DawsonInstitute/coherence-gravity-coupling — Investigating the κ_R R F^μν F_μν operator for dark photon constraints
This repository contains theoretical and computational frameworks for investigating the gravitational coupling operator κ_R R F^μν F_μν, where R is the Ricci scalar, F_μν is the electromagnetic field tensor, and κ_R is a dimensionful coupling constant with units [length²].
The κ_R R F² operator emerges naturally in beyond-Standard Model (BSM) theories and provides a unique laboratory probe of spacetime curvature. Our framework:
- Maps BSM parameters to observable electromagnetic signatures
- Derives laboratory constraints from precision electromagnetic measurements
- Predicts curvature amplification in astrophysical environments
- Establishes dark photon connections via effective field theory
New users: See our Installation Guide for complete setup instructions.
# Clone and set up environment
git clone https://github.com/DawsonInstitute/coherence-gravity-coupling.git
cd coherence-gravity-coupling
pip install -r requirements.txt
# Verify installation and run key analysis
python -m pytest tests/ -v
python src/analysis/mass_dependent_dark_photon_mixing.pyBasic Analysis:
from src.analysis.mass_dependent_dark_photon_mixing import MassiveDarkPhotonCurvature
# Laboratory constraint: κ_R < 5×10¹⁷ m² (B = 10 T, R = 10⁻²⁶ m⁻²)
analyzer = MassiveDarkPhotonCurvature()
amplification = analyzer.curvature_amplification_factor(R_lab=1e-26, R_astro=1e-6)
print(f"Magnetar amplification: {amplification:.1e}×") # ~10²⁰× enhancement- Installation Guide — Environment setup, dependencies, troubleshooting
- Build System — LaTeX compilation, make targets, development workflow
- Mathematical Framework — Action principle, field equations, theoretical foundations
- API Reference — Complete code documentation and examples
- coherence_gravity_coupling.tex — Primary theoretical framework (LaTeX)
- null_results.tex — Laboratory null constraints on κ_R
- curvature_em_to_bsm.tex — BSM parameter space mapping
| Analysis | Result | Enhancement | Implementation |
|---|---|---|---|
| Laboratory Constraint | κ_R < 5×10¹⁷ m² | 10¹¹× improvement | [laboratory_constraints.py] |
| Dark Photon Mixing | ε_eff = κ_R R/√(k²+M²) | Mass-dependent | [mass_dependent_dark_photon_mixing.py] |
| Operator Mixing | C_α ~ O(1) | Non-decoupling | [operator_mixing_kappa_alpha.py] |
| Joint Constraints | Marginalized posteriors | UV correlations | [joint_posterior_analysis.py] |
| Astrophysical | 10⁴× (Earth) → 10²⁰× (magnetar) | Curvature scaling | [curvature_amplification.py] |
coherence-gravity-coupling/
├── docs/ # 📚 Modular documentation
│ ├── installation.md # Environment setup guide
│ ├── build_system.md # LaTeX and make workflows
│ ├── mathematical_framework.md # Theoretical foundations
│ └── api_reference.md # Code documentation
├── src/ # 🔬 Physics analysis modules
│ ├── analysis/ # Core physics implementations
│ │ ├── mass_dependent_dark_photon_mixing.py # κ_R → ε_eff mapping
│ │ ├── operator_mixing_kappa_alpha.py # C_α coefficients
│ │ ├── combined_kappa_alpha_constraints.py # Joint analysis
│ │ └── joint_posterior_analysis.py # Bayesian marginalization
│ ├── constraints/ # Laboratory constraint analysis
│ ├── plotting/ # Visualization and figure generation
│ └── utils/ # Utilities and helper functions
├── examples/ # 📖 Tutorials and example calculations
├── tests/ # ✅ Comprehensive test suite
├── figures/ # 📊 Generated plots and visualizations
└── docs/ # 📄 LaTeX papers and related work
├── coherence_gravity_coupling.tex # Main theoretical paper
├── null_results.tex # Laboratory constraints
├── curvature_em_to_bsm.tex # BSM parameter mapping
└── related_papers/ # Literature analysis
Build papers: make papers (see Build System Guide)
Run tests: make test (see Installation Guide)
Physics validation: All modules include validate_*() functions with comprehensive checks
For complete development workflows, dependency management, and troubleshooting, see our Installation Guide.
Modifies Maxwell's equations in curved spacetime:
S = ∫d⁴x √(-g) [-1/(4μ₀) F^μν F_μν + κ_R R F^μν F_μν + ...]
Laboratory constraint: κ_R < 5×10¹⁷ m² (95% CL) — tightest available bound
Astrophysical amplification: 10⁴× (Earth) → 10²⁰× (magnetar) curvature enhancement
Dark photon connection: ε_eff = C_ε κ_R R provides BSM probe
See Mathematical Framework for complete theoretical development.
Primary reference:
@article{CoherenceGravityCoupling2024,
title={Gravitational Coupling to Electromagnetic Fields: Laboratory Constraints and Astrophysical Implications},
author={[Author List]},
journal={arXiv preprint arXiv:2412.02536},
year={2024}
}Related analyses:
- Jorge et al. — Dark photon mass constraints: arXiv:2505.21431
- Carballo-Rubio et al. — Horndeski gravity tests: arXiv:2406.13594
- Gattus et al. — SG-QEA framework: arXiv:2412.02536
MIT License — See LICENSE for details
Repository: https://github.com/DawsonInstitute/coherence-gravity-coupling
Issues: https://github.com/DawsonInstitute/coherence-gravity-coupling/issues
For setup help, see Installation Guide. For physics discussions, open an issue or contact project lead.