Skip to content

Modified gravity framework exploring coherence-field coupling (ξRΦ²), curvature-EM coupling (κ_R RF²), and BSM parameter space (dark photon, axion). Validated 3D solver, null-result constraints, tabletop feasibility analysis.

License

Notifications You must be signed in to change notification settings

DawsonInstitute/coherence-gravity-coupling

Repository files navigation

Coherence-Gravity Coupling Framework

DawsonInstitute/coherence-gravity-couplingInvestigating the κ_R R F^μν F_μν operator for dark photon constraints

License: MIT Python 3.8+ arXiv

Overview

This repository contains theoretical and computational frameworks for investigating the gravitational coupling operator κ_R R F^μν F_μν, where R is the Ricci scalar, F_μν is the electromagnetic field tensor, and κ_R is a dimensionful coupling constant with units [length²].

Key Physics

The κ_R R F² operator emerges naturally in beyond-Standard Model (BSM) theories and provides a unique laboratory probe of spacetime curvature. Our framework:

  1. Maps BSM parameters to observable electromagnetic signatures
  2. Derives laboratory constraints from precision electromagnetic measurements
  3. Predicts curvature amplification in astrophysical environments
  4. Establishes dark photon connections via effective field theory

Quick Start

New users: See our Installation Guide for complete setup instructions.

# Clone and set up environment
git clone https://github.com/DawsonInstitute/coherence-gravity-coupling.git
cd coherence-gravity-coupling
pip install -r requirements.txt

# Verify installation and run key analysis
python -m pytest tests/ -v
python src/analysis/mass_dependent_dark_photon_mixing.py

Basic Analysis:

from src.analysis.mass_dependent_dark_photon_mixing import MassiveDarkPhotonCurvature

# Laboratory constraint: κ_R < 5×10¹⁷ m² (B = 10 T, R = 10⁻²⁶ m⁻²)
analyzer = MassiveDarkPhotonCurvature()
amplification = analyzer.curvature_amplification_factor(R_lab=1e-26, R_astro=1e-6)
print(f"Magnetar amplification: {amplification:.1e}×")  # ~10²⁰× enhancement

Documentation

Getting Started

Technical References

  • API Reference — Complete code documentation and examples
  • coherence_gravity_coupling.tex — Primary theoretical framework (LaTeX)
  • null_results.tex — Laboratory null constraints on κ_R
  • curvature_em_to_bsm.tex — BSM parameter space mapping

Key Results Summary

Analysis Result Enhancement Implementation
Laboratory Constraint κ_R < 5×10¹⁷ m² 10¹¹× improvement [laboratory_constraints.py]
Dark Photon Mixing ε_eff = κ_R R/√(k²+M²) Mass-dependent [mass_dependent_dark_photon_mixing.py]
Operator Mixing C_α ~ O(1) Non-decoupling [operator_mixing_kappa_alpha.py]
Joint Constraints Marginalized posteriors UV correlations [joint_posterior_analysis.py]
Astrophysical 10⁴× (Earth) → 10²⁰× (magnetar) Curvature scaling [curvature_amplification.py]

Repository Structure

coherence-gravity-coupling/
├── docs/                           # 📚 Modular documentation
│   ├── installation.md                  # Environment setup guide
│   ├── build_system.md                  # LaTeX and make workflows
│   ├── mathematical_framework.md        # Theoretical foundations
│   └── api_reference.md                 # Code documentation
├── src/                            # 🔬 Physics analysis modules
│   ├── analysis/                   # Core physics implementations
│   │   ├── mass_dependent_dark_photon_mixing.py      # κ_R → ε_eff mapping
│   │   ├── operator_mixing_kappa_alpha.py            # C_α coefficients  
│   │   ├── combined_kappa_alpha_constraints.py       # Joint analysis
│   │   └── joint_posterior_analysis.py               # Bayesian marginalization
│   ├── constraints/                # Laboratory constraint analysis
│   ├── plotting/                   # Visualization and figure generation
│   └── utils/                      # Utilities and helper functions
├── examples/                       # 📖 Tutorials and example calculations
├── tests/                         # ✅ Comprehensive test suite
├── figures/                       # 📊 Generated plots and visualizations
└── docs/                          # 📄 LaTeX papers and related work
    ├── coherence_gravity_coupling.tex    # Main theoretical paper
    ├── null_results.tex                  # Laboratory constraints
    ├── curvature_em_to_bsm.tex          # BSM parameter mapping
    └── related_papers/                   # Literature analysis

Development

Build papers: make papers (see Build System Guide)
Run tests: make test (see Installation Guide)
Physics validation: All modules include validate_*() functions with comprehensive checks

For complete development workflows, dependency management, and troubleshooting, see our Installation Guide.


Physics Summary

The κ_R R F² Operator

Modifies Maxwell's equations in curved spacetime:

S = ∫d⁴x √(-g) [-1/(4μ₀) F^μν F_μν + κ_R R F^μν F_μν + ...]

Laboratory constraint: κ_R < 5×10¹⁷ m² (95% CL) — tightest available bound
Astrophysical amplification: 10⁴× (Earth) → 10²⁰× (magnetar) curvature enhancement
Dark photon connection: ε_eff = C_ε κ_R R provides BSM probe

See Mathematical Framework for complete theoretical development.


Citation & Related Work

Primary reference:

@article{CoherenceGravityCoupling2024,
    title={Gravitational Coupling to Electromagnetic Fields: Laboratory Constraints and Astrophysical Implications},
    author={[Author List]},
    journal={arXiv preprint arXiv:2412.02536},
    year={2024}
}

Related analyses:


License & Contact

MIT License — See LICENSE for details
Repository: https://github.com/DawsonInstitute/coherence-gravity-coupling
Issues: https://github.com/DawsonInstitute/coherence-gravity-coupling/issues

For setup help, see Installation Guide. For physics discussions, open an issue or contact project lead.