Skip to content

Commit b06f0fe

Browse files
committed
setting up slides for qcnn
1 parent 429fe8f commit b06f0fe

File tree

2 files changed

+212
-0
lines changed

2 files changed

+212
-0
lines changed
162 KB
Binary file not shown.
Lines changed: 212 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,212 @@
1+
2+
\documentclass{beamer}
3+
\usetheme{Madrid}
4+
\usecolortheme{seahorse}
5+
\usepackage{amsmath, amsfonts}
6+
\usepackage{graphicx}
7+
\usepackage{tikz}
8+
\usepackage{qcircuit}
9+
\usepackage{caption}
10+
11+
\title[QML with NN]{Quantum Machine Learning with Neural Networks}
12+
\author{Morten Hjorth-Jensen}
13+
\institute{University of Oslo}
14+
\date{\today}
15+
16+
\begin{document}
17+
18+
\begin{frame}
19+
\titlepage
20+
\end{frame}
21+
22+
\begin{frame}{Outline}
23+
\tableofcontents
24+
\end{frame}
25+
26+
\section{Overview of QML}
27+
\begin{frame}{Quantum Machine Learning Landscape}
28+
\begin{itemize}
29+
\item Quantum Data and Classical Data: \( |\psi\rangle \) vs vectors \( \mathbf{x} \in \mathbb{R}^n \)
30+
\item Categories:
31+
\begin{itemize}
32+
\item Quantum-enhanced classical ML
33+
\item Quantum-native ML algorithms
34+
\item Hybrid quantum-classical ML
35+
\end{itemize}
36+
\item Resource-aware quantum learning models
37+
\end{itemize}
38+
\end{frame}
39+
40+
\section{Quantum Computing Recap}
41+
\begin{frame}{Quantum States and Gates}
42+
\begin{itemize}
43+
\item Qubit: \( |\psi\rangle = \alpha|0\rangle + \beta|1\rangle \), \( |\alpha|^2 + |\beta|^2 = 1 \)
44+
\item Common Gates:
45+
\[
46+
H = \frac{1}{\sqrt{2}}\begin{bmatrix}1 & 1\\ 1 & -1\end{bmatrix}, \quad
47+
X = \begin{bmatrix}0 & 1\\ 1 & 0\end{bmatrix}
48+
\]
49+
\item Entanglement via CNOT and multi-qubit systems
50+
\end{itemize}
51+
\end{frame}
52+
53+
\begin{frame}{Quantum Circuit Example}
54+
\[\Qcircuit @C=1em @R=.7em {
55+
\lstick{|0\rangle} & \gate{H} & \ctrl{1} & \qw \\
56+
\lstick{|0\rangle} & \qw & \targ & \qw
57+
}\]
58+
\begin{itemize}
59+
\item Bell state: \( \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \)
60+
\end{itemize}
61+
\end{frame}
62+
63+
\section{Neural Networks and Representational Capacity}
64+
\begin{frame}{Classical Neural Networks Review}
65+
\begin{itemize}
66+
\item Universal approximation theorem
67+
\item Layer-wise structure: \( y = \sigma(Wx + b) \)
68+
\item Deep networks and expressivity
69+
\item Limitations in high-dimensional feature space
70+
\end{itemize}
71+
\end{frame}
72+
73+
\section{Quantum Neural Networks (QNN)}
74+
\begin{frame}{What is a QNN?}
75+
\begin{itemize}
76+
\item Quantum analog of classical NNs using PQCs
77+
\item Data encoding + entangling + variational layer
78+
\item Output via observable measurements
79+
\end{itemize}
80+
\end{frame}
81+
82+
\begin{frame}{Generic QNN Architecture}
83+
\begin{center}
84+
% \includegraphics[width=0.85\linewidth]{qnn_diagram.png}
85+
\end{center}
86+
\captionof{figure}{QNN: Feature map + variational layers + measurement}
87+
\end{frame}
88+
89+
\section{Variational Quantum Circuits (VQCs)}
90+
\begin{frame}{Variational Quantum Circuits}
91+
\begin{itemize}
92+
\item PQCs with parameters \( \theta \)
93+
\item Optimize: \( C(\theta) = \langle \psi(\theta)| \hat{H} |\psi(\theta)\rangle \)
94+
\end{itemize}
95+
\end{frame}
96+
97+
\begin{frame}{Circuit Example: Ansatz Layer}
98+
\[\Qcircuit @C=1em @R=.7em {
99+
\lstick{|x_1\rangle} & \gate{R_Y(x_1)} & \multigate{1}{Entangle} & \gate{R_Y(\theta_1)} & \qw \\
100+
\lstick{|x_2\rangle} & \gate{R_Y(x_2)} & \ghost{Entangle} & \gate{R_Y(\theta_2)} & \qw
101+
}\]
102+
\end{frame}
103+
104+
\section{Training QNNs}
105+
\begin{frame}{Training and Optimization}
106+
\begin{itemize}
107+
\item Gradient via Parameter Shift Rule:
108+
\[ \frac{\partial \langle O \rangle}{\partial \theta} =
109+
\frac{\langle O \rangle_{\theta + \pi/2} - \langle O \rangle_{\theta - \pi/2}}{2} \]
110+
\end{itemize}
111+
\end{frame}
112+
113+
\section{Applications}
114+
\begin{frame}{Applications of QML + NN}
115+
\begin{itemize}
116+
\item Quantum-enhanced classification
117+
\item QGANs, Quantum autoencoders
118+
\item Anomaly detection, Quantum RL
119+
\end{itemize}
120+
\end{frame}
121+
122+
\section{Open Challenges}
123+
\begin{frame}{Challenges in QNNs}
124+
\begin{itemize}
125+
\item Hardware limitations, barren plateaus
126+
\item Hybrid training instability
127+
\end{itemize}
128+
\end{frame}
129+
130+
\section{Conclusion and Future Work}
131+
\begin{frame}{Future Directions}
132+
\begin{itemize}
133+
\item Efficient hybrid architectures
134+
\item Adaptive QNNs and better ansätze
135+
\end{itemize}
136+
\end{frame}
137+
138+
\begin{frame}{Thank You!}
139+
\centering
140+
\Huge Questions?
141+
\end{frame}
142+
143+
144+
% Section: Quantum Convolutional Neural Networks
145+
\section{Quantum Convolutional Neural Networks (QCNNs)}
146+
\begin{frame}{QCNN Architecture}
147+
\begin{itemize}
148+
\item Inspired by classical CNNs for hierarchical feature extraction.
149+
\item Layers include quantum convolution and pooling operations.
150+
\item Reduce qubit counts while preserving quantum information.
151+
\end{itemize}
152+
\end{frame}
153+
154+
\begin{frame}{QCNN Example Circuit}
155+
\begin{itemize}
156+
\item Quantum convolution applies parameterized gates to pairs of qubits.
157+
\item Pooling reduces the system size, e.g., via measurement or entanglement filtering.
158+
\end{itemize}
159+
\begin{center}
160+
% \includegraphics[width=0.75\linewidth]{qcnn_diagram.png}
161+
\end{center}
162+
\captionof{figure}{Illustrative QCNN circuit with convolution and pooling layers.}
163+
\end{frame}
164+
165+
% Section: Quantum Generative Adversarial Networks
166+
\section{Quantum GANs (QGANs)}
167+
\begin{frame}{Quantum GAN Framework}
168+
\begin{itemize}
169+
\item Combines quantum generator and classical or quantum discriminator.
170+
\item Generator learns to produce quantum states matching target distribution.
171+
\item Applications: quantum state preparation, data augmentation.
172+
\end{itemize}
173+
\end{frame}
174+
175+
\begin{frame}{QGAN Architecture}
176+
\begin{center}
177+
% \includegraphics[width=0.8\linewidth]{qgan_diagram.png}
178+
\end{center}
179+
\captionof{figure}{Example QGAN setup with a quantum generator and classical discriminator.}
180+
\end{frame}
181+
182+
% Section: Benchmark Results
183+
\section{Benchmark Results and Performance}
184+
\begin{frame}{Benchmarks in QML Research}
185+
\begin{itemize}
186+
\item Performance metrics: classification accuracy, fidelity, loss convergence.
187+
\item Datasets: quantum-enhanced MNIST, quantum chemistry datasets.
188+
\item Notable results:
189+
\begin{itemize}
190+
\item QNN classifiers outperform classical on small quantum datasets.
191+
\item QCNNs demonstrate improved generalization with fewer qubits.
192+
\item QGANs achieve state fidelity > 95\% on target distributions.
193+
\end{itemize}
194+
\end{itemize}
195+
\end{frame}
196+
197+
\begin{frame}{Example Benchmark Table}
198+
\begin{center}
199+
\begin{tabular}{|c|c|c|c|}
200+
\hline
201+
Model & Dataset & Accuracy (\%) & Qubits Used \\
202+
\hline
203+
QNN & Iris (Quantum Enc.) & 94.3 & 4 \\
204+
QCNN & Quantum MNIST & 89.7 & 6 \\
205+
QGAN & Quantum States & 95.5 (Fidelity) & 5 \\
206+
\hline
207+
\end{tabular}
208+
\end{center}
209+
\captionof{table}{Sample benchmark results for QNN, QCNN, and QGAN models.}
210+
\end{frame}
211+
212+
\end{document}

0 commit comments

Comments
 (0)