|
| 1 | + |
| 2 | +\documentclass{beamer} |
| 3 | +\usetheme{Madrid} |
| 4 | +\usecolortheme{seahorse} |
| 5 | +\usepackage{amsmath, amsfonts} |
| 6 | +\usepackage{graphicx} |
| 7 | +\usepackage{tikz} |
| 8 | +\usepackage{qcircuit} |
| 9 | +\usepackage{caption} |
| 10 | + |
| 11 | +\title[QML with NN]{Quantum Machine Learning with Neural Networks} |
| 12 | +\author{Morten Hjorth-Jensen} |
| 13 | +\institute{University of Oslo} |
| 14 | +\date{\today} |
| 15 | + |
| 16 | +\begin{document} |
| 17 | + |
| 18 | +\begin{frame} |
| 19 | + \titlepage |
| 20 | +\end{frame} |
| 21 | + |
| 22 | +\begin{frame}{Outline} |
| 23 | + \tableofcontents |
| 24 | +\end{frame} |
| 25 | + |
| 26 | +\section{Overview of QML} |
| 27 | +\begin{frame}{Quantum Machine Learning Landscape} |
| 28 | + \begin{itemize} |
| 29 | + \item Quantum Data and Classical Data: \( |\psi\rangle \) vs vectors \( \mathbf{x} \in \mathbb{R}^n \) |
| 30 | + \item Categories: |
| 31 | + \begin{itemize} |
| 32 | + \item Quantum-enhanced classical ML |
| 33 | + \item Quantum-native ML algorithms |
| 34 | + \item Hybrid quantum-classical ML |
| 35 | + \end{itemize} |
| 36 | + \item Resource-aware quantum learning models |
| 37 | + \end{itemize} |
| 38 | +\end{frame} |
| 39 | + |
| 40 | +\section{Quantum Computing Recap} |
| 41 | +\begin{frame}{Quantum States and Gates} |
| 42 | + \begin{itemize} |
| 43 | + \item Qubit: \( |\psi\rangle = \alpha|0\rangle + \beta|1\rangle \), \( |\alpha|^2 + |\beta|^2 = 1 \) |
| 44 | + \item Common Gates: |
| 45 | + \[ |
| 46 | + H = \frac{1}{\sqrt{2}}\begin{bmatrix}1 & 1\\ 1 & -1\end{bmatrix}, \quad |
| 47 | + X = \begin{bmatrix}0 & 1\\ 1 & 0\end{bmatrix} |
| 48 | + \] |
| 49 | + \item Entanglement via CNOT and multi-qubit systems |
| 50 | + \end{itemize} |
| 51 | +\end{frame} |
| 52 | + |
| 53 | +\begin{frame}{Quantum Circuit Example} |
| 54 | +\[\Qcircuit @C=1em @R=.7em { |
| 55 | + \lstick{|0\rangle} & \gate{H} & \ctrl{1} & \qw \\ |
| 56 | + \lstick{|0\rangle} & \qw & \targ & \qw |
| 57 | +}\] |
| 58 | +\begin{itemize} |
| 59 | + \item Bell state: \( \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \) |
| 60 | +\end{itemize} |
| 61 | +\end{frame} |
| 62 | + |
| 63 | +\section{Neural Networks and Representational Capacity} |
| 64 | +\begin{frame}{Classical Neural Networks Review} |
| 65 | + \begin{itemize} |
| 66 | + \item Universal approximation theorem |
| 67 | + \item Layer-wise structure: \( y = \sigma(Wx + b) \) |
| 68 | + \item Deep networks and expressivity |
| 69 | + \item Limitations in high-dimensional feature space |
| 70 | + \end{itemize} |
| 71 | +\end{frame} |
| 72 | + |
| 73 | +\section{Quantum Neural Networks (QNN)} |
| 74 | +\begin{frame}{What is a QNN?} |
| 75 | + \begin{itemize} |
| 76 | + \item Quantum analog of classical NNs using PQCs |
| 77 | + \item Data encoding + entangling + variational layer |
| 78 | + \item Output via observable measurements |
| 79 | + \end{itemize} |
| 80 | +\end{frame} |
| 81 | + |
| 82 | +\begin{frame}{Generic QNN Architecture} |
| 83 | +\begin{center} |
| 84 | +% \includegraphics[width=0.85\linewidth]{qnn_diagram.png} |
| 85 | +\end{center} |
| 86 | +\captionof{figure}{QNN: Feature map + variational layers + measurement} |
| 87 | +\end{frame} |
| 88 | + |
| 89 | +\section{Variational Quantum Circuits (VQCs)} |
| 90 | +\begin{frame}{Variational Quantum Circuits} |
| 91 | + \begin{itemize} |
| 92 | + \item PQCs with parameters \( \theta \) |
| 93 | + \item Optimize: \( C(\theta) = \langle \psi(\theta)| \hat{H} |\psi(\theta)\rangle \) |
| 94 | + \end{itemize} |
| 95 | +\end{frame} |
| 96 | + |
| 97 | +\begin{frame}{Circuit Example: Ansatz Layer} |
| 98 | +\[\Qcircuit @C=1em @R=.7em { |
| 99 | + \lstick{|x_1\rangle} & \gate{R_Y(x_1)} & \multigate{1}{Entangle} & \gate{R_Y(\theta_1)} & \qw \\ |
| 100 | + \lstick{|x_2\rangle} & \gate{R_Y(x_2)} & \ghost{Entangle} & \gate{R_Y(\theta_2)} & \qw |
| 101 | +}\] |
| 102 | +\end{frame} |
| 103 | + |
| 104 | +\section{Training QNNs} |
| 105 | +\begin{frame}{Training and Optimization} |
| 106 | + \begin{itemize} |
| 107 | + \item Gradient via Parameter Shift Rule: |
| 108 | + \[ \frac{\partial \langle O \rangle}{\partial \theta} = |
| 109 | + \frac{\langle O \rangle_{\theta + \pi/2} - \langle O \rangle_{\theta - \pi/2}}{2} \] |
| 110 | + \end{itemize} |
| 111 | +\end{frame} |
| 112 | + |
| 113 | +\section{Applications} |
| 114 | +\begin{frame}{Applications of QML + NN} |
| 115 | + \begin{itemize} |
| 116 | + \item Quantum-enhanced classification |
| 117 | + \item QGANs, Quantum autoencoders |
| 118 | + \item Anomaly detection, Quantum RL |
| 119 | + \end{itemize} |
| 120 | +\end{frame} |
| 121 | + |
| 122 | +\section{Open Challenges} |
| 123 | +\begin{frame}{Challenges in QNNs} |
| 124 | + \begin{itemize} |
| 125 | + \item Hardware limitations, barren plateaus |
| 126 | + \item Hybrid training instability |
| 127 | + \end{itemize} |
| 128 | +\end{frame} |
| 129 | + |
| 130 | +\section{Conclusion and Future Work} |
| 131 | +\begin{frame}{Future Directions} |
| 132 | + \begin{itemize} |
| 133 | + \item Efficient hybrid architectures |
| 134 | + \item Adaptive QNNs and better ansätze |
| 135 | + \end{itemize} |
| 136 | +\end{frame} |
| 137 | + |
| 138 | +\begin{frame}{Thank You!} |
| 139 | + \centering |
| 140 | + \Huge Questions? |
| 141 | +\end{frame} |
| 142 | + |
| 143 | + |
| 144 | +% Section: Quantum Convolutional Neural Networks |
| 145 | +\section{Quantum Convolutional Neural Networks (QCNNs)} |
| 146 | +\begin{frame}{QCNN Architecture} |
| 147 | + \begin{itemize} |
| 148 | + \item Inspired by classical CNNs for hierarchical feature extraction. |
| 149 | + \item Layers include quantum convolution and pooling operations. |
| 150 | + \item Reduce qubit counts while preserving quantum information. |
| 151 | + \end{itemize} |
| 152 | +\end{frame} |
| 153 | + |
| 154 | +\begin{frame}{QCNN Example Circuit} |
| 155 | +\begin{itemize} |
| 156 | + \item Quantum convolution applies parameterized gates to pairs of qubits. |
| 157 | + \item Pooling reduces the system size, e.g., via measurement or entanglement filtering. |
| 158 | +\end{itemize} |
| 159 | +\begin{center} |
| 160 | +% \includegraphics[width=0.75\linewidth]{qcnn_diagram.png} |
| 161 | +\end{center} |
| 162 | +\captionof{figure}{Illustrative QCNN circuit with convolution and pooling layers.} |
| 163 | +\end{frame} |
| 164 | + |
| 165 | +% Section: Quantum Generative Adversarial Networks |
| 166 | +\section{Quantum GANs (QGANs)} |
| 167 | +\begin{frame}{Quantum GAN Framework} |
| 168 | + \begin{itemize} |
| 169 | + \item Combines quantum generator and classical or quantum discriminator. |
| 170 | + \item Generator learns to produce quantum states matching target distribution. |
| 171 | + \item Applications: quantum state preparation, data augmentation. |
| 172 | + \end{itemize} |
| 173 | +\end{frame} |
| 174 | + |
| 175 | +\begin{frame}{QGAN Architecture} |
| 176 | +\begin{center} |
| 177 | +% \includegraphics[width=0.8\linewidth]{qgan_diagram.png} |
| 178 | +\end{center} |
| 179 | +\captionof{figure}{Example QGAN setup with a quantum generator and classical discriminator.} |
| 180 | +\end{frame} |
| 181 | + |
| 182 | +% Section: Benchmark Results |
| 183 | +\section{Benchmark Results and Performance} |
| 184 | +\begin{frame}{Benchmarks in QML Research} |
| 185 | + \begin{itemize} |
| 186 | + \item Performance metrics: classification accuracy, fidelity, loss convergence. |
| 187 | + \item Datasets: quantum-enhanced MNIST, quantum chemistry datasets. |
| 188 | + \item Notable results: |
| 189 | + \begin{itemize} |
| 190 | + \item QNN classifiers outperform classical on small quantum datasets. |
| 191 | + \item QCNNs demonstrate improved generalization with fewer qubits. |
| 192 | + \item QGANs achieve state fidelity > 95\% on target distributions. |
| 193 | + \end{itemize} |
| 194 | + \end{itemize} |
| 195 | +\end{frame} |
| 196 | + |
| 197 | +\begin{frame}{Example Benchmark Table} |
| 198 | +\begin{center} |
| 199 | +\begin{tabular}{|c|c|c|c|} |
| 200 | +\hline |
| 201 | +Model & Dataset & Accuracy (\%) & Qubits Used \\ |
| 202 | +\hline |
| 203 | +QNN & Iris (Quantum Enc.) & 94.3 & 4 \\ |
| 204 | +QCNN & Quantum MNIST & 89.7 & 6 \\ |
| 205 | +QGAN & Quantum States & 95.5 (Fidelity) & 5 \\ |
| 206 | +\hline |
| 207 | +\end{tabular} |
| 208 | +\end{center} |
| 209 | +\captionof{table}{Sample benchmark results for QNN, QCNN, and QGAN models.} |
| 210 | +\end{frame} |
| 211 | + |
| 212 | +\end{document} |
0 commit comments