "psutil (<6.0)", "pydantic (>=1.7.4)", "python-multipart (>=0.0.5,<1.0)", "pytorch-lightning (>=1.9.0)", "redis (>=4.0.1,<6.0)", "requests (<3.0)", "rich (>=12.3.0,<14.0)", "s3fs (>=2022.5.0,<2024.0)", "starlette", "tensorboardX (>=2.2,<3.0)", "traitlets (>=5.3.0,<6.0)", "typing-extensions (>=4.4.0,<5.0)", "urllib3 (<3.0)", "uvicorn (<1.0)", "websocket-client (<2.0)", "websockets (<12.0)"] +data = ["litdata (>=0.2.0rc,<1.0)"] +dev = ["Jinja2 (<4.0)", "PyYAML (<7.0)", "aiohttp (>=3.8.0,<4.0)", "arrow (>=1.2.0,<2.0)", "backoff (>=2.2.1,<3.0)", "beautifulsoup4 (>=4.8.0,<5.0)", "bitsandbytes (==0.41.0)", "click (<9.0)", "click (==8.1.7)", "cloudpickle (>=1.3,<3.0)", "coverage (==7.3.1)", "croniter (>=1.3.0,<1.5.0)", "dateutils (<1.0)", "deepdiff (>=5.7.0,<7.0)", "deepspeed (>=0.8.2,<=0.9.3)", "docker (>=5.0.0,<7.0)", "fastapi", "fastapi (>=0.92.0,<1.0)", "fsspec[http] (>=2022.5.0,<2024.0)", "gym[classic-control] (>=0.17.0,<1.0)", "httpx (==0.25.0)", "hydra-core (>=1.0.5,<2.0)", "inquirer (>=2.10.0,<4.0)", "ipython[all] (<9.0)", "jsonargparse[signatures] (>=4.27.7,<5.0)", "lightning-api-access (>=0.0.3)", "lightning-cloud (==0.5.65)", "lightning-fabric (>=1.9.0)", "lightning-utilities (>=0.8.0,<1.0)", "matplotlib (>3.1,<4.0)", "omegaconf (>=2.0.5,<3.0)", "onnx (>=0.14.0,<2.0)", "onnxruntime (>=0.15.0,<2.0)", "packaging", "pandas", "pandas (>1.0,<3.0)", "playwright (==1.38.0)", "psutil (<6.0)", "pydantic (>=1.7.4)", "pympler", "pytest (==7.4.0)", "pytest-asyncio (==0.21.1)", "pytest-cov (==4.1.0)", "pytest-doctestplus (==1.0.0)", "pytest-random-order (==1.1.0)", "pytest-rerunfailures (==12.0)", "pytest-timeout (==2.1.0)", "pytest-xdist (==3.3.1)", "python-multipart (>=0.0.5,<1.0)", "pytorch-lightning (>=1.9.0)", "redis (>=4.0.1,<6.0)", "requests (<3.0)", "requests-mock (==1.11.0)", "rich (>=12.3.0,<14.0)", "s3fs (>=2022.5.0,<2024.0)", "scikit-learn (>0.22.1,<2.0)", "setuptools (<69.0)", "starlette", "tensorboard (>=2.9.1,<3.0)", "tensorboardX (>=2.2,<3.0)", "torchmetrics (>=0.10.0,<2.0)", "torchmetrics (>=0.7.0,<2.0)", "torchvision (>=0.14.0,<1.0)", "traitlets (>=5.3.0,<6.0)", "trio (<0.22.0)", "typing-extensions (>=4.4.0,<5.0)", "urllib3 (<3.0)", "uvicorn", "uvicorn (<1.0)", "websocket-client (<2.0)", "websockets (<12.0)"] +examples = ["gym[classic-control] (>=0.17.0,<1.0)", "ipython[all] (<9.0)", "lightning-utilities (>=0.8.0,<1.0)", "requests (<3.0)", "torchmetrics (>=0.10.0,<2.0)", "torchvision (>=0.14.0,<1.0)"] +extra = ["Jinja2 (<4.0)", "PyYAML (<7.0)", "aiohttp (>=3.8.0,<4.0)", "arrow (>=1.2.0,<2.0)", "backoff (>=2.2.1,<3.0)", "beautifulsoup4 (>=4.8.0,<5.0)", "bitsandbytes (==0.41.0)", "click (<9.0)", "croniter (>=1.3.0,<1.5.0)", "dateutils (<1.0)", "deepdiff (>=5.7.0,<7.0)", "docker (>=5.0.0,<7.0)", "fastapi (>=0.92.0,<1.0)", "fsspec[http] (>=2022.5.0,<2024.0)", "hydra-core (>=1.0.5,<2.0)", "inquirer (>=2.10.0,<4.0)", "jsonargparse[signatures] (>=4.27.7,<5.0)", "lightning-api-access (>=0.0.3)", "lightning-cloud (==0.5.65)", "lightning-fabric (>=1.9.0)", "lightning-utilities (>=0.8.0,<1.0)", "matplotlib (>3.1,<4.0)", "omegaconf (>=2.0.5,<3.0)", "packaging", "psutil (<6.0)", "pydantic (>=1.7.4)", "python-multipart (>=0.0.5,<1.0)", "pytorch-lightning (>=1.9.0)", "redis (>=4.0.1,<6.0)", "requests (<3.0)", "rich (>=12.3.0,<14.0)", "s3fs (>=2022.5.0,<2024.0)", "starlette", "tensorboardX (>=2.2,<3.0)", "traitlets (>=5.3.0,<6.0)", "typing-extensions (>=4.4.0,<5.0)", "urllib3 (<3.0)", "uvicorn (<1.0)", "websocket-client (<2.0)", "websockets (<12.0)"] fabric-all = ["bitsandbytes (==0.41.0)", "deepspeed (>=0.8.2,<=0.9.3)", "lightning-utilities (>=0.8.0,<1.0)", "torchmetrics (>=0.10.0,<2.0)", "torchvision (>=0.14.0,<1.0)"] fabric-dev = ["bitsandbytes (==0.41.0)", "click (==8.1.7)", "coverage (==7.3.1)", "deepspeed (>=0.8.2,<=0.9.3)", "lightning-utilities (>=0.8.0,<1.0)", "pytest (==7.4.0)", "pytest-cov (==4.1.0)", "pytest-random-order (==1.1.0)", "pytest-rerunfailures (==12.0)", "pytest-timeout (==2.1.0)", "tensorboardX (>=2.2,<3.0)", "torchmetrics (>=0.10.0,<2.0)", "torchmetrics (>=0.7.0,<2.0)", "torchvision (>=0.14.0,<1.0)"] fabric-examples = ["lightning-utilities (>=0.8.0,<1.0)", "torchmetrics (>=0.10.0,<2.0)", "torchvision (>=0.14.0,<1.0)"] fabric-strategies = ["bitsandbytes (==0.41.0)", "deepspeed (>=0.8.2,<=0.9.3)"] fabric-test = ["click (==8.1.7)", "coverage (==7.3.1)", "pytest (==7.4.0)", "pytest-cov (==4.1.0)", "pytest-random-order (==1.1.0)", "pytest-rerunfailures (==12.0)", "pytest-timeout (==2.1.0)", "tensorboardX (>=2.2,<3.0)", "torchmetrics (>=0.7.0,<2.0)"] -pytorch-all = ["bitsandbytes (==0.41.0)", "deepspeed (>=0.8.2,<=0.9.3)", "gym[classic-control] (>=0.17.0,<1.0)", "hydra-core (>=1.0.5,<2.0)", "ipython[all] (<9.0)", "jsonargparse[signatures] (>=4.26.1,<5.0)", "lightning-utilities (>=0.8.0,<1.0)", "matplotlib (>3.1,<4.0)", "omegaconf (>=2.0.5,<3.0)", "requests (<3.0)", "rich (>=12.3.0,<14.0)", "tensorboardX (>=2.2,<3.0)", "torchmetrics (>=0.10.0,<2.0)", "torchvision (>=0.14.0,<1.0)"] -pytorch-dev = ["bitsandbytes (==0.41.0)", "cloudpickle (>=1.3,<3.0)", "coverage (==7.3.1)", "deepspeed (>=0.8.2,<=0.9.3)", "fastapi", "gym[classic-control] (>=0.17.0,<1.0)", "hydra-core (>=1.0.5,<2.0)", "ipython[all] (<9.0)", "jsonargparse[signatures] (>=4.26.1,<5.0)", "lightning-utilities (>=0.8.0,<1.0)", "matplotlib (>3.1,<4.0)", "omegaconf (>=2.0.5,<3.0)", "onnx (>=0.14.0,<2.0)", "onnxruntime (>=0.15.0,<2.0)", "pandas (>1.0,<3.0)", "psutil (<6.0)", "pytest (==7.4.0)", "pytest-cov (==4.1.0)", "pytest-random-order (==1.1.0)", "pytest-rerunfailures (==12.0)", "pytest-timeout (==2.1.0)", "requests (<3.0)", "rich (>=12.3.0,<14.0)", "scikit-learn (>0.22.1,<2.0)", "tensorboard (>=2.9.1,<3.0)", "tensorboardX (>=2.2,<3.0)", "torchmetrics (>=0.10.0,<2.0)", "torchvision (>=0.14.0,<1.0)", "uvicorn"] +pytorch-all = ["bitsandbytes (==0.41.0)", "deepspeed (>=0.8.2,<=0.9.3)", "gym[classic-control] (>=0.17.0,<1.0)", "hydra-core (>=1.0.5,<2.0)", "ipython[all] (<9.0)", "jsonargparse[signatures] (>=4.27.7,<5.0)", "lightning-utilities (>=0.8.0,<1.0)", "matplotlib (>3.1,<4.0)", "omegaconf (>=2.0.5,<3.0)", "requests (<3.0)", "rich (>=12.3.0,<14.0)", "tensorboardX (>=2.2,<3.0)", "torchmetrics (>=0.10.0,<2.0)", "torchvision (>=0.14.0,<1.0)"] +pytorch-dev = ["bitsandbytes (==0.41.0)", "cloudpickle (>=1.3,<3.0)", "coverage (==7.3.1)", "deepspeed (>=0.8.2,<=0.9.3)", "fastapi", "gym[classic-control] (>=0.17.0,<1.0)", "hydra-core (>=1.0.5,<2.0)", "ipython[all] (<9.0)", "jsonargparse[signatures] (>=4.27.7,<5.0)", "lightning-utilities (>=0.8.0,<1.0)", "matplotlib (>3.1,<4.0)", "omegaconf (>=2.0.5,<3.0)", "onnx (>=0.14.0,<2.0)", "onnxruntime (>=0.15.0,<2.0)", "pandas (>1.0,<3.0)", "psutil (<6.0)", "pytest (==7.4.0)", "pytest-cov (==4.1.0)", "pytest-random-order (==1.1.0)", "pytest-rerunfailures (==12.0)", "pytest-timeout (==2.1.0)", "requests (<3.0)", "rich (>=12.3.0,<14.0)", "scikit-learn (>0.22.1,<2.0)", "tensorboard (>=2.9.1,<3.0)", "tensorboardX (>=2.2,<3.0)", "torchmetrics (>=0.10.0,<2.0)", "torchvision (>=0.14.0,<1.0)", "uvicorn"] pytorch-examples = ["gym[classic-control] (>=0.17.0,<1.0)", "ipython[all] (<9.0)", "lightning-utilities (>=0.8.0,<1.0)", "requests (<3.0)", "torchmetrics (>=0.10.0,<2.0)", "torchvision (>=0.14.0,<1.0)"] -pytorch-extra = ["bitsandbytes (==0.41.0)", "hydra-core (>=1.0.5,<2.0)", "jsonargparse[signatures] (>=4.26.1,<5.0)", "matplotlib (>3.1,<4.0)", "omegaconf (>=2.0.5,<3.0)", "rich (>=12.3.0,<14.0)", "tensorboardX (>=2.2,<3.0)"] +pytorch-extra = ["bitsandbytes (==0.41.0)", "hydra-core (>=1.0.5,<2.0)", "jsonargparse[signatures] (>=4.27.7,<5.0)", "matplotlib (>3.1,<4.0)", "omegaconf (>=2.0.5,<3.0)", "rich (>=12.3.0,<14.0)", "tensorboardX (>=2.2,<3.0)"] pytorch-strategies = ["deepspeed (>=0.8.2,<=0.9.3)"] pytorch-test = ["cloudpickle (>=1.3,<3.0)", "coverage (==7.3.1)", "fastapi", "onnx (>=0.14.0,<2.0)", "onnxruntime (>=0.15.0,<2.0)", "pandas (>1.0,<3.0)", "psutil (<6.0)", "pytest (==7.4.0)", "pytest-cov (==4.1.0)", "pytest-random-order (==1.1.0)", "pytest-rerunfailures (==12.0)", "pytest-timeout (==2.1.0)", "scikit-learn (>0.22.1,<2.0)", "tensorboard (>=2.9.1,<3.0)", "uvicorn"] -store = ["Jinja2 (<4.0)", "PyYAML (<7.0)", "arrow (>=1.2.0,<2.0)", "backoff (>=2.2.1,<3.0)", "beautifulsoup4 (>=4.8.0,<5.0)", "click (<9.0)", "croniter (>=1.3.0,<1.5.0)", "dateutils (<1.0)", "deepdiff (>=5.7.0,<7.0)", "fastapi (>=0.92.0,<1.0)", "fsspec[http] (>=2022.5.0,<2024.0)", "inquirer (>=2.10.0,<4.0)", "lightning-cloud (==0.5.64)", "lightning-utilities (>=0.8.0,<1.0)", "packaging", "psutil (<6.0)", "pydantic (>=1.7.4)", "python-multipart (>=0.0.5,<1.0)", "requests (<3.0)", "rich (>=12.3.0,<14.0)", "starlette", "traitlets (>=5.3.0,<6.0)", "typing-extensions (>=4.4.0,<5.0)", "urllib3 (<3.0)", "uvicorn (<1.0)", "websocket-client (<2.0)", "websockets (<12.0)"] +store = ["Jinja2 (<4.0)", "PyYAML (<7.0)", "arrow (>=1.2.0,<2.0)", "backoff (>=2.2.1,<3.0)", "beautifulsoup4 (>=4.8.0,<5.0)", "click (<9.0)", "croniter (>=1.3.0,<1.5.0)", "dateutils (<1.0)", "deepdiff (>=5.7.0,<7.0)", "fastapi (>=0.92.0,<1.0)", "fsspec[http] (>=2022.5.0,<2024.0)", "inquirer (>=2.10.0,<4.0)", "lightning-cloud (==0.5.65)", "lightning-utilities (>=0.8.0,<1.0)", "packaging", "psutil (<6.0)", "pydantic (>=1.7.4)", "python-multipart (>=0.0.5,<1.0)", "requests (<3.0)", "rich (>=12.3.0,<14.0)", "starlette", "traitlets (>=5.3.0,<6.0)", "typing-extensions (>=4.4.0,<5.0)", "urllib3 (<3.0)", "uvicorn (<1.0)", "websocket-client (<2.0)", "websockets (<12.0)"] store-test = ["coverage (==7.3.1)", "pytest (==7.4.0)", "pytest-cov (==4.1.0)", "pytest-random-order (==1.1.0)", "pytest-rerunfailures (==12.0)", "pytest-timeout (==2.1.0)"] strategies = ["bitsandbytes (==0.41.0)", "deepspeed (>=0.8.2,<=0.9.3)"] -test = ["click (==8.1.7)", "cloudpickle (>=1.3,<3.0)", "coverage (==7.3.1)", "fastapi", "httpx (==0.25.0)", "onnx (>=0.14.0,<2.0)", "onnxruntime (>=0.15.0,<2.0)", "pandas", "pandas (>1.0,<3.0)", "playwright (==1.38.0)", "polars", "psutil (<6.0)", "pyarrow", "pympler", "pytest (==7.4.0)", "pytest-asyncio (==0.21.1)", "pytest-cov (==4.1.0)", "pytest-doctestplus (==1.0.0)", "pytest-random-order (==1.1.0)", "pytest-rerunfailures (==12.0)", "pytest-timeout (==2.1.0)", "pytest-xdist (==3.3.1)", "requests-mock (==1.11.0)", "scikit-learn (>0.22.1,<2.0)", "setuptools (<69.0)", "tensorboard (>=2.9.1,<3.0)", "tensorboardX (>=2.2,<3.0)", "torchmetrics (>=0.7.0,<2.0)", "trio (<0.22.0)", "uvicorn", "viztracer"] +test = ["click (==8.1.7)", "cloudpickle (>=1.3,<3.0)", "coverage (==7.3.1)", "fastapi", "httpx (==0.25.0)", "onnx (>=0.14.0,<2.0)", "onnxruntime (>=0.15.0,<2.0)", "pandas", "pandas (>1.0,<3.0)", "playwright (==1.38.0)", "psutil (<6.0)", "pympler", "pytest (==7.4.0)", "pytest-asyncio (==0.21.1)", "pytest-cov (==4.1.0)", "pytest-doctestplus (==1.0.0)", "pytest-random-order (==1.1.0)", "pytest-rerunfailures (==12.0)", "pytest-timeout (==2.1.0)", "pytest-xdist (==3.3.1)", "requests-mock (==1.11.0)", "scikit-learn (>0.22.1,<2.0)", "setuptools (<69.0)", "tensorboard (>=2.9.1,<3.0)", "tensorboardX (>=2.2,<3.0)", "torchmetrics (>=0.7.0,<2.0)", "trio (<0.22.0)", "uvicorn"] + +[[package]] +name = "lightning-bolts" +version = "0.7.0" +description = "Lightning Bolts is a community contribution for ML researchers." +category = "main" +optional = false +python-versions = ">=3.8" +files = [ + {file = "lightning-bolts-0.7.0.tar.gz", hash = "sha256:6071cda7721087890ba01523d6580fe72b03b842766fd5018a8eb9caa99fe75c"}, + {file = "lightning_bolts-0.7.0-py3-none-any.whl", hash = "sha256:231c91584ffd610499fb5be80b9f5a22cfa42c3377d16223a37984e59d0118bd"}, +] + +[package.dependencies] +lightning-utilities = ">0.3.1" +numpy = "*" +pytorch-lightning = ">1.7.0,<2.0.0" +tensorboard = ">=2.9.1" +torchmetrics = "*" +torchvision = ">=0.10.0" + +[package.extras] +dev = ["Pillow (>9.0.0)", "ale-py (>=0.7)", "atari-py (>0.2,!=0.2.6,<0.3)", "box2d-py (>2.3,<2.4)", "coverage[toml] (>7.0.0)", "gym[atari] (>=0.17.2,<0.22.0)", "jsonargparse[signatures] (>4.0.0)", "matplotlib (>3.0.0)", "opencv-python-headless (>=4.5.5.62)", "pytest (==7.4.0)", "pytest-cov (==4.1.0)", "pytest-rerunfailures (==11.1.2)", "pytest-timeout (==2.1.0)", "scikit-learn (>=1.0.2)", "scipy (>1.5.0)", "sparseml (>1.0.0)", "torchvision (>=0.10.0)", "wandb (>0.13.0)"] +extra = ["Pillow (>9.0.0)", "atari-py (>0.2,!=0.2.6,<0.3)", "box2d-py (>2.3,<2.4)", "gym[atari] (>=0.17.2,<0.22.0)", "matplotlib (>3.0.0)", "opencv-python-headless (>=4.5.5.62)", "scikit-learn (>=1.0.2)", "scipy (>1.5.0)", "torchvision (>=0.10.0)", "wandb (>0.13.0)"] +loggers = ["matplotlib (>3.0.0)", "scipy (>1.5.0)", "wandb (>0.13.0)"] +models = ["Pillow (>9.0.0)", "atari-py (>0.2,!=0.2.6,<0.3)", "box2d-py (>2.3,<2.4)", "gym[atari] (>=0.17.2,<0.22.0)", "opencv-python-headless (>=4.5.5.62)", "scikit-learn (>=1.0.2)", "torchvision (>=0.10.0)"] +test = ["ale-py (>=0.7)", "coverage[toml] (>7.0.0)", "jsonargparse[signatures] (>4.0.0)", "pytest (==7.4.0)", "pytest-cov (==4.1.0)", "pytest-rerunfailures (==11.1.2)", "pytest-timeout (==2.1.0)", "scikit-learn (>=1.0.2)", "sparseml (>1.0.0)"] +typing = ["mypy (==1.3.0)"] [[package]] name = "lightning-utilities" -version = "0.10.1" +version = "0.11.2" description = "Lightning toolbox for across the our ecosystem." category = "main" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "lightning-utilities-0.10.1.tar.gz", hash = "sha256:362755023dcf93b8fa519bc002ae41794943a3ffbc5318e40804d36aa14bf1fd"}, - {file = "lightning_utilities-0.10.1-py3-none-any.whl", hash = "sha256:e67be3f328b1c14f2b36cc09e84642db5b50afeab94e7704969b2130fe6a3bda"}, + {file = "lightning-utilities-0.11.2.tar.gz", hash = "sha256:adf4cf9c5d912fe505db4729e51d1369c6927f3a8ac55a9dff895ce5c0da08d9"}, + {file = "lightning_utilities-0.11.2-py3-none-any.whl", hash = "sha256:541f471ed94e18a28d72879338c8c52e873bb46f4c47644d89228faeb6751159"}, ] [package.dependencies] @@ -1893,6 +2216,37 @@ files = [ [package.dependencies] nbtlib = ">=2.0.3" +[[package]] +name = "llvmlite" +version = "0.42.0" +description = "lightweight wrapper around basic LLVM functionality" +category = "main" +optional = false +python-versions = ">=3.9" +files = [ + {file = "llvmlite-0.42.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:3366938e1bf63d26c34fbfb4c8e8d2ded57d11e0567d5bb243d89aab1eb56098"}, + {file = "llvmlite-0.42.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c35da49666a21185d21b551fc3caf46a935d54d66969d32d72af109b5e7d2b6f"}, + {file = "llvmlite-0.42.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70f44ccc3c6220bd23e0ba698a63ec2a7d3205da0d848804807f37fc243e3f77"}, + {file = "llvmlite-0.42.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:763f8d8717a9073b9e0246998de89929071d15b47f254c10eef2310b9aac033d"}, + {file = "llvmlite-0.42.0-cp310-cp310-win_amd64.whl", hash = "sha256:8d90edf400b4ceb3a0e776b6c6e4656d05c7187c439587e06f86afceb66d2be5"}, + {file = "llvmlite-0.42.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ae511caed28beaf1252dbaf5f40e663f533b79ceb408c874c01754cafabb9cbf"}, + {file = "llvmlite-0.42.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:81e674c2fe85576e6c4474e8c7e7aba7901ac0196e864fe7985492b737dbab65"}, + {file = "llvmlite-0.42.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb3975787f13eb97629052edb5017f6c170eebc1c14a0433e8089e5db43bcce6"}, + {file = "llvmlite-0.42.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c5bece0cdf77f22379f19b1959ccd7aee518afa4afbd3656c6365865f84903f9"}, + {file = "llvmlite-0.42.0-cp311-cp311-win_amd64.whl", hash = "sha256:7e0c4c11c8c2aa9b0701f91b799cb9134a6a6de51444eff5a9087fc7c1384275"}, + {file = "llvmlite-0.42.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:08fa9ab02b0d0179c688a4216b8939138266519aaa0aa94f1195a8542faedb56"}, + {file = "llvmlite-0.42.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b2fce7d355068494d1e42202c7aff25d50c462584233013eb4470c33b995e3ee"}, + {file = "llvmlite-0.42.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ebe66a86dc44634b59a3bc860c7b20d26d9aaffcd30364ebe8ba79161a9121f4"}, + {file = "llvmlite-0.42.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d47494552559e00d81bfb836cf1c4d5a5062e54102cc5767d5aa1e77ccd2505c"}, + {file = "llvmlite-0.42.0-cp312-cp312-win_amd64.whl", hash = "sha256:05cb7e9b6ce69165ce4d1b994fbdedca0c62492e537b0cc86141b6e2c78d5888"}, + {file = "llvmlite-0.42.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bdd3888544538a94d7ec99e7c62a0cdd8833609c85f0c23fcb6c5c591aec60ad"}, + {file = "llvmlite-0.42.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d0936c2067a67fb8816c908d5457d63eba3e2b17e515c5fe00e5ee2bace06040"}, + {file = "llvmlite-0.42.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a78ab89f1924fc11482209f6799a7a3fc74ddc80425a7a3e0e8174af0e9e2301"}, + {file = "llvmlite-0.42.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d7599b65c7af7abbc978dbf345712c60fd596aa5670496561cc10e8a71cebfb2"}, + {file = "llvmlite-0.42.0-cp39-cp39-win_amd64.whl", hash = "sha256:43d65cc4e206c2e902c1004dd5418417c4efa6c1d04df05c6c5675a27e8ca90e"}, + {file = "llvmlite-0.42.0.tar.gz", hash = "sha256:f92b09243c0cc3f457da8b983f67bd8e1295d0f5b3746c7a1861d7a99403854a"}, +] + [[package]] name = "loguru" version = "0.7.2" @@ -1912,6 +2266,22 @@ win32-setctime = {version = ">=1.0.0", markers = "sys_platform == \"win32\""} [package.extras] dev = ["Sphinx (==7.2.5)", "colorama (==0.4.5)", "colorama (==0.4.6)", "exceptiongroup (==1.1.3)", "freezegun (==1.1.0)", "freezegun (==1.2.2)", "mypy (==v0.910)", "mypy (==v0.971)", "mypy (==v1.4.1)", "mypy (==v1.5.1)", "pre-commit (==3.4.0)", "pytest (==6.1.2)", "pytest (==7.4.0)", "pytest-cov (==2.12.1)", "pytest-cov (==4.1.0)", "pytest-mypy-plugins (==1.9.3)", "pytest-mypy-plugins (==3.0.0)", "sphinx-autobuild (==2021.3.14)", "sphinx-rtd-theme (==1.3.0)", "tox (==3.27.1)", "tox (==4.11.0)"] +[[package]] +name = "markdown" +version = "3.6" +description = "Python implementation of John Gruber's Markdown." +category = "main" +optional = false +python-versions = ">=3.8" +files = [ + {file = "Markdown-3.6-py3-none-any.whl", hash = "sha256:48f276f4d8cfb8ce6527c8f79e2ee29708508bf4d40aa410fbc3b4ee832c850f"}, + {file = "Markdown-3.6.tar.gz", hash = "sha256:ed4f41f6daecbeeb96e576ce414c41d2d876daa9a16cb35fa8ed8c2ddfad0224"}, +] + +[package.extras] +docs = ["mdx-gh-links (>=0.2)", "mkdocs (>=1.5)", "mkdocs-gen-files", "mkdocs-literate-nav", "mkdocs-nature (>=0.6)", "mkdocs-section-index", "mkdocstrings[python]"] +testing = ["coverage", "pyyaml"] + [[package]] name = "markupsafe" version = "2.1.5" @@ -1984,40 +2354,40 @@ files = [ [[package]] name = "matplotlib" -version = "3.8.3" +version = "3.8.4" description = "Python plotting package" category = "main" optional = false python-versions = ">=3.9" files = [ - {file = "matplotlib-3.8.3-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:cf60138ccc8004f117ab2a2bad513cc4d122e55864b4fe7adf4db20ca68a078f"}, - {file = "matplotlib-3.8.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5f557156f7116be3340cdeef7f128fa99b0d5d287d5f41a16e169819dcf22357"}, - {file = "matplotlib-3.8.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f386cf162b059809ecfac3bcc491a9ea17da69fa35c8ded8ad154cd4b933d5ec"}, - {file = "matplotlib-3.8.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b3c5f96f57b0369c288bf6f9b5274ba45787f7e0589a34d24bdbaf6d3344632f"}, - {file = "matplotlib-3.8.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:83e0f72e2c116ca7e571c57aa29b0fe697d4c6425c4e87c6e994159e0c008635"}, - {file = "matplotlib-3.8.3-cp310-cp310-win_amd64.whl", hash = "sha256:1c5c8290074ba31a41db1dc332dc2b62def469ff33766cbe325d32a3ee291aea"}, - {file = "matplotlib-3.8.3-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:5184e07c7e1d6d1481862ee361905b7059f7fe065fc837f7c3dc11eeb3f2f900"}, - {file = "matplotlib-3.8.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d7e7e0993d0758933b1a241a432b42c2db22dfa37d4108342ab4afb9557cbe3e"}, - {file = "matplotlib-3.8.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:04b36ad07eac9740fc76c2aa16edf94e50b297d6eb4c081e3add863de4bb19a7"}, - {file = "matplotlib-3.8.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7c42dae72a62f14982f1474f7e5c9959fc4bc70c9de11cc5244c6e766200ba65"}, - {file = "matplotlib-3.8.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:bf5932eee0d428192c40b7eac1399d608f5d995f975cdb9d1e6b48539a5ad8d0"}, - {file = "matplotlib-3.8.3-cp311-cp311-win_amd64.whl", hash = "sha256:40321634e3a05ed02abf7c7b47a50be50b53ef3eaa3a573847431a545585b407"}, - {file = "matplotlib-3.8.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:09074f8057917d17ab52c242fdf4916f30e99959c1908958b1fc6032e2d0f6d4"}, - {file = "matplotlib-3.8.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5745f6d0fb5acfabbb2790318db03809a253096e98c91b9a31969df28ee604aa"}, - {file = "matplotlib-3.8.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b97653d869a71721b639714b42d87cda4cfee0ee74b47c569e4874c7590c55c5"}, - {file = "matplotlib-3.8.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:242489efdb75b690c9c2e70bb5c6550727058c8a614e4c7716f363c27e10bba1"}, - {file = "matplotlib-3.8.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:83c0653c64b73926730bd9ea14aa0f50f202ba187c307a881673bad4985967b7"}, - {file = "matplotlib-3.8.3-cp312-cp312-win_amd64.whl", hash = "sha256:ef6c1025a570354297d6c15f7d0f296d95f88bd3850066b7f1e7b4f2f4c13a39"}, - {file = "matplotlib-3.8.3-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:c4af3f7317f8a1009bbb2d0bf23dfaba859eb7dd4ccbd604eba146dccaaaf0a4"}, - {file = "matplotlib-3.8.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4c6e00a65d017d26009bac6808f637b75ceade3e1ff91a138576f6b3065eeeba"}, - {file = "matplotlib-3.8.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e7b49ab49a3bea17802df6872f8d44f664ba8f9be0632a60c99b20b6db2165b7"}, - {file = "matplotlib-3.8.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6728dde0a3997396b053602dbd907a9bd64ec7d5cf99e728b404083698d3ca01"}, - {file = "matplotlib-3.8.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:813925d08fb86aba139f2d31864928d67511f64e5945ca909ad5bc09a96189bb"}, - {file = "matplotlib-3.8.3-cp39-cp39-win_amd64.whl", hash = "sha256:cd3a0c2be76f4e7be03d34a14d49ded6acf22ef61f88da600a18a5cd8b3c5f3c"}, - {file = "matplotlib-3.8.3-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:fa93695d5c08544f4a0dfd0965f378e7afc410d8672816aff1e81be1f45dbf2e"}, - {file = "matplotlib-3.8.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9764df0e8778f06414b9d281a75235c1e85071f64bb5d71564b97c1306a2afc"}, - {file = "matplotlib-3.8.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:5e431a09e6fab4012b01fc155db0ce6dccacdbabe8198197f523a4ef4805eb26"}, - {file = "matplotlib-3.8.3.tar.gz", hash = "sha256:7b416239e9ae38be54b028abbf9048aff5054a9aba5416bef0bd17f9162ce161"}, + {file = "matplotlib-3.8.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:abc9d838f93583650c35eca41cfcec65b2e7cb50fd486da6f0c49b5e1ed23014"}, + {file = "matplotlib-3.8.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f65c9f002d281a6e904976007b2d46a1ee2bcea3a68a8c12dda24709ddc9106"}, + {file = "matplotlib-3.8.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce1edd9f5383b504dbc26eeea404ed0a00656c526638129028b758fd43fc5f10"}, + {file = "matplotlib-3.8.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ecd79298550cba13a43c340581a3ec9c707bd895a6a061a78fa2524660482fc0"}, + {file = "matplotlib-3.8.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:90df07db7b599fe7035d2f74ab7e438b656528c68ba6bb59b7dc46af39ee48ef"}, + {file = "matplotlib-3.8.4-cp310-cp310-win_amd64.whl", hash = "sha256:ac24233e8f2939ac4fd2919eed1e9c0871eac8057666070e94cbf0b33dd9c338"}, + {file = "matplotlib-3.8.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:72f9322712e4562e792b2961971891b9fbbb0e525011e09ea0d1f416c4645661"}, + {file = "matplotlib-3.8.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:232ce322bfd020a434caaffbd9a95333f7c2491e59cfc014041d95e38ab90d1c"}, + {file = "matplotlib-3.8.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6addbd5b488aedb7f9bc19f91cd87ea476206f45d7116fcfe3d31416702a82fa"}, + {file = "matplotlib-3.8.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cc4ccdc64e3039fc303defd119658148f2349239871db72cd74e2eeaa9b80b71"}, + {file = "matplotlib-3.8.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:b7a2a253d3b36d90c8993b4620183b55665a429da8357a4f621e78cd48b2b30b"}, + {file = "matplotlib-3.8.4-cp311-cp311-win_amd64.whl", hash = "sha256:8080d5081a86e690d7688ffa542532e87f224c38a6ed71f8fbed34dd1d9fedae"}, + {file = "matplotlib-3.8.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:6485ac1f2e84676cff22e693eaa4fbed50ef5dc37173ce1f023daef4687df616"}, + {file = "matplotlib-3.8.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c89ee9314ef48c72fe92ce55c4e95f2f39d70208f9f1d9db4e64079420d8d732"}, + {file = "matplotlib-3.8.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50bac6e4d77e4262c4340d7a985c30912054745ec99756ce213bfbc3cb3808eb"}, + {file = "matplotlib-3.8.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f51c4c869d4b60d769f7b4406eec39596648d9d70246428745a681c327a8ad30"}, + {file = "matplotlib-3.8.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:b12ba985837e4899b762b81f5b2845bd1a28f4fdd1a126d9ace64e9c4eb2fb25"}, + {file = "matplotlib-3.8.4-cp312-cp312-win_amd64.whl", hash = "sha256:7a6769f58ce51791b4cb8b4d7642489df347697cd3e23d88266aaaee93b41d9a"}, + {file = "matplotlib-3.8.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:843cbde2f0946dadd8c5c11c6d91847abd18ec76859dc319362a0964493f0ba6"}, + {file = "matplotlib-3.8.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1c13f041a7178f9780fb61cc3a2b10423d5e125480e4be51beaf62b172413b67"}, + {file = "matplotlib-3.8.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb44f53af0a62dc80bba4443d9b27f2fde6acfdac281d95bc872dc148a6509cc"}, + {file = "matplotlib-3.8.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:606e3b90897554c989b1e38a258c626d46c873523de432b1462f295db13de6f9"}, + {file = "matplotlib-3.8.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:9bb0189011785ea794ee827b68777db3ca3f93f3e339ea4d920315a0e5a78d54"}, + {file = "matplotlib-3.8.4-cp39-cp39-win_amd64.whl", hash = "sha256:6209e5c9aaccc056e63b547a8152661324404dd92340a6e479b3a7f24b42a5d0"}, + {file = "matplotlib-3.8.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:c7064120a59ce6f64103c9cefba8ffe6fba87f2c61d67c401186423c9a20fd35"}, + {file = "matplotlib-3.8.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0e47eda4eb2614300fc7bb4657fced3e83d6334d03da2173b09e447418d499f"}, + {file = "matplotlib-3.8.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:493e9f6aa5819156b58fce42b296ea31969f2aab71c5b680b4ea7a3cb5c07d94"}, + {file = "matplotlib-3.8.4.tar.gz", hash = "sha256:8aac397d5e9ec158960e31c381c5ffc52ddd52bd9a47717e2a694038167dffea"}, ] [package.dependencies] @@ -2025,7 +2395,7 @@ contourpy = ">=1.0.1" cycler = ">=0.10" fonttools = ">=4.22.0" kiwisolver = ">=1.3.1" -numpy = ">=1.21,<2" +numpy = ">=1.21" packaging = ">=20.0" pillow = ">=8" pyparsing = ">=2.3.1" @@ -2033,14 +2403,14 @@ python-dateutil = ">=2.7" [[package]] name = "matplotlib-inline" -version = "0.1.6" +version = "0.1.7" description = "Inline Matplotlib backend for Jupyter" -category = "dev" +category = "main" optional = false -python-versions = ">=3.5" +python-versions = ">=3.8" files = [ - {file = "matplotlib-inline-0.1.6.tar.gz", hash = "sha256:f887e5f10ba98e8d2b150ddcf4702c1e5f8b3a20005eb0f74bfdbd360ee6f304"}, - {file = "matplotlib_inline-0.1.6-py3-none-any.whl", hash = "sha256:f1f41aab5328aa5aaea9b16d083b128102f8712542f819fe7e6a420ff581b311"}, + {file = "matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca"}, + {file = "matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90"}, ] [package.dependencies] @@ -2178,39 +2548,39 @@ files = [ [[package]] name = "mypy" -version = "1.8.0" +version = "1.9.0" description = "Optional static typing for Python" category = "dev" optional = false python-versions = ">=3.8" files = [ - {file = "mypy-1.8.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:485a8942f671120f76afffff70f259e1cd0f0cfe08f81c05d8816d958d4577d3"}, - {file = "mypy-1.8.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:df9824ac11deaf007443e7ed2a4a26bebff98d2bc43c6da21b2b64185da011c4"}, - {file = "mypy-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2afecd6354bbfb6e0160f4e4ad9ba6e4e003b767dd80d85516e71f2e955ab50d"}, - {file = "mypy-1.8.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8963b83d53ee733a6e4196954502b33567ad07dfd74851f32be18eb932fb1cb9"}, - {file = "mypy-1.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:e46f44b54ebddbeedbd3d5b289a893219065ef805d95094d16a0af6630f5d410"}, - {file = "mypy-1.8.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:855fe27b80375e5c5878492f0729540db47b186509c98dae341254c8f45f42ae"}, - {file = "mypy-1.8.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4c886c6cce2d070bd7df4ec4a05a13ee20c0aa60cb587e8d1265b6c03cf91da3"}, - {file = "mypy-1.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d19c413b3c07cbecf1f991e2221746b0d2a9410b59cb3f4fb9557f0365a1a817"}, - {file = "mypy-1.8.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9261ed810972061388918c83c3f5cd46079d875026ba97380f3e3978a72f503d"}, - {file = "mypy-1.8.0-cp311-cp311-win_amd64.whl", hash = "sha256:51720c776d148bad2372ca21ca29256ed483aa9a4cdefefcef49006dff2a6835"}, - {file = "mypy-1.8.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:52825b01f5c4c1c4eb0db253ec09c7aa17e1a7304d247c48b6f3599ef40db8bd"}, - {file = "mypy-1.8.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f5ac9a4eeb1ec0f1ccdc6f326bcdb464de5f80eb07fb38b5ddd7b0de6bc61e55"}, - {file = "mypy-1.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afe3fe972c645b4632c563d3f3eff1cdca2fa058f730df2b93a35e3b0c538218"}, - {file = "mypy-1.8.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:42c6680d256ab35637ef88891c6bd02514ccb7e1122133ac96055ff458f93fc3"}, - {file = "mypy-1.8.0-cp312-cp312-win_amd64.whl", hash = "sha256:720a5ca70e136b675af3af63db533c1c8c9181314d207568bbe79051f122669e"}, - {file = "mypy-1.8.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:028cf9f2cae89e202d7b6593cd98db6759379f17a319b5faf4f9978d7084cdc6"}, - {file = "mypy-1.8.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4e6d97288757e1ddba10dd9549ac27982e3e74a49d8d0179fc14d4365c7add66"}, - {file = "mypy-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f1478736fcebb90f97e40aff11a5f253af890c845ee0c850fe80aa060a267c6"}, - {file = "mypy-1.8.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:42419861b43e6962a649068a61f4a4839205a3ef525b858377a960b9e2de6e0d"}, - {file = "mypy-1.8.0-cp38-cp38-win_amd64.whl", hash = "sha256:2b5b6c721bd4aabaadead3a5e6fa85c11c6c795e0c81a7215776ef8afc66de02"}, - {file = "mypy-1.8.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5c1538c38584029352878a0466f03a8ee7547d7bd9f641f57a0f3017a7c905b8"}, - {file = "mypy-1.8.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4ef4be7baf08a203170f29e89d79064463b7fc7a0908b9d0d5114e8009c3a259"}, - {file = "mypy-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7178def594014aa6c35a8ff411cf37d682f428b3b5617ca79029d8ae72f5402b"}, - {file = "mypy-1.8.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ab3c84fa13c04aeeeabb2a7f67a25ef5d77ac9d6486ff33ded762ef353aa5592"}, - {file = "mypy-1.8.0-cp39-cp39-win_amd64.whl", hash = "sha256:99b00bc72855812a60d253420d8a2eae839b0afa4938f09f4d2aa9bb4654263a"}, - {file = "mypy-1.8.0-py3-none-any.whl", hash = "sha256:538fd81bb5e430cc1381a443971c0475582ff9f434c16cd46d2c66763ce85d9d"}, - {file = "mypy-1.8.0.tar.gz", hash = "sha256:6ff8b244d7085a0b425b56d327b480c3b29cafbd2eff27316a004f9a7391ae07"}, + {file = "mypy-1.9.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f8a67616990062232ee4c3952f41c779afac41405806042a8126fe96e098419f"}, + {file = "mypy-1.9.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d357423fa57a489e8c47b7c85dfb96698caba13d66e086b412298a1a0ea3b0ed"}, + {file = "mypy-1.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:49c87c15aed320de9b438ae7b00c1ac91cd393c1b854c2ce538e2a72d55df150"}, + {file = "mypy-1.9.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:48533cdd345c3c2e5ef48ba3b0d3880b257b423e7995dada04248725c6f77374"}, + {file = "mypy-1.9.0-cp310-cp310-win_amd64.whl", hash = "sha256:4d3dbd346cfec7cb98e6cbb6e0f3c23618af826316188d587d1c1bc34f0ede03"}, + {file = "mypy-1.9.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:653265f9a2784db65bfca694d1edd23093ce49740b2244cde583aeb134c008f3"}, + {file = "mypy-1.9.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3a3c007ff3ee90f69cf0a15cbcdf0995749569b86b6d2f327af01fd1b8aee9dc"}, + {file = "mypy-1.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2418488264eb41f69cc64a69a745fad4a8f86649af4b1041a4c64ee61fc61129"}, + {file = "mypy-1.9.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:68edad3dc7d70f2f17ae4c6c1b9471a56138ca22722487eebacfd1eb5321d612"}, + {file = "mypy-1.9.0-cp311-cp311-win_amd64.whl", hash = "sha256:85ca5fcc24f0b4aeedc1d02f93707bccc04733f21d41c88334c5482219b1ccb3"}, + {file = "mypy-1.9.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:aceb1db093b04db5cd390821464504111b8ec3e351eb85afd1433490163d60cd"}, + {file = "mypy-1.9.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:0235391f1c6f6ce487b23b9dbd1327b4ec33bb93934aa986efe8a9563d9349e6"}, + {file = "mypy-1.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d4d5ddc13421ba3e2e082a6c2d74c2ddb3979c39b582dacd53dd5d9431237185"}, + {file = "mypy-1.9.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:190da1ee69b427d7efa8aa0d5e5ccd67a4fb04038c380237a0d96829cb157913"}, + {file = "mypy-1.9.0-cp312-cp312-win_amd64.whl", hash = "sha256:fe28657de3bfec596bbeef01cb219833ad9d38dd5393fc649f4b366840baefe6"}, + {file = "mypy-1.9.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e54396d70be04b34f31d2edf3362c1edd023246c82f1730bbf8768c28db5361b"}, + {file = "mypy-1.9.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5e6061f44f2313b94f920e91b204ec600982961e07a17e0f6cd83371cb23f5c2"}, + {file = "mypy-1.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:81a10926e5473c5fc3da8abb04119a1f5811a236dc3a38d92015cb1e6ba4cb9e"}, + {file = "mypy-1.9.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b685154e22e4e9199fc95f298661deea28aaede5ae16ccc8cbb1045e716b3e04"}, + {file = "mypy-1.9.0-cp38-cp38-win_amd64.whl", hash = "sha256:5d741d3fc7c4da608764073089e5f58ef6352bedc223ff58f2f038c2c4698a89"}, + {file = "mypy-1.9.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:587ce887f75dd9700252a3abbc9c97bbe165a4a630597845c61279cf32dfbf02"}, + {file = "mypy-1.9.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f88566144752999351725ac623471661c9d1cd8caa0134ff98cceeea181789f4"}, + {file = "mypy-1.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:61758fabd58ce4b0720ae1e2fea5cfd4431591d6d590b197775329264f86311d"}, + {file = "mypy-1.9.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:e49499be624dead83927e70c756970a0bc8240e9f769389cdf5714b0784ca6bf"}, + {file = "mypy-1.9.0-cp39-cp39-win_amd64.whl", hash = "sha256:571741dc4194b4f82d344b15e8837e8c5fcc462d66d076748142327626a1b6e9"}, + {file = "mypy-1.9.0-py3-none-any.whl", hash = "sha256:a260627a570559181a9ea5de61ac6297aa5af202f06fd7ab093ce74e7181e43e"}, + {file = "mypy-1.9.0.tar.gz", hash = "sha256:3cc5da0127e6a478cddd906068496a97a7618a21ce9b54bde5bf7e539c7af974"}, ] [package.dependencies] @@ -2226,14 +2596,14 @@ reports = ["lxml"] [[package]] name = "mypy-boto3-cloudformation" -version = "1.34.55" -description = "Type annotations for boto3.CloudFormation 1.34.55 service generated with mypy-boto3-builder 7.23.2" +version = "1.34.84" +description = "Type annotations for boto3.CloudFormation 1.34.84 service generated with mypy-boto3-builder 7.23.2" category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "mypy-boto3-cloudformation-1.34.55.tar.gz", hash = "sha256:de9f4d45d0a4e57bb5ef8b8d7a03476f8ef24ffa253d636cd824cde061227439"}, - {file = "mypy_boto3_cloudformation-1.34.55-py3-none-any.whl", hash = "sha256:78c4d25ef7102bd02c8e87d32211ff60a7b474ec546e9948b46f170d341ae0a2"}, + {file = "mypy_boto3_cloudformation-1.34.84-py3-none-any.whl", hash = "sha256:580954031cb3650588b91f592e8f51855b2ff435d763ac0d69cf271c8433315f"}, + {file = "mypy_boto3_cloudformation-1.34.84.tar.gz", hash = "sha256:82d14df3757f30b5a1d34650839d415d265d4de41cf355d63e10221fcc67f177"}, ] [package.dependencies] @@ -2241,14 +2611,14 @@ typing-extensions = {version = ">=4.1.0", markers = "python_version < \"3.12\""} [[package]] name = "mypy-boto3-dynamodb" -version = "1.34.46" -description = "Type annotations for boto3.DynamoDB 1.34.46 service generated with mypy-boto3-builder 7.23.1" +version = "1.34.67" +description = "Type annotations for boto3.DynamoDB 1.34.67 service generated with mypy-boto3-builder 7.23.2" category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "mypy-boto3-dynamodb-1.34.46.tar.gz", hash = "sha256:126da0a29ca48502cfa9a26e3024341233d8419f7e03273cea17af7d38e724bd"}, - {file = "mypy_boto3_dynamodb-1.34.46-py3-none-any.whl", hash = "sha256:1af7c80a0891edac29e5b70441122f6803eb772a3b7b498396eec30368232541"}, + {file = "mypy-boto3-dynamodb-1.34.67.tar.gz", hash = "sha256:09447ef3ea6bdfe0be4e32ca23283820573341d340bea3065ded2153cc593d22"}, + {file = "mypy_boto3_dynamodb-1.34.67-py3-none-any.whl", hash = "sha256:081ee9e184c0c2d93f648b25cec798e75533af26e631fbe80259f48fddb89758"}, ] [package.dependencies] @@ -2256,14 +2626,14 @@ typing-extensions = {version = ">=4.1.0", markers = "python_version < \"3.12\""} [[package]] name = "mypy-boto3-ec2" -version = "1.34.54" -description = "Type annotations for boto3.EC2 1.34.54 service generated with mypy-boto3-builder 7.23.2" +version = "1.34.86" +description = "Type annotations for boto3.EC2 1.34.86 service generated with mypy-boto3-builder 7.23.2" category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "mypy-boto3-ec2-1.34.54.tar.gz", hash = "sha256:ce34c2d7741be1918caf5b46cafb0cb7b1f6ac81ec6fbd8846bbe85c93d43101"}, - {file = "mypy_boto3_ec2-1.34.54-py3-none-any.whl", hash = "sha256:f36180ea33bad6626ff5302def1250eeb6612fafa15a56d269190d33d5a42093"}, + {file = "mypy_boto3_ec2-1.34.86-py3-none-any.whl", hash = "sha256:da1c24964155775266791ef6063642432578bc085def82128be0ec710873df8e"}, + {file = "mypy_boto3_ec2-1.34.86.tar.gz", hash = "sha256:7bd8b00399aeb47cc7a6f2781107cca9da859f8dd2d5bcbdd7816dcb6076eff1"}, ] [package.dependencies] @@ -2271,14 +2641,14 @@ typing-extensions = {version = ">=4.1.0", markers = "python_version < \"3.12\""} [[package]] name = "mypy-boto3-lambda" -version = "1.34.46" -description = "Type annotations for boto3.Lambda 1.34.46 service generated with mypy-boto3-builder 7.23.1" +version = "1.34.77" +description = "Type annotations for boto3.Lambda 1.34.77 service generated with mypy-boto3-builder 7.23.2" category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "mypy-boto3-lambda-1.34.46.tar.gz", hash = "sha256:275297944c5e36a170b37ce70229f21db6dd3561606799f18d96e36ac5df6876"}, - {file = "mypy_boto3_lambda-1.34.46-py3-none-any.whl", hash = "sha256:a12232002e04ee06b413b47068bc6bb085aeaa3693d28e9bf0efd76fa6953a0b"}, + {file = "mypy-boto3-lambda-1.34.77.tar.gz", hash = "sha256:7b81d2a5604fb592e92fe0b284ecd259de071703360a33b71c9b54df46d81c9c"}, + {file = "mypy_boto3_lambda-1.34.77-py3-none-any.whl", hash = "sha256:e21022d2eef12aa731af80790410afdba9412b056339823252813bae2adbf553"}, ] [package.dependencies] @@ -2286,14 +2656,14 @@ typing-extensions = {version = ">=4.1.0", markers = "python_version < \"3.12\""} [[package]] name = "mypy-boto3-rds" -version = "1.34.50" -description = "Type annotations for boto3.RDS 1.34.50 service generated with mypy-boto3-builder 7.23.1" +version = "1.34.83" +description = "Type annotations for boto3.RDS 1.34.83 service generated with mypy-boto3-builder 7.23.2" category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "mypy-boto3-rds-1.34.50.tar.gz", hash = "sha256:9561dfac562ec9cd039806d5de2bc2bb8be4f9f7c03620270550a49e456fef46"}, - {file = "mypy_boto3_rds-1.34.50-py3-none-any.whl", hash = "sha256:59124bd98653c73c685b7dc0d0a9069572d340f0ecb116a9706aa3e2d40a166d"}, + {file = "mypy-boto3-rds-1.34.83.tar.gz", hash = "sha256:fc7f7dc434695fd7a0b37f6945a624bc9dc633ab3287e7da9899934d1b02818b"}, + {file = "mypy_boto3_rds-1.34.83-py3-none-any.whl", hash = "sha256:cca89c1acdb3041fd548e57d07a4ac930c0aa0edf316aa82d95bfdafb5840d18"}, ] [package.dependencies] @@ -2301,14 +2671,14 @@ typing-extensions = {version = ">=4.1.0", markers = "python_version < \"3.12\""} [[package]] name = "mypy-boto3-s3" -version = "1.34.14" -description = "Type annotations for boto3.S3 1.34.14 service generated with mypy-boto3-builder 7.21.0" +version = "1.34.65" +description = "Type annotations for boto3.S3 1.34.65 service generated with mypy-boto3-builder 7.23.2" category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "mypy-boto3-s3-1.34.14.tar.gz", hash = "sha256:71c39ab0623cdb442d225b71c1783f6a513cff4c4a13505a2efbb2e3aff2e965"}, - {file = "mypy_boto3_s3-1.34.14-py3-none-any.whl", hash = "sha256:f9669ecd182d5bf3532f5f2dcc5e5237776afe157ad5a0b37b26d6bec5fcc432"}, + {file = "mypy-boto3-s3-1.34.65.tar.gz", hash = "sha256:2fcdf412ce2924b2f0b34db59abf06a9c0bbe4cd3361f14f0d2c1e211c0f7ddd"}, + {file = "mypy_boto3_s3-1.34.65-py3-none-any.whl", hash = "sha256:2aecfbe1c00654bc21f839068218d60123366954bf43a708baa50f9543e3f205"}, ] [package.dependencies] @@ -2341,6 +2711,22 @@ files = [ {file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"}, ] +[[package]] +name = "natsort" +version = "8.4.0" +description = "Simple yet flexible natural sorting in Python." +category = "main" +optional = false +python-versions = ">=3.7" +files = [ + {file = "natsort-8.4.0-py3-none-any.whl", hash = "sha256:4732914fb471f56b5cce04d7bae6f164a592c7712e1c85f9ef585e197299521c"}, + {file = "natsort-8.4.0.tar.gz", hash = "sha256:45312c4a0e5507593da193dedd04abb1469253b601ecaf63445ad80f0a1ea581"}, +] + +[package.extras] +fast = ["fastnumbers (>=2.0.0)"] +icu = ["PyICU (>=1.0.0)"] + [[package]] name = "nbtlib" version = "2.0.4" @@ -2360,7 +2746,7 @@ numpy = "*" name = "nest-asyncio" version = "1.6.0" description = "Patch asyncio to allow nested event loops" -category = "dev" +category = "main" optional = false python-versions = ">=3.5" files = [ @@ -2370,21 +2756,21 @@ files = [ [[package]] name = "networkx" -version = "3.2.1" +version = "3.3" description = "Python package for creating and manipulating graphs and networks" category = "main" optional = false -python-versions = ">=3.9" +python-versions = ">=3.10" files = [ - {file = "networkx-3.2.1-py3-none-any.whl", hash = "sha256:f18c69adc97877c42332c170849c96cefa91881c99a7cb3e95b7c659ebdc1ec2"}, - {file = "networkx-3.2.1.tar.gz", hash = "sha256:9f1bb5cf3409bf324e0a722c20bdb4c20ee39bf1c30ce8ae499c8502b0b5e0c6"}, + {file = "networkx-3.3-py3-none-any.whl", hash = "sha256:28575580c6ebdaf4505b22c6256a2b9de86b316dc63ba9e93abde3d78dfdbcf2"}, + {file = "networkx-3.3.tar.gz", hash = "sha256:0c127d8b2f4865f59ae9cb8aafcd60b5c70f3241ebd66f7defad7c4ab90126c9"}, ] [package.extras] -default = ["matplotlib (>=3.5)", "numpy (>=1.22)", "pandas (>=1.4)", "scipy (>=1.9,!=1.11.0,!=1.11.1)"] -developer = ["changelist (==0.4)", "mypy (>=1.1)", "pre-commit (>=3.2)", "rtoml"] -doc = ["nb2plots (>=0.7)", "nbconvert (<7.9)", "numpydoc (>=1.6)", "pillow (>=9.4)", "pydata-sphinx-theme (>=0.14)", "sphinx (>=7)", "sphinx-gallery (>=0.14)", "texext (>=0.6.7)"] -extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.11)", "sympy (>=1.10)"] +default = ["matplotlib (>=3.6)", "numpy (>=1.23)", "pandas (>=1.4)", "scipy (>=1.9,!=1.11.0,!=1.11.1)"] +developer = ["changelist (==0.5)", "mypy (>=1.1)", "pre-commit (>=3.2)", "rtoml"] +doc = ["myst-nb (>=1.0)", "numpydoc (>=1.7)", "pillow (>=9.4)", "pydata-sphinx-theme (>=0.14)", "sphinx (>=7)", "sphinx-gallery (>=0.14)", "texext (>=0.6.7)"] +extra = ["lxml (>=4.6)", "pydot (>=2.0)", "pygraphviz (>=1.12)", "sympy (>=1.10)"] test = ["pytest (>=7.2)", "pytest-cov (>=4.0)"] [[package]] @@ -2402,6 +2788,41 @@ files = [ [package.dependencies] setuptools = "*" +[[package]] +name = "numba" +version = "0.59.1" +description = "compiling Python code using LLVM" +category = "main" +optional = false +python-versions = ">=3.9" +files = [ + {file = "numba-0.59.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:97385a7f12212c4f4bc28f648720a92514bee79d7063e40ef66c2d30600fd18e"}, + {file = "numba-0.59.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0b77aecf52040de2a1eb1d7e314497b9e56fba17466c80b457b971a25bb1576d"}, + {file = "numba-0.59.1-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:3476a4f641bfd58f35ead42f4dcaf5f132569c4647c6f1360ccf18ee4cda3990"}, + {file = "numba-0.59.1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:525ef3f820931bdae95ee5379c670d5c97289c6520726bc6937a4a7d4230ba24"}, + {file = "numba-0.59.1-cp310-cp310-win_amd64.whl", hash = "sha256:990e395e44d192a12105eca3083b61307db7da10e093972ca285c85bef0963d6"}, + {file = "numba-0.59.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:43727e7ad20b3ec23ee4fc642f5b61845c71f75dd2825b3c234390c6d8d64051"}, + {file = "numba-0.59.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:411df625372c77959570050e861981e9d196cc1da9aa62c3d6a836b5cc338966"}, + {file = "numba-0.59.1-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:2801003caa263d1e8497fb84829a7ecfb61738a95f62bc05693fcf1733e978e4"}, + {file = "numba-0.59.1-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:dd2842fac03be4e5324ebbbd4d2d0c8c0fc6e0df75c09477dd45b288a0777389"}, + {file = "numba-0.59.1-cp311-cp311-win_amd64.whl", hash = "sha256:0594b3dfb369fada1f8bb2e3045cd6c61a564c62e50cf1f86b4666bc721b3450"}, + {file = "numba-0.59.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:1cce206a3b92836cdf26ef39d3a3242fec25e07f020cc4feec4c4a865e340569"}, + {file = "numba-0.59.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8c8b4477763cb1fbd86a3be7050500229417bf60867c93e131fd2626edb02238"}, + {file = "numba-0.59.1-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:7d80bce4ef7e65bf895c29e3889ca75a29ee01da80266a01d34815918e365835"}, + {file = "numba-0.59.1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:f7ad1d217773e89a9845886401eaaab0a156a90aa2f179fdc125261fd1105096"}, + {file = "numba-0.59.1-cp312-cp312-win_amd64.whl", hash = "sha256:5bf68f4d69dd3a9f26a9b23548fa23e3bcb9042e2935257b471d2a8d3c424b7f"}, + {file = "numba-0.59.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4e0318ae729de6e5dbe64c75ead1a95eb01fabfe0e2ebed81ebf0344d32db0ae"}, + {file = "numba-0.59.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0f68589740a8c38bb7dc1b938b55d1145244c8353078eea23895d4f82c8b9ec1"}, + {file = "numba-0.59.1-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:649913a3758891c77c32e2d2a3bcbedf4a69f5fea276d11f9119677c45a422e8"}, + {file = "numba-0.59.1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:9712808e4545270291d76b9a264839ac878c5eb7d8b6e02c970dc0ac29bc8187"}, + {file = "numba-0.59.1-cp39-cp39-win_amd64.whl", hash = "sha256:8d51ccd7008a83105ad6a0082b6a2b70f1142dc7cfd76deb8c5a862367eb8c86"}, + {file = "numba-0.59.1.tar.gz", hash = "sha256:76f69132b96028d2774ed20415e8c528a34e3299a40581bae178f0994a2f370b"}, +] + +[package.dependencies] +llvmlite = ">=0.42.0dev0,<0.43" +numpy = ">=1.22,<1.27" + [[package]] name = "numpy" version = "1.26.4" @@ -2579,14 +3000,14 @@ files = [ [[package]] name = "nvidia-nvjitlink-cu12" -version = "12.3.101" +version = "12.4.127" description = "Nvidia JIT LTO Library" category = "main" optional = false python-versions = ">=3" files = [ - {file = "nvidia_nvjitlink_cu12-12.3.101-py3-none-manylinux1_x86_64.whl", hash = "sha256:64335a8088e2b9d196ae8665430bc6a2b7e6ef2eb877a9c735c804bd4ff6467c"}, - {file = "nvidia_nvjitlink_cu12-12.3.101-py3-none-win_amd64.whl", hash = "sha256:1b2e317e437433753530792f13eece58f0aec21a2b05903be7bffe58a606cbd1"}, + {file = "nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:06b3b9b25bf3f8af351d664978ca26a16d2c5127dbd53c0497e28d1fb9611d57"}, + {file = "nvidia_nvjitlink_cu12-12.4.127-py3-none-win_amd64.whl", hash = "sha256:fd9020c501d27d135f983c6d3e244b197a7ccad769e34df53a42e276b0e25fa1"}, ] [[package]] @@ -2603,82 +3024,85 @@ files = [ [[package]] name = "onnx" -version = "1.12.0" +version = "1.16.0" description = "Open Neural Network Exchange" category = "main" optional = false -python-versions = "*" +python-versions = ">=3.8" files = [ - {file = "onnx-1.12.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:bdbd2578424c70836f4d0f9dda16c21868ddb07cc8192f9e8a176908b43d694b"}, - {file = "onnx-1.12.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:213e73610173f6b2e99f99a4b0636f80b379c417312079d603806e48ada4ca8b"}, - {file = "onnx-1.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9fd2f4e23078df197bb76a59b9cd8f5a43a6ad2edc035edb3ecfb9042093e05a"}, - {file = "onnx-1.12.0-cp310-cp310-win32.whl", hash = "sha256:23781594bb8b7ee985de1005b3c601648d5b0568a81e01365c48f91d1f5648e4"}, - {file = "onnx-1.12.0-cp310-cp310-win_amd64.whl", hash = "sha256:81a3555fd67be2518bf86096299b48fb9154652596219890abfe90bd43a9ec13"}, - {file = "onnx-1.12.0-cp37-cp37m-macosx_10_12_x86_64.whl", hash = "sha256:5578b93dc6c918cec4dee7fb7d9dd3b09d338301ee64ca8b4f28bc217ed42dca"}, - {file = "onnx-1.12.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c11162ffc487167da140f1112f49c4f82d815824f06e58bc3095407699f05863"}, - {file = "onnx-1.12.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:341c7016e23273e9ffa9b6e301eee95b8c37d0f04df7cedbdb169d2c39524c96"}, - {file = "onnx-1.12.0-cp37-cp37m-win32.whl", hash = "sha256:3c6e6bcffc3f5c1e148df3837dc667fa4c51999788c1b76b0b8fbba607e02da8"}, - {file = "onnx-1.12.0-cp37-cp37m-win_amd64.whl", hash = "sha256:8a7aa61aea339bd28f310f4af4f52ce6c4b876386228760b16308efd58f95059"}, - {file = "onnx-1.12.0-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:56ceb7e094c43882b723cfaa107d85ad673cfdf91faeb28d7dcadacca4f43a07"}, - {file = "onnx-1.12.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b3629e8258db15d4e2c9b7f1be91a3186719dd94661c218c6f5fde3cc7de3d4d"}, - {file = "onnx-1.12.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2d9a7db54e75529160337232282a4816cc50667dc7dc34be178fd6f6b79d4705"}, - {file = "onnx-1.12.0-cp38-cp38-win32.whl", hash = "sha256:fea5156a03398fe0e23248042d8651c1eaac5f6637d4dd683b4c1f1320b9f7b4"}, - {file = "onnx-1.12.0-cp38-cp38-win_amd64.whl", hash = "sha256:f66d2996e65f490a57b3ae952e4e9189b53cc9fe3f75e601d50d4db2dc1b1cd9"}, - {file = "onnx-1.12.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:c39a7a0352c856f1df30dccf527eb6cb4909052e5eaf6fa2772a637324c526aa"}, - {file = "onnx-1.12.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fab13feb4d94342aae6d357d480f2e47d41b9f4e584367542b21ca6defda9e0a"}, - {file = "onnx-1.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c7a9b3ea02c30efc1d2662337e280266aca491a8e86be0d8a657f874b7cccd1e"}, - {file = "onnx-1.12.0-cp39-cp39-win32.whl", hash = "sha256:f8800f28c746ab06e51ef8449fd1215621f4ddba91be3ffc264658937d38a2af"}, - {file = "onnx-1.12.0-cp39-cp39-win_amd64.whl", hash = "sha256:af90427ca04c6b7b8107c2021e1273227a3ef1a7a01f3073039cae7855a59833"}, - {file = "onnx-1.12.0.tar.gz", hash = "sha256:13b3e77d27523b9dbf4f30dfc9c959455859d5e34e921c44f712d69b8369eff9"}, + {file = "onnx-1.16.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:9eadbdce25b19d6216f426d6d99b8bc877a65ed92cbef9707751c6669190ba4f"}, + {file = "onnx-1.16.0-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:034ae21a2aaa2e9c14119a840d2926d213c27aad29e5e3edaa30145a745048e1"}, + {file = "onnx-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec22a43d74eb1f2303373e2fbe7fbcaa45fb225f4eb146edfed1356ada7a9aea"}, + {file = "onnx-1.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:298f28a2b5ac09145fa958513d3d1e6b349ccf86a877dbdcccad57713fe360b3"}, + {file = "onnx-1.16.0-cp310-cp310-win32.whl", hash = "sha256:66300197b52beca08bc6262d43c103289c5d45fde43fb51922ed1eb83658cf0c"}, + {file = "onnx-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:ae0029f5e47bf70a1a62e7f88c80bca4ef39b844a89910039184221775df5e43"}, + {file = "onnx-1.16.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:f51179d4af3372b4f3800c558d204b592c61e4b4a18b8f61e0eea7f46211221a"}, + {file = "onnx-1.16.0-cp311-cp311-macosx_10_15_x86_64.whl", hash = "sha256:5202559070afec5144332db216c20f2fff8323cf7f6512b0ca11b215eacc5bf3"}, + {file = "onnx-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77579e7c15b4df39d29465b216639a5f9b74026bdd9e4b6306cd19a32dcfe67c"}, + {file = "onnx-1.16.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e60ca76ac24b65c25860d0f2d2cdd96d6320d062a01dd8ce87c5743603789b8"}, + {file = "onnx-1.16.0-cp311-cp311-win32.whl", hash = "sha256:81b4ee01bc554e8a2b11ac6439882508a5377a1c6b452acd69a1eebb83571117"}, + {file = "onnx-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:7449241e70b847b9c3eb8dae622df8c1b456d11032a9d7e26e0ee8a698d5bf86"}, + {file = "onnx-1.16.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:03a627488b1a9975d95d6a55582af3e14c7f3bb87444725b999935ddd271d352"}, + {file = "onnx-1.16.0-cp312-cp312-macosx_10_15_x86_64.whl", hash = "sha256:c392faeabd9283ee344ccb4b067d1fea9dfc614fa1f0de7c47589efd79e15e78"}, + {file = "onnx-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0efeb46985de08f0efe758cb54ad3457e821a05c2eaf5ba2ccb8cd1602c08084"}, + {file = "onnx-1.16.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ddf14a3d32234f23e44abb73a755cb96a423fac7f004e8f046f36b10214151ee"}, + {file = "onnx-1.16.0-cp312-cp312-win32.whl", hash = "sha256:62a2e27ae8ba5fc9b4a2620301446a517b5ffaaf8566611de7a7c2160f5bcf4c"}, + {file = "onnx-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:3e0860fea94efde777e81a6f68f65761ed5e5f3adea2e050d7fbe373a9ae05b3"}, + {file = "onnx-1.16.0-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:70a90649318f3470985439ea078277c9fb2a2e6e2fd7c8f3f2b279402ad6c7e6"}, + {file = "onnx-1.16.0-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:71839546b7f93be4fa807995b182ab4b4414c9dbf049fee11eaaced16fcf8df2"}, + {file = "onnx-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7665217c45a61eb44718c8e9349d2ad004efa0cb9fbc4be5c6d5e18b9fe12b52"}, + {file = "onnx-1.16.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e5752bbbd5717304a7643643dba383a2fb31e8eb0682f4e7b7d141206328a73b"}, + {file = "onnx-1.16.0-cp38-cp38-win32.whl", hash = "sha256:257858cbcb2055284f09fa2ae2b1cfd64f5850367da388d6e7e7b05920a40c90"}, + {file = "onnx-1.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:209fe84995a28038e29ae8369edd35f33e0ef1ebc3bddbf6584629823469deb1"}, + {file = "onnx-1.16.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:8cf3e518b1b1b960be542e7c62bed4e5219e04c85d540817b7027029537dec92"}, + {file = "onnx-1.16.0-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:30f02beaf081c7d9fa3a8c566a912fc4408e28fc33b1452d58f890851691d364"}, + {file = "onnx-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7fb29a9a692b522deef1f6b8f2145da62c0c43ea1ed5b4c0f66f827fdc28847d"}, + {file = "onnx-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7755cbd5f4e47952e37276ea5978a46fc8346684392315902b5ed4a719d87d06"}, + {file = "onnx-1.16.0-cp39-cp39-win32.whl", hash = "sha256:7532343dc5b8b5e7c3e3efa441a3100552f7600155c4db9120acd7574f64ffbf"}, + {file = "onnx-1.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:d7886c05aa6d583ec42f6287678923c1e343afc4350e49d5b36a0023772ffa22"}, + {file = "onnx-1.16.0.tar.gz", hash = "sha256:237c6987c6c59d9f44b6136f5819af79574f8d96a760a1fa843bede11f3822f7"}, ] [package.dependencies] -numpy = ">=1.16.6" -protobuf = ">=3.12.2,<=3.20.1" -typing-extensions = ">=3.6.2.1" +numpy = ">=1.20" +protobuf = ">=3.20.2" [package.extras] -lint = ["clang-format (==13.0.0)", "flake8", "mypy (==0.782)", "types-protobuf (==3.18.4)"] +reference = ["Pillow", "google-re2"] [[package]] name = "onnxruntime" -version = "1.13.1" +version = "1.17.3" description = "ONNX Runtime is a runtime accelerator for Machine Learning models" category = "main" optional = false python-versions = "*" files = [ - {file = "onnxruntime-1.13.1-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:3b4e8f2b915fe505ffdc99c80324130ff9da2c52d8d1326c0bce19948523bb6c"}, - {file = "onnxruntime-1.13.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0f1087bc219e293194b5e3b2ea8b50bf3e9e1343a49ef51c5b06987e6269c042"}, - {file = "onnxruntime-1.13.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0df1240878f13204246453bcb645ffa759e7dd93e06d210b7fe0defe88942fd3"}, - {file = "onnxruntime-1.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:083ef4448790a7c1fa4efebf4c1b15db95c4e2dbd3c3984018f57fe982c30276"}, - {file = "onnxruntime-1.13.1-cp310-cp310-manylinux_2_27_aarch64.whl", hash = "sha256:b488fe1a0c3afce90d22040d898862fb24d3b331644f5e1aec8cfd6a807fc987"}, - {file = "onnxruntime-1.13.1-cp310-cp310-manylinux_2_27_x86_64.whl", hash = "sha256:f060f7883c27eaf4ed7490f90cd72cdf96c80e4d74133525c6db5ba06f71623d"}, - {file = "onnxruntime-1.13.1-cp310-cp310-win32.whl", hash = "sha256:68074af35c1a79c9ee856ef8192a72099d2b17ad240b45764e95e65f58ed71c9"}, - {file = "onnxruntime-1.13.1-cp310-cp310-win_amd64.whl", hash = "sha256:f9011384e792befdcde20860ab57294b3b9de5504a85b85818a8b242600052d7"}, - {file = "onnxruntime-1.13.1-cp37-cp37m-macosx_10_15_x86_64.whl", hash = "sha256:97e9e38bfa168f541c3996a4c4fd57f886d02958e7de97ac167fd27118334a33"}, - {file = "onnxruntime-1.13.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bc491fc9a3474cbb40f3e04ea28687791d43a5eb3f55b62a803f88826aa512b3"}, - {file = "onnxruntime-1.13.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6941cd11e514b4bbc7408de13d041430ac283f2e55446d9ae85a6cc133ab002b"}, - {file = "onnxruntime-1.13.1-cp37-cp37m-manylinux_2_27_aarch64.whl", hash = "sha256:343d4205631daf3d18a251212d5a04daf1f1ea1c34323042e7fc8deae0a358da"}, - {file = "onnxruntime-1.13.1-cp37-cp37m-manylinux_2_27_x86_64.whl", hash = "sha256:d85e6c5a12c1055fec9e24023dd22506d1243417bed0ac26caa9b6123c10c242"}, - {file = "onnxruntime-1.13.1-cp37-cp37m-win32.whl", hash = "sha256:ad589c249efcba104f3147df00fbab828855783aa3748f49ee3e04ff69ddf65d"}, - {file = "onnxruntime-1.13.1-cp37-cp37m-win_amd64.whl", hash = "sha256:aaa33c79cfe2ac145d27166c59a216783951090a679d19c5b49f40f71606cf2d"}, - {file = "onnxruntime-1.13.1-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:f19697f9846e5518ea4f6c8b78c0f3fbd7f1b9b2fdef8dfc6eb7751b8e7e1edc"}, - {file = "onnxruntime-1.13.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:f523192616479b7f8a50bd02aa775e1256c90a7bc4c034bdeed9bd78a55a6e7a"}, - {file = "onnxruntime-1.13.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:852d7f26da6bb060cbaedb1f92cbe3b0b6e874b3169c20f9a55e656ff2d62742"}, - {file = "onnxruntime-1.13.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a436eb49c488ef01b4bd42ecad0a363ebf32ea7af3daa3a9e1cc35fdb8a8ad01"}, - {file = "onnxruntime-1.13.1-cp38-cp38-manylinux_2_27_aarch64.whl", hash = "sha256:93d803c5e01f24a3c65434d2238093c2d10993fd96a6cfb34d67f1ccd4224dc8"}, - {file = "onnxruntime-1.13.1-cp38-cp38-manylinux_2_27_x86_64.whl", hash = "sha256:7973bb9d3dd886d6f36b6d97f434c052531cf0ec4b5c05fd5c4c90d0061f02cf"}, - {file = "onnxruntime-1.13.1-cp38-cp38-win32.whl", hash = "sha256:c19cf50f51c8e73b7c4c2978916d298b969c871bb8ea74c74c3f92c4f9811225"}, - {file = "onnxruntime-1.13.1-cp38-cp38-win_amd64.whl", hash = "sha256:d541174f3d1d4371c09242faa2d6c84a2de861f1aee771d2248cfc7f67ffb708"}, - {file = "onnxruntime-1.13.1-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:5336f5b9f5ba2bfb2586eb23b7346b50bb102dd8a15d0ce21b20d098da8984b0"}, - {file = "onnxruntime-1.13.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b2b833c0acee7790f553a70ffa94999278886efe55f6f6bcaf57996e54a6724b"}, - {file = "onnxruntime-1.13.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:af07e43158a24c7ce6056dcd58cfa5c990193889e7bb2bea8300ce93e9c0584b"}, - {file = "onnxruntime-1.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4dbec4f7c9aa5b09e4c5d3e4d2231820d23660d70939136215562e3ea9d9e629"}, - {file = "onnxruntime-1.13.1-cp39-cp39-manylinux_2_27_aarch64.whl", hash = "sha256:d31681cf8e3570631ce7305e5a09babcf6362112da1f0b88031f74d46efbe18c"}, - {file = "onnxruntime-1.13.1-cp39-cp39-manylinux_2_27_x86_64.whl", hash = "sha256:67785843d393c59c4183cfd3eabbddd23620d0b56472dff679b68c8b94dd4a07"}, - {file = "onnxruntime-1.13.1-cp39-cp39-win32.whl", hash = "sha256:5f9b4533bd8d879f4cfd015a17af021825a9a0ec68e2229971605dac5f4430d3"}, - {file = "onnxruntime-1.13.1-cp39-cp39-win_amd64.whl", hash = "sha256:76fda2c7c797f799b679be043612de0da51ee91319581310b65f35658d6f0c0c"}, + {file = "onnxruntime-1.17.3-cp310-cp310-macosx_11_0_universal2.whl", hash = "sha256:d86dde9c0bb435d709e51bd25991c9fe5b9a5b168df45ce119769edc4d198b15"}, + {file = "onnxruntime-1.17.3-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:9d87b68bf931ac527b2d3c094ead66bb4381bac4298b65f46c54fe4d1e255865"}, + {file = "onnxruntime-1.17.3-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:26e950cf0333cf114a155f9142e71da344d2b08dfe202763a403ae81cc02ebd1"}, + {file = "onnxruntime-1.17.3-cp310-cp310-win32.whl", hash = "sha256:0962a4d0f5acebf62e1f0bf69b6e0adf16649115d8de854c1460e79972324d68"}, + {file = "onnxruntime-1.17.3-cp310-cp310-win_amd64.whl", hash = "sha256:468ccb8a0faa25c681a41787b1594bf4448b0252d3efc8b62fd8b2411754340f"}, + {file = "onnxruntime-1.17.3-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:e8cd90c1c17d13d47b89ab076471e07fb85467c01dcd87a8b8b5cdfbcb40aa51"}, + {file = "onnxruntime-1.17.3-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:a058b39801baefe454eeb8acf3ada298c55a06a4896fafc224c02d79e9037f60"}, + {file = "onnxruntime-1.17.3-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:2f823d5eb4807007f3da7b27ca972263df6a1836e6f327384eb266274c53d05d"}, + {file = "onnxruntime-1.17.3-cp311-cp311-win32.whl", hash = "sha256:b66b23f9109e78ff2791628627a26f65cd335dcc5fbd67ff60162733a2f7aded"}, + {file = "onnxruntime-1.17.3-cp311-cp311-win_amd64.whl", hash = "sha256:570760ca53a74cdd751ee49f13de70d1384dcf73d9888b8deac0917023ccda6d"}, + {file = "onnxruntime-1.17.3-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:77c318178d9c16e9beadd9a4070d8aaa9f57382c3f509b01709f0f010e583b99"}, + {file = "onnxruntime-1.17.3-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:23da8469049b9759082e22c41a444f44a520a9c874b084711b6343672879f50b"}, + {file = "onnxruntime-1.17.3-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:2949730215af3f9289008b2e31e9bbef952012a77035b911c4977edea06f3f9e"}, + {file = "onnxruntime-1.17.3-cp312-cp312-win32.whl", hash = "sha256:6c7555a49008f403fb3b19204671efb94187c5085976ae526cb625f6ede317bc"}, + {file = "onnxruntime-1.17.3-cp312-cp312-win_amd64.whl", hash = "sha256:58672cf20293a1b8a277a5c6c55383359fcdf6119b2f14df6ce3b140f5001c39"}, + {file = "onnxruntime-1.17.3-cp38-cp38-macosx_11_0_universal2.whl", hash = "sha256:4395ba86e3c1e93c794a00619ef1aec597ab78f5a5039f3c6d2e9d0695c0a734"}, + {file = "onnxruntime-1.17.3-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:bdf354c04344ec38564fc22394e1fe08aa6d70d790df00159205a0055c4a4d3f"}, + {file = "onnxruntime-1.17.3-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:a94b600b7af50e922d44b95a57981e3e35103c6e3693241a03d3ca204740bbda"}, + {file = "onnxruntime-1.17.3-cp38-cp38-win32.whl", hash = "sha256:5a335c76f9c002a8586c7f38bc20fe4b3725ced21f8ead835c3e4e507e42b2ab"}, + {file = "onnxruntime-1.17.3-cp38-cp38-win_amd64.whl", hash = "sha256:8f56a86fbd0ddc8f22696ddeda0677b041381f4168a2ca06f712ef6ec6050d6d"}, + {file = "onnxruntime-1.17.3-cp39-cp39-macosx_11_0_universal2.whl", hash = "sha256:e0ae39f5452278cd349520c296e7de3e90d62dc5b0157c6868e2748d7f28b871"}, + {file = "onnxruntime-1.17.3-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:3ff2dc012bd930578aff5232afd2905bf16620815f36783a941aafabf94b3702"}, + {file = "onnxruntime-1.17.3-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:cf6c37483782e4785019b56e26224a25e9b9a35b849d0169ce69189867a22bb1"}, + {file = "onnxruntime-1.17.3-cp39-cp39-win32.whl", hash = "sha256:351bf5a1140dcc43bfb8d3d1a230928ee61fcd54b0ea664c8e9a889a8e3aa515"}, + {file = "onnxruntime-1.17.3-cp39-cp39-win_amd64.whl", hash = "sha256:57a3de15778da8d6cc43fbf6cf038e1e746146300b5f0b1fbf01f6f795dc6440"}, ] [package.dependencies] @@ -2689,6 +3113,23 @@ packaging = "*" protobuf = "*" sympy = "*" +[[package]] +name = "onnxscript" +version = "0.1.0.dev20240417" +description = "Naturally author ONNX functions and models using a subset of Python" +category = "main" +optional = false +python-versions = ">=3.8" +files = [ + {file = "onnxscript-0.1.0.dev20240417-py3-none-any.whl", hash = "sha256:cacbf72a4d327c6f0497d3ce0db7a792c399be59bd35b9d55036b7a14c0df34c"}, + {file = "onnxscript-0.1.0.dev20240417.tar.gz", hash = "sha256:4dfa2159356dce65d05b534da9f1a218c50704bd073317571a580712eda29a07"}, +] + +[package.dependencies] +numpy = "*" +onnx = ">=1.16" +typing_extensions = "*" + [[package]] name = "outcome" version = "1.3.0.post0" @@ -2706,60 +3147,60 @@ attrs = ">=19.2.0" [[package]] name = "packaging" -version = "23.2" +version = "24.0" description = "Core utilities for Python packages" category = "main" optional = false python-versions = ">=3.7" files = [ - {file = "packaging-23.2-py3-none-any.whl", hash = "sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7"}, - {file = "packaging-23.2.tar.gz", hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5"}, + {file = "packaging-24.0-py3-none-any.whl", hash = "sha256:2ddfb553fdf02fb784c234c7ba6ccc288296ceabec964ad2eae3777778130bc5"}, + {file = "packaging-24.0.tar.gz", hash = "sha256:eb82c5e3e56209074766e6885bb04b8c38a0c015d0a30036ebe7ece34c9989e9"}, ] [[package]] name = "pandas" -version = "2.2.1" +version = "2.2.2" description = "Powerful data structures for data analysis, time series, and statistics" category = "main" optional = false python-versions = ">=3.9" files = [ - {file = "pandas-2.2.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8df8612be9cd1c7797c93e1c5df861b2ddda0b48b08f2c3eaa0702cf88fb5f88"}, - {file = "pandas-2.2.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0f573ab277252ed9aaf38240f3b54cfc90fff8e5cab70411ee1d03f5d51f3944"}, - {file = "pandas-2.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f02a3a6c83df4026e55b63c1f06476c9aa3ed6af3d89b4f04ea656ccdaaaa359"}, - {file = "pandas-2.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c38ce92cb22a4bea4e3929429aa1067a454dcc9c335799af93ba9be21b6beb51"}, - {file = "pandas-2.2.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:c2ce852e1cf2509a69e98358e8458775f89599566ac3775e70419b98615f4b06"}, - {file = "pandas-2.2.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:53680dc9b2519cbf609c62db3ed7c0b499077c7fefda564e330286e619ff0dd9"}, - {file = "pandas-2.2.1-cp310-cp310-win_amd64.whl", hash = "sha256:94e714a1cca63e4f5939cdce5f29ba8d415d85166be3441165edd427dc9f6bc0"}, - {file = "pandas-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f821213d48f4ab353d20ebc24e4faf94ba40d76680642fb7ce2ea31a3ad94f9b"}, - {file = "pandas-2.2.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c70e00c2d894cb230e5c15e4b1e1e6b2b478e09cf27cc593a11ef955b9ecc81a"}, - {file = "pandas-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e97fbb5387c69209f134893abc788a6486dbf2f9e511070ca05eed4b930b1b02"}, - {file = "pandas-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:101d0eb9c5361aa0146f500773395a03839a5e6ecde4d4b6ced88b7e5a1a6403"}, - {file = "pandas-2.2.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:7d2ed41c319c9fb4fd454fe25372028dfa417aacb9790f68171b2e3f06eae8cd"}, - {file = "pandas-2.2.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:af5d3c00557d657c8773ef9ee702c61dd13b9d7426794c9dfeb1dc4a0bf0ebc7"}, - {file = "pandas-2.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:06cf591dbaefb6da9de8472535b185cba556d0ce2e6ed28e21d919704fef1a9e"}, - {file = "pandas-2.2.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:88ecb5c01bb9ca927ebc4098136038519aa5d66b44671861ffab754cae75102c"}, - {file = "pandas-2.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:04f6ec3baec203c13e3f8b139fb0f9f86cd8c0b94603ae3ae8ce9a422e9f5bee"}, - {file = "pandas-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a935a90a76c44fe170d01e90a3594beef9e9a6220021acfb26053d01426f7dc2"}, - {file = "pandas-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c391f594aae2fd9f679d419e9a4d5ba4bce5bb13f6a989195656e7dc4b95c8f0"}, - {file = "pandas-2.2.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:9d1265545f579edf3f8f0cb6f89f234f5e44ba725a34d86535b1a1d38decbccc"}, - {file = "pandas-2.2.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:11940e9e3056576ac3244baef2fedade891977bcc1cb7e5cc8f8cc7d603edc89"}, - {file = "pandas-2.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:4acf681325ee1c7f950d058b05a820441075b0dd9a2adf5c4835b9bc056bf4fb"}, - {file = "pandas-2.2.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9bd8a40f47080825af4317d0340c656744f2bfdb6819f818e6ba3cd24c0e1397"}, - {file = "pandas-2.2.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:df0c37ebd19e11d089ceba66eba59a168242fc6b7155cba4ffffa6eccdfb8f16"}, - {file = "pandas-2.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:739cc70eaf17d57608639e74d63387b0d8594ce02f69e7a0b046f117974b3019"}, - {file = "pandas-2.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f9d3558d263073ed95e46f4650becff0c5e1ffe0fc3a015de3c79283dfbdb3df"}, - {file = "pandas-2.2.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:4aa1d8707812a658debf03824016bf5ea0d516afdea29b7dc14cf687bc4d4ec6"}, - {file = "pandas-2.2.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:76f27a809cda87e07f192f001d11adc2b930e93a2b0c4a236fde5429527423be"}, - {file = "pandas-2.2.1-cp39-cp39-win_amd64.whl", hash = "sha256:1ba21b1d5c0e43416218db63037dbe1a01fc101dc6e6024bcad08123e48004ab"}, - {file = "pandas-2.2.1.tar.gz", hash = "sha256:0ab90f87093c13f3e8fa45b48ba9f39181046e8f3317d3aadb2fffbb1b978572"}, + {file = "pandas-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:90c6fca2acf139569e74e8781709dccb6fe25940488755716d1d354d6bc58bce"}, + {file = "pandas-2.2.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c7adfc142dac335d8c1e0dcbd37eb8617eac386596eb9e1a1b77791cf2498238"}, + {file = "pandas-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4abfe0be0d7221be4f12552995e58723c7422c80a659da13ca382697de830c08"}, + {file = "pandas-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8635c16bf3d99040fdf3ca3db669a7250ddf49c55dc4aa8fe0ae0fa8d6dcc1f0"}, + {file = "pandas-2.2.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:40ae1dffb3967a52203105a077415a86044a2bea011b5f321c6aa64b379a3f51"}, + {file = "pandas-2.2.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8e5a0b00e1e56a842f922e7fae8ae4077aee4af0acb5ae3622bd4b4c30aedf99"}, + {file = "pandas-2.2.2-cp310-cp310-win_amd64.whl", hash = "sha256:ddf818e4e6c7c6f4f7c8a12709696d193976b591cc7dc50588d3d1a6b5dc8772"}, + {file = "pandas-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:696039430f7a562b74fa45f540aca068ea85fa34c244d0deee539cb6d70aa288"}, + {file = "pandas-2.2.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8e90497254aacacbc4ea6ae5e7a8cd75629d6ad2b30025a4a8b09aa4faf55151"}, + {file = "pandas-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:58b84b91b0b9f4bafac2a0ac55002280c094dfc6402402332c0913a59654ab2b"}, + {file = "pandas-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d2123dc9ad6a814bcdea0f099885276b31b24f7edf40f6cdbc0912672e22eee"}, + {file = "pandas-2.2.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:2925720037f06e89af896c70bca73459d7e6a4be96f9de79e2d440bd499fe0db"}, + {file = "pandas-2.2.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:0cace394b6ea70c01ca1595f839cf193df35d1575986e484ad35c4aeae7266c1"}, + {file = "pandas-2.2.2-cp311-cp311-win_amd64.whl", hash = "sha256:873d13d177501a28b2756375d59816c365e42ed8417b41665f346289adc68d24"}, + {file = "pandas-2.2.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:9dfde2a0ddef507a631dc9dc4af6a9489d5e2e740e226ad426a05cabfbd7c8ef"}, + {file = "pandas-2.2.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:e9b79011ff7a0f4b1d6da6a61aa1aa604fb312d6647de5bad20013682d1429ce"}, + {file = "pandas-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1cb51fe389360f3b5a4d57dbd2848a5f033350336ca3b340d1c53a1fad33bcad"}, + {file = "pandas-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eee3a87076c0756de40b05c5e9a6069c035ba43e8dd71c379e68cab2c20f16ad"}, + {file = "pandas-2.2.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:3e374f59e440d4ab45ca2fffde54b81ac3834cf5ae2cdfa69c90bc03bde04d76"}, + {file = "pandas-2.2.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:43498c0bdb43d55cb162cdc8c06fac328ccb5d2eabe3cadeb3529ae6f0517c32"}, + {file = "pandas-2.2.2-cp312-cp312-win_amd64.whl", hash = "sha256:d187d355ecec3629624fccb01d104da7d7f391db0311145817525281e2804d23"}, + {file = "pandas-2.2.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:0ca6377b8fca51815f382bd0b697a0814c8bda55115678cbc94c30aacbb6eff2"}, + {file = "pandas-2.2.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9057e6aa78a584bc93a13f0a9bf7e753a5e9770a30b4d758b8d5f2a62a9433cd"}, + {file = "pandas-2.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:001910ad31abc7bf06f49dcc903755d2f7f3a9186c0c040b827e522e9cef0863"}, + {file = "pandas-2.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:66b479b0bd07204e37583c191535505410daa8df638fd8e75ae1b383851fe921"}, + {file = "pandas-2.2.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a77e9d1c386196879aa5eb712e77461aaee433e54c68cf253053a73b7e49c33a"}, + {file = "pandas-2.2.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:92fd6b027924a7e178ac202cfbe25e53368db90d56872d20ffae94b96c7acc57"}, + {file = "pandas-2.2.2-cp39-cp39-win_amd64.whl", hash = "sha256:640cef9aa381b60e296db324337a554aeeb883ead99dc8f6c18e81a93942f5f4"}, + {file = "pandas-2.2.2.tar.gz", hash = "sha256:9e79019aba43cb4fda9e4d983f8e88ca0373adbb697ae9c6c43093218de28b54"}, ] [package.dependencies] numpy = [ - {version = ">=1.22.4,<2", markers = "python_version < \"3.11\""}, - {version = ">=1.23.2,<2", markers = "python_version == \"3.11\""}, - {version = ">=1.26.0,<2", markers = "python_version >= \"3.12\""}, + {version = ">=1.22.4", markers = "python_version < \"3.11\""}, + {version = ">=1.23.2", markers = "python_version == \"3.11\""}, + {version = ">=1.26.0", markers = "python_version >= \"3.12\""}, ] python-dateutil = ">=2.8.2" pytz = ">=2020.1" @@ -2792,19 +3233,31 @@ xml = ["lxml (>=4.9.2)"] [[package]] name = "parso" -version = "0.8.3" +version = "0.8.4" description = "A Python Parser" -category = "dev" +category = "main" optional = false python-versions = ">=3.6" files = [ - {file = "parso-0.8.3-py2.py3-none-any.whl", hash = "sha256:c001d4636cd3aecdaf33cbb40aebb59b094be2a74c556778ef5576c175e19e75"}, - {file = "parso-0.8.3.tar.gz", hash = "sha256:8c07be290bb59f03588915921e29e8a50002acaf2cdc5fa0e0114f91709fafa0"}, + {file = "parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18"}, + {file = "parso-0.8.4.tar.gz", hash = "sha256:eb3a7b58240fb99099a345571deecc0f9540ea5f4dd2fe14c2a99d6b281ab92d"}, ] [package.extras] -qa = ["flake8 (==3.8.3)", "mypy (==0.782)"] -testing = ["docopt", "pytest (<6.0.0)"] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["docopt", "pytest"] + +[[package]] +name = "pastel" +version = "0.2.1" +description = "Bring colors to your terminal." +category = "main" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +files = [ + {file = "pastel-0.2.1-py2.py3-none-any.whl", hash = "sha256:4349225fcdf6c2bb34d483e523475de5bb04a5c10ef711263452cb37d7dd4364"}, + {file = "pastel-0.2.1.tar.gz", hash = "sha256:e6581ac04e973cac858828c6202c1e1e81fee1dc7de7683f3e1ffe0bfd8a573d"}, +] [[package]] name = "pathspec" @@ -2818,11 +3271,30 @@ files = [ {file = "pathspec-0.12.1.tar.gz", hash = "sha256:a482d51503a1ab33b1c67a6c3813a26953dbdc71c31dacaef9a838c4e29f5712"}, ] +[[package]] +name = "patsy" +version = "0.5.6" +description = "A Python package for describing statistical models and for building design matrices." +category = "main" +optional = false +python-versions = "*" +files = [ + {file = "patsy-0.5.6-py2.py3-none-any.whl", hash = "sha256:19056886fd8fa71863fa32f0eb090267f21fb74be00f19f5c70b2e9d76c883c6"}, + {file = "patsy-0.5.6.tar.gz", hash = "sha256:95c6d47a7222535f84bff7f63d7303f2e297747a598db89cf5c67f0c0c7d2cdb"}, +] + +[package.dependencies] +numpy = ">=1.4" +six = "*" + +[package.extras] +test = ["pytest", "pytest-cov", "scipy"] + [[package]] name = "pexpect" version = "4.9.0" description = "Pexpect allows easy control of interactive console applications." -category = "dev" +category = "main" optional = false python-versions = "*" files = [ @@ -2835,80 +3307,81 @@ ptyprocess = ">=0.5" [[package]] name = "pillow" -version = "10.2.0" +version = "10.3.0" description = "Python Imaging Library (Fork)" category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "pillow-10.2.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:7823bdd049099efa16e4246bdf15e5a13dbb18a51b68fa06d6c1d4d8b99a796e"}, - {file = "pillow-10.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:83b2021f2ade7d1ed556bc50a399127d7fb245e725aa0113ebd05cfe88aaf588"}, - {file = "pillow-10.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6fad5ff2f13d69b7e74ce5b4ecd12cc0ec530fcee76356cac6742785ff71c452"}, - {file = "pillow-10.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da2b52b37dad6d9ec64e653637a096905b258d2fc2b984c41ae7d08b938a67e4"}, - {file = "pillow-10.2.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:47c0995fc4e7f79b5cfcab1fc437ff2890b770440f7696a3ba065ee0fd496563"}, - {file = "pillow-10.2.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:322bdf3c9b556e9ffb18f93462e5f749d3444ce081290352c6070d014c93feb2"}, - {file = "pillow-10.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:51f1a1bffc50e2e9492e87d8e09a17c5eea8409cda8d3f277eb6edc82813c17c"}, - {file = "pillow-10.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:69ffdd6120a4737710a9eee73e1d2e37db89b620f702754b8f6e62594471dee0"}, - {file = "pillow-10.2.0-cp310-cp310-win32.whl", hash = "sha256:c6dafac9e0f2b3c78df97e79af707cdc5ef8e88208d686a4847bab8266870023"}, - {file = "pillow-10.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:aebb6044806f2e16ecc07b2a2637ee1ef67a11840a66752751714a0d924adf72"}, - {file = "pillow-10.2.0-cp310-cp310-win_arm64.whl", hash = "sha256:7049e301399273a0136ff39b84c3678e314f2158f50f517bc50285fb5ec847ad"}, - {file = "pillow-10.2.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:35bb52c37f256f662abdfa49d2dfa6ce5d93281d323a9af377a120e89a9eafb5"}, - {file = "pillow-10.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:9c23f307202661071d94b5e384e1e1dc7dfb972a28a2310e4ee16103e66ddb67"}, - {file = "pillow-10.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:773efe0603db30c281521a7c0214cad7836c03b8ccff897beae9b47c0b657d61"}, - {file = "pillow-10.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:11fa2e5984b949b0dd6d7a94d967743d87c577ff0b83392f17cb3990d0d2fd6e"}, - {file = "pillow-10.2.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:716d30ed977be8b37d3ef185fecb9e5a1d62d110dfbdcd1e2a122ab46fddb03f"}, - {file = "pillow-10.2.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:a086c2af425c5f62a65e12fbf385f7c9fcb8f107d0849dba5839461a129cf311"}, - {file = "pillow-10.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:c8de2789052ed501dd829e9cae8d3dcce7acb4777ea4a479c14521c942d395b1"}, - {file = "pillow-10.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:609448742444d9290fd687940ac0b57fb35e6fd92bdb65386e08e99af60bf757"}, - {file = "pillow-10.2.0-cp311-cp311-win32.whl", hash = "sha256:823ef7a27cf86df6597fa0671066c1b596f69eba53efa3d1e1cb8b30f3533068"}, - {file = "pillow-10.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:1da3b2703afd040cf65ec97efea81cfba59cdbed9c11d8efc5ab09df9509fc56"}, - {file = "pillow-10.2.0-cp311-cp311-win_arm64.whl", hash = "sha256:edca80cbfb2b68d7b56930b84a0e45ae1694aeba0541f798e908a49d66b837f1"}, - {file = "pillow-10.2.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:1b5e1b74d1bd1b78bc3477528919414874748dd363e6272efd5abf7654e68bef"}, - {file = "pillow-10.2.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:0eae2073305f451d8ecacb5474997c08569fb4eb4ac231ffa4ad7d342fdc25ac"}, - {file = "pillow-10.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b7c2286c23cd350b80d2fc9d424fc797575fb16f854b831d16fd47ceec078f2c"}, - {file = "pillow-10.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1e23412b5c41e58cec602f1135c57dfcf15482013ce6e5f093a86db69646a5aa"}, - {file = "pillow-10.2.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:52a50aa3fb3acb9cf7213573ef55d31d6eca37f5709c69e6858fe3bc04a5c2a2"}, - {file = "pillow-10.2.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:127cee571038f252a552760076407f9cff79761c3d436a12af6000cd182a9d04"}, - {file = "pillow-10.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:8d12251f02d69d8310b046e82572ed486685c38f02176bd08baf216746eb947f"}, - {file = "pillow-10.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:54f1852cd531aa981bc0965b7d609f5f6cc8ce8c41b1139f6ed6b3c54ab82bfb"}, - {file = "pillow-10.2.0-cp312-cp312-win32.whl", hash = "sha256:257d8788df5ca62c980314053197f4d46eefedf4e6175bc9412f14412ec4ea2f"}, - {file = "pillow-10.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:154e939c5f0053a383de4fd3d3da48d9427a7e985f58af8e94d0b3c9fcfcf4f9"}, - {file = "pillow-10.2.0-cp312-cp312-win_arm64.whl", hash = "sha256:f379abd2f1e3dddb2b61bc67977a6b5a0a3f7485538bcc6f39ec76163891ee48"}, - {file = "pillow-10.2.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:8373c6c251f7ef8bda6675dd6d2b3a0fcc31edf1201266b5cf608b62a37407f9"}, - {file = "pillow-10.2.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:870ea1ada0899fd0b79643990809323b389d4d1d46c192f97342eeb6ee0b8483"}, - {file = "pillow-10.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b4b6b1e20608493548b1f32bce8cca185bf0480983890403d3b8753e44077129"}, - {file = "pillow-10.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3031709084b6e7852d00479fd1d310b07d0ba82765f973b543c8af5061cf990e"}, - {file = "pillow-10.2.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:3ff074fc97dd4e80543a3e91f69d58889baf2002b6be64347ea8cf5533188213"}, - {file = "pillow-10.2.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:cb4c38abeef13c61d6916f264d4845fab99d7b711be96c326b84df9e3e0ff62d"}, - {file = "pillow-10.2.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:b1b3020d90c2d8e1dae29cf3ce54f8094f7938460fb5ce8bc5c01450b01fbaf6"}, - {file = "pillow-10.2.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:170aeb00224ab3dc54230c797f8404507240dd868cf52066f66a41b33169bdbe"}, - {file = "pillow-10.2.0-cp38-cp38-win32.whl", hash = "sha256:c4225f5220f46b2fde568c74fca27ae9771536c2e29d7c04f4fb62c83275ac4e"}, - {file = "pillow-10.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:0689b5a8c5288bc0504d9fcee48f61a6a586b9b98514d7d29b840143d6734f39"}, - {file = "pillow-10.2.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:b792a349405fbc0163190fde0dc7b3fef3c9268292586cf5645598b48e63dc67"}, - {file = "pillow-10.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c570f24be1e468e3f0ce7ef56a89a60f0e05b30a3669a459e419c6eac2c35364"}, - {file = "pillow-10.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8ecd059fdaf60c1963c58ceb8997b32e9dc1b911f5da5307aab614f1ce5c2fb"}, - {file = "pillow-10.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c365fd1703040de1ec284b176d6af5abe21b427cb3a5ff68e0759e1e313a5e7e"}, - {file = "pillow-10.2.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:70c61d4c475835a19b3a5aa42492409878bbca7438554a1f89d20d58a7c75c01"}, - {file = "pillow-10.2.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b6f491cdf80ae540738859d9766783e3b3c8e5bd37f5dfa0b76abdecc5081f13"}, - {file = "pillow-10.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9d189550615b4948f45252d7f005e53c2040cea1af5b60d6f79491a6e147eef7"}, - {file = "pillow-10.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:49d9ba1ed0ef3e061088cd1e7538a0759aab559e2e0a80a36f9fd9d8c0c21591"}, - {file = "pillow-10.2.0-cp39-cp39-win32.whl", hash = "sha256:babf5acfede515f176833ed6028754cbcd0d206f7f614ea3447d67c33be12516"}, - {file = "pillow-10.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:0304004f8067386b477d20a518b50f3fa658a28d44e4116970abfcd94fac34a8"}, - {file = "pillow-10.2.0-cp39-cp39-win_arm64.whl", hash = "sha256:0fb3e7fc88a14eacd303e90481ad983fd5b69c761e9e6ef94c983f91025da869"}, - {file = "pillow-10.2.0-pp310-pypy310_pp73-macosx_10_10_x86_64.whl", hash = "sha256:322209c642aabdd6207517e9739c704dc9f9db943015535783239022002f054a"}, - {file = "pillow-10.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3eedd52442c0a5ff4f887fab0c1c0bb164d8635b32c894bc1faf4c618dd89df2"}, - {file = "pillow-10.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cb28c753fd5eb3dd859b4ee95de66cc62af91bcff5db5f2571d32a520baf1f04"}, - {file = "pillow-10.2.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:33870dc4653c5017bf4c8873e5488d8f8d5f8935e2f1fb9a2208c47cdd66efd2"}, - {file = "pillow-10.2.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:3c31822339516fb3c82d03f30e22b1d038da87ef27b6a78c9549888f8ceda39a"}, - {file = "pillow-10.2.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:a2b56ba36e05f973d450582fb015594aaa78834fefe8dfb8fcd79b93e64ba4c6"}, - {file = "pillow-10.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:d8e6aeb9201e655354b3ad049cb77d19813ad4ece0df1249d3c793de3774f8c7"}, - {file = "pillow-10.2.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:2247178effb34a77c11c0e8ac355c7a741ceca0a732b27bf11e747bbc950722f"}, - {file = "pillow-10.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:15587643b9e5eb26c48e49a7b33659790d28f190fc514a322d55da2fb5c2950e"}, - {file = "pillow-10.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753cd8f2086b2b80180d9b3010dd4ed147efc167c90d3bf593fe2af21265e5a5"}, - {file = "pillow-10.2.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:7c8f97e8e7a9009bcacbe3766a36175056c12f9a44e6e6f2d5caad06dcfbf03b"}, - {file = "pillow-10.2.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:d1b35bcd6c5543b9cb547dee3150c93008f8dd0f1fef78fc0cd2b141c5baf58a"}, - {file = "pillow-10.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:fe4c15f6c9285dc54ce6553a3ce908ed37c8f3825b5a51a15c91442bb955b868"}, - {file = "pillow-10.2.0.tar.gz", hash = "sha256:e87f0b2c78157e12d7686b27d63c070fd65d994e8ddae6f328e0dcf4a0cd007e"}, + {file = "pillow-10.3.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:90b9e29824800e90c84e4022dd5cc16eb2d9605ee13f05d47641eb183cd73d45"}, + {file = "pillow-10.3.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a2c405445c79c3f5a124573a051062300936b0281fee57637e706453e452746c"}, + {file = "pillow-10.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:78618cdbccaa74d3f88d0ad6cb8ac3007f1a6fa5c6f19af64b55ca170bfa1edf"}, + {file = "pillow-10.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:261ddb7ca91fcf71757979534fb4c128448b5b4c55cb6152d280312062f69599"}, + {file = "pillow-10.3.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:ce49c67f4ea0609933d01c0731b34b8695a7a748d6c8d186f95e7d085d2fe475"}, + {file = "pillow-10.3.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:b14f16f94cbc61215115b9b1236f9c18403c15dd3c52cf629072afa9d54c1cbf"}, + {file = "pillow-10.3.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d33891be6df59d93df4d846640f0e46f1a807339f09e79a8040bc887bdcd7ed3"}, + {file = "pillow-10.3.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b50811d664d392f02f7761621303eba9d1b056fb1868c8cdf4231279645c25f5"}, + {file = "pillow-10.3.0-cp310-cp310-win32.whl", hash = "sha256:ca2870d5d10d8726a27396d3ca4cf7976cec0f3cb706debe88e3a5bd4610f7d2"}, + {file = "pillow-10.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:f0d0591a0aeaefdaf9a5e545e7485f89910c977087e7de2b6c388aec32011e9f"}, + {file = "pillow-10.3.0-cp310-cp310-win_arm64.whl", hash = "sha256:ccce24b7ad89adb5a1e34a6ba96ac2530046763912806ad4c247356a8f33a67b"}, + {file = "pillow-10.3.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:5f77cf66e96ae734717d341c145c5949c63180842a545c47a0ce7ae52ca83795"}, + {file = "pillow-10.3.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e4b878386c4bf293578b48fc570b84ecfe477d3b77ba39a6e87150af77f40c57"}, + {file = "pillow-10.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fdcbb4068117dfd9ce0138d068ac512843c52295ed996ae6dd1faf537b6dbc27"}, + {file = "pillow-10.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9797a6c8fe16f25749b371c02e2ade0efb51155e767a971c61734b1bf6293994"}, + {file = "pillow-10.3.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:9e91179a242bbc99be65e139e30690e081fe6cb91a8e77faf4c409653de39451"}, + {file = "pillow-10.3.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:1b87bd9d81d179bd8ab871603bd80d8645729939f90b71e62914e816a76fc6bd"}, + {file = "pillow-10.3.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:81d09caa7b27ef4e61cb7d8fbf1714f5aec1c6b6c5270ee53504981e6e9121ad"}, + {file = "pillow-10.3.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:048ad577748b9fa4a99a0548c64f2cb8d672d5bf2e643a739ac8faff1164238c"}, + {file = "pillow-10.3.0-cp311-cp311-win32.whl", hash = "sha256:7161ec49ef0800947dc5570f86568a7bb36fa97dd09e9827dc02b718c5643f09"}, + {file = "pillow-10.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:8eb0908e954d093b02a543dc963984d6e99ad2b5e36503d8a0aaf040505f747d"}, + {file = "pillow-10.3.0-cp311-cp311-win_arm64.whl", hash = "sha256:4e6f7d1c414191c1199f8996d3f2282b9ebea0945693fb67392c75a3a320941f"}, + {file = "pillow-10.3.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:e46f38133e5a060d46bd630faa4d9fa0202377495df1f068a8299fd78c84de84"}, + {file = "pillow-10.3.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:50b8eae8f7334ec826d6eeffaeeb00e36b5e24aa0b9df322c247539714c6df19"}, + {file = "pillow-10.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9d3bea1c75f8c53ee4d505c3e67d8c158ad4df0d83170605b50b64025917f338"}, + {file = "pillow-10.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:19aeb96d43902f0a783946a0a87dbdad5c84c936025b8419da0a0cd7724356b1"}, + {file = "pillow-10.3.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:74d28c17412d9caa1066f7a31df8403ec23d5268ba46cd0ad2c50fb82ae40462"}, + {file = "pillow-10.3.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:ff61bfd9253c3915e6d41c651d5f962da23eda633cf02262990094a18a55371a"}, + {file = "pillow-10.3.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d886f5d353333b4771d21267c7ecc75b710f1a73d72d03ca06df49b09015a9ef"}, + {file = "pillow-10.3.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4b5ec25d8b17217d635f8935dbc1b9aa5907962fae29dff220f2659487891cd3"}, + {file = "pillow-10.3.0-cp312-cp312-win32.whl", hash = "sha256:51243f1ed5161b9945011a7360e997729776f6e5d7005ba0c6879267d4c5139d"}, + {file = "pillow-10.3.0-cp312-cp312-win_amd64.whl", hash = "sha256:412444afb8c4c7a6cc11a47dade32982439925537e483be7c0ae0cf96c4f6a0b"}, + {file = "pillow-10.3.0-cp312-cp312-win_arm64.whl", hash = "sha256:798232c92e7665fe82ac085f9d8e8ca98826f8e27859d9a96b41d519ecd2e49a"}, + {file = "pillow-10.3.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:4eaa22f0d22b1a7e93ff0a596d57fdede2e550aecffb5a1ef1106aaece48e96b"}, + {file = "pillow-10.3.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cd5e14fbf22a87321b24c88669aad3a51ec052eb145315b3da3b7e3cc105b9a2"}, + {file = "pillow-10.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1530e8f3a4b965eb6a7785cf17a426c779333eb62c9a7d1bbcf3ffd5bf77a4aa"}, + {file = "pillow-10.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d512aafa1d32efa014fa041d38868fda85028e3f930a96f85d49c7d8ddc0383"}, + {file = "pillow-10.3.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:339894035d0ede518b16073bdc2feef4c991ee991a29774b33e515f1d308e08d"}, + {file = "pillow-10.3.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:aa7e402ce11f0885305bfb6afb3434b3cd8f53b563ac065452d9d5654c7b86fd"}, + {file = "pillow-10.3.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:0ea2a783a2bdf2a561808fe4a7a12e9aa3799b701ba305de596bc48b8bdfce9d"}, + {file = "pillow-10.3.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:c78e1b00a87ce43bb37642c0812315b411e856a905d58d597750eb79802aaaa3"}, + {file = "pillow-10.3.0-cp38-cp38-win32.whl", hash = "sha256:72d622d262e463dfb7595202d229f5f3ab4b852289a1cd09650362db23b9eb0b"}, + {file = "pillow-10.3.0-cp38-cp38-win_amd64.whl", hash = "sha256:2034f6759a722da3a3dbd91a81148cf884e91d1b747992ca288ab88c1de15999"}, + {file = "pillow-10.3.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:2ed854e716a89b1afcedea551cd85f2eb2a807613752ab997b9974aaa0d56936"}, + {file = "pillow-10.3.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:dc1a390a82755a8c26c9964d457d4c9cbec5405896cba94cf51f36ea0d855002"}, + {file = "pillow-10.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4203efca580f0dd6f882ca211f923168548f7ba334c189e9eab1178ab840bf60"}, + {file = "pillow-10.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3102045a10945173d38336f6e71a8dc71bcaeed55c3123ad4af82c52807b9375"}, + {file = "pillow-10.3.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:6fb1b30043271ec92dc65f6d9f0b7a830c210b8a96423074b15c7bc999975f57"}, + {file = "pillow-10.3.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:1dfc94946bc60ea375cc39cff0b8da6c7e5f8fcdc1d946beb8da5c216156ddd8"}, + {file = "pillow-10.3.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:b09b86b27a064c9624d0a6c54da01c1beaf5b6cadfa609cf63789b1d08a797b9"}, + {file = "pillow-10.3.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d3b2348a78bc939b4fed6552abfd2e7988e0f81443ef3911a4b8498ca084f6eb"}, + {file = "pillow-10.3.0-cp39-cp39-win32.whl", hash = "sha256:45ebc7b45406febf07fef35d856f0293a92e7417ae7933207e90bf9090b70572"}, + {file = "pillow-10.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:0ba26351b137ca4e0db0342d5d00d2e355eb29372c05afd544ebf47c0956ffeb"}, + {file = "pillow-10.3.0-cp39-cp39-win_arm64.whl", hash = "sha256:50fd3f6b26e3441ae07b7c979309638b72abc1a25da31a81a7fbd9495713ef4f"}, + {file = "pillow-10.3.0-pp310-pypy310_pp73-macosx_10_10_x86_64.whl", hash = "sha256:6b02471b72526ab8a18c39cb7967b72d194ec53c1fd0a70b050565a0f366d355"}, + {file = "pillow-10.3.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8ab74c06ffdab957d7670c2a5a6e1a70181cd10b727cd788c4dd9005b6a8acd9"}, + {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:048eeade4c33fdf7e08da40ef402e748df113fd0b4584e32c4af74fe78baaeb2"}, + {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e2ec1e921fd07c7cda7962bad283acc2f2a9ccc1b971ee4b216b75fad6f0463"}, + {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:4c8e73e99da7db1b4cad7f8d682cf6abad7844da39834c288fbfa394a47bbced"}, + {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:16563993329b79513f59142a6b02055e10514c1a8e86dca8b48a893e33cf91e3"}, + {file = "pillow-10.3.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:dd78700f5788ae180b5ee8902c6aea5a5726bac7c364b202b4b3e3ba2d293170"}, + {file = "pillow-10.3.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:aff76a55a8aa8364d25400a210a65ff59d0168e0b4285ba6bf2bd83cf675ba32"}, + {file = "pillow-10.3.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:b7bc2176354defba3edc2b9a777744462da2f8e921fbaf61e52acb95bafa9828"}, + {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:793b4e24db2e8742ca6423d3fde8396db336698c55cd34b660663ee9e45ed37f"}, + {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d93480005693d247f8346bc8ee28c72a2191bdf1f6b5db469c096c0c867ac015"}, + {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:c83341b89884e2b2e55886e8fbbf37c3fa5efd6c8907124aeb72f285ae5696e5"}, + {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:1a1d1915db1a4fdb2754b9de292642a39a7fb28f1736699527bb649484fb966a"}, + {file = "pillow-10.3.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a0eaa93d054751ee9964afa21c06247779b90440ca41d184aeb5d410f20ff591"}, + {file = "pillow-10.3.0.tar.gz", hash = "sha256:9d2455fbf44c914840c793e89aa82d0e1763a14253a000743719ae5946814b2d"}, ] [package.extras] @@ -2923,7 +3396,7 @@ xmp = ["defusedxml"] name = "platformdirs" version = "4.2.0" description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"." -category = "dev" +category = "main" optional = false python-versions = ">=3.8" files = [ @@ -2951,16 +3424,87 @@ files = [ dev = ["pre-commit", "tox"] testing = ["pytest", "pytest-benchmark"] +[[package]] +name = "poethepoet" +version = "0.10.0" +description = "A task runner that works well with poetry." +category = "main" +optional = false +python-versions = ">=3.6,<4.0" +files = [ + {file = "poethepoet-0.10.0-py3-none-any.whl", hash = "sha256:6fb3021603d4421c6fcc40072bbcf150a6c52ef70ff4d3be089b8b04e015ef5a"}, + {file = "poethepoet-0.10.0.tar.gz", hash = "sha256:70b97cb194b978dc464c70793e85e6f746cddf82b84a38bfb135946ad71ae19c"}, +] + +[package.dependencies] +pastel = ">=0.2.0,<0.3.0" +tomlkit = ">=0.6.0,<1.0.0" + +[[package]] +name = "pot" +version = "0.9.3" +description = "Python Optimal Transport Library" +category = "main" +optional = false +python-versions = ">=3.6" +files = [ + {file = "POT-0.9.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:00ceb63cfc49e27fab2829646ed24f553bd7d3584eb8ba83fc856e7a757b0b8c"}, + {file = "POT-0.9.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:590b583e43f401435dac2b83da9ca244abbe21f606477c9b67bbc45e46103ed7"}, + {file = "POT-0.9.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:35b172ec33dbfbe44f66ca16fc16a77e0eb68439026ba920f73bd3602f18d92e"}, + {file = "POT-0.9.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88544f3811eef1f9e9e50d8e68f73a3bf3d84886fbe7be2389cf57d86101e274"}, + {file = "POT-0.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dfaf40a74c5131c1c49f5624c170cb4de24f294ddef1cff6c494321c134d6f2d"}, + {file = "POT-0.9.3-cp310-cp310-win32.whl", hash = "sha256:30df60ba279591583ce2921e0e78bdcb27337713f433ee0b7385f77e79d63a69"}, + {file = "POT-0.9.3-cp310-cp310-win_amd64.whl", hash = "sha256:88d4d06cec340c53d1abe9369cb905fe953bd5bf126b0e589d5254e3f5d86592"}, + {file = "POT-0.9.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:73fc8a643ed4c95dacad4dfb8a4dd50beda3853354b923c4b442a97f5e86db03"}, + {file = "POT-0.9.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b1888da5458269648990c292ab5f2ad1f60d8496440af45361a1075250af58cd"}, + {file = "POT-0.9.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:787dae6ba7f72a927a9f8a7e9e4e844935153a09d2a0834548c1b9cb377486d9"}, + {file = "POT-0.9.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dd434bc9659af8ed814200473bfdfc67573db08442bb924324f238903f36bb60"}, + {file = "POT-0.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:34019967a47120e9460fb344162d010103e1b1fbf96aa8872b27a07dd7f51144"}, + {file = "POT-0.9.3-cp311-cp311-win32.whl", hash = "sha256:596b296d5522cd55dade5c110442281a1189dc5e5449eb948e4d7eaed2f74503"}, + {file = "POT-0.9.3-cp311-cp311-win_amd64.whl", hash = "sha256:fd2f8fa78b364d51a4dc397d8c4f45dd74df3a904b7c03481aebaf39ebc9eafb"}, + {file = "POT-0.9.3-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:3e12fbdf9bf6d5de0ecb56277da85036e647d1cdf57cfd087ee57d3e83c19d0d"}, + {file = "POT-0.9.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ee6269aa3ce7d9706e021f23aea91b932cfd4c264869ee89956ebce40cbe2cd3"}, + {file = "POT-0.9.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:3cb28fc18fb1acc095999b80844458a5645aa5b09ea2d8647be48257d1c6dddf"}, + {file = "POT-0.9.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:16bb37c7d20da3a6ff7b4f0c0c5ff98e1e097323e560811392e963440994e661"}, + {file = "POT-0.9.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b29232b6c1cca507d969a8797aef0cf87631d77e28e03cfb5b62d64d9d63044e"}, + {file = "POT-0.9.3-cp312-cp312-win32.whl", hash = "sha256:b20bf5cca6776e1d92421a14bc14307a0914d172c67e5a76acaf1a3ecfe7d02b"}, + {file = "POT-0.9.3-cp312-cp312-win_amd64.whl", hash = "sha256:e9e419868ae64c397d932a43d98cc2d1464b6060815775037a070fd2e1d4eafa"}, + {file = "POT-0.9.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:1e401b5ae17d95d33ef48c851df7aaac4711e7af21705ba9b5fae7bf53ae9217"}, + {file = "POT-0.9.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:db3ac04a2f272855501a7d8117969b6dff15a146986f7a5c1f0e6d9f1840fa73"}, + {file = "POT-0.9.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9268e48a1a43e947fdb78a89e3866b484c559681ed88bb178ac5b3dccb217579"}, + {file = "POT-0.9.3-cp37-cp37m-win32.whl", hash = "sha256:0dbe4878419ae1edbd029b2e166406f8fd1387356bd18ab2fd9a3c656bc4125a"}, + {file = "POT-0.9.3-cp37-cp37m-win_amd64.whl", hash = "sha256:6f114b5ab93039c0426afa59be6db1fa6b2e251dc3e1e7f7b348a1334f2c0061"}, + {file = "POT-0.9.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:aab4eb2b4bbfe01fee10bb1c2157891883cc63fa70c2bc2a8460a486c77de9f3"}, + {file = "POT-0.9.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:09badce0c77cdc94422e74aa81fdcf0ad8e6e826bf7eafcb8a1701bd9ff5f393"}, + {file = "POT-0.9.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:18f2c3905e0678bf397890f242ae196afaa25ac4dec5f06ef6ae30921adc0614"}, + {file = "POT-0.9.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:74cc9a8ab92329c50b0df74b3be19f282860aa7f1abddf0c149fb2f5e96d18bb"}, + {file = "POT-0.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:36b0377111e50a8008b29bcfb092aac8594f183716993369f2e2f3ff746dacd7"}, + {file = "POT-0.9.3-cp38-cp38-win32.whl", hash = "sha256:342161c182f3b4719c4424bf3d852b30f7cb794f17166aa64965b2408355d44a"}, + {file = "POT-0.9.3-cp38-cp38-win_amd64.whl", hash = "sha256:a38f573bddf670dee651a6df220c18f30f71c74e4ec9ac398b7937ca9adfc0ff"}, + {file = "POT-0.9.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:5b72b204af2d6a236dfc457767f5e9ad3cca60e2ee3cf0f909c0028be95f7b42"}, + {file = "POT-0.9.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ec4482888de48d17ad4d8fe905bd186a6c41f8dc907cda9d0468331a907e2419"}, + {file = "POT-0.9.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b19c0a8051d80e6d55e0dfd4473f7841ef30167b3013c95eedbaba7acc385dea"}, + {file = "POT-0.9.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aede827854d868fb4ec9e8aaeac97f13fdd2a1313c16d06d4ccae10a92e272a7"}, + {file = "POT-0.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:057246783b90936d7ce32b7bb27e1cfa59731eb95898ea5f756e4d1de6e9ae3f"}, + {file = "POT-0.9.3-cp39-cp39-win32.whl", hash = "sha256:fc7676338404001ad61050610494b7b5ab496f0533ce29f1d44cff833efd80d8"}, + {file = "POT-0.9.3-cp39-cp39-win_amd64.whl", hash = "sha256:f391982d5b9877faabac21ec1bccfb5567b0fc8305770277bc87fdff4563bd5b"}, + {file = "POT-0.9.3.tar.gz", hash = "sha256:eecf2394390a73472e727ef75f7c801fc47509039f00c40f8fc64fdeea617c86"}, +] + +[package.dependencies] +numpy = ">=1.16" +scipy = ">=1.6" + [[package]] name = "pre-commit" -version = "3.6.2" +version = "3.7.0" description = "A framework for managing and maintaining multi-language pre-commit hooks." category = "dev" optional = false python-versions = ">=3.9" files = [ - {file = "pre_commit-3.6.2-py2.py3-none-any.whl", hash = "sha256:ba637c2d7a670c10daedc059f5c49b5bd0aadbccfcd7ec15592cf9665117532c"}, - {file = "pre_commit-3.6.2.tar.gz", hash = "sha256:c3ef34f463045c88658c5b99f38c1e297abdcc0ff13f98d3370055fbbfabc67e"}, + {file = "pre_commit-3.7.0-py2.py3-none-any.whl", hash = "sha256:5eae9e10c2b5ac51577c3452ec0a490455c45a0533f7960f993a0d01e59decab"}, + {file = "pre_commit-3.7.0.tar.gz", hash = "sha256:e209d61b8acdcf742404408531f0c37d49d2c734fd7cff2d6076083d191cb060"}, ] [package.dependencies] @@ -2974,7 +3518,7 @@ virtualenv = ">=20.10.0" name = "prompt-toolkit" version = "3.0.43" description = "Library for building powerful interactive command lines in Python" -category = "dev" +category = "main" optional = false python-versions = ">=3.7.0" files = [ @@ -2987,43 +3531,30 @@ wcwidth = "*" [[package]] name = "protobuf" -version = "3.20.1" -description = "Protocol Buffers" +version = "5.26.1" +description = "" category = "main" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "protobuf-3.20.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3cc797c9d15d7689ed507b165cd05913acb992d78b379f6014e013f9ecb20996"}, - {file = "protobuf-3.20.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:ff8d8fa42675249bb456f5db06c00de6c2f4c27a065955917b28c4f15978b9c3"}, - {file = "protobuf-3.20.1-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:cd68be2559e2a3b84f517fb029ee611546f7812b1fdd0aa2ecc9bc6ec0e4fdde"}, - {file = "protobuf-3.20.1-cp310-cp310-win32.whl", hash = "sha256:9016d01c91e8e625141d24ec1b20fed584703e527d28512aa8c8707f105a683c"}, - {file = "protobuf-3.20.1-cp310-cp310-win_amd64.whl", hash = "sha256:32ca378605b41fd180dfe4e14d3226386d8d1b002ab31c969c366549e66a2bb7"}, - {file = "protobuf-3.20.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:9be73ad47579abc26c12024239d3540e6b765182a91dbc88e23658ab71767153"}, - {file = "protobuf-3.20.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:097c5d8a9808302fb0da7e20edf0b8d4703274d140fd25c5edabddcde43e081f"}, - {file = "protobuf-3.20.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:e250a42f15bf9d5b09fe1b293bdba2801cd520a9f5ea2d7fb7536d4441811d20"}, - {file = "protobuf-3.20.1-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:cdee09140e1cd184ba9324ec1df410e7147242b94b5f8b0c64fc89e38a8ba531"}, - {file = "protobuf-3.20.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:af0ebadc74e281a517141daad9d0f2c5d93ab78e9d455113719a45a49da9db4e"}, - {file = "protobuf-3.20.1-cp37-cp37m-win32.whl", hash = "sha256:755f3aee41354ae395e104d62119cb223339a8f3276a0cd009ffabfcdd46bb0c"}, - {file = "protobuf-3.20.1-cp37-cp37m-win_amd64.whl", hash = "sha256:62f1b5c4cd6c5402b4e2d63804ba49a327e0c386c99b1675c8a0fefda23b2067"}, - {file = "protobuf-3.20.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:06059eb6953ff01e56a25cd02cca1a9649a75a7e65397b5b9b4e929ed71d10cf"}, - {file = "protobuf-3.20.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:cb29edb9eab15742d791e1025dd7b6a8f6fcb53802ad2f6e3adcb102051063ab"}, - {file = "protobuf-3.20.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:69ccfdf3657ba59569c64295b7d51325f91af586f8d5793b734260dfe2e94e2c"}, - {file = "protobuf-3.20.1-cp38-cp38-win32.whl", hash = "sha256:dd5789b2948ca702c17027c84c2accb552fc30f4622a98ab5c51fcfe8c50d3e7"}, - {file = "protobuf-3.20.1-cp38-cp38-win_amd64.whl", hash = "sha256:77053d28427a29987ca9caf7b72ccafee011257561259faba8dd308fda9a8739"}, - {file = "protobuf-3.20.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6f50601512a3d23625d8a85b1638d914a0970f17920ff39cec63aaef80a93fb7"}, - {file = "protobuf-3.20.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:284f86a6207c897542d7e956eb243a36bb8f9564c1742b253462386e96c6b78f"}, - {file = "protobuf-3.20.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:7403941f6d0992d40161aa8bb23e12575637008a5a02283a930addc0508982f9"}, - {file = "protobuf-3.20.1-cp39-cp39-win32.whl", hash = "sha256:db977c4ca738dd9ce508557d4fce0f5aebd105e158c725beec86feb1f6bc20d8"}, - {file = "protobuf-3.20.1-cp39-cp39-win_amd64.whl", hash = "sha256:7e371f10abe57cee5021797126c93479f59fccc9693dafd6bd5633ab67808a91"}, - {file = "protobuf-3.20.1-py2.py3-none-any.whl", hash = "sha256:adfc6cf69c7f8c50fd24c793964eef18f0ac321315439d94945820612849c388"}, - {file = "protobuf-3.20.1.tar.gz", hash = "sha256:adc31566d027f45efe3f44eeb5b1f329da43891634d61c75a5944e9be6dd42c9"}, + {file = "protobuf-5.26.1-cp310-abi3-win32.whl", hash = "sha256:3c388ea6ddfe735f8cf69e3f7dc7611e73107b60bdfcf5d0f024c3ccd3794e23"}, + {file = "protobuf-5.26.1-cp310-abi3-win_amd64.whl", hash = "sha256:e6039957449cb918f331d32ffafa8eb9255769c96aa0560d9a5bf0b4e00a2a33"}, + {file = "protobuf-5.26.1-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:38aa5f535721d5bb99861166c445c4105c4e285c765fbb2ac10f116e32dcd46d"}, + {file = "protobuf-5.26.1-cp37-abi3-manylinux2014_aarch64.whl", hash = "sha256:fbfe61e7ee8c1860855696e3ac6cfd1b01af5498facc6834fcc345c9684fb2ca"}, + {file = "protobuf-5.26.1-cp37-abi3-manylinux2014_x86_64.whl", hash = "sha256:f7417703f841167e5a27d48be13389d52ad705ec09eade63dfc3180a959215d7"}, + {file = "protobuf-5.26.1-cp38-cp38-win32.whl", hash = "sha256:d693d2504ca96750d92d9de8a103102dd648fda04540495535f0fec7577ed8fc"}, + {file = "protobuf-5.26.1-cp38-cp38-win_amd64.whl", hash = "sha256:9b557c317ebe6836835ec4ef74ec3e994ad0894ea424314ad3552bc6e8835b4e"}, + {file = "protobuf-5.26.1-cp39-cp39-win32.whl", hash = "sha256:b9ba3ca83c2e31219ffbeb9d76b63aad35a3eb1544170c55336993d7a18ae72c"}, + {file = "protobuf-5.26.1-cp39-cp39-win_amd64.whl", hash = "sha256:7ee014c2c87582e101d6b54260af03b6596728505c79f17c8586e7523aaa8f8c"}, + {file = "protobuf-5.26.1-py3-none-any.whl", hash = "sha256:da612f2720c0183417194eeaa2523215c4fcc1a1949772dc65f05047e08d5932"}, + {file = "protobuf-5.26.1.tar.gz", hash = "sha256:8ca2a1d97c290ec7b16e4e5dff2e5ae150cc1582f55b5ab300d45cb0dfa90e51"}, ] [[package]] name = "psutil" version = "5.9.8" description = "Cross-platform lib for process and system monitoring in Python." -category = "dev" +category = "main" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*" files = [ @@ -3052,7 +3583,7 @@ test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"] name = "ptyprocess" version = "0.7.0" description = "Run a subprocess in a pseudo terminal" -category = "dev" +category = "main" optional = false python-versions = "*" files = [ @@ -3064,7 +3595,7 @@ files = [ name = "pure-eval" version = "0.2.2" description = "Safely evaluate AST nodes without side effects" -category = "dev" +category = "main" optional = false python-versions = "*" files = [ @@ -3089,14 +3620,14 @@ files = [ [[package]] name = "pycparser" -version = "2.21" +version = "2.22" description = "C parser in Python" category = "main" optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +python-versions = ">=3.8" files = [ - {file = "pycparser-2.21-py2.py3-none-any.whl", hash = "sha256:8ee45429555515e1f6b185e78100aea234072576aa43ab53aefcae078162fca9"}, - {file = "pycparser-2.21.tar.gz", hash = "sha256:e644fdec12f7872f86c58ff790da456218b10f863970249516d60a5eaca77206"}, + {file = "pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc"}, + {file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"}, ] [[package]] @@ -3273,7 +3804,7 @@ files = [ name = "pygments" version = "2.17.2" description = "Pygments is a syntax highlighting package written in Python." -category = "dev" +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -3285,16 +3816,35 @@ files = [ plugins = ["importlib-metadata"] windows-terminal = ["colorama (>=0.4.6)"] +[[package]] +name = "pynndescent" +version = "0.5.12" +description = "Nearest Neighbor Descent" +category = "main" +optional = false +python-versions = "*" +files = [ + {file = "pynndescent-0.5.12-py3-none-any.whl", hash = "sha256:9023dc5fea520a4e84d0633ae735db97d2509da927bfa86c897e61f3315473c7"}, + {file = "pynndescent-0.5.12.tar.gz", hash = "sha256:0736291fcbbedfd5e0a3a280f71a63f8eb2f8bd9670d4c0b51ac1b4d081adf70"}, +] + +[package.dependencies] +joblib = ">=0.11" +llvmlite = ">=0.30" +numba = ">=0.51.2" +scikit-learn = ">=0.18" +scipy = ">=1.0" + [[package]] name = "pyparsing" -version = "3.1.1" +version = "3.1.2" description = "pyparsing module - Classes and methods to define and execute parsing grammars" category = "main" optional = false python-versions = ">=3.6.8" files = [ - {file = "pyparsing-3.1.1-py3-none-any.whl", hash = "sha256:32c7c0b711493c72ff18a981d24f28aaf9c1fb7ed5e9667c9e84e3db623bdbfb"}, - {file = "pyparsing-3.1.1.tar.gz", hash = "sha256:ede28a1a32462f5a9705e07aea48001a08f7cf81a021585011deba701581a0db"}, + {file = "pyparsing-3.1.2-py3-none-any.whl", hash = "sha256:f9db75911801ed778fe61bb643079ff86601aca99fcae6345aa67292038fb742"}, + {file = "pyparsing-3.1.2.tar.gz", hash = "sha256:a1bac0ce561155ecc3ed78ca94d3c9378656ad4c94c1270de543f621420f94ad"}, ] [package.extras] @@ -3413,35 +3963,39 @@ cli = ["click (>=5.0)"] [[package]] name = "pytorch-lightning" -version = "2.2.1" +version = "1.9.5" description = "PyTorch Lightning is the lightweight PyTorch wrapper for ML researchers. Scale your models. Write less boilerplate." category = "main" optional = false -python-versions = ">=3.8" +python-versions = ">=3.7" files = [ - {file = "pytorch-lightning-2.2.1.tar.gz", hash = "sha256:aa3be30c9109239a371748565a7f4b7b41ea1395725c30e04426cf946b3e2745"}, - {file = "pytorch_lightning-2.2.1-py3-none-any.whl", hash = "sha256:b7efdd46a7ede4d66814a6afc28d0dfadd8eea1bb8bddab4fd2ea36c099af685"}, + {file = "pytorch-lightning-1.9.5.tar.gz", hash = "sha256:925fe7b80ddf04859fa385aa493b260be4000b11a2f22447afb4a932d1f07d26"}, + {file = "pytorch_lightning-1.9.5-py3-none-any.whl", hash = "sha256:06821558158623c5d2ecf5d3d0374dc8bd661e0acd3acf54a6d6f71737c156c5"}, ] [package.dependencies] -fsspec = {version = ">=2022.5.0", extras = ["http"]} -lightning-utilities = ">=0.8.0" +fsspec = {version = ">2021.06.0", extras = ["http"]} +lightning-utilities = ">=0.6.0.post0" numpy = ">=1.17.2" -packaging = ">=20.0" +packaging = ">=17.1" PyYAML = ">=5.4" -torch = ">=1.13.0" +torch = ">=1.10.0" torchmetrics = ">=0.7.0" tqdm = ">=4.57.0" -typing-extensions = ">=4.4.0" +typing-extensions = ">=4.0.0" [package.extras] -all = ["bitsandbytes (==0.41.0)", "deepspeed (>=0.8.2,<=0.9.3)", "gym[classic-control] (>=0.17.0)", "hydra-core (>=1.0.5)", "ipython[all] (<8.15.0)", "jsonargparse[signatures] (>=4.26.1)", "lightning-utilities (>=0.8.0)", "matplotlib (>3.1)", "omegaconf (>=2.0.5)", "requests (<2.32.0)", "rich (>=12.3.0)", "tensorboardX (>=2.2)", "torchmetrics (>=0.10.0)", "torchvision (>=0.14.0)"] -deepspeed = ["deepspeed (>=0.8.2,<=0.9.3)"] -dev = ["bitsandbytes (==0.41.0)", "cloudpickle (>=1.3)", "coverage (==7.3.1)", "deepspeed (>=0.8.2,<=0.9.3)", "fastapi", "gym[classic-control] (>=0.17.0)", "hydra-core (>=1.0.5)", "ipython[all] (<8.15.0)", "jsonargparse[signatures] (>=4.26.1)", "lightning-utilities (>=0.8.0)", "matplotlib (>3.1)", "omegaconf (>=2.0.5)", "onnx (>=0.14.0)", "onnxruntime (>=0.15.0)", "pandas (>1.0)", "psutil (<5.9.6)", "pytest (==7.4.0)", "pytest-cov (==4.1.0)", "pytest-random-order (==1.1.0)", "pytest-rerunfailures (==12.0)", "pytest-timeout (==2.1.0)", "requests (<2.32.0)", "rich (>=12.3.0)", "scikit-learn (>0.22.1)", "tensorboard (>=2.9.1)", "tensorboardX (>=2.2)", "torchmetrics (>=0.10.0)", "torchvision (>=0.14.0)", "uvicorn"] -examples = ["gym[classic-control] (>=0.17.0)", "ipython[all] (<8.15.0)", "lightning-utilities (>=0.8.0)", "requests (<2.32.0)", "torchmetrics (>=0.10.0)", "torchvision (>=0.14.0)"] -extra = ["bitsandbytes (==0.41.0)", "hydra-core (>=1.0.5)", "jsonargparse[signatures] (>=4.26.1)", "matplotlib (>3.1)", "omegaconf (>=2.0.5)", "rich (>=12.3.0)", "tensorboardX (>=2.2)"] -strategies = ["deepspeed (>=0.8.2,<=0.9.3)"] -test = ["cloudpickle (>=1.3)", "coverage (==7.3.1)", "fastapi", "onnx (>=0.14.0)", "onnxruntime (>=0.15.0)", "pandas (>1.0)", "psutil (<5.9.6)", "pytest (==7.4.0)", "pytest-cov (==4.1.0)", "pytest-random-order (==1.1.0)", "pytest-rerunfailures (==12.0)", "pytest-timeout (==2.1.0)", "scikit-learn (>0.22.1)", "tensorboard (>=2.9.1)", "uvicorn"] +all = ["colossalai (>=0.2.0)", "deepspeed (>=0.6.0)", "fairscale (>=0.4.5)", "gym[classic-control] (>=0.17.0)", "hivemind (==1.1.5)", "horovod (>=0.21.2,!=0.24.0)", "hydra-core (>=1.0.5)", "ipython[all] (<8.7.1)", "jsonargparse[signatures] (>=4.18.0)", "matplotlib (>3.1)", "omegaconf (>=2.0.5)", "rich (>=10.14.0,!=10.15.0.a)", "tensorboardX (>=2.2)", "torchmetrics (>=0.10.0)", "torchvision (>=0.11.1)"] +colossalai = ["colossalai (>=0.2.0)"] +deepspeed = ["deepspeed (>=0.6.0)"] +dev = ["cloudpickle (>=1.3)", "codecov (==2.1.12)", "colossalai (>=0.2.0)", "coverage (==6.5.0)", "deepspeed (>=0.6.0)", "fairscale (>=0.4.5)", "fastapi (<0.87.0)", "gym[classic-control] (>=0.17.0)", "hivemind (==1.1.5)", "horovod (>=0.21.2,!=0.24.0)", "hydra-core (>=1.0.5)", "ipython[all] (<8.7.1)", "jsonargparse[signatures] (>=4.18.0)", "matplotlib (>3.1)", "omegaconf (>=2.0.5)", "onnx (<1.14.0)", "onnxruntime (<1.14.0)", "pandas (>1.0)", "pre-commit (==2.20.0)", "protobuf (<=3.20.1)", "psutil (<5.9.5)", "pytest (==7.2.0)", "pytest-cov (==4.0.0)", "pytest-forked (==1.4.0)", "pytest-rerunfailures (==10.3)", "rich (>=10.14.0,!=10.15.0.a)", "scikit-learn (>0.22.1)", "tensorboard (>=2.9.1)", "tensorboardX (>=2.2)", "torchmetrics (>=0.10.0)", "torchvision (>=0.11.1)", "uvicorn (<0.19.1)"] +examples = ["gym[classic-control] (>=0.17.0)", "ipython[all] (<8.7.1)", "torchmetrics (>=0.10.0)", "torchvision (>=0.11.1)"] +extra = ["hydra-core (>=1.0.5)", "jsonargparse[signatures] (>=4.18.0)", "matplotlib (>3.1)", "omegaconf (>=2.0.5)", "rich (>=10.14.0,!=10.15.0.a)", "tensorboardX (>=2.2)"] +fairscale = ["fairscale (>=0.4.5)"] +hivemind = ["hivemind (==1.1.5)"] +horovod = ["horovod (>=0.21.2,!=0.24.0)"] +strategies = ["colossalai (>=0.2.0)", "deepspeed (>=0.6.0)", "fairscale (>=0.4.5)", "hivemind (==1.1.5)", "horovod (>=0.21.2,!=0.24.0)"] +test = ["cloudpickle (>=1.3)", "codecov (==2.1.12)", "coverage (==6.5.0)", "fastapi (<0.87.0)", "onnx (<1.14.0)", "onnxruntime (<1.14.0)", "pandas (>1.0)", "pre-commit (==2.20.0)", "protobuf (<=3.20.1)", "psutil (<5.9.5)", "pytest (==7.2.0)", "pytest-cov (==4.0.0)", "pytest-forked (==1.4.0)", "pytest-rerunfailures (==10.3)", "scikit-learn (>0.22.1)", "tensorboard (>=2.9.1)", "uvicorn (<0.19.1)"] [[package]] name = "pytz" @@ -3459,7 +4013,7 @@ files = [ name = "pywin32" version = "306" description = "Python for Window Extensions" -category = "dev" +category = "main" optional = false python-versions = "*" files = [ @@ -3542,120 +4096,137 @@ files = [ [[package]] name = "pyzmq" -version = "25.1.2" +version = "26.0.0" description = "Python bindings for 0MQ" -category = "dev" +category = "main" optional = false -python-versions = ">=3.6" +python-versions = ">=3.7" files = [ - {file = "pyzmq-25.1.2-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:e624c789359f1a16f83f35e2c705d07663ff2b4d4479bad35621178d8f0f6ea4"}, - {file = "pyzmq-25.1.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:49151b0efece79f6a79d41a461d78535356136ee70084a1c22532fc6383f4ad0"}, - {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d9a5f194cf730f2b24d6af1f833c14c10f41023da46a7f736f48b6d35061e76e"}, - {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:faf79a302f834d9e8304fafdc11d0d042266667ac45209afa57e5efc998e3872"}, - {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f51a7b4ead28d3fca8dda53216314a553b0f7a91ee8fc46a72b402a78c3e43d"}, - {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:0ddd6d71d4ef17ba5a87becf7ddf01b371eaba553c603477679ae817a8d84d75"}, - {file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:246747b88917e4867e2367b005fc8eefbb4a54b7db363d6c92f89d69abfff4b6"}, - {file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:00c48ae2fd81e2a50c3485de1b9d5c7c57cd85dc8ec55683eac16846e57ac979"}, - {file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:5a68d491fc20762b630e5db2191dd07ff89834086740f70e978bb2ef2668be08"}, - {file = "pyzmq-25.1.2-cp310-cp310-win32.whl", hash = "sha256:09dfe949e83087da88c4a76767df04b22304a682d6154de2c572625c62ad6886"}, - {file = "pyzmq-25.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:fa99973d2ed20417744fca0073390ad65ce225b546febb0580358e36aa90dba6"}, - {file = "pyzmq-25.1.2-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:82544e0e2d0c1811482d37eef297020a040c32e0687c1f6fc23a75b75db8062c"}, - {file = "pyzmq-25.1.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:01171fc48542348cd1a360a4b6c3e7d8f46cdcf53a8d40f84db6707a6768acc1"}, - {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bc69c96735ab501419c432110016329bf0dea8898ce16fab97c6d9106dc0b348"}, - {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3e124e6b1dd3dfbeb695435dff0e383256655bb18082e094a8dd1f6293114642"}, - {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7598d2ba821caa37a0f9d54c25164a4fa351ce019d64d0b44b45540950458840"}, - {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:d1299d7e964c13607efd148ca1f07dcbf27c3ab9e125d1d0ae1d580a1682399d"}, - {file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:4e6f689880d5ad87918430957297c975203a082d9a036cc426648fcbedae769b"}, - {file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:cc69949484171cc961e6ecd4a8911b9ce7a0d1f738fcae717177c231bf77437b"}, - {file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9880078f683466b7f567b8624bfc16cad65077be046b6e8abb53bed4eeb82dd3"}, - {file = "pyzmq-25.1.2-cp311-cp311-win32.whl", hash = "sha256:4e5837af3e5aaa99a091302df5ee001149baff06ad22b722d34e30df5f0d9097"}, - {file = "pyzmq-25.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:25c2dbb97d38b5ac9fd15586e048ec5eb1e38f3d47fe7d92167b0c77bb3584e9"}, - {file = "pyzmq-25.1.2-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:11e70516688190e9c2db14fcf93c04192b02d457b582a1f6190b154691b4c93a"}, - {file = "pyzmq-25.1.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:313c3794d650d1fccaaab2df942af9f2c01d6217c846177cfcbc693c7410839e"}, - {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b3cbba2f47062b85fe0ef9de5b987612140a9ba3a9c6d2543c6dec9f7c2ab27"}, - {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fc31baa0c32a2ca660784d5af3b9487e13b61b3032cb01a115fce6588e1bed30"}, - {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:02c9087b109070c5ab0b383079fa1b5f797f8d43e9a66c07a4b8b8bdecfd88ee"}, - {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:f8429b17cbb746c3e043cb986328da023657e79d5ed258b711c06a70c2ea7537"}, - {file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:5074adeacede5f810b7ef39607ee59d94e948b4fd954495bdb072f8c54558181"}, - {file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:7ae8f354b895cbd85212da245f1a5ad8159e7840e37d78b476bb4f4c3f32a9fe"}, - {file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:b264bf2cc96b5bc43ce0e852be995e400376bd87ceb363822e2cb1964fcdc737"}, - {file = "pyzmq-25.1.2-cp312-cp312-win32.whl", hash = "sha256:02bbc1a87b76e04fd780b45e7f695471ae6de747769e540da909173d50ff8e2d"}, - {file = "pyzmq-25.1.2-cp312-cp312-win_amd64.whl", hash = "sha256:ced111c2e81506abd1dc142e6cd7b68dd53747b3b7ae5edbea4578c5eeff96b7"}, - {file = "pyzmq-25.1.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:7b6d09a8962a91151f0976008eb7b29b433a560fde056ec7a3db9ec8f1075438"}, - {file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:967668420f36878a3c9ecb5ab33c9d0ff8d054f9c0233d995a6d25b0e95e1b6b"}, - {file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5edac3f57c7ddaacdb4d40f6ef2f9e299471fc38d112f4bc6d60ab9365445fb0"}, - {file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:0dabfb10ef897f3b7e101cacba1437bd3a5032ee667b7ead32bbcdd1a8422fe7"}, - {file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:2c6441e0398c2baacfe5ba30c937d274cfc2dc5b55e82e3749e333aabffde561"}, - {file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:16b726c1f6c2e7625706549f9dbe9b06004dfbec30dbed4bf50cbdfc73e5b32a"}, - {file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:a86c2dd76ef71a773e70551a07318b8e52379f58dafa7ae1e0a4be78efd1ff16"}, - {file = "pyzmq-25.1.2-cp36-cp36m-win32.whl", hash = "sha256:359f7f74b5d3c65dae137f33eb2bcfa7ad9ebefd1cab85c935f063f1dbb245cc"}, - {file = "pyzmq-25.1.2-cp36-cp36m-win_amd64.whl", hash = "sha256:55875492f820d0eb3417b51d96fea549cde77893ae3790fd25491c5754ea2f68"}, - {file = "pyzmq-25.1.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b8c8a419dfb02e91b453615c69568442e897aaf77561ee0064d789705ff37a92"}, - {file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8807c87fa893527ae8a524c15fc505d9950d5e856f03dae5921b5e9aa3b8783b"}, - {file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5e319ed7d6b8f5fad9b76daa0a68497bc6f129858ad956331a5835785761e003"}, - {file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:3c53687dde4d9d473c587ae80cc328e5b102b517447456184b485587ebd18b62"}, - {file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:9add2e5b33d2cd765ad96d5eb734a5e795a0755f7fc49aa04f76d7ddda73fd70"}, - {file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:e690145a8c0c273c28d3b89d6fb32c45e0d9605b2293c10e650265bf5c11cfec"}, - {file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:00a06faa7165634f0cac1abb27e54d7a0b3b44eb9994530b8ec73cf52e15353b"}, - {file = "pyzmq-25.1.2-cp37-cp37m-win32.whl", hash = "sha256:0f97bc2f1f13cb16905a5f3e1fbdf100e712d841482b2237484360f8bc4cb3d7"}, - {file = "pyzmq-25.1.2-cp37-cp37m-win_amd64.whl", hash = "sha256:6cc0020b74b2e410287e5942e1e10886ff81ac77789eb20bec13f7ae681f0fdd"}, - {file = "pyzmq-25.1.2-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:bef02cfcbded83473bdd86dd8d3729cd82b2e569b75844fb4ea08fee3c26ae41"}, - {file = "pyzmq-25.1.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e10a4b5a4b1192d74853cc71a5e9fd022594573926c2a3a4802020360aa719d8"}, - {file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8c5f80e578427d4695adac6fdf4370c14a2feafdc8cb35549c219b90652536ae"}, - {file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:5dde6751e857910c1339890f3524de74007958557593b9e7e8c5f01cd919f8a7"}, - {file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea1608dd169da230a0ad602d5b1ebd39807ac96cae1845c3ceed39af08a5c6df"}, - {file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:0f513130c4c361201da9bc69df25a086487250e16b5571ead521b31ff6b02220"}, - {file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:019744b99da30330798bb37df33549d59d380c78e516e3bab9c9b84f87a9592f"}, - {file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:2e2713ef44be5d52dd8b8e2023d706bf66cb22072e97fc71b168e01d25192755"}, - {file = "pyzmq-25.1.2-cp38-cp38-win32.whl", hash = "sha256:07cd61a20a535524906595e09344505a9bd46f1da7a07e504b315d41cd42eb07"}, - {file = "pyzmq-25.1.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb7e49a17fb8c77d3119d41a4523e432eb0c6932187c37deb6fbb00cc3028088"}, - {file = "pyzmq-25.1.2-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:94504ff66f278ab4b7e03e4cba7e7e400cb73bfa9d3d71f58d8972a8dc67e7a6"}, - {file = "pyzmq-25.1.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6dd0d50bbf9dca1d0bdea219ae6b40f713a3fb477c06ca3714f208fd69e16fd8"}, - {file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:004ff469d21e86f0ef0369717351073e0e577428e514c47c8480770d5e24a565"}, - {file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:c0b5ca88a8928147b7b1e2dfa09f3b6c256bc1135a1338536cbc9ea13d3b7add"}, - {file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c9a79f1d2495b167119d02be7448bfba57fad2a4207c4f68abc0bab4b92925b"}, - {file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:518efd91c3d8ac9f9b4f7dd0e2b7b8bf1a4fe82a308009016b07eaa48681af82"}, - {file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:1ec23bd7b3a893ae676d0e54ad47d18064e6c5ae1fadc2f195143fb27373f7f6"}, - {file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:db36c27baed588a5a8346b971477b718fdc66cf5b80cbfbd914b4d6d355e44e2"}, - {file = "pyzmq-25.1.2-cp39-cp39-win32.whl", hash = "sha256:39b1067f13aba39d794a24761e385e2eddc26295826530a8c7b6c6c341584289"}, - {file = "pyzmq-25.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:8e9f3fabc445d0ce320ea2c59a75fe3ea591fdbdeebec5db6de530dd4b09412e"}, - {file = "pyzmq-25.1.2-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a8c1d566344aee826b74e472e16edae0a02e2a044f14f7c24e123002dcff1c05"}, - {file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:759cfd391a0996345ba94b6a5110fca9c557ad4166d86a6e81ea526c376a01e8"}, - {file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7c61e346ac34b74028ede1c6b4bcecf649d69b707b3ff9dc0fab453821b04d1e"}, - {file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4cb8fc1f8d69b411b8ec0b5f1ffbcaf14c1db95b6bccea21d83610987435f1a4"}, - {file = "pyzmq-25.1.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:3c00c9b7d1ca8165c610437ca0c92e7b5607b2f9076f4eb4b095c85d6e680a1d"}, - {file = "pyzmq-25.1.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:df0c7a16ebb94452d2909b9a7b3337940e9a87a824c4fc1c7c36bb4404cb0cde"}, - {file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:45999e7f7ed5c390f2e87ece7f6c56bf979fb213550229e711e45ecc7d42ccb8"}, - {file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ac170e9e048b40c605358667aca3d94e98f604a18c44bdb4c102e67070f3ac9b"}, - {file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d1b604734bec94f05f81b360a272fc824334267426ae9905ff32dc2be433ab96"}, - {file = "pyzmq-25.1.2-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:a793ac733e3d895d96f865f1806f160696422554e46d30105807fdc9841b9f7d"}, - {file = "pyzmq-25.1.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0806175f2ae5ad4b835ecd87f5f85583316b69f17e97786f7443baaf54b9bb98"}, - {file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:ef12e259e7bc317c7597d4f6ef59b97b913e162d83b421dd0db3d6410f17a244"}, - {file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ea253b368eb41116011add00f8d5726762320b1bda892f744c91997b65754d73"}, - {file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b9b1f2ad6498445a941d9a4fee096d387fee436e45cc660e72e768d3d8ee611"}, - {file = "pyzmq-25.1.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:8b14c75979ce932c53b79976a395cb2a8cd3aaf14aef75e8c2cb55a330b9b49d"}, - {file = "pyzmq-25.1.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:889370d5174a741a62566c003ee8ddba4b04c3f09a97b8000092b7ca83ec9c49"}, - {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9a18fff090441a40ffda8a7f4f18f03dc56ae73f148f1832e109f9bffa85df15"}, - {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:99a6b36f95c98839ad98f8c553d8507644c880cf1e0a57fe5e3a3f3969040882"}, - {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4345c9a27f4310afbb9c01750e9461ff33d6fb74cd2456b107525bbeebcb5be3"}, - {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:3516e0b6224cf6e43e341d56da15fd33bdc37fa0c06af4f029f7d7dfceceabbc"}, - {file = "pyzmq-25.1.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:146b9b1f29ead41255387fb07be56dc29639262c0f7344f570eecdcd8d683314"}, - {file = "pyzmq-25.1.2.tar.gz", hash = "sha256:93f1aa311e8bb912e34f004cf186407a4e90eec4f0ecc0efd26056bf7eda0226"}, + {file = "pyzmq-26.0.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:a86409f3f8eae7af5a47babd831a119bdf552e831f04d2225a313305e8e35e7c"}, + {file = "pyzmq-26.0.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d36a46975925b8bf14b69fe6d4097bc96c91f94ceb954d56853a2211a5cc3433"}, + {file = "pyzmq-26.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dcac700269d081ded42ed3833f9d0effe734148376204af9c0ef0fd25a3fea55"}, + {file = "pyzmq-26.0.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:49efc420e36d2e8adc5dae41c2c1e8bb37a069e40a880cbe414a032136b194b0"}, + {file = "pyzmq-26.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:02773b96ef6a17a57680c3609645785c390198be31a4505c01ce0c846f9e7d0e"}, + {file = "pyzmq-26.0.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:ce2c53f4963a358ba91b58ccecb84fab6d5f0622230d105c2589f7556ec53cc9"}, + {file = "pyzmq-26.0.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:06525d996afdb0da3e8b7df0b654261455f6e86c2c3574c3f00d2bd335be78eb"}, + {file = "pyzmq-26.0.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:bd3537f049dc0488adb3df29a77635eaff2a8d1d3d29a09714db6e2d10caba1a"}, + {file = "pyzmq-26.0.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:9ce158ab54994c60fdde83300dc1e447446baacbe4ec9e4e80096f9b9a125c13"}, + {file = "pyzmq-26.0.0-cp310-cp310-win32.whl", hash = "sha256:271c9178a94b009651f8ad3ff9bb9ca45778aaf66c9e325a44d81a7498fcaa59"}, + {file = "pyzmq-26.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:4216eee101d104a017042f0e4af0a45875400ff3794f1a59476e210b1a9760e2"}, + {file = "pyzmq-26.0.0-cp310-cp310-win_arm64.whl", hash = "sha256:44271793067025a07d38ad4be11f08187cce850fafd1890b42046abbcdca2fc0"}, + {file = "pyzmq-26.0.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:1e87178437460b6df18e761650ef080d3ad5a41813cc3df7f9fd78714fca04c0"}, + {file = "pyzmq-26.0.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0397c7431f3fc2bac497992d7447b036bc0d8bb3e15b158b2013201857ff2354"}, + {file = "pyzmq-26.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8a5b4dc4d7a3f859026083906724ad1ae743261548b61d0d5abcf2d994122c2b"}, + {file = "pyzmq-26.0.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:952e85c5e86f9ba100b78b60719b76e1ff3e13bb403cb6de687bb92e7b2179e7"}, + {file = "pyzmq-26.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:07fdeac8612a9dca6fcad6cb43c7efb75f53ba75da981fbafa949ddcde1d5662"}, + {file = "pyzmq-26.0.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:39b8ed8d2e5da8b8351c6aa627601b3b52e8eb5e25cf6bcd26b6f012dec7870b"}, + {file = "pyzmq-26.0.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f6f618d7d7c9c37053a36e6dc5435c53e9e0c7a67e6fd00b69c209d07a8db4dc"}, + {file = "pyzmq-26.0.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:72ae3078b1c47552e0e39fd81fc0472e880316897a733dbb3570819be19da48a"}, + {file = "pyzmq-26.0.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5d7fcc648445dbfd6ce9973ec7b4a33ee9307b7e88cf4816f4403ccbaf8de9ca"}, + {file = "pyzmq-26.0.0-cp311-cp311-win32.whl", hash = "sha256:9982799d7d7807beb1b26f1aa9a192baccb1a14c5d00eca881a42a0ae562671b"}, + {file = "pyzmq-26.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:60f91afc76a3fc5d65dfba4f6b6020c462674b5eab6cbf00dec133d79656072d"}, + {file = "pyzmq-26.0.0-cp311-cp311-win_arm64.whl", hash = "sha256:120887d773e878136e9b33bbba656df0d4c6e2861694d07d058ec60ce1108b24"}, + {file = "pyzmq-26.0.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:469f4febd63c26b20132e54cc40048d5698123794b103758ccd21b8a45890dc3"}, + {file = "pyzmq-26.0.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c919895132cae5a458d5a17047fd33c9eb271f15bb3485add34429cfd7b76a71"}, + {file = "pyzmq-26.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6e0e94ca9a8f23000d54e11ecd727b69fb1994baf3b6b1eedb881cdd3196ecec"}, + {file = "pyzmq-26.0.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a824b3301ddd003cdceb9b537804e751ac5922a845b19d4e50b4789d1cd28b24"}, + {file = "pyzmq-26.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:af9f5b1b76753584c871c1c96db8a18650886b3adf9fc8c7d4019343eb329c28"}, + {file = "pyzmq-26.0.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:9691a6ab55d011e83d7438f6711b93b7f8aa21ee8cf3e7ad6d6d9ea26a8f3a1f"}, + {file = "pyzmq-26.0.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:58176e2437462568b5099acf17401be64205e175e72767a8250eef84ee9ec4f5"}, + {file = "pyzmq-26.0.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:d492921b398d640a1f796306531bc6911a94ce5528b798ed14e0620abd9b948d"}, + {file = "pyzmq-26.0.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:f85bb2c47b5fd70e3cbb280e380ab97bdf9f02e1a363cb472fe0a297ac24029d"}, + {file = "pyzmq-26.0.0-cp312-cp312-win32.whl", hash = "sha256:c2e36399f0433b14a91f956bd7ecf94799c57a6f992889d45440cb05b3de8025"}, + {file = "pyzmq-26.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:12ca1afb065e5b21a32b1e35bfcbc8762efc0f7555c166acaec36c93b52d7ccf"}, + {file = "pyzmq-26.0.0-cp312-cp312-win_arm64.whl", hash = "sha256:f66c925f62ce28946525c32a094e346dd8da6c828d568d7ecda97f5ae36089c3"}, + {file = "pyzmq-26.0.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:e495ff09514fc657c5fb2cba0aac082ce0494c6217230783297da9008333a8db"}, + {file = "pyzmq-26.0.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5736c9a54c27319a65ffc72dbf684538f2773237e94ba50b7f1f74f4e3cb9115"}, + {file = "pyzmq-26.0.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:cd62830100b9b1adb51da4094142bd680d51daf9a0f6f3f39e1f80474eddc011"}, + {file = "pyzmq-26.0.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:544a7ee271fac41ddc0ba11f4b128ddd5f2bf0a3186d25be331ed8bfbb253536"}, + {file = "pyzmq-26.0.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:694625c2c22be57149e9439757ee02ee4fb6432f7054dc5008bbbc33ef388d1c"}, + {file = "pyzmq-26.0.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:90ba8f7c6f34c2c11179b293050417c14661035969ef3f8867200ea6901f9000"}, + {file = "pyzmq-26.0.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ab2e55046263c8b24e64116e80b63cf701df747b44aadcf317aa47c8af2dfe67"}, + {file = "pyzmq-26.0.0-cp37-cp37m-win32.whl", hash = "sha256:7353d231686bbc96c458b934f134ff9165a1e9dd0a2ea8f724469e44bcc2c07a"}, + {file = "pyzmq-26.0.0-cp37-cp37m-win_amd64.whl", hash = "sha256:1df2b992eabc59f078ca916e9ac8b5bd463536bf7828c13940b35b8555ed7861"}, + {file = "pyzmq-26.0.0-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:2397364289334840c81ff1ef95a5a5ee326de01c1437cc38f7e16785a7b653d9"}, + {file = "pyzmq-26.0.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c952cf06edbbd2d67f627037e2c8e3187ca834d6b9a222e3a3037f80d393a345"}, + {file = "pyzmq-26.0.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:55f390adb763196d75a2e8c18277b4344f8a7f94f223b5d096324c5b47c2471e"}, + {file = "pyzmq-26.0.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:1da5e11862a994360319df4f425e89662563683334e1079684eb77b9a6478ae2"}, + {file = "pyzmq-26.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:72340614ea23904cff824109eb025648bdf32775d87f5814d3ba6f2335a853f3"}, + {file = "pyzmq-26.0.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:aa7431d12ebb5433a92e99dc326d45eaf52a90046032bac4c558b4bdeee5dc7a"}, + {file = "pyzmq-26.0.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a2b13008a693c0ffccaeeebcc5ab5f2398cced3b5bf482ba89a38fe56b00eb10"}, + {file = "pyzmq-26.0.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:9d68284ce48617c97e675ed8a89db12a098eaa871a026999c9a10351f547f1fe"}, + {file = "pyzmq-26.0.0-cp38-cp38-win32.whl", hash = "sha256:8783857a8c8df648a70c81ea3ff53ee71e5bf18468ca5ac3414f419fe8f3bd93"}, + {file = "pyzmq-26.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:36d0f2fcbdba1fda8ff213bd17db7ddcba848aa70480ade3fe70401dce606511"}, + {file = "pyzmq-26.0.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:dd87df01bc8eca392f0d505924087ccafdc4885a498e68df9f09eca9fdc736f1"}, + {file = "pyzmq-26.0.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:abc08b2e688714216870a6ab974733d4a1fcf0437d250ac8feed59c4c5c3f395"}, + {file = "pyzmq-26.0.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:dd13a30454adcf2f361155ea563ec99036678131a17c6b1a3f74426212c14ddc"}, + {file = "pyzmq-26.0.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:a0562054930471b386a44b0887504687c4e7adf4ba89bddc2e5959d16c371764"}, + {file = "pyzmq-26.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dc7badded4b025dbc25f34b95503b71c952235e6e40de40995c0c120efb4ff6d"}, + {file = "pyzmq-26.0.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:f971e77358384b8bcf3e9a7577cf84f97adbd6359f943e30cbff66087afcb279"}, + {file = "pyzmq-26.0.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:ca4ebbef3f5fbd271eafc7c22ebbb88b74232f08b0e51759113f30a8d01f6843"}, + {file = "pyzmq-26.0.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:cc98fbd4ce4ef8a0fbe97ab6d495aaa7764461e5a45f24c04f1d234e7bb80293"}, + {file = "pyzmq-26.0.0-cp39-cp39-win32.whl", hash = "sha256:a5207bc2a923118e9afb57fee679be016ea138c27d1be5747118966e2d5d9450"}, + {file = "pyzmq-26.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:e0c08a6070358a2984900a4518e2dacbfaf24aac018ab086d7ac2f6069b13340"}, + {file = "pyzmq-26.0.0-cp39-cp39-win_arm64.whl", hash = "sha256:eae3dcc185c405cf645480745c45346a1f42afce240f69a589095e41bd2b9e3d"}, + {file = "pyzmq-26.0.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:71a8f010e23dfd61c531084a2b72a81885017da28352540f0b7799ca8423c044"}, + {file = "pyzmq-26.0.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b48b7e417c56486932fb0c01fecd24916fe6bc359c03a654aa8c63fa33e3d76"}, + {file = "pyzmq-26.0.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2806942185b40a3477d9b300c6f71354dd2be37e3f61a43193c96caa51e284d1"}, + {file = "pyzmq-26.0.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ed127aff75a3df142ae7a883c49a85b0b2f863b59fa1b8e4280335f5ebab5fd0"}, + {file = "pyzmq-26.0.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:903b77dd2f17286496fa3ec902bc523f4502b0c64a2892df4b021222a2ba95fe"}, + {file = "pyzmq-26.0.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:321a6872a9371709a62b3a4a14c1e9b5b47549371197c0c2164d2288510cd6d6"}, + {file = "pyzmq-26.0.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:cac954dc83c84e9d9d65f2359d402d7e79ae094d7808d578c9e9cc2c350c5a64"}, + {file = "pyzmq-26.0.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ac6f54c399638858e0b2a3153f23934604f3a8c9bb5a9cf865060cc658b1e096"}, + {file = "pyzmq-26.0.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:40af30c4cd0a046029d7b5272d02a649f9b1f89fb1361bbc90ba08d55ac88273"}, + {file = "pyzmq-26.0.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:814245422f1c7707634397621dbcbeea7671fdc5c43d1ae592f4e0e45179e7fb"}, + {file = "pyzmq-26.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:6d3d7ef786e778351e6c51b45906e16506ad98bb78b99304032cb1876dfc81d2"}, + {file = "pyzmq-26.0.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:36a85da0eab4c5337d0de7f975cca011208a59e9d0637e0c1b571764f1dd4a8f"}, + {file = "pyzmq-26.0.0-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:1d64889bfe4109f4a59a72b1d21416550465020642d6f556efd044951386bd38"}, + {file = "pyzmq-26.0.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:80fdea3e9e34c480bfccbb910f75380196ae9d1c12880c21743c845ebe6b13aa"}, + {file = "pyzmq-26.0.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:7129efc54dc48f566eed5422bc555ba4e472e40a1f9de328577c90ade47ccf5d"}, + {file = "pyzmq-26.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0ec5147095d6065b0e3a38a1a34f7859ab46496f3d5ce71134165893e9f83674"}, + {file = "pyzmq-26.0.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7a1cc0445038a394479ad36b7e3cf55a19ee40099c031f65de872b8ee7025e79"}, + {file = "pyzmq-26.0.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b377b520e618c30c827966c274dd62ce7e15c72ce8767fae6193b6bdd1deb502"}, + {file = "pyzmq-26.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc907b26d287e6981d1e531c8fc21a0f94fe46a17493a8322eb3c75f8b561334"}, + {file = "pyzmq-26.0.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:580dd4b1c2edd51f284df0209bf439899f425ed00cb803a85ddc6cf10c866688"}, + {file = "pyzmq-26.0.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:08db8071020181173c70cf2dad239e5e21e5b2e95f95b0ece0da39a70f5a483c"}, + {file = "pyzmq-26.0.0.tar.gz", hash = "sha256:10ff405db5cee3bbd7aa143d78b25d90356097aed7864e50f0ae644e08759fe9"}, ] [package.dependencies] cffi = {version = "*", markers = "implementation_name == \"pypy\""} +[[package]] +name = "requests" +version = "2.31.0" +description = "Python HTTP for Humans." +category = "main" +optional = false +python-versions = ">=3.7" +files = [ + {file = "requests-2.31.0-py3-none-any.whl", hash = "sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f"}, + {file = "requests-2.31.0.tar.gz", hash = "sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1"}, +] + +[package.dependencies] +certifi = ">=2017.4.17" +charset-normalizer = ">=2,<4" +idna = ">=2.5,<4" +urllib3 = ">=1.21.1,<3" + +[package.extras] +socks = ["PySocks (>=1.5.6,!=1.5.7)"] +use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] + [[package]] name = "s3transfer" -version = "0.10.0" +version = "0.10.1" description = "An Amazon S3 Transfer Manager" category = "main" optional = false python-versions = ">= 3.8" files = [ - {file = "s3transfer-0.10.0-py3-none-any.whl", hash = "sha256:3cdb40f5cfa6966e812209d0994f2a4709b561c88e90cf00c2696d2df4e56b2e"}, - {file = "s3transfer-0.10.0.tar.gz", hash = "sha256:d0c8bbf672d5eebbe4e57945e23b972d963f07d82f661cabf678a5c88831595b"}, + {file = "s3transfer-0.10.1-py3-none-any.whl", hash = "sha256:ceb252b11bcf87080fb7850a224fb6e05c8a776bab8f2b64b7f25b969464839d"}, + {file = "s3transfer-0.10.1.tar.gz", hash = "sha256:5683916b4c724f799e600f41dd9e10a9ff19871bf87623cc8f491cb4f5fa0a19"}, ] [package.dependencies] @@ -3664,40 +4235,93 @@ botocore = ">=1.33.2,<2.0a.0" [package.extras] crt = ["botocore[crt] (>=1.33.2,<2.0a.0)"] +[[package]] +name = "scanpy" +version = "1.10.1" +description = "Single-Cell Analysis in Python." +category = "main" +optional = false +python-versions = ">=3.9" +files = [ + {file = "scanpy-1.10.1-py3-none-any.whl", hash = "sha256:399c6a0fc9c8b85500cfab87f79daf8684782a6bb5303eb680c0ac99da14e4d8"}, + {file = "scanpy-1.10.1.tar.gz", hash = "sha256:4a9194d94985dee41d914fc9438f0b502dfacf54796d0501e06a5978d709c7f6"}, +] + +[package.dependencies] +anndata = ">=0.8" +h5py = ">=3.1" +joblib = "*" +legacy-api-wrap = ">=1.4" +matplotlib = ">=3.6" +natsort = "*" +networkx = ">=2.7" +numba = ">=0.56" +numpy = ">=1.23" +packaging = ">=21.3" +pandas = ">=1.5" +patsy = "*" +pynndescent = ">=0.5" +scikit-learn = ">=0.24" +scipy = ">=1.8" +seaborn = ">=0.13" +session-info = "*" +statsmodels = ">=0.13" +tqdm = "*" +umap-learn = ">0.5.0" + +[package.extras] +bbknn = ["bbknn"] +dask = ["dask[array] (>=2022.09.2)"] +dask-ml = ["dask-ml", "scanpy[dask]"] +dev = ["pre-commit", "setuptools-scm"] +doc = ["dask", "ipython (>=7.20)", "matplotlib (!=3.6.1)", "myst-nb (>=1)", "myst-parser (>=2)", "nbsphinx (>=0.9)", "readthedocs-sphinx-search", "sam-algorithm", "scanpy[paga]", "scanpydoc (>=0.13.4)", "setuptools", "sphinx (>=7)", "sphinx-autodoc-typehints (>=1.25.2)", "sphinx-book-theme (>=1.1.0)", "sphinx-copybutton", "sphinx-design", "sphinxcontrib-bibtex", "sphinxext-opengraph"] +harmony = ["harmonypy"] +leiden = ["igraph (>=0.10)", "leidenalg (>=0.9.0)"] +louvain = ["igraph", "louvain (>=0.6.0,!=0.6.2)"] +magic = ["magic-impute (>=2.0)"] +paga = ["igraph"] +rapids = ["cudf (>=0.9)", "cugraph (>=0.9)", "cuml (>=0.9)"] +scanorama = ["scanorama"] +scrublet = ["scikit-image"] +skmisc = ["scikit-misc (>=0.1.3)"] +test = ["scanpy[dask]", "scanpy[leiden]", "scanpy[scrublet]", "scanpy[test-min]", "zarr"] +test-full = ["scanpy[dask-ml]", "scanpy[harmony]", "scanpy[louvain]", "scanpy[magic]", "scanpy[scanorama]", "scanpy[skmisc]", "scanpy[test]"] +test-min = ["profimp", "pytest (>=7.4.2)", "pytest-cov", "pytest-mock", "pytest-nunit"] + [[package]] name = "scikit-learn" -version = "1.4.1.post1" +version = "1.4.2" description = "A set of python modules for machine learning and data mining" category = "main" optional = false python-versions = ">=3.9" files = [ - {file = "scikit-learn-1.4.1.post1.tar.gz", hash = "sha256:93d3d496ff1965470f9977d05e5ec3376fb1e63b10e4fda5e39d23c2d8969a30"}, - {file = "scikit_learn-1.4.1.post1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c540aaf44729ab5cd4bd5e394f2b375e65ceaea9cdd8c195788e70433d91bbc5"}, - {file = "scikit_learn-1.4.1.post1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:4310bff71aa98b45b46cd26fa641309deb73a5d1c0461d181587ad4f30ea3c36"}, - {file = "scikit_learn-1.4.1.post1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f43dd527dabff5521af2786a2f8de5ba381e182ec7292663508901cf6ceaf6e"}, - {file = "scikit_learn-1.4.1.post1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c02e27d65b0c7dc32f2c5eb601aaf5530b7a02bfbe92438188624524878336f2"}, - {file = "scikit_learn-1.4.1.post1-cp310-cp310-win_amd64.whl", hash = "sha256:629e09f772ad42f657ca60a1a52342eef786218dd20cf1369a3b8d085e55ef8f"}, - {file = "scikit_learn-1.4.1.post1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6145dfd9605b0b50ae72cdf72b61a2acd87501369a763b0d73d004710ebb76b5"}, - {file = "scikit_learn-1.4.1.post1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:1afed6951bc9d2053c6ee9a518a466cbc9b07c6a3f9d43bfe734192b6125d508"}, - {file = "scikit_learn-1.4.1.post1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce03506ccf5f96b7e9030fea7eb148999b254c44c10182ac55857bc9b5d4815f"}, - {file = "scikit_learn-1.4.1.post1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4ba516fcdc73d60e7f48cbb0bccb9acbdb21807de3651531208aac73c758e3ab"}, - {file = "scikit_learn-1.4.1.post1-cp311-cp311-win_amd64.whl", hash = "sha256:78cd27b4669513b50db4f683ef41ea35b5dddc797bd2bbd990d49897fd1c8a46"}, - {file = "scikit_learn-1.4.1.post1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a1e289f33f613cefe6707dead50db31930530dc386b6ccff176c786335a7b01c"}, - {file = "scikit_learn-1.4.1.post1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:0df87de9ce1c0140f2818beef310fb2e2afdc1e66fc9ad587965577f17733649"}, - {file = "scikit_learn-1.4.1.post1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:712c1c69c45b58ef21635360b3d0a680ff7d83ac95b6f9b82cf9294070cda710"}, - {file = "scikit_learn-1.4.1.post1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1754b0c2409d6ed5a3380512d0adcf182a01363c669033a2b55cca429ed86a81"}, - {file = "scikit_learn-1.4.1.post1-cp312-cp312-win_amd64.whl", hash = "sha256:1d491ef66e37f4e812db7e6c8286520c2c3fc61b34bf5e59b67b4ce528de93af"}, - {file = "scikit_learn-1.4.1.post1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:aa0029b78ef59af22cfbd833e8ace8526e4df90212db7ceccbea582ebb5d6794"}, - {file = "scikit_learn-1.4.1.post1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:14e4c88436ac96bf69eb6d746ac76a574c314a23c6961b7d344b38877f20fee1"}, - {file = "scikit_learn-1.4.1.post1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7cd3a77c32879311f2aa93466d3c288c955ef71d191503cf0677c3340ae8ae0"}, - {file = "scikit_learn-1.4.1.post1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2a3ee19211ded1a52ee37b0a7b373a8bfc66f95353af058a210b692bd4cda0dd"}, - {file = "scikit_learn-1.4.1.post1-cp39-cp39-win_amd64.whl", hash = "sha256:234b6bda70fdcae9e4abbbe028582ce99c280458665a155eed0b820599377d25"}, + {file = "scikit-learn-1.4.2.tar.gz", hash = "sha256:daa1c471d95bad080c6e44b4946c9390a4842adc3082572c20e4f8884e39e959"}, + {file = "scikit_learn-1.4.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8539a41b3d6d1af82eb629f9c57f37428ff1481c1e34dddb3b9d7af8ede67ac5"}, + {file = "scikit_learn-1.4.2-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:68b8404841f944a4a1459b07198fa2edd41a82f189b44f3e1d55c104dbc2e40c"}, + {file = "scikit_learn-1.4.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:81bf5d8bbe87643103334032dd82f7419bc8c8d02a763643a6b9a5c7288c5054"}, + {file = "scikit_learn-1.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:36f0ea5d0f693cb247a073d21a4123bdf4172e470e6d163c12b74cbb1536cf38"}, + {file = "scikit_learn-1.4.2-cp310-cp310-win_amd64.whl", hash = "sha256:87440e2e188c87db80ea4023440923dccbd56fbc2d557b18ced00fef79da0727"}, + {file = "scikit_learn-1.4.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:45dee87ac5309bb82e3ea633955030df9bbcb8d2cdb30383c6cd483691c546cc"}, + {file = "scikit_learn-1.4.2-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:1d0b25d9c651fd050555aadd57431b53d4cf664e749069da77f3d52c5ad14b3b"}, + {file = "scikit_learn-1.4.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b0203c368058ab92efc6168a1507d388d41469c873e96ec220ca8e74079bf62e"}, + {file = "scikit_learn-1.4.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:44c62f2b124848a28fd695db5bc4da019287abf390bfce602ddc8aa1ec186aae"}, + {file = "scikit_learn-1.4.2-cp311-cp311-win_amd64.whl", hash = "sha256:5cd7b524115499b18b63f0c96f4224eb885564937a0b3477531b2b63ce331904"}, + {file = "scikit_learn-1.4.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:90378e1747949f90c8f385898fff35d73193dfcaec3dd75d6b542f90c4e89755"}, + {file = "scikit_learn-1.4.2-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:ff4effe5a1d4e8fed260a83a163f7dbf4f6087b54528d8880bab1d1377bd78be"}, + {file = "scikit_learn-1.4.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:671e2f0c3f2c15409dae4f282a3a619601fa824d2c820e5b608d9d775f91780c"}, + {file = "scikit_learn-1.4.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d36d0bc983336bbc1be22f9b686b50c964f593c8a9a913a792442af9bf4f5e68"}, + {file = "scikit_learn-1.4.2-cp312-cp312-win_amd64.whl", hash = "sha256:d762070980c17ba3e9a4a1e043ba0518ce4c55152032f1af0ca6f39b376b5928"}, + {file = "scikit_learn-1.4.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d9993d5e78a8148b1d0fdf5b15ed92452af5581734129998c26f481c46586d68"}, + {file = "scikit_learn-1.4.2-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:426d258fddac674fdf33f3cb2d54d26f49406e2599dbf9a32b4d1696091d4256"}, + {file = "scikit_learn-1.4.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5460a1a5b043ae5ae4596b3126a4ec33ccba1b51e7ca2c5d36dac2169f62ab1d"}, + {file = "scikit_learn-1.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:49d64ef6cb8c093d883e5a36c4766548d974898d378e395ba41a806d0e824db8"}, + {file = "scikit_learn-1.4.2-cp39-cp39-win_amd64.whl", hash = "sha256:c97a50b05c194be9146d61fe87dbf8eac62b203d9e87a3ccc6ae9aed2dfaf361"}, ] [package.dependencies] joblib = ">=1.2.0" -numpy = ">=1.19.5,<2.0" +numpy = ">=1.19.5" scipy = ">=1.6.0" threadpoolctl = ">=2.0.0" @@ -3709,46 +4333,71 @@ tests = ["black (>=23.3.0)", "matplotlib (>=3.3.4)", "mypy (>=1.3)", "numpydoc ( [[package]] name = "scipy" -version = "1.12.0" +version = "1.13.0" description = "Fundamental algorithms for scientific computing in Python" category = "main" optional = false python-versions = ">=3.9" files = [ - {file = "scipy-1.12.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:78e4402e140879387187f7f25d91cc592b3501a2e51dfb320f48dfb73565f10b"}, - {file = "scipy-1.12.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:f5f00ebaf8de24d14b8449981a2842d404152774c1a1d880c901bf454cb8e2a1"}, - {file = "scipy-1.12.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e53958531a7c695ff66c2e7bb7b79560ffdc562e2051644c5576c39ff8efb563"}, - {file = "scipy-1.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e32847e08da8d895ce09d108a494d9eb78974cf6de23063f93306a3e419960c"}, - {file = "scipy-1.12.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4c1020cad92772bf44b8e4cdabc1df5d87376cb219742549ef69fc9fd86282dd"}, - {file = "scipy-1.12.0-cp310-cp310-win_amd64.whl", hash = "sha256:75ea2a144096b5e39402e2ff53a36fecfd3b960d786b7efd3c180e29c39e53f2"}, - {file = "scipy-1.12.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:408c68423f9de16cb9e602528be4ce0d6312b05001f3de61fe9ec8b1263cad08"}, - {file = "scipy-1.12.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:5adfad5dbf0163397beb4aca679187d24aec085343755fcdbdeb32b3679f254c"}, - {file = "scipy-1.12.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c3003652496f6e7c387b1cf63f4bb720951cfa18907e998ea551e6de51a04467"}, - {file = "scipy-1.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b8066bce124ee5531d12a74b617d9ac0ea59245246410e19bca549656d9a40a"}, - {file = "scipy-1.12.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:8bee4993817e204d761dba10dbab0774ba5a8612e57e81319ea04d84945375ba"}, - {file = "scipy-1.12.0-cp311-cp311-win_amd64.whl", hash = "sha256:a24024d45ce9a675c1fb8494e8e5244efea1c7a09c60beb1eeb80373d0fecc70"}, - {file = "scipy-1.12.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:e7e76cc48638228212c747ada851ef355c2bb5e7f939e10952bc504c11f4e372"}, - {file = "scipy-1.12.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:f7ce148dffcd64ade37b2df9315541f9adad6efcaa86866ee7dd5db0c8f041c3"}, - {file = "scipy-1.12.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9c39f92041f490422924dfdb782527a4abddf4707616e07b021de33467f917bc"}, - {file = "scipy-1.12.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a7ebda398f86e56178c2fa94cad15bf457a218a54a35c2a7b4490b9f9cb2676c"}, - {file = "scipy-1.12.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:95e5c750d55cf518c398a8240571b0e0782c2d5a703250872f36eaf737751338"}, - {file = "scipy-1.12.0-cp312-cp312-win_amd64.whl", hash = "sha256:e646d8571804a304e1da01040d21577685ce8e2db08ac58e543eaca063453e1c"}, - {file = "scipy-1.12.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:913d6e7956c3a671de3b05ccb66b11bc293f56bfdef040583a7221d9e22a2e35"}, - {file = "scipy-1.12.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:bba1b0c7256ad75401c73e4b3cf09d1f176e9bd4248f0d3112170fb2ec4db067"}, - {file = "scipy-1.12.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:730badef9b827b368f351eacae2e82da414e13cf8bd5051b4bdfd720271a5371"}, - {file = "scipy-1.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6546dc2c11a9df6926afcbdd8a3edec28566e4e785b915e849348c6dd9f3f490"}, - {file = "scipy-1.12.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:196ebad3a4882081f62a5bf4aeb7326aa34b110e533aab23e4374fcccb0890dc"}, - {file = "scipy-1.12.0-cp39-cp39-win_amd64.whl", hash = "sha256:b360f1b6b2f742781299514e99ff560d1fe9bd1bff2712894b52abe528d1fd1e"}, - {file = "scipy-1.12.0.tar.gz", hash = "sha256:4bf5abab8a36d20193c698b0f1fc282c1d083c94723902c447e5d2f1780936a3"}, + {file = "scipy-1.13.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ba419578ab343a4e0a77c0ef82f088238a93eef141b2b8017e46149776dfad4d"}, + {file = "scipy-1.13.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:22789b56a999265431c417d462e5b7f2b487e831ca7bef5edeb56efe4c93f86e"}, + {file = "scipy-1.13.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:05f1432ba070e90d42d7fd836462c50bf98bd08bed0aa616c359eed8a04e3922"}, + {file = "scipy-1.13.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8434f6f3fa49f631fae84afee424e2483289dfc30a47755b4b4e6b07b2633a4"}, + {file = "scipy-1.13.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:dcbb9ea49b0167de4167c40eeee6e167caeef11effb0670b554d10b1e693a8b9"}, + {file = "scipy-1.13.0-cp310-cp310-win_amd64.whl", hash = "sha256:1d2f7bb14c178f8b13ebae93f67e42b0a6b0fc50eba1cd8021c9b6e08e8fb1cd"}, + {file = "scipy-1.13.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0fbcf8abaf5aa2dc8d6400566c1a727aed338b5fe880cde64907596a89d576fa"}, + {file = "scipy-1.13.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:5e4a756355522eb60fcd61f8372ac2549073c8788f6114449b37e9e8104f15a5"}, + {file = "scipy-1.13.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b5acd8e1dbd8dbe38d0004b1497019b2dbbc3d70691e65d69615f8a7292865d7"}, + {file = "scipy-1.13.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ff7dad5d24a8045d836671e082a490848e8639cabb3dbdacb29f943a678683d"}, + {file = "scipy-1.13.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:4dca18c3ffee287ddd3bc8f1dabaf45f5305c5afc9f8ab9cbfab855e70b2df5c"}, + {file = "scipy-1.13.0-cp311-cp311-win_amd64.whl", hash = "sha256:a2f471de4d01200718b2b8927f7d76b5d9bde18047ea0fa8bd15c5ba3f26a1d6"}, + {file = "scipy-1.13.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d0de696f589681c2802f9090fff730c218f7c51ff49bf252b6a97ec4a5d19e8b"}, + {file = "scipy-1.13.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:b2a3ff461ec4756b7e8e42e1c681077349a038f0686132d623fa404c0bee2551"}, + {file = "scipy-1.13.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6bf9fe63e7a4bf01d3645b13ff2aa6dea023d38993f42aaac81a18b1bda7a82a"}, + {file = "scipy-1.13.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1e7626dfd91cdea5714f343ce1176b6c4745155d234f1033584154f60ef1ff42"}, + {file = "scipy-1.13.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:109d391d720fcebf2fbe008621952b08e52907cf4c8c7efc7376822151820820"}, + {file = "scipy-1.13.0-cp312-cp312-win_amd64.whl", hash = "sha256:8930ae3ea371d6b91c203b1032b9600d69c568e537b7988a3073dfe4d4774f21"}, + {file = "scipy-1.13.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5407708195cb38d70fd2d6bb04b1b9dd5c92297d86e9f9daae1576bd9e06f602"}, + {file = "scipy-1.13.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:ac38c4c92951ac0f729c4c48c9e13eb3675d9986cc0c83943784d7390d540c78"}, + {file = "scipy-1.13.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:09c74543c4fbeb67af6ce457f6a6a28e5d3739a87f62412e4a16e46f164f0ae5"}, + {file = "scipy-1.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:28e286bf9ac422d6beb559bc61312c348ca9b0f0dae0d7c5afde7f722d6ea13d"}, + {file = "scipy-1.13.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:33fde20efc380bd23a78a4d26d59fc8704e9b5fd9b08841693eb46716ba13d86"}, + {file = "scipy-1.13.0-cp39-cp39-win_amd64.whl", hash = "sha256:45c08bec71d3546d606989ba6e7daa6f0992918171e2a6f7fbedfa7361c2de1e"}, + {file = "scipy-1.13.0.tar.gz", hash = "sha256:58569af537ea29d3f78e5abd18398459f195546bb3be23d16677fb26616cc11e"}, ] [package.dependencies] -numpy = ">=1.22.4,<1.29.0" +numpy = ">=1.22.4,<2.3" + +[package.extras] +dev = ["cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy", "pycodestyle", "pydevtool", "rich-click", "ruff", "types-psutil", "typing_extensions"] +doc = ["jupyterlite-pyodide-kernel", "jupyterlite-sphinx (>=0.12.0)", "jupytext", "matplotlib (>=3.5)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (>=0.15.2)", "sphinx (>=5.0.0)", "sphinx-design (>=0.4.0)"] +test = ["array-api-strict", "asv", "gmpy2", "hypothesis (>=6.30)", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] + +[[package]] +name = "scprep" +version = "1.1.0" +description = "scprep" +category = "main" +optional = false +python-versions = ">=3.6" +files = [ + {file = "scprep-1.1.0-py3-none-any.whl", hash = "sha256:338af5565321d3b54a15a7635e5bc5160f84569bb889e1c369d4c3b3afecdc40"}, + {file = "scprep-1.1.0.tar.gz", hash = "sha256:1276773585a77a673f6ac4948a14c3ad106c502c2ab946df050d1a0a1f3b9828"}, +] + +[package.dependencies] +decorator = ">=4.3.0" +numpy = ">=1.12.0" +packaging = "*" +pandas = ">=0.25" +scikit-learn = ">=0.19.1" +scipy = ">=0.18.1" [package.extras] -dev = ["click", "cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy", "pycodestyle", "pydevtool", "rich-click", "ruff", "types-psutil", "typing_extensions"] -doc = ["jupytext", "matplotlib (>2)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-design (>=0.2.0)"] -test = ["asv", "gmpy2", "hypothesis", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] +doc = ["autodocsumm", "ipykernel", "nbsphinx", "sphinx (>=2.2,<2.4)", "sphinxcontrib-napoleon"] +optional = ["anndata", "anndata2ri (>=1.0.6)", "fcsparser", "h5py", "tables"] +test = ["anndata", "anndata2ri (>=1.0.6)", "black", "coverage", "coveralls", "fcsparser", "h5py", "matplotlib (>=3.0)", "mock", "nose", "nose2", "packaging", "parameterized", "requests", "rpy2 (>=3.0)", "tables"] [[package]] name = "seaborn" @@ -3774,14 +4423,14 @@ stats = ["scipy (>=1.7)", "statsmodels (>=0.12)"] [[package]] name = "selenium" -version = "4.18.1" +version = "4.19.0" description = "" category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "selenium-4.18.1-py3-none-any.whl", hash = "sha256:b24a3cdd2d47c29832e81345bfcde0c12bb608738013e53c781b211b418df241"}, - {file = "selenium-4.18.1.tar.gz", hash = "sha256:a11f67afa8bfac6b77e148c987b33f6b14eb1cae4d352722a75de1f26e3f0ae2"}, + {file = "selenium-4.19.0-py3-none-any.whl", hash = "sha256:5b4f49240d61e687a73f7968ae2517d403882aae3550eae2a229c745e619f1d9"}, + {file = "selenium-4.19.0.tar.gz", hash = "sha256:d9dfd6d0b021d71d0a48b865fe7746490ba82b81e9c87b212360006629eb1853"}, ] [package.dependencies] @@ -3791,21 +4440,35 @@ trio-websocket = ">=0.9,<1.0" typing_extensions = ">=4.9.0" urllib3 = {version = ">=1.26,<3", extras = ["socks"]} +[[package]] +name = "session-info" +version = "1.0.0" +description = "session_info outputs version information for modules loaded in the current session, Python, and the OS." +category = "main" +optional = false +python-versions = ">=3.6" +files = [ + {file = "session_info-1.0.0.tar.gz", hash = "sha256:3cda5e03cca703f32ae2eadbd6bd80b6c21442cfb60e412c21cb8ad6d5cbb6b7"}, +] + +[package.dependencies] +stdlib_list = "*" + [[package]] name = "setuptools" -version = "69.1.1" +version = "69.5.1" description = "Easily download, build, install, upgrade, and uninstall Python packages" category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "setuptools-69.1.1-py3-none-any.whl", hash = "sha256:02fa291a0471b3a18b2b2481ed902af520c69e8ae0919c13da936542754b4c56"}, - {file = "setuptools-69.1.1.tar.gz", hash = "sha256:5c0806c7d9af348e6dd3777b4f4dbb42c7ad85b190104837488eab9a7c945cf8"}, + {file = "setuptools-69.5.1-py3-none-any.whl", hash = "sha256:c636ac361bc47580504644275c9ad802c50415c7522212252c033bd15f301f32"}, + {file = "setuptools-69.5.1.tar.gz", hash = "sha256:6c1fccdac05a97e598fb0ae3bbed5904ccb317337a51139dcd51453611bbb987"}, ] [package.extras] -docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"] -testing = ["build[virtualenv]", "filelock (>=3.4.0)", "flake8-2020", "ini2toml[lite] (>=0.9)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "packaging (>=23.2)", "pip (>=19.1)", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy (>=0.9.1)", "pytest-perf", "pytest-ruff (>=0.2.1)", "pytest-timeout", "pytest-xdist", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] +docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"] +testing = ["build[virtualenv]", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.9)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "mypy (==1.9)", "packaging (>=23.2)", "pip (>=19.1)", "pytest (>=6,!=8.1.1)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy", "pytest-perf", "pytest-ruff (>=0.2.1)", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] testing-integration = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "packaging (>=23.2)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"] [[package]] @@ -3860,7 +4523,7 @@ files = [ name = "stack-data" version = "0.6.3" description = "Extract data from python stack frames and tracebacks for informative displays" -category = "dev" +category = "main" optional = false python-versions = "*" files = [ @@ -3876,6 +4539,71 @@ pure-eval = "*" [package.extras] tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] +[[package]] +name = "statsmodels" +version = "0.14.2" +description = "Statistical computations and models for Python" +category = "main" +optional = false +python-versions = ">=3.9" +files = [ + {file = "statsmodels-0.14.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df5d6f95c46f0341da6c79ee7617e025bf2b371e190a8e60af1ae9cabbdb7a97"}, + {file = "statsmodels-0.14.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a87ef21fadb445b650f327340dde703f13aec1540f3d497afb66324499dea97a"}, + {file = "statsmodels-0.14.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5827a12e3ede2b98a784476d61d6bec43011fedb64aa815f2098e0573bece257"}, + {file = "statsmodels-0.14.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10f2b7611a61adb7d596a6d239abdf1a4d5492b931b00d5ed23d32844d40e48e"}, + {file = "statsmodels-0.14.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c254c66142f1167b4c7d031cf8db55294cc62ff3280e090fc45bd10a7f5fd029"}, + {file = "statsmodels-0.14.2-cp310-cp310-win_amd64.whl", hash = "sha256:0e46e9d59293c1af4cc1f4e5248f17e7e7bc596bfce44d327c789ac27f09111b"}, + {file = "statsmodels-0.14.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:50fcb633987779e795142f51ba49fb27648d46e8a1382b32ebe8e503aaabaa9e"}, + {file = "statsmodels-0.14.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:876794068abfaeed41df71b7887000031ecf44fbfa6b50d53ccb12ebb4ab747a"}, + {file = "statsmodels-0.14.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7a91f6c4943de13e3ce2e20ee3b5d26d02bd42300616a421becd53756f5deb37"}, + {file = "statsmodels-0.14.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4864a1c4615c5ea5f2e3b078a75bdedc90dd9da210a37e0738e064b419eccee2"}, + {file = "statsmodels-0.14.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:afbd92410e0df06f3d8c4e7c0e2e71f63f4969531f280fb66059e2ecdb6e0415"}, + {file = "statsmodels-0.14.2-cp311-cp311-win_amd64.whl", hash = "sha256:8e004cfad0e46ce73fe3f3812010c746f0d4cfd48e307b45c14e9e360f3d2510"}, + {file = "statsmodels-0.14.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:eb0ba1ad3627705f5ae20af6b2982f500546d43892543b36c7bca3e2f87105e7"}, + {file = "statsmodels-0.14.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:90fd2f0110b73fc3fa5a2f21c3ca99b0e22285cccf38e56b5b8fd8ce28791b0f"}, + {file = "statsmodels-0.14.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac780ad9ff552773798829a0b9c46820b0faa10e6454891f5e49a845123758ab"}, + {file = "statsmodels-0.14.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:55d1742778400ae67acb04b50a2c7f5804182f8a874bd09ca397d69ed159a751"}, + {file = "statsmodels-0.14.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:f870d14a587ea58a3b596aa994c2ed889cc051f9e450e887d2c83656fc6a64bf"}, + {file = "statsmodels-0.14.2-cp312-cp312-win_amd64.whl", hash = "sha256:f450fcbae214aae66bd9d2b9af48e0f8ba1cb0e8596c6ebb34e6e3f0fec6542c"}, + {file = "statsmodels-0.14.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:201c3d00929c4a67cda1fe05b098c8dcf1b1eeefa88e80a8f963a844801ed59f"}, + {file = "statsmodels-0.14.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9edefa4ce08e40bc1d67d2f79bc686ee5e238e801312b5a029ee7786448c389a"}, + {file = "statsmodels-0.14.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29c78a7601fdae1aa32104c5ebff2e0b72c26f33e870e2f94ab1bcfd927ece9b"}, + {file = "statsmodels-0.14.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f36494df7c03d63168fccee5038a62f469469ed6a4dd6eaeb9338abedcd0d5f5"}, + {file = "statsmodels-0.14.2-cp39-cp39-win_amd64.whl", hash = "sha256:8875823bdd41806dc853333cc4e1b7ef9481bad2380a999e66ea42382cf2178d"}, + {file = "statsmodels-0.14.2.tar.gz", hash = "sha256:890550147ad3a81cda24f0ba1a5c4021adc1601080bd00e191ae7cd6feecd6ad"}, +] + +[package.dependencies] +numpy = ">=1.22.3" +packaging = ">=21.3" +pandas = ">=1.4,<2.1.0 || >2.1.0" +patsy = ">=0.5.6" +scipy = ">=1.8,<1.9.2 || >1.9.2" + +[package.extras] +build = ["cython (>=0.29.33)"] +develop = ["colorama", "cython (>=0.29.33)", "cython (>=3.0.10,<4)", "flake8", "isort", "joblib", "matplotlib (>=3)", "pytest (>=7.3.0,<8)", "pytest-cov", "pytest-randomly", "pytest-xdist", "pywinpty", "setuptools-scm[toml] (>=8.0,<9.0)"] +docs = ["ipykernel", "jupyter-client", "matplotlib", "nbconvert", "nbformat", "numpydoc", "pandas-datareader", "sphinx"] + +[[package]] +name = "stdlib-list" +version = "0.10.0" +description = "A list of Python Standard Libraries (2.7 through 3.12)." +category = "main" +optional = false +python-versions = ">=3.7" +files = [ + {file = "stdlib_list-0.10.0-py3-none-any.whl", hash = "sha256:b3a911bc441d03e0332dd1a9e7d0870ba3bb0a542a74d7524f54fb431256e214"}, + {file = "stdlib_list-0.10.0.tar.gz", hash = "sha256:6519c50d645513ed287657bfe856d527f277331540691ddeaf77b25459964a14"}, +] + +[package.extras] +dev = ["build", "stdlib-list[doc,lint,test]"] +doc = ["furo", "sphinx"] +lint = ["black", "mypy", "ruff"] +support = ["sphobjinv"] +test = ["coverage[toml]", "pytest", "pytest-cov"] + [[package]] name = "sympy" version = "1.12" @@ -3891,16 +4619,51 @@ files = [ [package.dependencies] mpmath = ">=0.19" +[[package]] +name = "tensorboard" +version = "2.16.2" +description = "TensorBoard lets you watch Tensors Flow" +category = "main" +optional = false +python-versions = ">=3.9" +files = [ + {file = "tensorboard-2.16.2-py3-none-any.whl", hash = "sha256:9f2b4e7dad86667615c0e5cd072f1ea8403fc032a299f0072d6f74855775cc45"}, +] + +[package.dependencies] +absl-py = ">=0.4" +grpcio = ">=1.48.2" +markdown = ">=2.6.8" +numpy = ">=1.12.0" +protobuf = ">=3.19.6,<4.24.0 || >4.24.0" +setuptools = ">=41.0.0" +six = ">1.9" +tensorboard-data-server = ">=0.7.0,<0.8.0" +werkzeug = ">=1.0.1" + +[[package]] +name = "tensorboard-data-server" +version = "0.7.2" +description = "Fast data loading for TensorBoard" +category = "main" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tensorboard_data_server-0.7.2-py3-none-any.whl", hash = "sha256:7e0610d205889588983836ec05dc098e80f97b7e7bbff7e994ebb78f578d0ddb"}, + {file = "tensorboard_data_server-0.7.2-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:9fe5d24221b29625dbc7328b0436ca7fc1c23de4acf4d272f1180856e32f9f60"}, + {file = "tensorboard_data_server-0.7.2-py3-none-manylinux_2_31_x86_64.whl", hash = "sha256:ef687163c24185ae9754ed5650eb5bc4d84ff257aabdc33f0cc6f74d8ba54530"}, +] + [[package]] name = "threadpoolctl" -version = "3.3.0" +version = "3.4.0" description = "threadpoolctl" category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "threadpoolctl-3.3.0-py3-none-any.whl", hash = "sha256:6155be1f4a39f31a18ea70f94a77e0ccd57dced08122ea61109e7da89883781e"}, - {file = "threadpoolctl-3.3.0.tar.gz", hash = "sha256:5dac632b4fa2d43f42130267929af3ba01399ef4bd1882918e92dbc30365d30c"}, + {file = "threadpoolctl-3.4.0-py3-none-any.whl", hash = "sha256:8f4c689a65b23e5ed825c8436a92b818aac005e0f3715f6a1664d7c7ee29d262"}, + {file = "threadpoolctl-3.4.0.tar.gz", hash = "sha256:f11b491a03661d6dd7ef692dd422ab34185d982466c49c8f98c8f716b5c93196"}, ] [[package]] @@ -3915,39 +4678,51 @@ files = [ {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, ] +[[package]] +name = "tomlkit" +version = "0.12.4" +description = "Style preserving TOML library" +category = "main" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tomlkit-0.12.4-py3-none-any.whl", hash = "sha256:5cd82d48a3dd89dee1f9d64420aa20ae65cfbd00668d6f094d7578a78efbb77b"}, + {file = "tomlkit-0.12.4.tar.gz", hash = "sha256:7ca1cfc12232806517a8515047ba66a19369e71edf2439d0f5824f91032b6cc3"}, +] + [[package]] name = "torch" -version = "2.2.1" +version = "2.2.2" description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" category = "main" optional = false python-versions = ">=3.8.0" files = [ - {file = "torch-2.2.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:8d3bad336dd2c93c6bcb3268e8e9876185bda50ebde325ef211fb565c7d15273"}, - {file = "torch-2.2.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:5297f13370fdaca05959134b26a06a7f232ae254bf2e11a50eddec62525c9006"}, - {file = "torch-2.2.1-cp310-cp310-win_amd64.whl", hash = "sha256:5f5dee8433798888ca1415055f5e3faf28a3bad660e4c29e1014acd3275ab11a"}, - {file = "torch-2.2.1-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:b6d78338acabf1fb2e88bf4559d837d30230cf9c3e4337261f4d83200df1fcbe"}, - {file = "torch-2.2.1-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:6ab3ea2e29d1aac962e905142bbe50943758f55292f1b4fdfb6f4792aae3323e"}, - {file = "torch-2.2.1-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:d86664ec85902967d902e78272e97d1aff1d331f7619d398d3ffab1c9b8e9157"}, - {file = "torch-2.2.1-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:d6227060f268894f92c61af0a44c0d8212e19cb98d05c20141c73312d923bc0a"}, - {file = "torch-2.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:77e990af75fb1675490deb374d36e726f84732cd5677d16f19124934b2409ce9"}, - {file = "torch-2.2.1-cp311-none-macosx_10_9_x86_64.whl", hash = "sha256:46085e328d9b738c261f470231e987930f4cc9472d9ffb7087c7a1343826ac51"}, - {file = "torch-2.2.1-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:2d9e7e5ecbb002257cf98fae13003abbd620196c35f85c9e34c2adfb961321ec"}, - {file = "torch-2.2.1-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:ada53aebede1c89570e56861b08d12ba4518a1f8b82d467c32665ec4d1f4b3c8"}, - {file = "torch-2.2.1-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:be21d4c41ecebed9e99430dac87de1439a8c7882faf23bba7fea3fea7b906ac1"}, - {file = "torch-2.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:79848f46196750367dcdf1d2132b722180b9d889571e14d579ae82d2f50596c5"}, - {file = "torch-2.2.1-cp312-none-macosx_10_9_x86_64.whl", hash = "sha256:7ee804847be6be0032fbd2d1e6742fea2814c92bebccb177f0d3b8e92b2d2b18"}, - {file = "torch-2.2.1-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:84b2fb322ab091039fdfe74e17442ff046b258eb5e513a28093152c5b07325a7"}, - {file = "torch-2.2.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:5c0c83aa7d94569997f1f474595e808072d80b04d34912ce6f1a0e1c24b0c12a"}, - {file = "torch-2.2.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:91a1b598055ba06b2c386415d2e7f6ac818545e94c5def597a74754940188513"}, - {file = "torch-2.2.1-cp38-cp38-win_amd64.whl", hash = "sha256:8f93ddf3001ecec16568390b507652644a3a103baa72de3ad3b9c530e3277098"}, - {file = "torch-2.2.1-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:0e8bdd4c77ac2584f33ee14c6cd3b12767b4da508ec4eed109520be7212d1069"}, - {file = "torch-2.2.1-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:6a21bcd7076677c97ca7db7506d683e4e9db137e8420eb4a68fb67c3668232a7"}, - {file = "torch-2.2.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:f1b90ac61f862634039265cd0f746cc9879feee03ff962c803486301b778714b"}, - {file = "torch-2.2.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:ed9e29eb94cd493b36bca9cb0b1fd7f06a0688215ad1e4b3ab4931726e0ec092"}, - {file = "torch-2.2.1-cp39-cp39-win_amd64.whl", hash = "sha256:c47bc25744c743f3835831a20efdcfd60aeb7c3f9804a213f61e45803d16c2a5"}, - {file = "torch-2.2.1-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:0952549bcb43448c8d860d5e3e947dd18cbab491b14638e21750cb3090d5ad3e"}, - {file = "torch-2.2.1-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:26bd2272ec46fc62dcf7d24b2fb284d44fcb7be9d529ebf336b9860350d674ed"}, + {file = "torch-2.2.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:bc889d311a855dd2dfd164daf8cc903a6b7273a747189cebafdd89106e4ad585"}, + {file = "torch-2.2.2-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:15dffa4cc3261fa73d02f0ed25f5fa49ecc9e12bf1ae0a4c1e7a88bbfaad9030"}, + {file = "torch-2.2.2-cp310-cp310-win_amd64.whl", hash = "sha256:11e8fe261233aeabd67696d6b993eeb0896faa175c6b41b9a6c9f0334bdad1c5"}, + {file = "torch-2.2.2-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:b2e2200b245bd9f263a0d41b6a2dab69c4aca635a01b30cca78064b0ef5b109e"}, + {file = "torch-2.2.2-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:877b3e6593b5e00b35bbe111b7057464e76a7dd186a287280d941b564b0563c2"}, + {file = "torch-2.2.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:ad4c03b786e074f46606f4151c0a1e3740268bcf29fbd2fdf6666d66341c1dcb"}, + {file = "torch-2.2.2-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:32827fa1fbe5da8851686256b4cd94cc7b11be962862c2293811c94eea9457bf"}, + {file = "torch-2.2.2-cp311-cp311-win_amd64.whl", hash = "sha256:f9ef0a648310435511e76905f9b89612e45ef2c8b023bee294f5e6f7e73a3e7c"}, + {file = "torch-2.2.2-cp311-none-macosx_10_9_x86_64.whl", hash = "sha256:95b9b44f3bcebd8b6cd8d37ec802048c872d9c567ba52c894bba90863a439059"}, + {file = "torch-2.2.2-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:49aa4126ede714c5aeef7ae92969b4b0bbe67f19665106463c39f22e0a1860d1"}, + {file = "torch-2.2.2-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:cf12cdb66c9c940227ad647bc9cf5dba7e8640772ae10dfe7569a0c1e2a28aca"}, + {file = "torch-2.2.2-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:89ddac2a8c1fb6569b90890955de0c34e1724f87431cacff4c1979b5f769203c"}, + {file = "torch-2.2.2-cp312-cp312-win_amd64.whl", hash = "sha256:451331406b760f4b1ab298ddd536486ab3cfb1312614cfe0532133535be60bea"}, + {file = "torch-2.2.2-cp312-none-macosx_10_9_x86_64.whl", hash = "sha256:eb4d6e9d3663e26cd27dc3ad266b34445a16b54908e74725adb241aa56987533"}, + {file = "torch-2.2.2-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:bf9558da7d2bf7463390b3b2a61a6a3dbb0b45b161ee1dd5ec640bf579d479fc"}, + {file = "torch-2.2.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:cd2bf7697c9e95fb5d97cc1d525486d8cf11a084c6af1345c2c2c22a6b0029d0"}, + {file = "torch-2.2.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:b421448d194496e1114d87a8b8d6506bce949544e513742b097e2ab8f7efef32"}, + {file = "torch-2.2.2-cp38-cp38-win_amd64.whl", hash = "sha256:3dbcd563a9b792161640c0cffe17e3270d85e8f4243b1f1ed19cca43d28d235b"}, + {file = "torch-2.2.2-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:31f4310210e7dda49f1fb52b0ec9e59382cfcb938693f6d5378f25b43d7c1d29"}, + {file = "torch-2.2.2-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:c795feb7e8ce2e0ef63f75f8e1ab52e7fd5e1a4d7d0c31367ade1e3de35c9e95"}, + {file = "torch-2.2.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:a6e5770d68158d07456bfcb5318b173886f579fdfbf747543901ce718ea94782"}, + {file = "torch-2.2.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:67dcd726edff108e2cd6c51ff0e416fd260c869904de95750e80051358680d24"}, + {file = "torch-2.2.2-cp39-cp39-win_amd64.whl", hash = "sha256:539d5ef6c4ce15bd3bd47a7b4a6e7c10d49d4d21c0baaa87c7d2ef8698632dfb"}, + {file = "torch-2.2.2-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:dff696de90d6f6d1e8200e9892861fd4677306d0ef604cb18f2134186f719f82"}, + {file = "torch-2.2.2-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:3a4dd910663fd7a124c056c878a52c2b0be4a5a424188058fe97109d4436ee42"}, ] [package.dependencies] @@ -3974,16 +4749,109 @@ typing-extensions = ">=4.8.0" opt-einsum = ["opt-einsum (>=3.3)"] optree = ["optree (>=0.9.1)"] +[[package]] +name = "torchcde" +version = "0.2.5" +description = "Differentiable controlled differential equation solvers for PyTorch with GPU support and memory-efficient adjoint backpropagation." +category = "main" +optional = false +python-versions = "~=3.6" +files = [ + {file = "torchcde-0.2.5-py3-none-any.whl", hash = "sha256:90ad5943d74d601400476a3cdaf6ea7aabd3967033ba6d513bc8f6a93f982ffd"}, + {file = "torchcde-0.2.5.tar.gz", hash = "sha256:6e6081192e00476314eb0d97ce54e6c6a67134d868b97b06db7b8017e60f0de6"}, +] + +[package.dependencies] +torch = ">=1.7.0" +torchdiffeq = ">=0.2.0" +torchsde = ">=0.2.5" + +[[package]] +name = "torchcfm" +version = "1.0.6" +description = "Conditional Flow Matching for Fast Continuous Normalizing Flow Training." +category = "main" +optional = false +python-versions = "*" +files = [] +develop = false + +[package.dependencies] +absl-py = "*" +clean-fid = "*" +lightning-bolts = "*" +matplotlib = "*" +numpy = "*" +pot = "*" +scanpy = "*" +scikit-learn = "*" +scipy = "*" +scprep = "*" +torch = ">=1.11.0" +torchdiffeq = "*" +torchdyn = "*" +torchvision = ">=0.11.0" + +[package.extras] +forest-flow = ["ForestDiffusion", "scikit-learn", "xgboost"] + +[package.source] +type = "git" +url = "ssh://git@github.com/DemyCode/conditional-flow-matching" +reference = "main" +resolved_reference = "e1973e1b4caa1589d2f62679af53b8e912539189" + +[[package]] +name = "torchdiffeq" +version = "0.2.3" +description = "ODE solvers and adjoint sensitivity analysis in PyTorch." +category = "main" +optional = false +python-versions = "~=3.6" +files = [ + {file = "torchdiffeq-0.2.3-py3-none-any.whl", hash = "sha256:b5b01ec1294a2d8d5f77e567bf17c5de1237c0573cb94deefa88326f0e18c338"}, + {file = "torchdiffeq-0.2.3.tar.gz", hash = "sha256:fe75f434b9090ac0c27702e02bed21472b0f87035be6581f51edc5d4013ea31a"}, +] + +[package.dependencies] +scipy = ">=1.4.0" +torch = ">=1.3.0" + +[[package]] +name = "torchdyn" +version = "1.0.6" +description = "A PyTorch library entirely dedicated to neural differential equations, implicit models and related numerical methods." +category = "main" +optional = false +python-versions = ">=3.8,<4.0" +files = [ + {file = "torchdyn-1.0.6-py3-none-any.whl", hash = "sha256:1699db47296b14756172cd26b814bd49ce702420f8c4b049c8ae60b4ae6ac88d"}, + {file = "torchdyn-1.0.6.tar.gz", hash = "sha256:3b74d785e3d9c8a42a65dc061af11d39fb2036500ca73d32f077c9314148cdbf"}, +] + +[package.dependencies] +ipykernel = "*" +ipywidgets = "*" +matplotlib = "*" +poethepoet = ">=0.10.0,<0.11.0" +pytorch-lightning = "*" +scikit-learn = "*" +scipy = "*" +torch = ">=1.8.1" +torchcde = ">=0.2.3,<0.3.0" +torchsde = "*" +torchvision = "*" + [[package]] name = "torchmetrics" -version = "1.3.1" +version = "1.3.2" description = "PyTorch native Metrics" category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "torchmetrics-1.3.1-py3-none-any.whl", hash = "sha256:a44bd1edee629bbf463eb81bfba8300b3785d8b3b8d758bdcafa862b80955b4f"}, - {file = "torchmetrics-1.3.1.tar.gz", hash = "sha256:8d371f7597a1a5eb02d5f2ed59642d6fef09093926997ce91e18b1147cc8defa"}, + {file = "torchmetrics-1.3.2-py3-none-any.whl", hash = "sha256:44ca3a9f86dc050cb3f554836ef291698ea797778457195b4f685fce8e2e64a3"}, + {file = "torchmetrics-1.3.2.tar.gz", hash = "sha256:0a67694a4c4265eeb54cda741eaf5cb1f3a71da74b7e7e6215ad156c9f2379f6"}, ] [package.dependencies] @@ -3993,21 +4861,82 @@ packaging = ">17.1" torch = ">=1.10.0" [package.extras] -all = ["SciencePlots (>=2.0.0)", "ipadic (>=1.0.0)", "matplotlib (>=3.3.0)", "mecab-ko (>=1.0.0)", "mecab-ko-dic (>=1.0.0)", "mecab-python3 (>=1.0.6)", "mypy (==1.8.0)", "nltk (>=3.6)", "piq (<=0.8.0)", "pycocotools (>2.0.0)", "pystoi (>=0.3.0)", "regex (>=2021.9.24)", "scipy (>1.0.0)", "sentencepiece (>=0.1.98)", "torch (==2.2.0)", "torch-fidelity (<=0.4.0)", "torchaudio (>=0.10.0)", "torchvision (>=0.8)", "tqdm (>=4.41.0)", "transformers (>4.4.0)", "transformers (>=4.10.0)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +all = ["SciencePlots (>=2.0.0)", "ipadic (>=1.0.0)", "matplotlib (>=3.3.0)", "mecab-ko (>=1.0.0)", "mecab-ko-dic (>=1.0.0)", "mecab-python3 (>=1.0.6)", "mypy (==1.8.0)", "nltk (>=3.6)", "piq (<=0.8.0)", "pycocotools (>2.0.0)", "pystoi (>=0.3.0)", "regex (>=2021.9.24)", "scipy (>1.0.0)", "sentencepiece (>=0.2.0)", "torch (==2.2.1)", "torch-fidelity (<=0.4.0)", "torchaudio (>=0.10.0)", "torchvision (>=0.8)", "tqdm (>=4.41.0)", "transformers (>4.4.0)", "transformers (>=4.10.0)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] audio = ["pystoi (>=0.3.0)", "torchaudio (>=0.10.0)"] detection = ["pycocotools (>2.0.0)", "torchvision (>=0.8)"] -dev = ["SciencePlots (>=2.0.0)", "bert-score (==0.3.13)", "dython (<=0.7.5)", "fairlearn", "fast-bss-eval (>=0.1.0)", "faster-coco-eval (>=1.3.3)", "huggingface-hub (<0.21)", "ipadic (>=1.0.0)", "jiwer (>=2.3.0)", "kornia (>=0.6.7)", "lpips (<=0.1.4)", "matplotlib (>=3.3.0)", "mecab-ko (>=1.0.0)", "mecab-ko-dic (>=1.0.0)", "mecab-python3 (>=1.0.6)", "mir-eval (>=0.6)", "monai (==1.3.0)", "mypy (==1.8.0)", "netcal (>1.0.0)", "nltk (>=3.6)", "numpy (<1.25.0)", "pandas (>1.0.0)", "pandas (>=1.4.0)", "piq (<=0.8.0)", "pycocotools (>2.0.0)", "pystoi (>=0.3.0)", "pytorch-msssim (==1.0.0)", "regex (>=2021.9.24)", "rouge-score (>0.1.0)", "sacrebleu (>=2.3.0)", "scikit-image (>=0.19.0)", "scipy (>1.0.0)", "sentencepiece (>=0.1.98)", "sewar (>=0.4.4)", "statsmodels (>0.13.5)", "torch (==2.2.0)", "torch-complex (<=0.4.3)", "torch-fidelity (<=0.4.0)", "torchaudio (>=0.10.0)", "torchvision (>=0.8)", "tqdm (>=4.41.0)", "transformers (>4.4.0)", "transformers (>=4.10.0)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +dev = ["SciencePlots (>=2.0.0)", "bert-score (==0.3.13)", "dython (<=0.7.5)", "fairlearn", "fast-bss-eval (>=0.1.0)", "faster-coco-eval (>=1.3.3)", "huggingface-hub (<0.22)", "ipadic (>=1.0.0)", "jiwer (>=2.3.0)", "kornia (>=0.6.7)", "lpips (<=0.1.4)", "matplotlib (>=3.3.0)", "mecab-ko (>=1.0.0)", "mecab-ko-dic (>=1.0.0)", "mecab-python3 (>=1.0.6)", "mir-eval (>=0.6)", "monai (==1.3.0)", "mypy (==1.8.0)", "netcal (>1.0.0)", "nltk (>=3.6)", "numpy (<1.25.0)", "pandas (>1.0.0)", "pandas (>=1.4.0)", "piq (<=0.8.0)", "pycocotools (>2.0.0)", "pystoi (>=0.3.0)", "pytorch-msssim (==1.0.0)", "regex (>=2021.9.24)", "rouge-score (>0.1.0)", "sacrebleu (>=2.3.0)", "scikit-image (>=0.19.0)", "scipy (>1.0.0)", "sentencepiece (>=0.2.0)", "sewar (>=0.4.4)", "statsmodels (>0.13.5)", "torch (==2.2.1)", "torch-complex (<=0.4.3)", "torch-fidelity (<=0.4.0)", "torchaudio (>=0.10.0)", "torchvision (>=0.8)", "tqdm (>=4.41.0)", "transformers (>4.4.0)", "transformers (>=4.10.0)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] image = ["scipy (>1.0.0)", "torch-fidelity (<=0.4.0)", "torchvision (>=0.8)"] multimodal = ["piq (<=0.8.0)", "transformers (>=4.10.0)"] -text = ["ipadic (>=1.0.0)", "mecab-ko (>=1.0.0)", "mecab-ko-dic (>=1.0.0)", "mecab-python3 (>=1.0.6)", "nltk (>=3.6)", "regex (>=2021.9.24)", "sentencepiece (>=0.1.98)", "tqdm (>=4.41.0)", "transformers (>4.4.0)"] -typing = ["mypy (==1.8.0)", "torch (==2.2.0)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +text = ["ipadic (>=1.0.0)", "mecab-ko (>=1.0.0)", "mecab-ko-dic (>=1.0.0)", "mecab-python3 (>=1.0.6)", "nltk (>=3.6)", "regex (>=2021.9.24)", "sentencepiece (>=0.2.0)", "tqdm (>=4.41.0)", "transformers (>4.4.0)"] +typing = ["mypy (==1.8.0)", "torch (==2.2.1)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] visual = ["SciencePlots (>=2.0.0)", "matplotlib (>=3.3.0)"] +[[package]] +name = "torchsde" +version = "0.2.6" +description = "SDE solvers and stochastic adjoint sensitivity analysis in PyTorch." +category = "main" +optional = false +python-versions = ">=3.8" +files = [ + {file = "torchsde-0.2.6-py3-none-any.whl", hash = "sha256:19bf7ff02eec7e8e46ba1cdb4aa0f9db1c51d492524a16975234b467f7fc463b"}, + {file = "torchsde-0.2.6.tar.gz", hash = "sha256:81d074d3504f9d190f1694fb526395afbe4608ee43a88adb1262a639e5b4778b"}, +] + +[package.dependencies] +numpy = ">=1.19" +scipy = ">=1.5" +torch = ">=1.6.0" +trampoline = ">=0.1.2" + +[[package]] +name = "torchvision" +version = "0.17.2" +description = "image and video datasets and models for torch deep learning" +category = "main" +optional = false +python-versions = ">=3.8" +files = [ + {file = "torchvision-0.17.2-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:1f2910fe3c21ad6875b2720d46fad835b2e4b336e9553d31ca364d24c90b1d4f"}, + {file = "torchvision-0.17.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ecc1c503fa8a54fbab777e06a7c228032b8ab78efebf35b28bc8f22f544f51f1"}, + {file = "torchvision-0.17.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:f400145fc108833e7c2fc28486a04989ca742146d7a2a2cc48878ebbb40cdbbd"}, + {file = "torchvision-0.17.2-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:e9e4bed404af33dfc92eecc2b513d21ddc4c242a7fd8708b3b09d3a26aa6f444"}, + {file = "torchvision-0.17.2-cp310-cp310-win_amd64.whl", hash = "sha256:ba2e62f233eab3d42b648c122a3a29c47cc108ca314dfd5cbb59cd3a143fd623"}, + {file = "torchvision-0.17.2-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:9b83e55ee7d0a1704f52b9c0ac87388e7a6d1d98a6bde7b0b35f9ab54d7bda54"}, + {file = "torchvision-0.17.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e031004a1bc432c980a7bd642f6c189a3efc316e423fc30b5569837166a4e28d"}, + {file = "torchvision-0.17.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:3bbc24b7713e8f22766992562547d8b4b10001208d372fe599255af84bfd1a69"}, + {file = "torchvision-0.17.2-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:833fd2e4216ced924c8aca0525733fe727f9a1af66dfad7c5be7257e97c39678"}, + {file = "torchvision-0.17.2-cp311-cp311-win_amd64.whl", hash = "sha256:6835897df852fad1015e6a106c167c83848114cbcc7d86112384a973404e4431"}, + {file = "torchvision-0.17.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:14fd1d4a033c325bdba2d03a69c3450cab6d3a625f85cc375781d9237ca5d04d"}, + {file = "torchvision-0.17.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9c3acbebbe379af112b62b535820174277b1f3eed30df264a4e458d58ee4e5b2"}, + {file = "torchvision-0.17.2-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:77d680adf6ce367166a186d2c7fda3a73807ab9a03b2c31a03fa8812c8c5335b"}, + {file = "torchvision-0.17.2-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:f1c9ab3152cfb27f83aca072cac93a3a4c4e4ab0261cf0f2d516b9868a4e96f3"}, + {file = "torchvision-0.17.2-cp312-cp312-win_amd64.whl", hash = "sha256:3f784381419f3ed3f2ec2aa42fb4aeec5bf4135e298d1631e41c926e6f1a0dff"}, + {file = "torchvision-0.17.2-cp38-cp38-macosx_10_13_x86_64.whl", hash = "sha256:b83aac8d78f48981146d582168d75b6c947cfb0a7693f76e219f1926f6e595a3"}, + {file = "torchvision-0.17.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:1ece40557e122d79975860a005aa7e2a9e2e6c350a03e78a00ec1450083312fd"}, + {file = "torchvision-0.17.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:32dbeba3987e20f2dc1bce8d1504139fff582898346dfe8ad98d649f97ca78fa"}, + {file = "torchvision-0.17.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:35ba5c1600c3203549d2316422a659bd20c0cfda1b6085eec94fb9f35f55ca43"}, + {file = "torchvision-0.17.2-cp38-cp38-win_amd64.whl", hash = "sha256:2f69570f50b1d195e51bc03feffb7b7728207bc36efcfb1f0813712b2379d881"}, + {file = "torchvision-0.17.2-cp39-cp39-macosx_10_13_x86_64.whl", hash = "sha256:4868bbfa55758c8107e69a0e7dd5e77b89056035cd38b767ad5b98cdb71c0f0d"}, + {file = "torchvision-0.17.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:efd6d0dd0668e15d01a2cffadc74068433b32cbcf5692e0c4aa15fc5cb250ce7"}, + {file = "torchvision-0.17.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:7dc85b397f6c6d9ef12716ce0d6e11ac2b803f5cccff6fe3966db248e7774478"}, + {file = "torchvision-0.17.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:d506854c5acd69b20a8b6641f01fe841685a21c5406b56813184f1c9fc94279e"}, + {file = "torchvision-0.17.2-cp39-cp39-win_amd64.whl", hash = "sha256:067095e87a020a7a251ac1d38483aa591c5ccb81e815527c54db88a982fc9267"}, +] + +[package.dependencies] +numpy = "*" +pillow = ">=5.3.0,<8.3.0 || >=8.4.0" +torch = "2.2.2" + +[package.extras] +scipy = ["scipy"] + [[package]] name = "tornado" version = "6.4" description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." -category = "dev" +category = "main" optional = false python-versions = ">= 3.8" files = [ @@ -4047,34 +4976,45 @@ telegram = ["requests"] [[package]] name = "traitlets" -version = "5.14.1" +version = "5.14.2" description = "Traitlets Python configuration system" -category = "dev" +category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "traitlets-5.14.1-py3-none-any.whl", hash = "sha256:2e5a030e6eff91737c643231bfcf04a65b0132078dad75e4936700b213652e74"}, - {file = "traitlets-5.14.1.tar.gz", hash = "sha256:8585105b371a04b8316a43d5ce29c098575c2e477850b62b848b964f1444527e"}, + {file = "traitlets-5.14.2-py3-none-any.whl", hash = "sha256:fcdf85684a772ddeba87db2f398ce00b40ff550d1528c03c14dbf6a02003cd80"}, + {file = "traitlets-5.14.2.tar.gz", hash = "sha256:8cdd83c040dab7d1dee822678e5f5d100b514f7b72b01615b26fc5718916fdf9"}, ] [package.extras] docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] -test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<7.5)", "pytest-mock", "pytest-mypy-testing"] +test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.1)", "pytest-mock", "pytest-mypy-testing"] + +[[package]] +name = "trampoline" +version = "0.1.2" +description = "Simple and tiny yield-based trampoline implementation." +category = "main" +optional = false +python-versions = "*" +files = [ + {file = "trampoline-0.1.2-py3-none-any.whl", hash = "sha256:36cc9a4ff9811843d177fc0e0740efbd7da39eadfe6e50c9e2937cbc06d899d9"}, +] [[package]] name = "trio" -version = "0.24.0" +version = "0.25.0" description = "A friendly Python library for async concurrency and I/O" category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "trio-0.24.0-py3-none-any.whl", hash = "sha256:c3bd3a4e3e3025cd9a2241eae75637c43fe0b9e88b4c97b9161a55b9e54cd72c"}, - {file = "trio-0.24.0.tar.gz", hash = "sha256:ffa09a74a6bf81b84f8613909fb0beaee84757450183a7a2e0b47b455c0cac5d"}, + {file = "trio-0.25.0-py3-none-any.whl", hash = "sha256:e6458efe29cc543e557a91e614e2b51710eba2961669329ce9c862d50c6e8e81"}, + {file = "trio-0.25.0.tar.gz", hash = "sha256:9b41f5993ad2c0e5f62d0acca320ec657fdb6b2a2c22b8c7aed6caf154475c4e"}, ] [package.dependencies] -attrs = ">=20.1.0" +attrs = ">=23.2.0" cffi = {version = ">=1.14", markers = "os_name == \"nt\" and implementation_name != \"pypy\""} exceptiongroup = {version = "*", markers = "python_version < \"3.11\""} idna = "*" @@ -4125,26 +5065,26 @@ tutorials = ["matplotlib", "pandas", "tabulate", "torch"] [[package]] name = "types-awscrt" -version = "0.20.5" +version = "0.20.9" description = "Type annotations and code completion for awscrt" category = "main" optional = false -python-versions = ">=3.7,<4.0" +python-versions = "<4.0,>=3.7" files = [ - {file = "types_awscrt-0.20.5-py3-none-any.whl", hash = "sha256:79d5bfb01f64701b6cf442e89a37d9c4dc6dbb79a46f2f611739b2418d30ecfd"}, - {file = "types_awscrt-0.20.5.tar.gz", hash = "sha256:61811bbf4de95248939f9276a434be93d2b95f6ccfe8aa94e56999e9778cfcc2"}, + {file = "types_awscrt-0.20.9-py3-none-any.whl", hash = "sha256:3ae374b553e7228ba41a528cf42bd0b2ad7303d806c73eff4aaaac1515e3ea4e"}, + {file = "types_awscrt-0.20.9.tar.gz", hash = "sha256:64898a2f4a2468f66233cb8c29c5f66de907cf80ba1ef5bb1359aef2f81bb521"}, ] [[package]] name = "types-requests" -version = "2.31.0.20240218" +version = "2.31.0.20240406" description = "Typing stubs for requests" category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "types-requests-2.31.0.20240218.tar.gz", hash = "sha256:f1721dba8385958f504a5386240b92de4734e047a08a40751c1654d1ac3349c5"}, - {file = "types_requests-2.31.0.20240218-py3-none-any.whl", hash = "sha256:a82807ec6ddce8f00fe0e949da6d6bc1fbf1715420218a9640d695f70a9e5a9b"}, + {file = "types-requests-2.31.0.20240406.tar.gz", hash = "sha256:4428df33c5503945c74b3f42e82b181e86ec7b724620419a2966e2de604ce1a1"}, + {file = "types_requests-2.31.0.20240406-py3-none-any.whl", hash = "sha256:6216cdac377c6b9a040ac1c0404f7284bd13199c0e1bb235f4324627e8898cf5"}, ] [package.dependencies] @@ -4152,26 +5092,26 @@ urllib3 = ">=2" [[package]] name = "types-s3transfer" -version = "0.10.0" +version = "0.10.1" description = "Type annotations and code completion for s3transfer" category = "main" optional = false -python-versions = ">=3.7,<4.0" +python-versions = "<4.0,>=3.8" files = [ - {file = "types_s3transfer-0.10.0-py3-none-any.whl", hash = "sha256:44fcdf0097b924a9aab1ee4baa1179081a9559ca62a88c807e2b256893ce688f"}, - {file = "types_s3transfer-0.10.0.tar.gz", hash = "sha256:35e4998c25df7f8985ad69dedc8e4860e8af3b43b7615e940d53c00d413bdc69"}, + {file = "types_s3transfer-0.10.1-py3-none-any.whl", hash = "sha256:49a7c81fa609ac1532f8de3756e64b58afcecad8767933310228002ec7adff74"}, + {file = "types_s3transfer-0.10.1.tar.gz", hash = "sha256:02154cce46528287ad76ad1a0153840e0492239a0887e8833466eccf84b98da0"}, ] [[package]] name = "types-tqdm" -version = "4.66.0.20240106" +version = "4.66.0.20240417" description = "Typing stubs for tqdm" category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "types-tqdm-4.66.0.20240106.tar.gz", hash = "sha256:7acf4aade5bad3ded76eb829783f9961b1c2187948eaa6dd1ae8644dff95a938"}, - {file = "types_tqdm-4.66.0.20240106-py3-none-any.whl", hash = "sha256:7459b0f441b969735685645a5d8480f7912b10d05ab45f99a2db8a8e45cb550b"}, + {file = "types-tqdm-4.66.0.20240417.tar.gz", hash = "sha256:16dce9ef522ea8d40e4f5b8d84dd8a1166eefc13ceee7a7e158bf0f1a1421a31"}, + {file = "types_tqdm-4.66.0.20240417-py3-none-any.whl", hash = "sha256:248aef1f9986b7b8c2c12b3cb4399fc17dba0a29e7e3f3f9cd704babb879383d"}, ] [[package]] @@ -4188,14 +5128,14 @@ files = [ [[package]] name = "typing-extensions" -version = "4.10.0" +version = "4.11.0" description = "Backported and Experimental Type Hints for Python 3.8+" category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "typing_extensions-4.10.0-py3-none-any.whl", hash = "sha256:69b1a937c3a517342112fb4c6df7e72fc39a38e7891a5730ed4985b5214b5475"}, - {file = "typing_extensions-4.10.0.tar.gz", hash = "sha256:b0abd7c89e8fb96f98db18d86106ff1d90ab692004eb746cf6eda2682f91b3cb"}, + {file = "typing_extensions-4.11.0-py3-none-any.whl", hash = "sha256:c1f94d72897edaf4ce775bb7558d5b79d8126906a14ea5ed1635921406c0387a"}, + {file = "typing_extensions-4.11.0.tar.gz", hash = "sha256:83f085bd5ca59c80295fc2a82ab5dac679cbe02b9f33f7d83af68e241bea51b0"}, ] [[package]] @@ -4210,16 +5150,41 @@ files = [ {file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"}, ] +[[package]] +name = "umap-learn" +version = "0.5.6" +description = "Uniform Manifold Approximation and Projection" +category = "main" +optional = false +python-versions = "*" +files = [ + {file = "umap-learn-0.5.6.tar.gz", hash = "sha256:5b3917a862c23ba0fc83bfcd67a7b719dec85b3d9c01fdc7d894cce455df4e03"}, + {file = "umap_learn-0.5.6-py3-none-any.whl", hash = "sha256:881cc0c2ee845b790bf0455aa1664f9f68b838d9d0fe12a1291b85c5a559c913"}, +] + +[package.dependencies] +numba = ">=0.51.2" +numpy = ">=1.17" +pynndescent = ">=0.5" +scikit-learn = ">=0.22" +scipy = ">=1.3.1" +tqdm = "*" + +[package.extras] +parametric-umap = ["tensorflow (>=2.1)"] +plot = ["bokeh", "colorcet", "datashader", "holoviews", "matplotlib", "pandas", "scikit-image", "seaborn"] +tbb = ["tbb (>=2019.0)"] + [[package]] name = "urllib3" -version = "2.0.7" +version = "2.2.1" description = "HTTP library with thread-safe connection pooling, file post, and more." category = "main" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "urllib3-2.0.7-py3-none-any.whl", hash = "sha256:fdb6d215c776278489906c2f8916e6e7d4f5a9b602ccbcfdf7f016fc8da0596e"}, - {file = "urllib3-2.0.7.tar.gz", hash = "sha256:c97dfde1f7bd43a71c8d2a58e369e9b2bf692d1334ea9f9cae55add7d0dd0f84"}, + {file = "urllib3-2.2.1-py3-none-any.whl", hash = "sha256:450b20ec296a467077128bff42b73080516e71b56ff59a60a02bef2232c4fa9d"}, + {file = "urllib3-2.2.1.tar.gz", hash = "sha256:d0570876c61ab9e520d776c38acbbb5b05a776d3f9ff98a5c8fd5162a444cf19"}, ] [package.dependencies] @@ -4227,20 +5192,20 @@ pysocks = {version = ">=1.5.6,<1.5.7 || >1.5.7,<2.0", optional = true, markers = [package.extras] brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)"] -secure = ["certifi", "cryptography (>=1.9)", "idna (>=2.0.0)", "pyopenssl (>=17.1.0)", "urllib3-secure-extra"] +h2 = ["h2 (>=4,<5)"] socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"] zstd = ["zstandard (>=0.18.0)"] [[package]] name = "virtualenv" -version = "20.25.1" +version = "20.25.3" description = "Virtual Python Environment builder" category = "dev" optional = false python-versions = ">=3.7" files = [ - {file = "virtualenv-20.25.1-py3-none-any.whl", hash = "sha256:961c026ac520bac5f69acb8ea063e8a4f071bcc9457b9c1f28f6b085c511583a"}, - {file = "virtualenv-20.25.1.tar.gz", hash = "sha256:e08e13ecdca7a0bd53798f356d5831434afa5b07b93f0abdf0797b7a06ffe197"}, + {file = "virtualenv-20.25.3-py3-none-any.whl", hash = "sha256:8aac4332f2ea6ef519c648d0bc48a5b1d324994753519919bddbb1aff25a104e"}, + {file = "virtualenv-20.25.3.tar.gz", hash = "sha256:7bb554bbdfeaacc3349fa614ea5bff6ac300fc7c335e9facf3a3bcfc703f45be"}, ] [package.dependencies] @@ -4249,7 +5214,7 @@ filelock = ">=3.12.2,<4" platformdirs = ">=3.9.1,<5" [package.extras] -docs = ["furo (>=2023.7.26)", "proselint (>=0.13)", "sphinx (>=7.1.2)", "sphinx-argparse (>=0.4)", "sphinxcontrib-towncrier (>=0.2.1a0)", "towncrier (>=23.6)"] +docs = ["furo (>=2023.7.26)", "proselint (>=0.13)", "sphinx (>=7.1.2,!=7.3)", "sphinx-argparse (>=0.4)", "sphinxcontrib-towncrier (>=0.2.1a0)", "towncrier (>=23.6)"] test = ["covdefaults (>=2.3)", "coverage (>=7.2.7)", "coverage-enable-subprocess (>=1)", "flaky (>=3.7)", "packaging (>=23.1)", "pytest (>=7.4)", "pytest-env (>=0.8.2)", "pytest-freezer (>=0.4.8)", "pytest-mock (>=3.11.1)", "pytest-randomly (>=3.12)", "pytest-timeout (>=2.1)", "setuptools (>=68)", "time-machine (>=2.10)"] [[package]] @@ -4298,7 +5263,7 @@ watchmedo = ["PyYAML (>=3.10)"] name = "wcwidth" version = "0.2.13" description = "Measures the displayed width of unicode strings in a terminal" -category = "dev" +category = "main" optional = false python-versions = "*" files = [ @@ -4306,11 +5271,29 @@ files = [ {file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"}, ] +[[package]] +name = "werkzeug" +version = "3.0.2" +description = "The comprehensive WSGI web application library." +category = "main" +optional = false +python-versions = ">=3.8" +files = [ + {file = "werkzeug-3.0.2-py3-none-any.whl", hash = "sha256:3aac3f5da756f93030740bc235d3e09449efcf65f2f55e3602e1d851b8f48795"}, + {file = "werkzeug-3.0.2.tar.gz", hash = "sha256:e39b645a6ac92822588e7b39a692e7828724ceae0b0d702ef96701f90e70128d"}, +] + +[package.dependencies] +MarkupSafe = ">=2.1.1" + +[package.extras] +watchdog = ["watchdog (>=2.3)"] + [[package]] name = "widgetsnbextension" version = "4.0.10" description = "Jupyter interactive widgets for Jupyter Notebook" -category = "dev" +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -4455,4 +5438,4 @@ multidict = ">=4.0" [metadata] lock-version = "2.0" python-versions = "^3.10" -content-hash = "11648e0aea885d5de02653ae28ebd2a0dededd14dd7acaca0e14267199532ae1" +content-hash = "2ac7d3ce4f76f855bdc7f4f850758aec723a79821c3e6eda3a03a779597620b0" diff --git a/pyproject.toml b/pyproject.toml index d4ef82a..0b6b921 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -8,7 +8,6 @@ packages = [{ include = "minecraft_copilot_ml" }] [tool.poetry.dependencies] python = "^3.10" -torch = "^2.2.0" selenium = "^4.9.1" pandas = "^2.0.1" tqdm = "^4.65.0" @@ -24,11 +23,14 @@ pydantic-settings = "^2.1.0" beautifulsoup4 = "^4.12.3" seaborn = "^0.13.2" # https://onnxruntime.ai/docs/reference/compatibility.html -onnx = "~1.12.0" -onnxruntime = "~1.13.0" litemapy = "^0.8.1b0" lightning = "^2.2.0.post0" nbtlib = "^2.0.4" +torchcfm = {git = "ssh://git@github.com/DemyCode/conditional-flow-matching", rev = "main"} +onnx = "^1.16.0" +torch = "^2.2.2" +onnxruntime = "^1.17.1" +onnxscript = "^0.1.0.dev20240411" [tool.poetry.group.dev.dependencies] ipympl = "^0.9.3"