From 22ca68cf92edbf464cd9c54217576b57e88de79e Mon Sep 17 00:00:00 2001 From: OuChiaYun Date: Mon, 9 Sep 2024 20:39:41 +0800 Subject: [PATCH 1/4] [add] ics code --- breast/ml/ics_aba/ml_RFE_BORUTA.ipynb | 2161 ++++++++ .../ml/ics_aba/ml_RFE_BORUTA_find_geoup.ipynb | 3592 ++++++++++++ .../ics_aba/all_beta_value_GSE243529.ipynb | 4881 +++++++++++++++++ .../ics_aba/filter_TSS_hyper_GSE243529.ipynb | 261 + 4 files changed, 10895 insertions(+) create mode 100644 breast/ml/ics_aba/ml_RFE_BORUTA.ipynb create mode 100644 breast/ml/ics_aba/ml_RFE_BORUTA_find_geoup.ipynb create mode 100644 process/ics_aba/all_beta_value_GSE243529.ipynb create mode 100644 process/ics_aba/filter_TSS_hyper_GSE243529.ipynb diff --git a/breast/ml/ics_aba/ml_RFE_BORUTA.ipynb b/breast/ml/ics_aba/ml_RFE_BORUTA.ipynb new file mode 100644 index 0000000..f863926 --- /dev/null +++ b/breast/ml/ics_aba/ml_RFE_BORUTA.ipynb @@ -0,0 +1,2161 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Bouta + RFECV 進行特徵選擇" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0461_x487_y325_x333_x417_x355_x373_y329_y503_x...61_x171_x179_x131_y51_y39_y151_y225_x85_y199_x
0cg078810410.9369640.9494280.9318670.9275040.9408760.9350680.9438850.9413410.931477...0.9422430.9452630.9357650.9457910.9449680.9464320.9390400.9479150.9251480.908973
1cg035138740.9627190.9522010.9344610.9354500.9535760.9427980.9338520.9453660.940140...0.9537310.9542760.9441590.9647710.9515810.9561530.9597710.9680140.9389310.946057
2cg054518420.0256800.0298570.0214940.0426520.0365310.0268960.0276100.0435610.051736...0.0420910.0394760.0346990.0253500.0244450.0272730.0259660.0248160.0505230.031266
3cg147970420.9624760.9815260.9700980.9787890.9746920.9722800.9846150.9629270.980575...0.9766880.9728890.9756340.9796910.9876200.9733120.9732610.9760110.9737310.961352
4cg098385620.0170290.0173770.0229060.0213990.0296930.0142630.0201670.0132350.014649...0.0126460.0167930.0252780.0152610.0039840.0080680.0115140.0125200.0213040.027372
..................................................................
730294cg198129380.8723710.8871970.8948710.9029360.8753690.8950610.8918720.8940700.864369...0.8807740.8905530.9000910.8936450.8786580.8867230.8982970.8761150.8811850.874934
730295cg062720540.0175870.0116510.0079930.0161880.0142880.0002610.0114620.0129480.008948...0.0165250.0157790.0235840.0146770.0089680.0057190.0084810.0092760.0168650.016004
730296cg072553560.0200570.0190630.0248120.0257760.0305280.0245800.0193380.0278200.021167...0.0228550.0273970.0337440.0186610.0114570.0112550.0231390.0201770.0149280.022536
730297cg242208970.9015990.8946740.9341780.9464100.9369240.9509090.9349240.9154400.928410...0.9081630.9232110.9401200.9407490.9452740.9633180.9483810.9518940.8607620.892109
730298cg123255880.0146320.0155720.0219710.0248340.0171360.0098340.0149740.0182130.013185...0.0124930.0228520.0215910.0111240.0051570.0116350.0121880.0081020.0275240.019300
\n", + "

730299 rows × 419 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 461_x 487_y 325_x 333_x 417_x \\\n", + "0 cg07881041 0.936964 0.949428 0.931867 0.927504 0.940876 \n", + "1 cg03513874 0.962719 0.952201 0.934461 0.935450 0.953576 \n", + "2 cg05451842 0.025680 0.029857 0.021494 0.042652 0.036531 \n", + "3 cg14797042 0.962476 0.981526 0.970098 0.978789 0.974692 \n", + "4 cg09838562 0.017029 0.017377 0.022906 0.021399 0.029693 \n", + "... ... ... ... ... ... ... \n", + "730294 cg19812938 0.872371 0.887197 0.894871 0.902936 0.875369 \n", + "730295 cg06272054 0.017587 0.011651 0.007993 0.016188 0.014288 \n", + "730296 cg07255356 0.020057 0.019063 0.024812 0.025776 0.030528 \n", + "730297 cg24220897 0.901599 0.894674 0.934178 0.946410 0.936924 \n", + "730298 cg12325588 0.014632 0.015572 0.021971 0.024834 0.017136 \n", + "\n", + " 355_x 373_y 329_y 503_x ... 61_x 171_x \\\n", + "0 0.935068 0.943885 0.941341 0.931477 ... 0.942243 0.945263 \n", + "1 0.942798 0.933852 0.945366 0.940140 ... 0.953731 0.954276 \n", + "2 0.026896 0.027610 0.043561 0.051736 ... 0.042091 0.039476 \n", + "3 0.972280 0.984615 0.962927 0.980575 ... 0.976688 0.972889 \n", + "4 0.014263 0.020167 0.013235 0.014649 ... 0.012646 0.016793 \n", + "... ... ... ... ... ... ... ... \n", + "730294 0.895061 0.891872 0.894070 0.864369 ... 0.880774 0.890553 \n", + "730295 0.000261 0.011462 0.012948 0.008948 ... 0.016525 0.015779 \n", + "730296 0.024580 0.019338 0.027820 0.021167 ... 0.022855 0.027397 \n", + "730297 0.950909 0.934924 0.915440 0.928410 ... 0.908163 0.923211 \n", + "730298 0.009834 0.014974 0.018213 0.013185 ... 0.012493 0.022852 \n", + "\n", + " 179_x 131_y 51_y 39_y 151_y 225_x 85_y \\\n", + "0 0.935765 0.945791 0.944968 0.946432 0.939040 0.947915 0.925148 \n", + "1 0.944159 0.964771 0.951581 0.956153 0.959771 0.968014 0.938931 \n", + "2 0.034699 0.025350 0.024445 0.027273 0.025966 0.024816 0.050523 \n", + "3 0.975634 0.979691 0.987620 0.973312 0.973261 0.976011 0.973731 \n", + "4 0.025278 0.015261 0.003984 0.008068 0.011514 0.012520 0.021304 \n", + "... ... ... ... ... ... ... ... \n", + "730294 0.900091 0.893645 0.878658 0.886723 0.898297 0.876115 0.881185 \n", + "730295 0.023584 0.014677 0.008968 0.005719 0.008481 0.009276 0.016865 \n", + "730296 0.033744 0.018661 0.011457 0.011255 0.023139 0.020177 0.014928 \n", + "730297 0.940120 0.940749 0.945274 0.963318 0.948381 0.951894 0.860762 \n", + "730298 0.021591 0.011124 0.005157 0.011635 0.012188 0.008102 0.027524 \n", + "\n", + " 199_x \n", + "0 0.908973 \n", + "1 0.946057 \n", + "2 0.031266 \n", + "3 0.961352 \n", + "4 0.027372 \n", + "... ... \n", + "730294 0.874934 \n", + "730295 0.016004 \n", + "730296 0.022536 \n", + "730297 0.892109 \n", + "730298 0.019300 \n", + "\n", + "[730299 rows x 419 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd \n", + "import numpy as np\n", + "\n", + "df_beta_train = pd.read_csv(\"result/GSE243529_aba/X_train_sorted_0.8.csv\")\n", + "df_beta_train\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0dbetagene
0cg105236790.021226ACADM
1cg207077650.024253ACSL5
2cg195366640.030384ALOX12
3cg149046620.020543ANK1
4cg016996300.024147ARG1
............
87cg166885330.040679STC1
88cg036813350.029692SULT1C2
89cg151005990.023953SUSD4
90cg025691150.028042TIMP2
91cg092764510.021343VASN
\n", + "

92 rows × 3 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 dbeta gene\n", + "0 cg10523679 0.021226 ACADM\n", + "1 cg20707765 0.024253 ACSL5\n", + "2 cg19536664 0.030384 ALOX12\n", + "3 cg14904662 0.020543 ANK1\n", + "4 cg01699630 0.024147 ARG1\n", + ".. ... ... ...\n", + "87 cg16688533 0.040679 STC1\n", + "88 cg03681335 0.029692 SULT1C2\n", + "89 cg15100599 0.023953 SUSD4\n", + "90 cg02569115 0.028042 TIMP2\n", + "91 cg09276451 0.021343 VASN\n", + "\n", + "[92 rows x 3 columns]" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_dbeta = pd.read_csv(\"result/GSE243529_aba/dbeta_0.8_abs_0.02_hyper_TSS.csv\")\n", + "# result_max_per_gene_single_GSE243529_filter001_hyper_TSS\n", + "df_dbeta" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0dbetagene461_x487_y325_x333_x417_x355_x373_y...61_x171_x179_x131_y51_y39_y151_y225_x85_y199_x
0cg105236790.021226ACADM0.1562830.3315030.1528100.1504140.1090730.3632860.358934...0.3148710.3308530.1510550.2905110.4505170.4112010.4010570.1009250.3497730.367914
1cg207077650.024253ACSL50.5768590.5935270.5757430.6073250.6262270.6452830.620381...0.6209040.6532600.5610240.5025700.6225060.5713890.7030080.6202490.5741500.975968
2cg195366640.030384ALOX120.5763940.6959930.4589600.6006160.5756850.6271070.733890...0.6300600.5709890.6872920.5988500.4766700.6035630.7594820.6797860.5894310.893278
3cg149046620.020543ANK10.2227210.3142890.2679260.2939170.2218450.3425980.292339...0.2536500.2548370.3024750.2688410.3268840.3321030.2622080.3120260.3491770.386330
4cg016996300.024147ARG10.3123400.3481380.3212470.4769590.3239770.5007100.430033...0.2399380.2534300.4564110.3609320.4051140.4532820.3570010.4153180.4611950.919652
..................................................................
87cg166885330.040679STC10.7302500.6977440.6577620.6764200.7501900.6138760.399457...0.7029470.6718330.7054850.3516610.2999510.6986420.4319520.7148400.6485630.330089
88cg036813350.029692SULT1C20.3371090.3681810.3172150.4147960.3617860.4652840.385154...0.2884290.4091780.4351370.3776880.4090500.3994430.4578290.3984000.4078440.888858
89cg151005990.023953SUSD40.0834410.1615170.1185180.1855650.1307430.2277580.188190...0.1620860.2167920.2975040.2199600.1015820.0727380.0899680.2133880.2011150.132777
90cg025691150.028042TIMP20.3740210.3275820.2547260.4115660.2840190.3782530.376335...0.2889210.3165860.4459740.3264950.2972870.4154200.4288040.2977150.4105230.548249
91cg092764510.021343VASN0.6232290.6719070.6896850.6196340.6010670.7003960.669830...0.6667850.6557020.6555110.6774060.6626600.7103970.7125880.6778610.7064020.771385
\n", + "

92 rows × 421 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 dbeta gene 461_x 487_y 325_x 333_x \\\n", + "0 cg10523679 0.021226 ACADM 0.156283 0.331503 0.152810 0.150414 \n", + "1 cg20707765 0.024253 ACSL5 0.576859 0.593527 0.575743 0.607325 \n", + "2 cg19536664 0.030384 ALOX12 0.576394 0.695993 0.458960 0.600616 \n", + "3 cg14904662 0.020543 ANK1 0.222721 0.314289 0.267926 0.293917 \n", + "4 cg01699630 0.024147 ARG1 0.312340 0.348138 0.321247 0.476959 \n", + ".. ... ... ... ... ... ... ... \n", + "87 cg16688533 0.040679 STC1 0.730250 0.697744 0.657762 0.676420 \n", + "88 cg03681335 0.029692 SULT1C2 0.337109 0.368181 0.317215 0.414796 \n", + "89 cg15100599 0.023953 SUSD4 0.083441 0.161517 0.118518 0.185565 \n", + "90 cg02569115 0.028042 TIMP2 0.374021 0.327582 0.254726 0.411566 \n", + "91 cg09276451 0.021343 VASN 0.623229 0.671907 0.689685 0.619634 \n", + "\n", + " 417_x 355_x 373_y ... 61_x 171_x 179_x 131_y \\\n", + "0 0.109073 0.363286 0.358934 ... 0.314871 0.330853 0.151055 0.290511 \n", + "1 0.626227 0.645283 0.620381 ... 0.620904 0.653260 0.561024 0.502570 \n", + "2 0.575685 0.627107 0.733890 ... 0.630060 0.570989 0.687292 0.598850 \n", + "3 0.221845 0.342598 0.292339 ... 0.253650 0.254837 0.302475 0.268841 \n", + "4 0.323977 0.500710 0.430033 ... 0.239938 0.253430 0.456411 0.360932 \n", + ".. ... ... ... ... ... ... ... ... \n", + "87 0.750190 0.613876 0.399457 ... 0.702947 0.671833 0.705485 0.351661 \n", + "88 0.361786 0.465284 0.385154 ... 0.288429 0.409178 0.435137 0.377688 \n", + "89 0.130743 0.227758 0.188190 ... 0.162086 0.216792 0.297504 0.219960 \n", + "90 0.284019 0.378253 0.376335 ... 0.288921 0.316586 0.445974 0.326495 \n", + "91 0.601067 0.700396 0.669830 ... 0.666785 0.655702 0.655511 0.677406 \n", + "\n", + " 51_y 39_y 151_y 225_x 85_y 199_x \n", + "0 0.450517 0.411201 0.401057 0.100925 0.349773 0.367914 \n", + "1 0.622506 0.571389 0.703008 0.620249 0.574150 0.975968 \n", + "2 0.476670 0.603563 0.759482 0.679786 0.589431 0.893278 \n", + "3 0.326884 0.332103 0.262208 0.312026 0.349177 0.386330 \n", + "4 0.405114 0.453282 0.357001 0.415318 0.461195 0.919652 \n", + ".. ... ... ... ... ... ... \n", + "87 0.299951 0.698642 0.431952 0.714840 0.648563 0.330089 \n", + "88 0.409050 0.399443 0.457829 0.398400 0.407844 0.888858 \n", + "89 0.101582 0.072738 0.089968 0.213388 0.201115 0.132777 \n", + "90 0.297287 0.415420 0.428804 0.297715 0.410523 0.548249 \n", + "91 0.662660 0.710397 0.712588 0.677861 0.706402 0.771385 \n", + "\n", + "[92 rows x 421 columns]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_mix_train = pd.merge( left= df_dbeta,right=df_beta_train,left_on= 'Unnamed: 0',right_on='Unnamed: 0')\n", + "df_mix_train" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Unnamed: 0 cg10523679 cg20707765 cg19536664 cg14904662 cg01699630 \\\n", + "461_x 0.156283 0.576859 0.576394 0.222721 0.312340 \n", + "487_y 0.331503 0.593527 0.695993 0.314289 0.348138 \n", + "325_x 0.152810 0.575743 0.458960 0.267926 0.321247 \n", + "333_x 0.150414 0.607325 0.600616 0.293917 0.476959 \n", + "417_x 0.109073 0.626227 0.575685 0.221845 0.323977 \n", + "... ... ... ... ... ... \n", + "39_y 0.411201 0.571389 0.603563 0.332103 0.453282 \n", + "151_y 0.401057 0.703008 0.759482 0.262208 0.357001 \n", + "225_x 0.100925 0.620249 0.679786 0.312026 0.415318 \n", + "85_y 0.349773 0.574150 0.589431 0.349177 0.461195 \n", + "199_x 0.367914 0.975968 0.893278 0.386330 0.919652 \n", + "\n", + "Unnamed: 0 cg10377921 cg18060330 cg20674480 cg24982541 cg24764861 ... \\\n", + "461_x 0.393742 0.815689 0.914724 0.230742 0.627185 ... \n", + "487_y 0.407045 0.561691 0.949041 0.357971 0.672861 ... \n", + "325_x 0.394219 0.842087 0.936707 0.231486 0.618265 ... \n", + "333_x 0.450114 0.840694 0.916709 0.335807 0.685013 ... \n", + "417_x 0.380197 0.892236 0.873232 0.345626 0.625547 ... \n", + "... ... ... ... ... ... ... \n", + "39_y 0.456506 0.891535 0.928281 0.392639 0.639525 ... \n", + "151_y 0.474079 0.922412 0.918779 0.510913 0.756685 ... \n", + "225_x 0.433571 0.938184 0.932145 0.176984 0.646655 ... \n", + "85_y 0.458418 0.882092 0.945029 0.335210 0.680202 ... \n", + "199_x 0.930808 0.891062 0.931684 0.841409 0.686480 ... \n", + "\n", + "Unnamed: 0 cg09781944 cg23731272 cg01281718 cg02547394 cg07464716 \\\n", + "461_x 0.085909 0.609298 0.686658 0.170133 0.504422 \n", + "487_y 0.186770 0.604878 0.735083 0.297245 0.504753 \n", + "325_x 0.170018 0.543464 0.715229 0.254074 0.522355 \n", + "333_x 0.213401 0.650464 0.684382 0.266076 0.893958 \n", + "417_x 0.127510 0.802013 0.725083 0.210871 0.803803 \n", + "... ... ... ... ... ... \n", + "39_y 0.157961 0.888372 0.726466 0.259769 0.853017 \n", + "151_y 0.167884 0.665218 0.861973 0.211013 0.917704 \n", + "225_x 0.174373 0.577241 0.671105 0.279248 0.860024 \n", + "85_y 0.246304 0.522871 0.742267 0.310625 0.563277 \n", + "199_x 0.213305 0.638750 0.957773 0.366142 0.944030 \n", + "\n", + "Unnamed: 0 cg16688533 cg03681335 cg15100599 cg02569115 cg09276451 \n", + "461_x 0.730250 0.337109 0.083441 0.374021 0.623229 \n", + "487_y 0.697744 0.368181 0.161517 0.327582 0.671907 \n", + "325_x 0.657762 0.317215 0.118518 0.254726 0.689685 \n", + "333_x 0.676420 0.414796 0.185565 0.411566 0.619634 \n", + "417_x 0.750190 0.361786 0.130743 0.284019 0.601067 \n", + "... ... ... ... ... ... \n", + "39_y 0.698642 0.399443 0.072738 0.415420 0.710397 \n", + "151_y 0.431952 0.457829 0.089968 0.428804 0.712588 \n", + "225_x 0.714840 0.398400 0.213388 0.297715 0.677861 \n", + "85_y 0.648563 0.407844 0.201115 0.410523 0.706402 \n", + "199_x 0.330089 0.888858 0.132777 0.548249 0.771385 \n", + "\n", + "[418 rows x 92 columns]\n" + ] + } + ], + "source": [ + "\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "\n", + "X_train = df_mix_train.drop(columns=[\"Unnamed: 0\",\"dbeta\",\"gene\"])\n", + "X_train = X_train.T\n", + "\n", + "X_train_normal_count = 210\n", + "\n", + "if (X_train_normal_count):\n", + " y_train = [(0 if i < (X_train_normal_count) else 1) for i in range(len(X_train))]\n", + " \n", + "X_train = X_train.T\n", + "\n", + "\n", + "X_train = pd.concat([ df_mix_train[\"Unnamed: 0\"], X_train], axis=1)\n", + "X_train.set_index(\"Unnamed: 0\", inplace=True)\n", + "\n", + "X_train = X_train.T\n", + "\n", + "X_train\n", + "print(X_train)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train accuracy (Random Forest): 0.7482\n", + "Test accuracy (Random Forest): 0.7010\n" + ] + } + ], + "source": [ + "from sklearn.ensemble import RandomForestClassifier\n", + "from sklearn.model_selection import cross_validate\n", + "\n", + "# 初始化隨機森林模型\n", + "random_forest = RandomForestClassifier(random_state=42)\n", + "\n", + "# 手動調整隨機森林模型參數\n", + "random_forest.set_params(n_estimators=155, max_depth=2, min_samples_split=2, min_samples_leaf=35)\n", + "# 180/2/2/35\n", + "# 150/2/2/35\n", + "# 使用交叉驗證,並同時返回訓練集和測試集的準確率\n", + "cv_results = cross_validate(random_forest, X_train, y_train, cv=5, scoring='accuracy', return_train_score=True)\n", + "\n", + "# 輸出調整後的訓練集和測試集的交叉驗證平均準確率\n", + "print(f\"Train accuracy (Random Forest): {cv_results['train_score'].mean():.4f}\")\n", + "print(f\"Test accuracy (Random Forest): {cv_results['test_score'].mean():.4f}\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: boruta in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (0.3)Note: you may need to restart the kernel to use updated packages.\n", + "\n", + "Requirement already satisfied: numpy>=1.10.4 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from boruta) (1.23.5)\n", + "Requirement already satisfied: scikit-learn>=0.17.1 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from boruta) (1.3.2)\n", + "Requirement already satisfied: scipy>=0.17.0 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from boruta) (1.10.1)\n", + "Requirement already satisfied: joblib>=1.1.1 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-learn>=0.17.1->boruta) (1.3.2)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-learn>=0.17.1->boruta) (3.2.0)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING: Ignoring invalid distribution -uggingface-hub (c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages)\n", + "WARNING: Ignoring invalid distribution -uggingface-hub (c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages)\n", + "\n", + "[notice] A new release of pip is available: 24.0 -> 24.2\n", + "[notice] To update, run: python.exe -m pip install --upgrade pip\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: scikit-optimize in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (0.10.2)\n", + "Requirement already satisfied: joblib>=0.11 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-optimize) (1.3.2)\n", + "Requirement already satisfied: pyaml>=16.9 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-optimize) (24.7.0)\n", + "Requirement already satisfied: numpy>=1.20.3 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-optimize) (1.23.5)\n", + "Requirement already satisfied: scipy>=1.1.0 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-optimize) (1.10.1)\n", + "Requirement already satisfied: scikit-learn>=1.0.0 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-optimize) (1.3.2)\n", + "Requirement already satisfied: packaging>=21.3 in c:\\users\\user\\appdata\\roaming\\python\\python310\\site-packages (from scikit-optimize) (21.3)\n", + "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in c:\\users\\user\\appdata\\roaming\\python\\python310\\site-packages (from packaging>=21.3->scikit-optimize) (3.0.9)\n", + "Requirement already satisfied: PyYAML in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from pyaml>=16.9->scikit-optimize) (6.0)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-learn>=1.0.0->scikit-optimize) (3.2.0)\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING: Ignoring invalid distribution -uggingface-hub (c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages)\n", + "WARNING: Ignoring invalid distribution -uggingface-hub (c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages)\n", + "\n", + "[notice] A new release of pip is available: 24.0 -> 24.2\n", + "[notice] To update, run: python.exe -m pip install --upgrade pip\n" + ] + } + ], + "source": [ + "%pip install boruta\n", + "%pip install scikit-optimize\n" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "最佳參數組合: [1.55788216e+02 3.05287910e+00 4.79438674e+00 2.01111499e+01\n", + " 4.41602468e-02]\n", + "最佳目標值 (最小化的F1損失): -0.7340059976185509\n" + ] + } + ], + "source": [ + "from scipy.optimize import dual_annealing\n", + "from sklearn.ensemble import RandomForestClassifier\n", + "from sklearn.model_selection import cross_val_score\n", + "import numpy as np\n", + "\n", + "# 定義目標函數,該函數通過5折交叉驗證來評估每個參數組合的性能\n", + "def objective(params):\n", + " # 將參數轉換為整數\n", + " n_estimators = int(params[0])\n", + " max_depth = int(params[1])\n", + " min_samples_split = int(params[2])\n", + " min_samples_leaf = int(params[3])\n", + " bootstrap = bool(params[4])\n", + "\n", + " clf = RandomForestClassifier(\n", + " n_estimators=n_estimators,\n", + " max_depth=max_depth,\n", + " min_samples_split=min_samples_split,\n", + " min_samples_leaf=min_samples_leaf,\n", + " bootstrap=bootstrap,\n", + " n_jobs=-1,\n", + " random_state=42\n", + " )\n", + "\n", + " # 使用5折交叉驗證來評估模型的F1分數,並返回負的平均分數(因為我們希望最小化)\n", + " score = -cross_val_score(clf, X_train, y_train, cv=5, scoring='f1').mean()\n", + " return score\n", + "\n", + "# 定義參數空間的範圍\n", + "param_bounds = [\n", + " (145, 185), # n_estimators 的範圍,避免過多的樹\n", + " (2, 4), # max_depth 的範圍,進一步限制樹的最大深度\n", + " (2, 7), # min_samples_split 的範圍\n", + " (20, 40), # min_samples_leaf 的範圍\n", + " (0, 1) # bootstrap (0 表示 False,1 表示 True)\n", + "]\n", + "\n", + "# 使用 dual_annealing 進行模擬退火優化\n", + "result = dual_annealing(\n", + " objective, # 目標函數\n", + " param_bounds, # 參數空間\n", + " maxiter=30, # 模擬退火的最大迭代次數\n", + " seed=42\n", + ")\n", + "\n", + "# 最佳結果\n", + "print(\"最佳參數組合:\", result.x)\n", + "print(\"最佳目標值 (最小化的F1損失):\", result.fun)" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
RandomForestClassifier(max_depth=3, min_samples_leaf=20, min_samples_split=4,\n",
+       "                       n_estimators=155, n_jobs=-1, random_state=42)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "RandomForestClassifier(max_depth=3, min_samples_leaf=20, min_samples_split=4,\n", + " n_estimators=155, n_jobs=-1, random_state=42)" + ] + }, + "execution_count": 91, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "best_rf = RandomForestClassifier(\n", + " n_estimators=int(result.x[0]), # 需要將浮點數轉換為整數\n", + " max_depth=int(result.x[1]),\n", + " min_samples_split=int(result.x[2]),\n", + " min_samples_leaf=int(result.x[3]),\n", + " bootstrap=bool(result.x[4]), # 需要將0或1轉換為布爾值\n", + " n_jobs=-1,\n", + " random_state=42\n", + ")\n", + "\n", + "best_rf" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "5-fold CV accuracy scores with best hyperparameters: [0.74157303 0.74157303 0.68 0.72527473 0.7816092 ]\n", + "f1: 0.7340059976185509\n" + ] + } + ], + "source": [ + "# 用最佳參數再次進行5折交叉驗證,這次用來評估最終結果\n", + "from sklearn.model_selection import cross_val_predict\n", + "\n", + "cv_scores = cross_val_score(best_rf, X_train, y_train, cv=5, scoring='f1')\n", + "predictions = cross_val_predict(best_rf, X_train, y_train, cv=5)\n", + "\n", + "# 打印五折交叉驗證結果和預測\n", + "print(f'5-fold CV accuracy scores with best hyperparameters: {cv_scores}')\n", + "print(f'f1: {np.mean(cv_scores)}')\n", + "# print(f'Predictions from 5-fold CV with best hyperparameters: {predictions}')" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Average train accuracy: 0.8114085937817261\n", + "Average test accuracy: 0.7340059976185509\n" + ] + } + ], + "source": [ + "from sklearn.model_selection import cross_validate\n", + "# 使用 cross_validate 來同時獲取訓練和測試的準確率\n", + "cv_results = cross_validate(best_rf, X_train, y_train, cv=5, scoring='f1', return_train_score=True)\n", + "\n", + "# 取得訓練準確率和測試準確率\n", + "train_accuracy = cv_results['train_score']\n", + "test_accuracy = cv_results['test_score']\n", + "\n", + "# 分別輸出訓練準確率和測試準確率的平均值\n", + "print(\"Average train accuracy:\", train_accuracy.mean())\n", + "print(\"Average test accuracy:\", test_accuracy.mean())" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration: \t1 / 100\n", + "Confirmed: \t0\n", + "Tentative: \t92\n", + "Rejected: \t0\n", + "Iteration: \t2 / 100\n", + "Confirmed: \t0\n", + "Tentative: \t92\n", + "Rejected: \t0\n", + "Iteration: \t3 / 100\n", + "Confirmed: \t0\n", + "Tentative: \t92\n", + "Rejected: \t0\n", + "Iteration: \t4 / 100\n", + "Confirmed: \t0\n", + "Tentative: \t92\n", + "Rejected: \t0\n", + "Iteration: \t5 / 100\n", + "Confirmed: \t0\n", + "Tentative: \t92\n", + "Rejected: \t0\n", + "Iteration: \t6 / 100\n", + "Confirmed: \t0\n", + "Tentative: \t92\n", + "Rejected: \t0\n", + "Iteration: \t7 / 100\n", + "Confirmed: \t0\n", + "Tentative: \t92\n", + "Rejected: \t0\n", + "Iteration: \t8 / 100\n", + "Confirmed: \t17\n", + "Tentative: \t41\n", + "Rejected: \t34\n", + "Iteration: \t9 / 100\n", + "Confirmed: \t17\n", + "Tentative: \t41\n", + "Rejected: \t34\n", + "Iteration: \t10 / 100\n", + "Confirmed: \t17\n", + "Tentative: \t41\n", + "Rejected: \t34\n", + "Iteration: \t11 / 100\n", + "Confirmed: \t17\n", + "Tentative: \t41\n", + "Rejected: \t34\n", + "Iteration: \t12 / 100\n", + "Confirmed: \t21\n", + "Tentative: \t28\n", + "Rejected: \t43\n", + "Iteration: \t13 / 100\n", + "Confirmed: \t21\n", + "Tentative: \t28\n", + "Rejected: \t43\n", + "Iteration: \t14 / 100\n", + "Confirmed: \t21\n", + "Tentative: \t28\n", + "Rejected: \t43\n", + "Iteration: \t15 / 100\n", + "Confirmed: \t21\n", + "Tentative: \t28\n", + "Rejected: \t43\n", + "Iteration: \t16 / 100\n", + "Confirmed: \t21\n", + "Tentative: \t28\n", + "Rejected: \t43\n", + "Iteration: \t17 / 100\n", + "Confirmed: \t21\n", + "Tentative: \t28\n", + "Rejected: \t43\n", + "Iteration: \t18 / 100\n", + "Confirmed: \t21\n", + "Tentative: \t27\n", + "Rejected: \t44\n", + "Iteration: \t19 / 100\n", + "Confirmed: \t21\n", + "Tentative: \t27\n", + "Rejected: \t44\n", + "Iteration: \t20 / 100\n", + "Confirmed: \t21\n", + "Tentative: \t27\n", + "Rejected: \t44\n", + "Iteration: \t21 / 100\n", + "Confirmed: \t21\n", + "Tentative: \t26\n", + "Rejected: \t45\n", + "Iteration: \t22 / 100\n", + "Confirmed: \t22\n", + "Tentative: \t21\n", + "Rejected: \t49\n", + "Iteration: \t23 / 100\n", + "Confirmed: \t22\n", + "Tentative: \t21\n", + "Rejected: \t49\n", + "Iteration: \t24 / 100\n", + "Confirmed: \t22\n", + "Tentative: \t21\n", + "Rejected: \t49\n", + "Iteration: \t25 / 100\n", + "Confirmed: \t22\n", + "Tentative: \t21\n", + "Rejected: \t49\n", + "Iteration: \t26 / 100\n", + "Confirmed: \t22\n", + "Tentative: \t19\n", + "Rejected: \t51\n", + "Iteration: \t27 / 100\n", + "Confirmed: \t22\n", + "Tentative: \t19\n", + "Rejected: \t51\n", + "Iteration: \t28 / 100\n", + "Confirmed: \t22\n", + "Tentative: \t19\n", + "Rejected: \t51\n", + "Iteration: \t29 / 100\n", + "Confirmed: \t22\n", + "Tentative: \t17\n", + "Rejected: \t53\n", + "Iteration: \t30 / 100\n", + "Confirmed: \t22\n", + "Tentative: \t17\n", + "Rejected: \t53\n", + "Iteration: \t31 / 100\n", + "Confirmed: \t22\n", + "Tentative: \t17\n", + "Rejected: \t53\n", + "Iteration: \t32 / 100\n", + "Confirmed: \t22\n", + "Tentative: \t17\n", + "Rejected: \t53\n", + "Iteration: \t33 / 100\n", + "Confirmed: \t22\n", + "Tentative: \t17\n", + "Rejected: \t53\n", + "Iteration: \t34 / 100\n", + "Confirmed: \t23\n", + "Tentative: \t16\n", + "Rejected: \t53\n", + "Iteration: \t35 / 100\n", + "Confirmed: \t23\n", + "Tentative: \t15\n", + "Rejected: \t54\n", + "Iteration: \t36 / 100\n", + "Confirmed: \t23\n", + "Tentative: \t15\n", + "Rejected: \t54\n", + "Iteration: \t37 / 100\n", + "Confirmed: \t23\n", + "Tentative: \t15\n", + "Rejected: \t54\n", + "Iteration: \t38 / 100\n", + "Confirmed: \t23\n", + "Tentative: \t15\n", + "Rejected: \t54\n", + "Iteration: \t39 / 100\n", + "Confirmed: \t23\n", + "Tentative: \t15\n", + "Rejected: \t54\n", + "Iteration: \t40 / 100\n", + "Confirmed: \t23\n", + "Tentative: \t15\n", + "Rejected: \t54\n", + "Iteration: \t41 / 100\n", + "Confirmed: \t23\n", + "Tentative: \t15\n", + "Rejected: \t54\n", + "Iteration: \t42 / 100\n", + "Confirmed: \t23\n", + "Tentative: \t15\n", + "Rejected: \t54\n", + "Iteration: \t43 / 100\n", + "Confirmed: \t24\n", + "Tentative: \t14\n", + "Rejected: \t54\n", + "Iteration: \t44 / 100\n", + "Confirmed: \t24\n", + "Tentative: \t14\n", + "Rejected: \t54\n", + "Iteration: \t45 / 100\n", + "Confirmed: \t24\n", + "Tentative: \t14\n", + "Rejected: \t54\n", + "Iteration: \t46 / 100\n", + "Confirmed: \t24\n", + "Tentative: \t14\n", + "Rejected: \t54\n", + "Iteration: \t47 / 100\n", + "Confirmed: \t24\n", + "Tentative: \t14\n", + "Rejected: \t54\n", + "Iteration: \t48 / 100\n", + "Confirmed: \t24\n", + "Tentative: \t14\n", + "Rejected: \t54\n", + "Iteration: \t49 / 100\n", + "Confirmed: \t24\n", + "Tentative: \t14\n", + "Rejected: \t54\n", + "Iteration: \t50 / 100\n", + "Confirmed: \t24\n", + "Tentative: \t14\n", + "Rejected: \t54\n", + "Iteration: \t51 / 100\n", + "Confirmed: \t24\n", + "Tentative: \t13\n", + "Rejected: \t55\n", + "Iteration: \t52 / 100\n", + "Confirmed: \t24\n", + "Tentative: \t13\n", + "Rejected: \t55\n", + "Iteration: \t53 / 100\n", + "Confirmed: \t24\n", + "Tentative: \t13\n", + "Rejected: \t55\n", + "Iteration: \t54 / 100\n", + "Confirmed: \t25\n", + "Tentative: \t12\n", + "Rejected: \t55\n", + "Iteration: \t55 / 100\n", + "Confirmed: \t25\n", + "Tentative: \t12\n", + "Rejected: \t55\n", + "Iteration: \t56 / 100\n", + "Confirmed: \t25\n", + "Tentative: \t12\n", + "Rejected: \t55\n", + "Iteration: \t57 / 100\n", + "Confirmed: \t25\n", + "Tentative: \t12\n", + "Rejected: \t55\n", + "Iteration: \t58 / 100\n", + "Confirmed: \t25\n", + "Tentative: \t12\n", + "Rejected: \t55\n", + "Iteration: \t59 / 100\n", + "Confirmed: \t25\n", + "Tentative: \t12\n", + "Rejected: \t55\n", + "Iteration: \t60 / 100\n", + "Confirmed: \t25\n", + "Tentative: \t12\n", + "Rejected: \t55\n", + "Iteration: \t61 / 100\n", + "Confirmed: \t25\n", + "Tentative: \t12\n", + "Rejected: \t55\n", + "Iteration: \t62 / 100\n", + "Confirmed: \t25\n", + "Tentative: \t12\n", + "Rejected: \t55\n", + "Iteration: \t63 / 100\n", + "Confirmed: \t25\n", + "Tentative: \t12\n", + "Rejected: \t55\n", + "Iteration: \t64 / 100\n", + "Confirmed: \t25\n", + "Tentative: \t12\n", + "Rejected: \t55\n", + "Iteration: \t65 / 100\n", + "Confirmed: \t25\n", + "Tentative: \t12\n", + "Rejected: \t55\n", + "Iteration: \t66 / 100\n", + "Confirmed: \t25\n", + "Tentative: \t12\n", + "Rejected: \t55\n", + "Iteration: \t67 / 100\n", + "Confirmed: \t25\n", + "Tentative: \t12\n", + "Rejected: \t55\n", + "Iteration: \t68 / 100\n", + "Confirmed: \t25\n", + "Tentative: \t12\n", + "Rejected: \t55\n", + "Iteration: \t69 / 100\n", + "Confirmed: \t25\n", + "Tentative: \t12\n", + "Rejected: \t55\n", + "Iteration: \t70 / 100\n", + "Confirmed: \t25\n", + "Tentative: \t12\n", + "Rejected: \t55\n", + "Iteration: \t71 / 100\n", + "Confirmed: \t25\n", + "Tentative: \t12\n", + "Rejected: \t55\n", + "Iteration: \t72 / 100\n", + "Confirmed: \t25\n", + "Tentative: \t12\n", + "Rejected: \t55\n", + "Iteration: \t73 / 100\n", + "Confirmed: \t25\n", + "Tentative: \t12\n", + "Rejected: \t55\n", + "Iteration: \t74 / 100\n", + "Confirmed: \t25\n", + "Tentative: \t12\n", + "Rejected: \t55\n", + "Iteration: \t75 / 100\n", + "Confirmed: \t26\n", + "Tentative: \t11\n", + "Rejected: \t55\n", + "Iteration: \t76 / 100\n", + "Confirmed: \t26\n", + "Tentative: \t11\n", + "Rejected: \t55\n", + "Iteration: \t77 / 100\n", + "Confirmed: \t26\n", + "Tentative: \t11\n", + "Rejected: \t55\n", + "Iteration: \t78 / 100\n", + "Confirmed: \t26\n", + "Tentative: \t11\n", + "Rejected: \t55\n", + "Iteration: \t79 / 100\n", + "Confirmed: \t26\n", + "Tentative: \t11\n", + "Rejected: \t55\n", + "Iteration: \t80 / 100\n", + "Confirmed: \t26\n", + "Tentative: \t11\n", + "Rejected: \t55\n", + "Iteration: \t81 / 100\n", + "Confirmed: \t26\n", + "Tentative: \t11\n", + "Rejected: \t55\n", + "Iteration: \t82 / 100\n", + "Confirmed: \t26\n", + "Tentative: \t11\n", + "Rejected: \t55\n", + "Iteration: \t83 / 100\n", + "Confirmed: \t26\n", + "Tentative: \t11\n", + "Rejected: \t55\n", + "Iteration: \t84 / 100\n", + "Confirmed: \t26\n", + "Tentative: \t11\n", + "Rejected: \t55\n", + "Iteration: \t85 / 100\n", + "Confirmed: \t26\n", + "Tentative: \t11\n", + "Rejected: \t55\n", + "Iteration: \t86 / 100\n", + "Confirmed: \t26\n", + "Tentative: \t11\n", + "Rejected: \t55\n", + "Iteration: \t87 / 100\n", + "Confirmed: \t26\n", + "Tentative: \t11\n", + "Rejected: \t55\n", + "Iteration: \t88 / 100\n", + "Confirmed: \t27\n", + "Tentative: \t10\n", + "Rejected: \t55\n", + "Iteration: \t89 / 100\n", + "Confirmed: \t27\n", + "Tentative: \t10\n", + "Rejected: \t55\n", + "Iteration: \t90 / 100\n", + "Confirmed: \t27\n", + "Tentative: \t10\n", + "Rejected: \t55\n", + "Iteration: \t91 / 100\n", + "Confirmed: \t27\n", + "Tentative: \t10\n", + "Rejected: \t55\n", + "Iteration: \t92 / 100\n", + "Confirmed: \t27\n", + "Tentative: \t10\n", + "Rejected: \t55\n", + "Iteration: \t93 / 100\n", + "Confirmed: \t27\n", + "Tentative: \t10\n", + "Rejected: \t55\n", + "Iteration: \t94 / 100\n", + "Confirmed: \t27\n", + "Tentative: \t10\n", + "Rejected: \t55\n", + "Iteration: \t95 / 100\n", + "Confirmed: \t27\n", + "Tentative: \t10\n", + "Rejected: \t55\n", + "Iteration: \t96 / 100\n", + "Confirmed: \t27\n", + "Tentative: \t10\n", + "Rejected: \t55\n", + "Iteration: \t97 / 100\n", + "Confirmed: \t27\n", + "Tentative: \t10\n", + "Rejected: \t55\n", + "Iteration: \t98 / 100\n", + "Confirmed: \t27\n", + "Tentative: \t10\n", + "Rejected: \t55\n", + "Iteration: \t99 / 100\n", + "Confirmed: \t27\n", + "Tentative: \t10\n", + "Rejected: \t55\n", + "\n", + "\n", + "BorutaPy finished running.\n", + "\n", + "Iteration: \t100 / 100\n", + "Confirmed: \t27\n", + "Tentative: \t6\n", + "Rejected: \t55\n", + "Selected Features DataFrame:\n", + "Unnamed: 0 cg20674480 cg17901584 cg25707994 cg19935065 cg12323347 \\\n", + "461_x 0.914724 0.327077 0.035647 0.325659 0.154194 \n", + "487_y 0.949041 0.393983 0.086751 0.495523 0.176463 \n", + "325_x 0.936707 0.299819 0.060838 0.403879 0.211228 \n", + "333_x 0.916709 0.544419 0.111465 0.473527 0.211545 \n", + "417_x 0.873232 0.354998 0.060698 0.415195 0.181257 \n", + "\n", + "Unnamed: 0 cg13379236 cg24153763 cg27298252 cg02676175 cg09771049 ... \\\n", + "461_x 0.589579 0.196649 0.313633 0.381772 0.047482 ... \n", + "487_y 0.607273 0.168124 0.362876 0.442249 0.081584 ... \n", + "325_x 0.560331 0.229495 0.423385 0.540532 0.069079 ... \n", + "333_x 0.644661 0.174285 0.371073 0.575454 0.147341 ... \n", + "417_x 0.602843 0.209520 0.403555 0.438190 0.057319 ... \n", + "\n", + "Unnamed: 0 cg11162385 cg02944871 cg09555736 cg00603498 cg09781944 \\\n", + "461_x 0.046113 0.411984 0.298216 0.040772 0.085909 \n", + "487_y 0.081694 0.549299 0.417497 0.165181 0.186770 \n", + "325_x 0.054661 0.407214 0.346972 0.062054 0.170018 \n", + "333_x 0.154179 0.375487 0.430103 0.153731 0.213401 \n", + "417_x 0.062713 0.435923 0.401915 0.077566 0.127510 \n", + "\n", + "Unnamed: 0 cg01281718 cg02547394 cg03681335 cg15100599 cg09276451 \n", + "461_x 0.686658 0.170133 0.337109 0.083441 0.623229 \n", + "487_y 0.735083 0.297245 0.368181 0.161517 0.671907 \n", + "325_x 0.715229 0.254074 0.317215 0.118518 0.689685 \n", + "333_x 0.684382 0.266076 0.414796 0.185565 0.619634 \n", + "417_x 0.725083 0.210871 0.361786 0.130743 0.601067 \n", + "\n", + "[5 rows x 27 columns]\n", + "Selected Features: ['cg20674480', 'cg17901584', 'cg25707994', 'cg19935065', 'cg12323347', 'cg13379236', 'cg24153763', 'cg27298252', 'cg02676175', 'cg09771049', 'cg14900246', 'cg11207300', 'cg13883633', 'cg04927004', 'cg02355304', 'cg09082617', 'cg24911721', 'cg11162385', 'cg02944871', 'cg09555736', 'cg00603498', 'cg09781944', 'cg01281718', 'cg02547394', 'cg03681335', 'cg15100599', 'cg09276451']\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "from sklearn.ensemble import RandomForestClassifier\n", + "from boruta import BorutaPy\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "# 初始化隨機森林分類器\n", + "rf = best_rf\n", + "\n", + "# 初始化 Boruta\n", + "boruta = BorutaPy(rf, n_estimators='auto', verbose=2, random_state=42)\n", + "\n", + "# 執行特徵選擇\n", + "# X_train.to_csv(\"t.csv\")\n", + "# print(X_train.values)\n", + "\n", + "y_train = np.array(y_train)\n", + "boruta.fit(X_train.values, y_train)\n", + "\n", + "# 獲取選中的特徵\n", + "X_selected = X_train.iloc[:, boruta.support_]\n", + "\n", + "# 打印選中的特徵\n", + "print(\"Selected Features DataFrame:\")\n", + "print(X_selected.head())\n", + "\n", + "selected_features = X_train.columns[boruta.support_]\n", + "print(\"Selected Features: %s\" % list(selected_features))\n", + "\n", + "# 獲取特徵的排名\n", + "ranking = boruta.ranking_[boruta.support_]\n", + "\n", + "# 將特徵及其排名組成 DataFrame\n", + "features_df = pd.DataFrame({\n", + " 'boruta_feature': selected_features,\n", + "})\n" + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Sorted Selected Features with Rankings:\n", + " boruta_feature\n", + "0 cg20674480\n", + "1 cg17901584\n", + "2 cg25707994\n", + "3 cg19935065\n", + "4 cg12323347\n", + "5 cg13379236\n", + "6 cg24153763\n", + "7 cg27298252\n", + "8 cg02676175\n", + "9 cg09771049\n", + "10 cg14900246\n", + "11 cg11207300\n", + "12 cg13883633\n", + "13 cg04927004\n", + "14 cg02355304\n", + "15 cg09082617\n", + "16 cg24911721\n", + "17 cg11162385\n", + "18 cg02944871\n", + "19 cg09555736\n", + "20 cg00603498\n", + "21 cg09781944\n", + "22 cg01281718\n", + "23 cg02547394\n", + "24 cg03681335\n", + "25 cg15100599\n", + "26 cg09276451\n" + ] + } + ], + "source": [ + "# 打印排序後的特徵名稱和排名\n", + "print(\"Sorted Selected Features with Rankings:\")\n", + "print(features_df)" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RFECV Selected Features: ['cg25707994', 'cg19935065', 'cg13379236', 'cg02676175', 'cg11207300', 'cg02355304', 'cg24911721', 'cg00603498', 'cg02547394', 'cg15100599']\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "from sklearn.ensemble import RandomForestClassifier\n", + "from boruta import BorutaPy\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.feature_selection import RFECV\n", + "from sklearn.metrics import classification_report,make_scorer,f1_score\n", + "\n", + "\n", + "rf = best_rf\n", + "\n", + "scoror = make_scorer(f1_score, average='macro')\n", + "\n", + "rfecv = RFECV(estimator=rf, step=1, cv=5, scoring=scoror)\n", + "# rfecv = RFECV(estimator=rf, step=1, cv=5, scoring='accuracy')\n", + "rfecv.fit(X_train, y_train)\n", + "\n", + "# 獲取 RFECV 選中的特徵\n", + "rfecv_features = X_train.columns[rfecv.support_]\n", + "print(\"RFECV Selected Features: %s\" % list(rfecv_features))\n", + "\n", + "rfecv_features_df=pd.DataFrame({\n", + " 'rfecv_feature': rfecv_features,\n", + "})\n" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " rfecv_feature\n", + "0 cg25707994\n", + "1 cg19935065\n", + "2 cg13379236\n", + "3 cg02676175\n", + "4 cg11207300\n", + "5 cg02355304\n", + "6 cg24911721\n", + "7 cg00603498\n", + "8 cg02547394\n", + "9 cg15100599\n", + "10\n" + ] + } + ], + "source": [ + "print(rfecv_features_df)\n", + "print(len(rfecv_features))" + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " boruta_feature rfecv_feature\n", + "0 cg20674480 NaN\n", + "1 cg17901584 NaN\n", + "2 cg25707994 cg25707994\n", + "3 cg19935065 cg19935065\n", + "4 cg12323347 NaN\n", + "5 cg13379236 cg13379236\n", + "6 cg24153763 NaN\n", + "7 cg27298252 NaN\n", + "8 cg02676175 cg02676175\n", + "9 cg09771049 NaN\n", + "10 cg14900246 NaN\n", + "11 cg11207300 cg11207300\n", + "12 cg13883633 NaN\n", + "13 cg04927004 NaN\n", + "14 cg02355304 cg02355304\n", + "15 cg09082617 NaN\n", + "16 cg24911721 cg24911721\n", + "17 cg11162385 NaN\n", + "18 cg02944871 NaN\n", + "19 cg09555736 NaN\n", + "20 cg00603498 cg00603498\n", + "21 cg09781944 NaN\n", + "22 cg01281718 NaN\n", + "23 cg02547394 cg02547394\n", + "24 cg03681335 NaN\n", + "25 cg15100599 cg15100599\n", + "26 cg09276451 NaN\n", + " feature\n", + "0 cg25707994\n", + "1 cg19935065\n", + "2 cg13379236\n", + "3 cg02676175\n", + "4 cg11207300\n", + "5 cg02355304\n", + "6 cg24911721\n", + "7 cg00603498\n", + "8 cg02547394\n", + "9 cg15100599\n" + ] + } + ], + "source": [ + "all_features_df = pd.merge(left=features_df,right=rfecv_features_df,left_on=\"boruta_feature\",right_on='rfecv_feature', how='outer')\n", + "\n", + "print(all_features_df)\n", + "\n", + "inner = pd.merge(left=all_features_df,right=all_features_df,left_on=['boruta_feature'],right_on=['rfecv_feature'])\n", + "inner = inner[['boruta_feature_x']].rename(columns={'boruta_feature_x': 'feature'})\n", + "\n", + "print(inner)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 105, + "metadata": {}, + "outputs": [], + "source": [ + "# import xgboost as xgb\n", + "# from sklearn.metrics import classification_report\n", + "\n", + "# X_test_try = X_dev[inner[\"feature\"]]\n", + "# X_train_try = X_train[inner[\"feature\"]]\n", + "\n", + "\n", + "# clf = xgb.XGBClassifier(objective='binary:logistic', use_label_encoder=False, eval_metric='logloss')\n", + "# clf.fit(X_train_try, y_train)\n", + "\n", + "# # 預測\n", + "# y_pred = clf.predict(X_test_try)\n", + "\n", + "# # 打印分類報告\n", + "# print(classification_report(y_dev, y_pred))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 101, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
genecluster
0ACADM3
1ACSL53
2ALOX123
3ANK13
4ARG13
.........
84STC13
85SULT1C23
86SUSD43
87TIMP23
88VASN3
\n", + "

89 rows × 2 columns

\n", + "
" + ], + "text/plain": [ + " gene cluster\n", + "0 ACADM 3\n", + "1 ACSL5 3\n", + "2 ALOX12 3\n", + "3 ANK1 3\n", + "4 ARG1 3\n", + ".. ... ...\n", + "84 STC1 3\n", + "85 SULT1C2 3\n", + "86 SUSD4 3\n", + "87 TIMP2 3\n", + "88 VASN 3\n", + "\n", + "[89 rows x 2 columns]" + ] + }, + "execution_count": 101, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_cluster = pd.read_csv(\"result/GSE243529_aba/easy_avarage_clustering.csv\")\n", + "df_cluster\n" + ] + }, + { + "cell_type": "code", + "execution_count": 114, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " gene cluster Unnamed: 0 dbeta\n", + "0 ACADM 3 cg10523679 0.021226\n", + "1 ACSL5 3 cg20707765 0.024253\n", + "2 ALOX12 3 cg19536664 0.030384\n", + "3 ANK1 3 cg14904662 0.020543\n", + "4 ARG1 3 cg01699630 0.024147\n", + ".. ... ... ... ...\n", + "84 STC1 3 cg16688533 0.040679\n", + "85 SULT1C2 3 cg03681335 0.029692\n", + "86 SUSD4 3 cg15100599 0.023953\n", + "87 TIMP2 3 cg02569115 0.028042\n", + "88 VASN 3 cg09276451 0.021343\n", + "\n", + "[89 rows x 4 columns]\n", + " gene cluster Unnamed: 0 dbeta\n", + "0 DNAJB6 3 cg25707994 0.024072\n", + "1 DNTT 1 cg19935065 0.040585\n", + "2 EGF 3 cg13379236 0.033302\n", + "3 KCTD11 3 cg02676175 0.068574\n", + "4 METAP2 3 cg11207300 0.021659\n", + "5 MIR589 2 cg02355304 0.029251\n", + "6 MIRLET7A3 2 cg24911721 0.037691\n", + "7 RPAIN 3 cg00603498 0.020144\n", + "8 SOX1 1 cg02547394 0.027837\n", + "9 SUSD4 3 cg15100599 0.023953\n" + ] + } + ], + "source": [ + "df_cluster_dbeta = pd.merge(left= df_cluster,right =df_dbeta,left_on ='gene',right_on='gene' )\n", + "# df_cluster_dbeta = df_cluster_dbeta.drop(columns=['gene'])\n", + "print(df_cluster_dbeta)\n", + "\n", + "\n", + "df_cluster_select = pd.merge(left= df_cluster_dbeta,right=inner,left_on ='Unnamed: 0',right_on='feature' )\n", + "df_cluster_select=df_cluster_select.drop(columns=['feature'])\n", + "print(df_cluster_select)\n", + "df_cluster_select.to_csv('result/GSE243529_aba/boruta_average_clustering_result_aba.csv',index=False)\n", + "# df_cluster_select.to_csv('result/xzh_GSE243529/boruta_average_clustering_result_xzh.csv',index=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 118, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cg19935065,cg02355304,cg25707994,cg19935065,cg02355304,cg13379236,cg19935065,cg02355304,cg02676175,cg19935065,cg02355304,cg11207300,cg19935065,cg02355304,cg00603498,cg19935065,cg02355304,cg15100599,cg19935065,cg24911721,cg25707994,cg19935065,cg24911721,cg13379236,cg19935065,cg24911721,cg02676175,cg19935065,cg24911721,cg11207300,cg19935065,cg24911721,cg00603498,cg19935065,cg24911721,cg15100599,cg02547394,cg02355304,cg25707994,cg02547394,cg02355304,cg13379236,cg02547394,cg02355304,cg02676175,cg02547394,cg02355304,cg11207300,cg02547394,cg02355304,cg00603498,cg02547394,cg02355304,cg15100599,cg02547394,cg24911721,cg25707994,cg02547394,cg24911721,cg13379236,cg02547394,cg24911721,cg02676175,cg02547394,cg24911721,cg11207300,cg02547394,cg24911721,cg00603498,cg02547394,cg24911721,cg15100599," + ] + } + ], + "source": [ + "# 根據 Cluster 分組\n", + "import pandas as pd\n", + "import itertools\n", + "grouped = df_cluster_select.groupby('cluster')\n", + "\n", + "# 生成排列組合\n", + "combinations = list(itertools.product(*[group.values.tolist() for _, group in grouped]))\n", + "# print(combinations)\n", + "# 將結果轉換為所需格式\n", + "result = []\n", + "for combo in combinations:\n", + " result.append([row[2] for row in combo]) # row[0] 對應的是 Gene 列\n", + "# print(result[0])\n", + "# 打印結果\n", + "for combo in result:\n", + "\n", + " a = 0\n", + " for i in combo:\n", + " if(a == 2):\n", + " print(i,end='\\n')\n", + " a = 0\n", + " continue\n", + " else:\n", + " print(i,end=',')\n", + " a+=1\n", + " " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.7" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/breast/ml/ics_aba/ml_RFE_BORUTA_find_geoup.ipynb b/breast/ml/ics_aba/ml_RFE_BORUTA_find_geoup.ipynb new file mode 100644 index 0000000..04289ba --- /dev/null +++ b/breast/ml/ics_aba/ml_RFE_BORUTA_find_geoup.ipynb @@ -0,0 +1,3592 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0461_x487_y325_x333_x417_x355_x373_y329_y503_x...61_x171_x179_x131_y51_y39_y151_y225_x85_y199_x
0cg078810410.9369640.9494280.9318670.9275040.9408760.9350680.9438850.9413410.931477...0.9422430.9452630.9357650.9457910.9449680.9464320.9390400.9479150.9251480.908973
1cg035138740.9627190.9522010.9344610.9354500.9535760.9427980.9338520.9453660.940140...0.9537310.9542760.9441590.9647710.9515810.9561530.9597710.9680140.9389310.946057
2cg054518420.0256800.0298570.0214940.0426520.0365310.0268960.0276100.0435610.051736...0.0420910.0394760.0346990.0253500.0244450.0272730.0259660.0248160.0505230.031266
3cg147970420.9624760.9815260.9700980.9787890.9746920.9722800.9846150.9629270.980575...0.9766880.9728890.9756340.9796910.9876200.9733120.9732610.9760110.9737310.961352
4cg098385620.0170290.0173770.0229060.0213990.0296930.0142630.0201670.0132350.014649...0.0126460.0167930.0252780.0152610.0039840.0080680.0115140.0125200.0213040.027372
..................................................................
730294cg198129380.8723710.8871970.8948710.9029360.8753690.8950610.8918720.8940700.864369...0.8807740.8905530.9000910.8936450.8786580.8867230.8982970.8761150.8811850.874934
730295cg062720540.0175870.0116510.0079930.0161880.0142880.0002610.0114620.0129480.008948...0.0165250.0157790.0235840.0146770.0089680.0057190.0084810.0092760.0168650.016004
730296cg072553560.0200570.0190630.0248120.0257760.0305280.0245800.0193380.0278200.021167...0.0228550.0273970.0337440.0186610.0114570.0112550.0231390.0201770.0149280.022536
730297cg242208970.9015990.8946740.9341780.9464100.9369240.9509090.9349240.9154400.928410...0.9081630.9232110.9401200.9407490.9452740.9633180.9483810.9518940.8607620.892109
730298cg123255880.0146320.0155720.0219710.0248340.0171360.0098340.0149740.0182130.013185...0.0124930.0228520.0215910.0111240.0051570.0116350.0121880.0081020.0275240.019300
\n", + "

730299 rows × 419 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 461_x 487_y 325_x 333_x 417_x \\\n", + "0 cg07881041 0.936964 0.949428 0.931867 0.927504 0.940876 \n", + "1 cg03513874 0.962719 0.952201 0.934461 0.935450 0.953576 \n", + "2 cg05451842 0.025680 0.029857 0.021494 0.042652 0.036531 \n", + "3 cg14797042 0.962476 0.981526 0.970098 0.978789 0.974692 \n", + "4 cg09838562 0.017029 0.017377 0.022906 0.021399 0.029693 \n", + "... ... ... ... ... ... ... \n", + "730294 cg19812938 0.872371 0.887197 0.894871 0.902936 0.875369 \n", + "730295 cg06272054 0.017587 0.011651 0.007993 0.016188 0.014288 \n", + "730296 cg07255356 0.020057 0.019063 0.024812 0.025776 0.030528 \n", + "730297 cg24220897 0.901599 0.894674 0.934178 0.946410 0.936924 \n", + "730298 cg12325588 0.014632 0.015572 0.021971 0.024834 0.017136 \n", + "\n", + " 355_x 373_y 329_y 503_x ... 61_x 171_x \\\n", + "0 0.935068 0.943885 0.941341 0.931477 ... 0.942243 0.945263 \n", + "1 0.942798 0.933852 0.945366 0.940140 ... 0.953731 0.954276 \n", + "2 0.026896 0.027610 0.043561 0.051736 ... 0.042091 0.039476 \n", + "3 0.972280 0.984615 0.962927 0.980575 ... 0.976688 0.972889 \n", + "4 0.014263 0.020167 0.013235 0.014649 ... 0.012646 0.016793 \n", + "... ... ... ... ... ... ... ... \n", + "730294 0.895061 0.891872 0.894070 0.864369 ... 0.880774 0.890553 \n", + "730295 0.000261 0.011462 0.012948 0.008948 ... 0.016525 0.015779 \n", + "730296 0.024580 0.019338 0.027820 0.021167 ... 0.022855 0.027397 \n", + "730297 0.950909 0.934924 0.915440 0.928410 ... 0.908163 0.923211 \n", + "730298 0.009834 0.014974 0.018213 0.013185 ... 0.012493 0.022852 \n", + "\n", + " 179_x 131_y 51_y 39_y 151_y 225_x 85_y \\\n", + "0 0.935765 0.945791 0.944968 0.946432 0.939040 0.947915 0.925148 \n", + "1 0.944159 0.964771 0.951581 0.956153 0.959771 0.968014 0.938931 \n", + "2 0.034699 0.025350 0.024445 0.027273 0.025966 0.024816 0.050523 \n", + "3 0.975634 0.979691 0.987620 0.973312 0.973261 0.976011 0.973731 \n", + "4 0.025278 0.015261 0.003984 0.008068 0.011514 0.012520 0.021304 \n", + "... ... ... ... ... ... ... ... \n", + "730294 0.900091 0.893645 0.878658 0.886723 0.898297 0.876115 0.881185 \n", + "730295 0.023584 0.014677 0.008968 0.005719 0.008481 0.009276 0.016865 \n", + "730296 0.033744 0.018661 0.011457 0.011255 0.023139 0.020177 0.014928 \n", + "730297 0.940120 0.940749 0.945274 0.963318 0.948381 0.951894 0.860762 \n", + "730298 0.021591 0.011124 0.005157 0.011635 0.012188 0.008102 0.027524 \n", + "\n", + " 199_x \n", + "0 0.908973 \n", + "1 0.946057 \n", + "2 0.031266 \n", + "3 0.961352 \n", + "4 0.027372 \n", + "... ... \n", + "730294 0.874934 \n", + "730295 0.016004 \n", + "730296 0.022536 \n", + "730297 0.892109 \n", + "730298 0.019300 \n", + "\n", + "[730299 rows x 419 columns]" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd \n", + "import numpy as np\n", + "\n", + "df_beta_train = pd.read_csv(\"result/GSE243529_aba/X_train_sorted_0.8.csv\")\n", + "df_beta_train\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0461_x487_y325_x333_x417_x355_x373_y329_y503_x...61_x171_x179_x131_y51_y39_y151_y225_x85_y199_x
0cg078810410.9369640.9494280.9318670.9275040.9408760.9350680.9438850.9413410.931477...0.9422430.9452630.9357650.9457910.9449680.9464320.9390400.9479150.9251480.908973
1cg035138740.9627190.9522010.9344610.9354500.9535760.9427980.9338520.9453660.940140...0.9537310.9542760.9441590.9647710.9515810.9561530.9597710.9680140.9389310.946057
2cg054518420.0256800.0298570.0214940.0426520.0365310.0268960.0276100.0435610.051736...0.0420910.0394760.0346990.0253500.0244450.0272730.0259660.0248160.0505230.031266
3cg147970420.9624760.9815260.9700980.9787890.9746920.9722800.9846150.9629270.980575...0.9766880.9728890.9756340.9796910.9876200.9733120.9732610.9760110.9737310.961352
4cg098385620.0170290.0173770.0229060.0213990.0296930.0142630.0201670.0132350.014649...0.0126460.0167930.0252780.0152610.0039840.0080680.0115140.0125200.0213040.027372
..................................................................
730294cg198129380.8723710.8871970.8948710.9029360.8753690.8950610.8918720.8940700.864369...0.8807740.8905530.9000910.8936450.8786580.8867230.8982970.8761150.8811850.874934
730295cg062720540.0175870.0116510.0079930.0161880.0142880.0002610.0114620.0129480.008948...0.0165250.0157790.0235840.0146770.0089680.0057190.0084810.0092760.0168650.016004
730296cg072553560.0200570.0190630.0248120.0257760.0305280.0245800.0193380.0278200.021167...0.0228550.0273970.0337440.0186610.0114570.0112550.0231390.0201770.0149280.022536
730297cg242208970.9015990.8946740.9341780.9464100.9369240.9509090.9349240.9154400.928410...0.9081630.9232110.9401200.9407490.9452740.9633180.9483810.9518940.8607620.892109
730298cg123255880.0146320.0155720.0219710.0248340.0171360.0098340.0149740.0182130.013185...0.0124930.0228520.0215910.0111240.0051570.0116350.0121880.0081020.0275240.019300
\n", + "

730299 rows × 419 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 461_x 487_y 325_x 333_x 417_x \\\n", + "0 cg07881041 0.936964 0.949428 0.931867 0.927504 0.940876 \n", + "1 cg03513874 0.962719 0.952201 0.934461 0.935450 0.953576 \n", + "2 cg05451842 0.025680 0.029857 0.021494 0.042652 0.036531 \n", + "3 cg14797042 0.962476 0.981526 0.970098 0.978789 0.974692 \n", + "4 cg09838562 0.017029 0.017377 0.022906 0.021399 0.029693 \n", + "... ... ... ... ... ... ... \n", + "730294 cg19812938 0.872371 0.887197 0.894871 0.902936 0.875369 \n", + "730295 cg06272054 0.017587 0.011651 0.007993 0.016188 0.014288 \n", + "730296 cg07255356 0.020057 0.019063 0.024812 0.025776 0.030528 \n", + "730297 cg24220897 0.901599 0.894674 0.934178 0.946410 0.936924 \n", + "730298 cg12325588 0.014632 0.015572 0.021971 0.024834 0.017136 \n", + "\n", + " 355_x 373_y 329_y 503_x ... 61_x 171_x \\\n", + "0 0.935068 0.943885 0.941341 0.931477 ... 0.942243 0.945263 \n", + "1 0.942798 0.933852 0.945366 0.940140 ... 0.953731 0.954276 \n", + "2 0.026896 0.027610 0.043561 0.051736 ... 0.042091 0.039476 \n", + "3 0.972280 0.984615 0.962927 0.980575 ... 0.976688 0.972889 \n", + "4 0.014263 0.020167 0.013235 0.014649 ... 0.012646 0.016793 \n", + "... ... ... ... ... ... ... ... \n", + "730294 0.895061 0.891872 0.894070 0.864369 ... 0.880774 0.890553 \n", + "730295 0.000261 0.011462 0.012948 0.008948 ... 0.016525 0.015779 \n", + "730296 0.024580 0.019338 0.027820 0.021167 ... 0.022855 0.027397 \n", + "730297 0.950909 0.934924 0.915440 0.928410 ... 0.908163 0.923211 \n", + "730298 0.009834 0.014974 0.018213 0.013185 ... 0.012493 0.022852 \n", + "\n", + " 179_x 131_y 51_y 39_y 151_y 225_x 85_y \\\n", + "0 0.935765 0.945791 0.944968 0.946432 0.939040 0.947915 0.925148 \n", + "1 0.944159 0.964771 0.951581 0.956153 0.959771 0.968014 0.938931 \n", + "2 0.034699 0.025350 0.024445 0.027273 0.025966 0.024816 0.050523 \n", + "3 0.975634 0.979691 0.987620 0.973312 0.973261 0.976011 0.973731 \n", + "4 0.025278 0.015261 0.003984 0.008068 0.011514 0.012520 0.021304 \n", + "... ... ... ... ... ... ... ... \n", + "730294 0.900091 0.893645 0.878658 0.886723 0.898297 0.876115 0.881185 \n", + "730295 0.023584 0.014677 0.008968 0.005719 0.008481 0.009276 0.016865 \n", + "730296 0.033744 0.018661 0.011457 0.011255 0.023139 0.020177 0.014928 \n", + "730297 0.940120 0.940749 0.945274 0.963318 0.948381 0.951894 0.860762 \n", + "730298 0.021591 0.011124 0.005157 0.011635 0.012188 0.008102 0.027524 \n", + "\n", + " 199_x \n", + "0 0.908973 \n", + "1 0.946057 \n", + "2 0.031266 \n", + "3 0.961352 \n", + "4 0.027372 \n", + "... ... \n", + "730294 0.874934 \n", + "730295 0.016004 \n", + "730296 0.022536 \n", + "730297 0.892109 \n", + "730298 0.019300 \n", + "\n", + "[730299 rows x 419 columns]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_mix_train = df_beta_train\n", + "df_mix_train" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0403_x435_x293_x393_x275_x415_x459_x465_x287_y...233_y169_x153_x93_x129_y2011_y29_x87_x39_x
0cg078810410.9253960.9473030.9389540.9399750.9224420.9494390.9393030.9370670.931057...0.9478270.9372460.9339270.9470290.9531740.9616020.9440830.9269230.9219470.969780
1cg035138740.9331640.9449110.9562210.9480100.9442390.9707510.9437130.9529010.945893...0.9476470.9448910.9341900.9539340.9426260.9822560.9432960.9493770.9537430.952016
2cg054518420.0305780.0446310.0284410.0286370.0470840.0300670.0390090.0460110.030951...0.0200060.0268900.0356000.0192640.0253690.0346290.0125830.0346150.0342040.021382
3cg147970420.9612470.9744820.9807080.9757870.9701410.9648990.9836230.9832320.980500...0.9829130.9016770.9792600.9772940.9869770.9791320.9890790.9758110.9832980.986134
4cg098385620.0322000.0235810.0134230.0109730.0262290.0178950.0233790.0258630.010268...0.0165720.0210440.0168590.0140870.0108630.0174230.0096690.0170600.0222280.007662
..................................................................
730294cg198129380.8528150.9033330.8977620.8852460.8741310.8678780.8670810.8799540.883569...0.8873070.8822530.8727110.8841560.8735840.8688280.8816700.9027750.8893480.879664
730295cg062720540.0169530.0247170.0090950.0143410.0134130.0130330.0228020.0137710.008347...0.0127880.0162330.0071490.0173090.0096250.0083540.0085300.0111380.0163000.004846
730296cg072553560.0380070.0352570.0220100.0250080.0334870.0285280.0297840.0204120.012821...0.0218080.0281650.0237400.0262540.0113870.0231850.0132670.0254800.0257270.011394
730297cg242208970.8983440.9387140.9398350.9009010.9007200.9159280.9090810.9211050.929455...0.9219870.8924950.9193800.9318180.8629110.9583490.9344710.9436550.9199630.943813
730298cg123255880.0418630.0190650.0120270.0197120.0293540.0226300.0282940.0187760.013149...0.0125880.0107530.0296690.0074270.0125010.0129810.0091910.0054220.0150080.008226
\n", + "

730299 rows × 106 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 403_x 435_x 293_x 393_x 275_x \\\n", + "0 cg07881041 0.925396 0.947303 0.938954 0.939975 0.922442 \n", + "1 cg03513874 0.933164 0.944911 0.956221 0.948010 0.944239 \n", + "2 cg05451842 0.030578 0.044631 0.028441 0.028637 0.047084 \n", + "3 cg14797042 0.961247 0.974482 0.980708 0.975787 0.970141 \n", + "4 cg09838562 0.032200 0.023581 0.013423 0.010973 0.026229 \n", + "... ... ... ... ... ... ... \n", + "730294 cg19812938 0.852815 0.903333 0.897762 0.885246 0.874131 \n", + "730295 cg06272054 0.016953 0.024717 0.009095 0.014341 0.013413 \n", + "730296 cg07255356 0.038007 0.035257 0.022010 0.025008 0.033487 \n", + "730297 cg24220897 0.898344 0.938714 0.939835 0.900901 0.900720 \n", + "730298 cg12325588 0.041863 0.019065 0.012027 0.019712 0.029354 \n", + "\n", + " 415_x 459_x 465_x 287_y ... 233_y 169_x \\\n", + "0 0.949439 0.939303 0.937067 0.931057 ... 0.947827 0.937246 \n", + "1 0.970751 0.943713 0.952901 0.945893 ... 0.947647 0.944891 \n", + "2 0.030067 0.039009 0.046011 0.030951 ... 0.020006 0.026890 \n", + "3 0.964899 0.983623 0.983232 0.980500 ... 0.982913 0.901677 \n", + "4 0.017895 0.023379 0.025863 0.010268 ... 0.016572 0.021044 \n", + "... ... ... ... ... ... ... ... \n", + "730294 0.867878 0.867081 0.879954 0.883569 ... 0.887307 0.882253 \n", + "730295 0.013033 0.022802 0.013771 0.008347 ... 0.012788 0.016233 \n", + "730296 0.028528 0.029784 0.020412 0.012821 ... 0.021808 0.028165 \n", + "730297 0.915928 0.909081 0.921105 0.929455 ... 0.921987 0.892495 \n", + "730298 0.022630 0.028294 0.018776 0.013149 ... 0.012588 0.010753 \n", + "\n", + " 153_x 93_x 129_y 201 1_y 29_x 87_x \\\n", + "0 0.933927 0.947029 0.953174 0.961602 0.944083 0.926923 0.921947 \n", + "1 0.934190 0.953934 0.942626 0.982256 0.943296 0.949377 0.953743 \n", + "2 0.035600 0.019264 0.025369 0.034629 0.012583 0.034615 0.034204 \n", + "3 0.979260 0.977294 0.986977 0.979132 0.989079 0.975811 0.983298 \n", + "4 0.016859 0.014087 0.010863 0.017423 0.009669 0.017060 0.022228 \n", + "... ... ... ... ... ... ... ... \n", + "730294 0.872711 0.884156 0.873584 0.868828 0.881670 0.902775 0.889348 \n", + "730295 0.007149 0.017309 0.009625 0.008354 0.008530 0.011138 0.016300 \n", + "730296 0.023740 0.026254 0.011387 0.023185 0.013267 0.025480 0.025727 \n", + "730297 0.919380 0.931818 0.862911 0.958349 0.934471 0.943655 0.919963 \n", + "730298 0.029669 0.007427 0.012501 0.012981 0.009191 0.005422 0.015008 \n", + "\n", + " 39_x \n", + "0 0.969780 \n", + "1 0.952016 \n", + "2 0.021382 \n", + "3 0.986134 \n", + "4 0.007662 \n", + "... ... \n", + "730294 0.879664 \n", + "730295 0.004846 \n", + "730296 0.011394 \n", + "730297 0.943813 \n", + "730298 0.008226 \n", + "\n", + "[730299 rows x 106 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_beta_test = pd.read_csv(\"result/GSE243529_aba/X_test_sorted_0.2.csv\")\n", + "df_beta_test" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0403_x435_x293_x393_x275_x415_x459_x465_x287_y...233_y169_x153_x93_x129_y2011_y29_x87_x39_x
0cg078810410.9253960.9473030.9389540.9399750.9224420.9494390.9393030.9370670.931057...0.9478270.9372460.9339270.9470290.9531740.9616020.9440830.9269230.9219470.969780
1cg035138740.9331640.9449110.9562210.9480100.9442390.9707510.9437130.9529010.945893...0.9476470.9448910.9341900.9539340.9426260.9822560.9432960.9493770.9537430.952016
2cg054518420.0305780.0446310.0284410.0286370.0470840.0300670.0390090.0460110.030951...0.0200060.0268900.0356000.0192640.0253690.0346290.0125830.0346150.0342040.021382
3cg147970420.9612470.9744820.9807080.9757870.9701410.9648990.9836230.9832320.980500...0.9829130.9016770.9792600.9772940.9869770.9791320.9890790.9758110.9832980.986134
4cg098385620.0322000.0235810.0134230.0109730.0262290.0178950.0233790.0258630.010268...0.0165720.0210440.0168590.0140870.0108630.0174230.0096690.0170600.0222280.007662
..................................................................
730294cg198129380.8528150.9033330.8977620.8852460.8741310.8678780.8670810.8799540.883569...0.8873070.8822530.8727110.8841560.8735840.8688280.8816700.9027750.8893480.879664
730295cg062720540.0169530.0247170.0090950.0143410.0134130.0130330.0228020.0137710.008347...0.0127880.0162330.0071490.0173090.0096250.0083540.0085300.0111380.0163000.004846
730296cg072553560.0380070.0352570.0220100.0250080.0334870.0285280.0297840.0204120.012821...0.0218080.0281650.0237400.0262540.0113870.0231850.0132670.0254800.0257270.011394
730297cg242208970.8983440.9387140.9398350.9009010.9007200.9159280.9090810.9211050.929455...0.9219870.8924950.9193800.9318180.8629110.9583490.9344710.9436550.9199630.943813
730298cg123255880.0418630.0190650.0120270.0197120.0293540.0226300.0282940.0187760.013149...0.0125880.0107530.0296690.0074270.0125010.0129810.0091910.0054220.0150080.008226
\n", + "

730299 rows × 106 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 403_x 435_x 293_x 393_x 275_x \\\n", + "0 cg07881041 0.925396 0.947303 0.938954 0.939975 0.922442 \n", + "1 cg03513874 0.933164 0.944911 0.956221 0.948010 0.944239 \n", + "2 cg05451842 0.030578 0.044631 0.028441 0.028637 0.047084 \n", + "3 cg14797042 0.961247 0.974482 0.980708 0.975787 0.970141 \n", + "4 cg09838562 0.032200 0.023581 0.013423 0.010973 0.026229 \n", + "... ... ... ... ... ... ... \n", + "730294 cg19812938 0.852815 0.903333 0.897762 0.885246 0.874131 \n", + "730295 cg06272054 0.016953 0.024717 0.009095 0.014341 0.013413 \n", + "730296 cg07255356 0.038007 0.035257 0.022010 0.025008 0.033487 \n", + "730297 cg24220897 0.898344 0.938714 0.939835 0.900901 0.900720 \n", + "730298 cg12325588 0.041863 0.019065 0.012027 0.019712 0.029354 \n", + "\n", + " 415_x 459_x 465_x 287_y ... 233_y 169_x \\\n", + "0 0.949439 0.939303 0.937067 0.931057 ... 0.947827 0.937246 \n", + "1 0.970751 0.943713 0.952901 0.945893 ... 0.947647 0.944891 \n", + "2 0.030067 0.039009 0.046011 0.030951 ... 0.020006 0.026890 \n", + "3 0.964899 0.983623 0.983232 0.980500 ... 0.982913 0.901677 \n", + "4 0.017895 0.023379 0.025863 0.010268 ... 0.016572 0.021044 \n", + "... ... ... ... ... ... ... ... \n", + "730294 0.867878 0.867081 0.879954 0.883569 ... 0.887307 0.882253 \n", + "730295 0.013033 0.022802 0.013771 0.008347 ... 0.012788 0.016233 \n", + "730296 0.028528 0.029784 0.020412 0.012821 ... 0.021808 0.028165 \n", + "730297 0.915928 0.909081 0.921105 0.929455 ... 0.921987 0.892495 \n", + "730298 0.022630 0.028294 0.018776 0.013149 ... 0.012588 0.010753 \n", + "\n", + " 153_x 93_x 129_y 201 1_y 29_x 87_x \\\n", + "0 0.933927 0.947029 0.953174 0.961602 0.944083 0.926923 0.921947 \n", + "1 0.934190 0.953934 0.942626 0.982256 0.943296 0.949377 0.953743 \n", + "2 0.035600 0.019264 0.025369 0.034629 0.012583 0.034615 0.034204 \n", + "3 0.979260 0.977294 0.986977 0.979132 0.989079 0.975811 0.983298 \n", + "4 0.016859 0.014087 0.010863 0.017423 0.009669 0.017060 0.022228 \n", + "... ... ... ... ... ... ... ... \n", + "730294 0.872711 0.884156 0.873584 0.868828 0.881670 0.902775 0.889348 \n", + "730295 0.007149 0.017309 0.009625 0.008354 0.008530 0.011138 0.016300 \n", + "730296 0.023740 0.026254 0.011387 0.023185 0.013267 0.025480 0.025727 \n", + "730297 0.919380 0.931818 0.862911 0.958349 0.934471 0.943655 0.919963 \n", + "730298 0.029669 0.007427 0.012501 0.012981 0.009191 0.005422 0.015008 \n", + "\n", + " 39_x \n", + "0 0.969780 \n", + "1 0.952016 \n", + "2 0.021382 \n", + "3 0.986134 \n", + "4 0.007662 \n", + "... ... \n", + "730294 0.879664 \n", + "730295 0.004846 \n", + "730296 0.011394 \n", + "730297 0.943813 \n", + "730298 0.008226 \n", + "\n", + "[730299 rows x 106 columns]" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "df_mix_test = df_beta_test\n", + "df_mix_test" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0cg07881041cg03513874cg05451842cg14797042cg09838562cg25458538cg09261072cg02404579cg04118974cg01236347...cg23020486cg10295858cg11606463cg04767756cg05166473cg19812938cg06272054cg07255356cg24220897cg12325588
461_x0.9369640.9627190.0256800.9624760.0170290.9517550.6976160.8571800.5539330.552993...0.0184090.9166730.9164450.9579350.8653650.8723710.0175870.0200570.9015990.014632
487_y0.9494280.9522010.0298570.9815260.0173770.9598610.7151940.8678540.6053770.562242...0.0173520.9154970.9190450.9457060.8385620.8871970.0116510.0190630.8946740.015572
325_x0.9318670.9344610.0214940.9700980.0229060.9573120.6619960.9085780.5468830.603278...0.0172680.9135350.9214820.9396480.8934980.8948710.0079930.0248120.9341780.021971
333_x0.9275040.9354500.0426520.9787890.0213990.9624580.6630410.8635560.6043820.611538...0.0074890.9202780.9200770.9565430.8647720.9029360.0161880.0257760.9464100.024834
417_x0.9408760.9535760.0365310.9746920.0296930.9678380.6150060.8296320.5539010.608524...0.0105810.8950360.9085820.9415020.8694740.8753690.0142880.0305280.9369240.017136
..................................................................
39_y0.9464320.9561530.0272730.9733120.0080680.9727540.6357960.8853580.5477710.616187...0.0078760.9058250.9278690.9544960.8988070.8867230.0057190.0112550.9633180.011635
151_y0.9390400.9597710.0259660.9732610.0115140.9696520.7349020.9104290.7033830.732262...0.0129930.9231330.9331970.9670270.9486620.8982970.0084810.0231390.9483810.012188
225_x0.9479150.9680140.0248160.9760110.0125200.9739320.6477340.9116900.5994660.567957...0.0146210.8969270.9341780.9574080.8284060.8761150.0092760.0201770.9518940.008102
85_y0.9251480.9389310.0505230.9737310.0213040.9465690.6722420.8918350.6195010.564449...0.0234340.9094210.9220700.9427390.8511900.8811850.0168650.0149280.8607620.027524
199_x0.9089730.9460570.0312660.9613520.0273720.9693110.6331440.9618960.7633990.842941...0.0129990.8850160.8985170.9555160.4785840.8749340.0160040.0225360.8921090.019300
\n", + "

418 rows × 730299 columns

\n", + "
" + ], + "text/plain": [ + "Unnamed: 0 cg07881041 cg03513874 cg05451842 cg14797042 cg09838562 \\\n", + "461_x 0.936964 0.962719 0.025680 0.962476 0.017029 \n", + "487_y 0.949428 0.952201 0.029857 0.981526 0.017377 \n", + "325_x 0.931867 0.934461 0.021494 0.970098 0.022906 \n", + "333_x 0.927504 0.935450 0.042652 0.978789 0.021399 \n", + "417_x 0.940876 0.953576 0.036531 0.974692 0.029693 \n", + "... ... ... ... ... ... \n", + "39_y 0.946432 0.956153 0.027273 0.973312 0.008068 \n", + "151_y 0.939040 0.959771 0.025966 0.973261 0.011514 \n", + "225_x 0.947915 0.968014 0.024816 0.976011 0.012520 \n", + "85_y 0.925148 0.938931 0.050523 0.973731 0.021304 \n", + "199_x 0.908973 0.946057 0.031266 0.961352 0.027372 \n", + "\n", + "Unnamed: 0 cg25458538 cg09261072 cg02404579 cg04118974 cg01236347 ... \\\n", + "461_x 0.951755 0.697616 0.857180 0.553933 0.552993 ... \n", + "487_y 0.959861 0.715194 0.867854 0.605377 0.562242 ... \n", + "325_x 0.957312 0.661996 0.908578 0.546883 0.603278 ... \n", + "333_x 0.962458 0.663041 0.863556 0.604382 0.611538 ... \n", + "417_x 0.967838 0.615006 0.829632 0.553901 0.608524 ... \n", + "... ... ... ... ... ... ... \n", + "39_y 0.972754 0.635796 0.885358 0.547771 0.616187 ... \n", + "151_y 0.969652 0.734902 0.910429 0.703383 0.732262 ... \n", + "225_x 0.973932 0.647734 0.911690 0.599466 0.567957 ... \n", + "85_y 0.946569 0.672242 0.891835 0.619501 0.564449 ... \n", + "199_x 0.969311 0.633144 0.961896 0.763399 0.842941 ... \n", + "\n", + "Unnamed: 0 cg23020486 cg10295858 cg11606463 cg04767756 cg05166473 \\\n", + "461_x 0.018409 0.916673 0.916445 0.957935 0.865365 \n", + "487_y 0.017352 0.915497 0.919045 0.945706 0.838562 \n", + "325_x 0.017268 0.913535 0.921482 0.939648 0.893498 \n", + "333_x 0.007489 0.920278 0.920077 0.956543 0.864772 \n", + "417_x 0.010581 0.895036 0.908582 0.941502 0.869474 \n", + "... ... ... ... ... ... \n", + "39_y 0.007876 0.905825 0.927869 0.954496 0.898807 \n", + "151_y 0.012993 0.923133 0.933197 0.967027 0.948662 \n", + "225_x 0.014621 0.896927 0.934178 0.957408 0.828406 \n", + "85_y 0.023434 0.909421 0.922070 0.942739 0.851190 \n", + "199_x 0.012999 0.885016 0.898517 0.955516 0.478584 \n", + "\n", + "Unnamed: 0 cg19812938 cg06272054 cg07255356 cg24220897 cg12325588 \n", + "461_x 0.872371 0.017587 0.020057 0.901599 0.014632 \n", + "487_y 0.887197 0.011651 0.019063 0.894674 0.015572 \n", + "325_x 0.894871 0.007993 0.024812 0.934178 0.021971 \n", + "333_x 0.902936 0.016188 0.025776 0.946410 0.024834 \n", + "417_x 0.875369 0.014288 0.030528 0.936924 0.017136 \n", + "... ... ... ... ... ... \n", + "39_y 0.886723 0.005719 0.011255 0.963318 0.011635 \n", + "151_y 0.898297 0.008481 0.023139 0.948381 0.012188 \n", + "225_x 0.876115 0.009276 0.020177 0.951894 0.008102 \n", + "85_y 0.881185 0.016865 0.014928 0.860762 0.027524 \n", + "199_x 0.874934 0.016004 0.022536 0.892109 0.019300 \n", + "\n", + "[418 rows x 730299 columns]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "\n", + "df_mix_train.set_index(\"Unnamed: 0\", inplace=True)\n", + "\n", + "X_train = df_mix_train.T\n", + "\n", + "X_train_normal_count = 210\n", + "\n", + "if (X_train_normal_count):\n", + " y_train = [(0 if i < (X_train_normal_count) else 1) for i in range(len(X_train))]\n", + "\n", + "X_train" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0cg07881041cg03513874cg05451842cg14797042cg09838562cg25458538cg09261072cg02404579cg04118974cg01236347...cg23020486cg10295858cg11606463cg04767756cg05166473cg19812938cg06272054cg07255356cg24220897cg12325588
403_x0.9253960.9331640.0305780.9612470.0322000.9541600.6204480.8862580.6225480.677705...0.0236920.8755570.9065900.9243240.8390780.8528150.0169530.0380070.8983440.041863
435_x0.9473030.9449110.0446310.9744820.0235810.9714990.6421020.8760760.5806360.722798...0.0159320.8826030.9217480.9491780.8351640.9033330.0247170.0352570.9387140.019065
293_x0.9389540.9562210.0284410.9807080.0134230.9527430.6107810.8975370.5391510.510294...0.0112430.9136890.9301460.9450780.8492390.8977620.0090950.0220100.9398350.012027
393_x0.9399750.9480100.0286370.9757870.0109730.9554140.6407660.8727560.4948780.547792...0.0241170.8695890.9304110.9419760.8563040.8852460.0143410.0250080.9009010.019712
275_x0.9224420.9442390.0470840.9701410.0262290.9620070.6189690.8523950.6112680.690184...0.0159000.8866800.9250640.9320110.8303090.8741310.0134130.0334870.9007200.029354
..................................................................
2010.9616020.9822560.0346290.9791320.0174230.9617350.6501390.8840480.5412060.580289...0.0142510.8935540.9179190.9552440.8594810.8688280.0083540.0231850.9583490.012981
1_y0.9440830.9432960.0125830.9890790.0096690.9667410.6221880.8798090.5664740.580040...0.0064860.9156140.9335900.9614540.8890100.8816700.0085300.0132670.9344710.009191
29_x0.9269230.9493770.0346150.9758110.0170600.9732520.5987330.8664560.6283200.658063...0.0191040.8893530.9215440.9569140.8416470.9027750.0111380.0254800.9436550.005422
87_x0.9219470.9537430.0342040.9832980.0222280.9596610.6861730.8242800.5400910.502476...0.0128020.8934530.9388170.9508990.8651880.8893480.0163000.0257270.9199630.015008
39_x0.9697800.9520160.0213820.9861340.0076620.9618330.6368730.8416550.5414270.551256...0.0089440.9123050.9376150.9665830.9207070.8796640.0048460.0113940.9438130.008226
\n", + "

105 rows × 730299 columns

\n", + "
" + ], + "text/plain": [ + "Unnamed: 0 cg07881041 cg03513874 cg05451842 cg14797042 cg09838562 \\\n", + "403_x 0.925396 0.933164 0.030578 0.961247 0.032200 \n", + "435_x 0.947303 0.944911 0.044631 0.974482 0.023581 \n", + "293_x 0.938954 0.956221 0.028441 0.980708 0.013423 \n", + "393_x 0.939975 0.948010 0.028637 0.975787 0.010973 \n", + "275_x 0.922442 0.944239 0.047084 0.970141 0.026229 \n", + "... ... ... ... ... ... \n", + "201 0.961602 0.982256 0.034629 0.979132 0.017423 \n", + "1_y 0.944083 0.943296 0.012583 0.989079 0.009669 \n", + "29_x 0.926923 0.949377 0.034615 0.975811 0.017060 \n", + "87_x 0.921947 0.953743 0.034204 0.983298 0.022228 \n", + "39_x 0.969780 0.952016 0.021382 0.986134 0.007662 \n", + "\n", + "Unnamed: 0 cg25458538 cg09261072 cg02404579 cg04118974 cg01236347 ... \\\n", + "403_x 0.954160 0.620448 0.886258 0.622548 0.677705 ... \n", + "435_x 0.971499 0.642102 0.876076 0.580636 0.722798 ... \n", + "293_x 0.952743 0.610781 0.897537 0.539151 0.510294 ... \n", + "393_x 0.955414 0.640766 0.872756 0.494878 0.547792 ... \n", + "275_x 0.962007 0.618969 0.852395 0.611268 0.690184 ... \n", + "... ... ... ... ... ... ... \n", + "201 0.961735 0.650139 0.884048 0.541206 0.580289 ... \n", + "1_y 0.966741 0.622188 0.879809 0.566474 0.580040 ... \n", + "29_x 0.973252 0.598733 0.866456 0.628320 0.658063 ... \n", + "87_x 0.959661 0.686173 0.824280 0.540091 0.502476 ... \n", + "39_x 0.961833 0.636873 0.841655 0.541427 0.551256 ... \n", + "\n", + "Unnamed: 0 cg23020486 cg10295858 cg11606463 cg04767756 cg05166473 \\\n", + "403_x 0.023692 0.875557 0.906590 0.924324 0.839078 \n", + "435_x 0.015932 0.882603 0.921748 0.949178 0.835164 \n", + "293_x 0.011243 0.913689 0.930146 0.945078 0.849239 \n", + "393_x 0.024117 0.869589 0.930411 0.941976 0.856304 \n", + "275_x 0.015900 0.886680 0.925064 0.932011 0.830309 \n", + "... ... ... ... ... ... \n", + "201 0.014251 0.893554 0.917919 0.955244 0.859481 \n", + "1_y 0.006486 0.915614 0.933590 0.961454 0.889010 \n", + "29_x 0.019104 0.889353 0.921544 0.956914 0.841647 \n", + "87_x 0.012802 0.893453 0.938817 0.950899 0.865188 \n", + "39_x 0.008944 0.912305 0.937615 0.966583 0.920707 \n", + "\n", + "Unnamed: 0 cg19812938 cg06272054 cg07255356 cg24220897 cg12325588 \n", + "403_x 0.852815 0.016953 0.038007 0.898344 0.041863 \n", + "435_x 0.903333 0.024717 0.035257 0.938714 0.019065 \n", + "293_x 0.897762 0.009095 0.022010 0.939835 0.012027 \n", + "393_x 0.885246 0.014341 0.025008 0.900901 0.019712 \n", + "275_x 0.874131 0.013413 0.033487 0.900720 0.029354 \n", + "... ... ... ... ... ... \n", + "201 0.868828 0.008354 0.023185 0.958349 0.012981 \n", + "1_y 0.881670 0.008530 0.013267 0.934471 0.009191 \n", + "29_x 0.902775 0.011138 0.025480 0.943655 0.005422 \n", + "87_x 0.889348 0.016300 0.025727 0.919963 0.015008 \n", + "39_x 0.879664 0.004846 0.011394 0.943813 0.008226 \n", + "\n", + "[105 rows x 730299 columns]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "df_mix_test.set_index(\"Unnamed: 0\", inplace=True)\n", + "\n", + "X_test = df_mix_test.T\n", + "\n", + "X_test_normal_count = 58\n", + "\n", + "if (X_test_normal_count):\n", + " y_test= [(0 if i < (X_test_normal_count) else 1) for i in range(len(X_test))]\n", + "\n", + "X_test" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 0 1 2\n", + "0 cg19935065 cg02355304 cg25707994\n", + "1 cg19935065 cg02355304 cg13379236\n", + "2 cg19935065 cg02355304 cg02676175\n", + "3 cg19935065 cg02355304 cg11207300\n", + "4 cg19935065 cg02355304 cg00603498\n", + "5 cg19935065 cg02355304 cg15100599\n", + "6 cg19935065 cg24911721 cg25707994\n", + "7 cg19935065 cg24911721 cg13379236\n", + "8 cg19935065 cg24911721 cg02676175\n", + "9 cg19935065 cg24911721 cg11207300\n", + "10 cg19935065 cg24911721 cg00603498\n", + "11 cg19935065 cg24911721 cg15100599\n", + "12 cg02547394 cg02355304 cg25707994\n", + "13 cg02547394 cg02355304 cg13379236\n", + "14 cg02547394 cg02355304 cg02676175\n", + "15 cg02547394 cg02355304 cg11207300\n", + "16 cg02547394 cg02355304 cg00603498\n", + "17 cg02547394 cg02355304 cg15100599\n", + "18 cg02547394 cg24911721 cg25707994\n", + "19 cg02547394 cg24911721 cg13379236\n", + "20 cg02547394 cg24911721 cg02676175\n", + "21 cg02547394 cg24911721 cg11207300\n", + "22 cg02547394 cg24911721 cg00603498\n", + "23 cg02547394 cg24911721 cg15100599\n" + ] + } + ], + "source": [ + "file_path = \"result/GSE243529_aba/group.csv\" # 替換為你的文件路徑\n", + "\n", + "# 使用 read_csv 讀取,指定分隔符為空格\n", + "df = pd.read_csv(file_path, sep=\" \", header=None)\n", + "\n", + "df = pd.read_csv(file_path, header=None)\n", + "\n", + "# 將 DataFrame 轉換為列表列表\n", + "cg_list = df.values.tolist()\n", + "\n", + "print(df)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['cg25707994', 'cg19935065', 'cg13379236', 'cg02676175', 'cg11207300', 'cg02355304', 'cg24911721', 'cg00603498', 'cg02547394', 'cg15100599']\n" + ] + } + ], + "source": [ + "clustering = \"result/GSE243529_aba/boruta_average_clustering_result_aba.csv\" # 替換為你的文件路徑\n", + "\n", + "# 使用 read_csv 讀取,指定分隔符為空格\n", + "df_clustering = pd.read_csv(clustering)\n", + "\n", + "clustering = df_clustering[\"Unnamed: 0\"].to_list()\n", + "print(clustering)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train accuracy (Random Forest): 0.7805\n", + "Test accuracy (Random Forest): 0.7321\n" + ] + } + ], + "source": [ + "from sklearn.ensemble import RandomForestClassifier\n", + "from sklearn.model_selection import cross_validate\n", + "\n", + "# 初始化隨機森林模型\n", + "random_forest = RandomForestClassifier(random_state=42)\n", + "\n", + "# 手動調整隨機森林模型參數\n", + "random_forest.set_params(n_estimators=120, max_depth=3, min_samples_split=2, min_samples_leaf=8)\n", + "# (n_estimators=150, max_depth=3, min_samples_split=2, min_samples_leaf=8)\n", + "X_train_try_param = X_train[clustering]\n", + "\n", + "\n", + "cv_results = cross_validate(random_forest, X_train_try_param, y_train, cv=5, scoring='accuracy', return_train_score=True)\n", + "\n", + "# 輸出調整後的訓練集和測試集的交叉驗證平均準確率\n", + "print(f\"Train accuracy (Random Forest): {cv_results['train_score'].mean():.4f}\")\n", + "print(f\"Test accuracy (Random Forest): {cv_results['test_score'].mean():.4f}\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train accuracy (Logistic Regression): 0.7326\n", + "Test accuracy (Logistic Regression): 0.7201\n" + ] + } + ], + "source": [ + "\n", + "from sklearn.linear_model import LogisticRegression\n", + "\n", + "logistic_regression = LogisticRegression(random_state=42, max_iter=300)\n", + "logistic_regression.set_params(C=1000, penalty='l2', solver='liblinear')\n", + "cv_results_lr = cross_validate(logistic_regression, X_train_try_param, y_train, cv=5, scoring='accuracy', return_train_score=True)\n", + "print(f\"Train accuracy (Logistic Regression): {cv_results_lr['train_score'].mean():.4f}\")\n", + "print(f\"Test accuracy (Logistic Regression): {cv_results_lr['test_score'].mean():.4f}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train accuracy (SVM): 0.7572\n", + "Test accuracy (SVM): 0.7392\n" + ] + } + ], + "source": [ + "\n", + "from sklearn.svm import SVC\n", + "\n", + "svm = SVC(random_state=42, probability=True)\n", + "svm.set_params(C=10, kernel='rbf', gamma='scale')\n", + "cv_results_svm = cross_validate(svm, X_train_try_param, y_train, cv=5, scoring='accuracy', return_train_score=True)\n", + "print(f\"Train accuracy (SVM): {cv_results_svm['train_score'].mean():.4f}\")\n", + "print(f\"Test accuracy (SVM): {cv_results_svm['test_score'].mean():.4f}\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train accuracy (XGBoost): 0.7817\n", + "Test accuracy (XGBoost): 0.7127\n" + ] + } + ], + "source": [ + "from xgboost import XGBClassifier\n", + "\n", + "xgboost = XGBClassifier(random_state=42, eval_metric='logloss')\n", + "xgboost.set_params(n_estimators=10, learning_rate=0.05, max_depth=2, subsample=0.8)\n", + "cv_results_xgb = cross_validate(xgboost, X_train_try_param, y_train, cv=5, scoring='accuracy', return_train_score=True)\n", + "print(f\"Train accuracy (XGBoost): {cv_results_xgb['train_score'].mean():.4f}\")\n", + "print(f\"Test accuracy (XGBoost): {cv_results_xgb['test_score'].mean():.4f}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: boruta in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (0.3)\n", + "Requirement already satisfied: numpy>=1.10.4 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from boruta) (1.23.5)\n", + "Requirement already satisfied: scikit-learn>=0.17.1 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from boruta) (1.3.2)\n", + "Requirement already satisfied: scipy>=0.17.0 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from boruta) (1.10.1)\n", + "Requirement already satisfied: joblib>=1.1.1 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-learn>=0.17.1->boruta) (1.3.2)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-learn>=0.17.1->boruta) (3.2.0)\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING: Ignoring invalid distribution -uggingface-hub (c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages)\n", + "WARNING: Ignoring invalid distribution -uggingface-hub (c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages)\n", + "\n", + "[notice] A new release of pip is available: 24.0 -> 24.2\n", + "[notice] To update, run: python.exe -m pip install --upgrade pip\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: scikit-optimize in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (0.10.2)\n", + "Requirement already satisfied: joblib>=0.11 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-optimize) (1.3.2)\n", + "Requirement already satisfied: pyaml>=16.9 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-optimize) (24.7.0)\n", + "Requirement already satisfied: numpy>=1.20.3 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-optimize) (1.23.5)\n", + "Requirement already satisfied: scipy>=1.1.0 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-optimize) (1.10.1)\n", + "Requirement already satisfied: scikit-learn>=1.0.0 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-optimize) (1.3.2)\n", + "Requirement already satisfied: packaging>=21.3 in c:\\users\\user\\appdata\\roaming\\python\\python310\\site-packages (from scikit-optimize) (21.3)\n", + "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in c:\\users\\user\\appdata\\roaming\\python\\python310\\site-packages (from packaging>=21.3->scikit-optimize) (3.0.9)\n", + "Requirement already satisfied: PyYAML in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from pyaml>=16.9->scikit-optimize) (6.0)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-learn>=1.0.0->scikit-optimize) (3.2.0)\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING: Ignoring invalid distribution -uggingface-hub (c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages)\n", + "WARNING: Ignoring invalid distribution -uggingface-hub (c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages)\n", + "\n", + "[notice] A new release of pip is available: 24.0 -> 24.2\n", + "[notice] To update, run: python.exe -m pip install --upgrade pip\n" + ] + } + ], + "source": [ + "%pip install boruta\n", + "%pip install scikit-optimize\n" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ModelID1ID2ID3train_accuracytest_accuracytrain - test accuracyAUCf1-scoresensitivityspecificityprecisionsen+spef1+preAVG_(sen+spe)AVG_(f1+pre)AVG_(avg(sen+spe)+avg(f1+pre))
0Decision Treecg19935065cg02355304cg257079940.6842110.6285710.0556390.6863540.6880000.9148940.3965520.5512821.3114451.2392820.6557230.6196410.637682
1Logistic Regressioncg19935065cg02355304cg257079940.6483250.6190480.0292780.6636100.6000000.6382980.6034480.5660381.2417461.1660380.6208730.5830190.601946
2Random Forestcg19935065cg02355304cg257079940.7511960.6095240.1416720.6892880.5858590.6170210.6034480.5576921.2204701.1435510.6102350.5717750.591005
3SVMcg19935065cg02355304cg257079940.6985650.6380950.0604690.7201030.6346150.7021280.5862070.5789471.2883351.2135630.6441670.6067810.625474
4XGBoostcg19935065cg02355304cg257079940.7200960.5809520.1391430.6735140.5686270.6170210.5517240.5272731.1687451.0959000.5843730.5479500.566161
......................................................
115Decision Treecg02547394cg24911721cg151005990.6937800.5714290.1223510.6250920.6153850.7659570.4137930.5142861.1797511.1296700.5898750.5648350.577355
116Logistic Regressioncg02547394cg24911721cg151005990.6339710.647619-0.0136480.6581070.6407770.7021280.6034480.5892861.3055761.2300620.6527880.6150310.633910
117Random Forestcg02547394cg24911721cg151005990.7296650.6190480.1106170.6735140.6078430.6595740.5862070.5636361.2457811.1714800.6228910.5857400.604315
118SVMcg02547394cg24911721cg151005990.6746410.6095240.0651170.6942410.6306310.7446810.5000000.5468751.2446811.1775060.6223400.5887530.605547
119XGBoostcg02547394cg24911721cg151005990.7153110.6476190.0676920.6546220.6336630.6808510.6206900.5925931.3015411.2262560.6507700.6131280.631949
\n", + "

120 rows × 17 columns

\n", + "
" + ], + "text/plain": [ + " Model ID1 ID2 ID3 train_accuracy \\\n", + "0 Decision Tree cg19935065 cg02355304 cg25707994 0.684211 \n", + "1 Logistic Regression cg19935065 cg02355304 cg25707994 0.648325 \n", + "2 Random Forest cg19935065 cg02355304 cg25707994 0.751196 \n", + "3 SVM cg19935065 cg02355304 cg25707994 0.698565 \n", + "4 XGBoost cg19935065 cg02355304 cg25707994 0.720096 \n", + ".. ... ... ... ... ... \n", + "115 Decision Tree cg02547394 cg24911721 cg15100599 0.693780 \n", + "116 Logistic Regression cg02547394 cg24911721 cg15100599 0.633971 \n", + "117 Random Forest cg02547394 cg24911721 cg15100599 0.729665 \n", + "118 SVM cg02547394 cg24911721 cg15100599 0.674641 \n", + "119 XGBoost cg02547394 cg24911721 cg15100599 0.715311 \n", + "\n", + " test_accuracy train - test accuracy AUC f1-score sensitivity \\\n", + "0 0.628571 0.055639 0.686354 0.688000 0.914894 \n", + "1 0.619048 0.029278 0.663610 0.600000 0.638298 \n", + "2 0.609524 0.141672 0.689288 0.585859 0.617021 \n", + "3 0.638095 0.060469 0.720103 0.634615 0.702128 \n", + "4 0.580952 0.139143 0.673514 0.568627 0.617021 \n", + ".. ... ... ... ... ... \n", + "115 0.571429 0.122351 0.625092 0.615385 0.765957 \n", + "116 0.647619 -0.013648 0.658107 0.640777 0.702128 \n", + "117 0.619048 0.110617 0.673514 0.607843 0.659574 \n", + "118 0.609524 0.065117 0.694241 0.630631 0.744681 \n", + "119 0.647619 0.067692 0.654622 0.633663 0.680851 \n", + "\n", + " specificity precision sen+spe f1+pre AVG_(sen+spe) AVG_(f1+pre) \\\n", + "0 0.396552 0.551282 1.311445 1.239282 0.655723 0.619641 \n", + "1 0.603448 0.566038 1.241746 1.166038 0.620873 0.583019 \n", + "2 0.603448 0.557692 1.220470 1.143551 0.610235 0.571775 \n", + "3 0.586207 0.578947 1.288335 1.213563 0.644167 0.606781 \n", + "4 0.551724 0.527273 1.168745 1.095900 0.584373 0.547950 \n", + ".. ... ... ... ... ... ... \n", + "115 0.413793 0.514286 1.179751 1.129670 0.589875 0.564835 \n", + "116 0.603448 0.589286 1.305576 1.230062 0.652788 0.615031 \n", + "117 0.586207 0.563636 1.245781 1.171480 0.622891 0.585740 \n", + "118 0.500000 0.546875 1.244681 1.177506 0.622340 0.588753 \n", + "119 0.620690 0.592593 1.301541 1.226256 0.650770 0.613128 \n", + "\n", + " AVG_(avg(sen+spe)+avg(f1+pre)) \n", + "0 0.637682 \n", + "1 0.601946 \n", + "2 0.591005 \n", + "3 0.625474 \n", + "4 0.566161 \n", + ".. ... \n", + "115 0.577355 \n", + "116 0.633910 \n", + "117 0.604315 \n", + "118 0.605547 \n", + "119 0.631949 \n", + "\n", + "[120 rows x 17 columns]" + ] + }, + "execution_count": 75, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "from sklearn.svm import SVC\n", + "from sklearn.tree import DecisionTreeClassifier\n", + "from sklearn.ensemble import RandomForestClassifier\n", + "import xgboost as xgb\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.metrics import classification_report, roc_auc_score, accuracy_score, precision_score, recall_score, f1_score\n", + "from sklearn.model_selection import train_test_split\n", + "from xgboost import XGBClassifier\n", + "from sklearn.model_selection import RandomizedSearchCV\n", + "from sklearn.model_selection import GridSearchCV\n", + "from skopt import BayesSearchCV\n", + "from skopt.space import Categorical, Real\n", + "\n", + "\n", + "tree_params = {\n", + " 'max_depth': [3, 5, 10, None],\n", + " 'min_samples_split': [2, 5, 10],\n", + " 'min_samples_leaf': [1, 2, 4],\n", + " 'criterion': ['gini', 'entropy']\n", + "}\n", + "\n", + "clf_tree = DecisionTreeClassifier()\n", + "\n", + "lr_params = [\n", + " {'penalty': ['l1', 'l2'], 'C': [0.1,1, 10, 100], 'solver': ['liblinear'], 'max_iter': [100, 200, 300]},\n", + " {'penalty': ['elasticnet'], 'C': [ 0.1,1, 10, 100], 'solver': ['saga'], 'max_iter': [100, 200, 300], 'l1_ratio': [0, 0.5, 1]},\n", + " {'penalty': ['l1', 'l2'], 'C': [0.1,1, 10, 100], 'solver': ['saga'], 'max_iter': [100, 200, 300]},\n", + " {'penalty': [None], 'solver': ['saga'], 'max_iter': [100, 200, 300]}\n", + "]\n", + "\n", + "clf_lr = LogisticRegression(max_iter=500) \n", + "\n", + "\n", + "rf_params = {\n", + " 'n_estimators': Categorical([100, 130,170, 200]), # 使用 Categorical 表示離散值\n", + " 'max_depth': Categorical([1, 3, 5]),\n", + " 'min_samples_split': Categorical([2, 5, 10]),\n", + " 'min_samples_leaf': Categorical([2, 5, 10]),\n", + " 'max_features': Categorical(['sqrt', 'log2', 0.2, 0.5]),\n", + " 'bootstrap': [True], # 這個值是布林值,不需要變更\n", + " 'max_samples': Categorical([0.6, 0.8]) # 明確為 Categorical\n", + "}\n", + "clf_rf = RandomForestClassifier()\n", + "\n", + "svm_params = {\n", + " 'C': [1, 10, 100],\n", + " 'gamma': ['scale', 'auto'],\n", + " 'kernel': ['linear', 'poly', 'rbf', 'sigmoid']\n", + "}\n", + "\n", + "clf_svm = SVC(probability=True)\n", + "\n", + "\n", + "xgb_params = {\n", + " 'n_estimators': Categorical([10, 15, 20]),\n", + " 'learning_rate': Real(0.01, 0.05),\n", + " 'max_depth': Categorical([2, 3, 5]),\n", + " 'subsample': Categorical([0.6, 0.8]), \n", + " 'colsample_bytree': Categorical([0.6, 0.8]), \n", + " 'gamma': Real(0.1, 0.3),\n", + " 'lambda': Real(1, 1.5, prior='uniform'), \n", + " 'alpha': Real(0, 0.1, prior='uniform') \n", + "}\n", + "\n", + "clf_xgb = XGBClassifier( eval_metric='logloss')\n", + "\n", + "results = []\n", + "\n", + "model_list = [clf_tree,clf_lr,clf_rf,clf_svm,clf_xgb]\n", + "model_param = [tree_params,lr_params,rf_params,svm_params,xgb_params]\n", + "model_names = ['Decision Tree', 'Logistic Regression', 'Random Forest', 'SVM', 'XGBoost']\n", + "\n", + "for cg in cg_list:\n", + " X_train_c = X_train[cg]\n", + " X_test_c = X_test[cg]\n", + " \n", + " for model,param, model_name in zip(model_list,model_param, model_names):\n", + " \n", + " model = BayesSearchCV(\n", + " estimator=model, \n", + " search_spaces=param, \n", + " n_iter=10, # 優化的疊代次數,可以調整\n", + " cv=5, # 5 折交叉驗證\n", + " n_jobs=-1, \n", + " verbose=0, \n", + " random_state=42, # 設定隨機種子\n", + " scoring='f1'\n", + " )\n", + " model.fit(X_train_c, y_train)\n", + " \n", + " y_pred = model.predict(X_test_c)\n", + " y_pred_prob = model.predict_proba(X_test_c)[:, 1]\n", + " \n", + " y_pred_train = model.predict(X_train_c)\n", + " y_pred_prob_train = model.predict_proba(X_train_c)[:, 1]\n", + " # report = classification_report(y_test, y_pred, output_dict=True)\n", + " auc = roc_auc_score(y_test, y_pred_prob)\n", + " \n", + " train_accuracy = accuracy_score(y_train, y_pred_train)\n", + " test_accuracy = accuracy_score(y_test, y_pred)\n", + " precision = precision_score(y_test, y_pred)\n", + " sensitivity = recall_score(y_test, y_pred)\n", + " specificity = recall_score(y_test, y_pred, pos_label=0)\n", + " f1 = f1_score(y_test, y_pred)\n", + " \n", + " results.append( {\n", + " 'Model': model_name,\n", + " 'ID1': cg[0],\n", + " 'ID2': cg[1],\n", + " 'ID3': cg[2],\n", + " # 'ID4': cg[3],\n", + " 'train_accuracy': train_accuracy,\n", + " 'test_accuracy': test_accuracy,\n", + " 'train - test accuracy' : train_accuracy - test_accuracy,\n", + " 'AUC': auc,\n", + " 'f1-score': f1,\n", + " 'sensitivity': sensitivity,\n", + " 'specificity': specificity,\n", + " 'precision': precision,\n", + " 'sen+spe': sensitivity + specificity,\n", + " 'f1+pre': f1 + precision,\n", + " 'AVG_(sen+spe)': (sensitivity + specificity)/2,\n", + " 'AVG_(f1+pre)': (f1 + precision)/2,\n", + " 'AVG_(avg(sen+spe)+avg(f1+pre))': ((f1 + precision)/2+ (sensitivity + specificity)/2)/2\n", + " })\n", + "df = pd.DataFrame(results)\n", + "\n", + "df\n", + "\n", + "# df.to_csv(\"../../result/GSE243529/ics_mthod1_0706/train75/test_with_5model_0904_test_rc.csv\",index=False)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0gene
0cg10523679ACADM
1cg20707765ACSL5
2cg19536664ALOX12
3cg14904662ANK1
4cg01699630ARG1
.........
87cg16688533STC1
88cg03681335SULT1C2
89cg15100599SUSD4
90cg02569115TIMP2
91cg09276451VASN
\n", + "

92 rows × 2 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 gene\n", + "0 cg10523679 ACADM\n", + "1 cg20707765 ACSL5\n", + "2 cg19536664 ALOX12\n", + "3 cg14904662 ANK1\n", + "4 cg01699630 ARG1\n", + ".. ... ...\n", + "87 cg16688533 STC1\n", + "88 cg03681335 SULT1C2\n", + "89 cg15100599 SUSD4\n", + "90 cg02569115 TIMP2\n", + "91 cg09276451 VASN\n", + "\n", + "[92 rows x 2 columns]" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_gene = pd.read_csv(\"result/GSE243529_aba/dbeta_0.8_abs_0.02_hyper_TSS.csv\")\n", + "\n", + "df_gene = df_gene[['Unnamed: 0','gene']]\n", + "df_gene" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ModelID1ID2ID3train_accuracytest_accuracytrain - test accuracyAUCf1-scoresensitivityspecificityprecisionsen+spef1+preAVG_(sen+spe)AVG_(f1+pre)AVG_(avg(sen+spe)+avg(f1+pre))genegene_2gene_3
0Decision Treecg19935065cg02355304cg257079940.6842110.6285710.0556390.6863540.6880000.9148940.3965520.5512821.3114451.2392820.6557230.6196410.637682DNTTMIR589DNAJB6
1Logistic Regressioncg19935065cg02355304cg257079940.6483250.6190480.0292780.6636100.6000000.6382980.6034480.5660381.2417461.1660380.6208730.5830190.601946DNTTMIR589DNAJB6
2Random Forestcg19935065cg02355304cg257079940.7511960.6095240.1416720.6892880.5858590.6170210.6034480.5576921.2204701.1435510.6102350.5717750.591005DNTTMIR589DNAJB6
3SVMcg19935065cg02355304cg257079940.6985650.6380950.0604690.7201030.6346150.7021280.5862070.5789471.2883351.2135630.6441670.6067810.625474DNTTMIR589DNAJB6
4XGBoostcg19935065cg02355304cg257079940.7200960.5809520.1391430.6735140.5686270.6170210.5517240.5272731.1687451.0959000.5843730.5479500.566161DNTTMIR589DNAJB6
...............................................................
115Decision Treecg02547394cg24911721cg151005990.6937800.5714290.1223510.6250920.6153850.7659570.4137930.5142861.1797511.1296700.5898750.5648350.577355SOX1MIRLET7A3SUSD4
116Logistic Regressioncg02547394cg24911721cg151005990.6339710.647619-0.0136480.6581070.6407770.7021280.6034480.5892861.3055761.2300620.6527880.6150310.633910SOX1MIRLET7A3SUSD4
117Random Forestcg02547394cg24911721cg151005990.7296650.6190480.1106170.6735140.6078430.6595740.5862070.5636361.2457811.1714800.6228910.5857400.604315SOX1MIRLET7A3SUSD4
118SVMcg02547394cg24911721cg151005990.6746410.6095240.0651170.6942410.6306310.7446810.5000000.5468751.2446811.1775060.6223400.5887530.605547SOX1MIRLET7A3SUSD4
119XGBoostcg02547394cg24911721cg151005990.7153110.6476190.0676920.6546220.6336630.6808510.6206900.5925931.3015411.2262560.6507700.6131280.631949SOX1MIRLET7A3SUSD4
\n", + "

120 rows × 20 columns

\n", + "
" + ], + "text/plain": [ + " Model ID1 ID2 ID3 train_accuracy \\\n", + "0 Decision Tree cg19935065 cg02355304 cg25707994 0.684211 \n", + "1 Logistic Regression cg19935065 cg02355304 cg25707994 0.648325 \n", + "2 Random Forest cg19935065 cg02355304 cg25707994 0.751196 \n", + "3 SVM cg19935065 cg02355304 cg25707994 0.698565 \n", + "4 XGBoost cg19935065 cg02355304 cg25707994 0.720096 \n", + ".. ... ... ... ... ... \n", + "115 Decision Tree cg02547394 cg24911721 cg15100599 0.693780 \n", + "116 Logistic Regression cg02547394 cg24911721 cg15100599 0.633971 \n", + "117 Random Forest cg02547394 cg24911721 cg15100599 0.729665 \n", + "118 SVM cg02547394 cg24911721 cg15100599 0.674641 \n", + "119 XGBoost cg02547394 cg24911721 cg15100599 0.715311 \n", + "\n", + " test_accuracy train - test accuracy AUC f1-score sensitivity \\\n", + "0 0.628571 0.055639 0.686354 0.688000 0.914894 \n", + "1 0.619048 0.029278 0.663610 0.600000 0.638298 \n", + "2 0.609524 0.141672 0.689288 0.585859 0.617021 \n", + "3 0.638095 0.060469 0.720103 0.634615 0.702128 \n", + "4 0.580952 0.139143 0.673514 0.568627 0.617021 \n", + ".. ... ... ... ... ... \n", + "115 0.571429 0.122351 0.625092 0.615385 0.765957 \n", + "116 0.647619 -0.013648 0.658107 0.640777 0.702128 \n", + "117 0.619048 0.110617 0.673514 0.607843 0.659574 \n", + "118 0.609524 0.065117 0.694241 0.630631 0.744681 \n", + "119 0.647619 0.067692 0.654622 0.633663 0.680851 \n", + "\n", + " specificity precision sen+spe f1+pre AVG_(sen+spe) AVG_(f1+pre) \\\n", + "0 0.396552 0.551282 1.311445 1.239282 0.655723 0.619641 \n", + "1 0.603448 0.566038 1.241746 1.166038 0.620873 0.583019 \n", + "2 0.603448 0.557692 1.220470 1.143551 0.610235 0.571775 \n", + "3 0.586207 0.578947 1.288335 1.213563 0.644167 0.606781 \n", + "4 0.551724 0.527273 1.168745 1.095900 0.584373 0.547950 \n", + ".. ... ... ... ... ... ... \n", + "115 0.413793 0.514286 1.179751 1.129670 0.589875 0.564835 \n", + "116 0.603448 0.589286 1.305576 1.230062 0.652788 0.615031 \n", + "117 0.586207 0.563636 1.245781 1.171480 0.622891 0.585740 \n", + "118 0.500000 0.546875 1.244681 1.177506 0.622340 0.588753 \n", + "119 0.620690 0.592593 1.301541 1.226256 0.650770 0.613128 \n", + "\n", + " AVG_(avg(sen+spe)+avg(f1+pre)) gene gene_2 gene_3 \n", + "0 0.637682 DNTT MIR589 DNAJB6 \n", + "1 0.601946 DNTT MIR589 DNAJB6 \n", + "2 0.591005 DNTT MIR589 DNAJB6 \n", + "3 0.625474 DNTT MIR589 DNAJB6 \n", + "4 0.566161 DNTT MIR589 DNAJB6 \n", + ".. ... ... ... ... \n", + "115 0.577355 SOX1 MIRLET7A3 SUSD4 \n", + "116 0.633910 SOX1 MIRLET7A3 SUSD4 \n", + "117 0.604315 SOX1 MIRLET7A3 SUSD4 \n", + "118 0.605547 SOX1 MIRLET7A3 SUSD4 \n", + "119 0.631949 SOX1 MIRLET7A3 SUSD4 \n", + "\n", + "[120 rows x 20 columns]" + ] + }, + "execution_count": 84, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "df_with_gene = df\n", + "\n", + "df_with_gene = pd.merge(left = df_with_gene ,right=df_gene,left_on=\"ID1\",right_on=\"Unnamed: 0\",how=\"left\",suffixes=('', '_1'))\n", + "df_with_gene = df_with_gene.drop(columns=['Unnamed: 0'])\n", + "\n", + "\n", + "df_with_gene = pd.merge(left = df_with_gene ,right=df_gene,left_on=\"ID2\",right_on=\"Unnamed: 0\",how=\"left\",suffixes=('', '_2'))\n", + "df_with_gene = df_with_gene.drop(columns=['Unnamed: 0'])\n", + "\n", + "\n", + "\n", + "df_with_gene = pd.merge(left = df_with_gene ,right=df_gene,left_on=\"ID3\",right_on=\"Unnamed: 0\",how=\"left\",suffixes=('', '_3'))\n", + "df_with_gene = df_with_gene.drop(columns=['Unnamed: 0'])\n", + "\n", + "\n", + "df_with_gene" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [], + "source": [ + "df_with_gene.to_csv(\"result/GSE243529_aba/result_5model.csv\",index=False)\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.7" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/process/ics_aba/all_beta_value_GSE243529.ipynb b/process/ics_aba/all_beta_value_GSE243529.ipynb new file mode 100644 index 0000000..a59cb69 --- /dev/null +++ b/process/ics_aba/all_beta_value_GSE243529.ipynb @@ -0,0 +1,4881 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0123456789...515516517518519520521522523524
0cg078810410.8916370.8916370.9320660.9320660.9402020.9402020.9456410.9456410.940250...0.9271440.9271440.9544130.9544130.9608680.9608680.9432300.9432300.9468550.946855
1cg035138740.9423120.9423120.9351870.9351870.9640090.9640090.9667160.9667160.945237...0.9497420.9497420.9424810.9424810.9643170.9643170.9455840.9455840.9627460.962746
2cg054518420.0299750.0299750.0228800.0228800.0175310.0175310.0262810.0262810.034589...0.0307060.0307060.0252170.0252170.0190590.0190590.0317910.0317910.0179540.017954
3cg147970420.9832770.9832770.9896210.9896210.9877110.9877110.9607120.9607120.966604...0.9736740.9736740.9719780.9719780.9686710.9686710.9669040.9669040.9725010.972501
4cg098385620.0094470.0094470.0090200.0090200.0071640.0071640.0077860.0077860.024895...0.0096420.0096420.0124260.0124260.0207930.0207930.0144020.0144020.0184840.018484
..................................................................
736420cg198129380.8679590.8679590.9036610.9036610.8900410.8900410.8966550.8966550.859622...0.8787420.8787420.8999420.8999420.8971130.8971130.8850930.8850930.8785640.878564
736421cg062720540.0081510.0081510.0113050.0113050.0113540.0113540.0099270.0099270.008303...0.0160210.0160210.0123770.0123770.0119600.0119600.0063810.0063810.0142980.014298
736422cg072553560.0176490.0176490.0169490.0169490.0220040.0220040.0196420.0196420.027163...0.0205220.0205220.0132450.0132450.0216430.0216430.0245150.0245150.0291870.029187
736423cg242208970.9320950.9320950.9213120.9213120.9466630.9466630.9654070.9654070.949585...0.9233810.9233810.8616540.8616540.9041960.9041960.9297990.9297990.9539170.953917
736424cg123255880.0138830.0138830.0064550.0064550.0066750.0066750.0058400.0058400.019492...0.0136140.0136140.0212230.0212230.0136460.0136460.0158690.0158690.0245920.024592
\n", + "

736425 rows × 525 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 1 2 3 4 5 \\\n", + "0 cg07881041 0.891637 0.891637 0.932066 0.932066 0.940202 \n", + "1 cg03513874 0.942312 0.942312 0.935187 0.935187 0.964009 \n", + "2 cg05451842 0.029975 0.029975 0.022880 0.022880 0.017531 \n", + "3 cg14797042 0.983277 0.983277 0.989621 0.989621 0.987711 \n", + "4 cg09838562 0.009447 0.009447 0.009020 0.009020 0.007164 \n", + "... ... ... ... ... ... ... \n", + "736420 cg19812938 0.867959 0.867959 0.903661 0.903661 0.890041 \n", + "736421 cg06272054 0.008151 0.008151 0.011305 0.011305 0.011354 \n", + "736422 cg07255356 0.017649 0.017649 0.016949 0.016949 0.022004 \n", + "736423 cg24220897 0.932095 0.932095 0.921312 0.921312 0.946663 \n", + "736424 cg12325588 0.013883 0.013883 0.006455 0.006455 0.006675 \n", + "\n", + " 6 7 8 9 ... 515 516 \\\n", + "0 0.940202 0.945641 0.945641 0.940250 ... 0.927144 0.927144 \n", + "1 0.964009 0.966716 0.966716 0.945237 ... 0.949742 0.949742 \n", + "2 0.017531 0.026281 0.026281 0.034589 ... 0.030706 0.030706 \n", + "3 0.987711 0.960712 0.960712 0.966604 ... 0.973674 0.973674 \n", + "4 0.007164 0.007786 0.007786 0.024895 ... 0.009642 0.009642 \n", + "... ... ... ... ... ... ... ... \n", + "736420 0.890041 0.896655 0.896655 0.859622 ... 0.878742 0.878742 \n", + "736421 0.011354 0.009927 0.009927 0.008303 ... 0.016021 0.016021 \n", + "736422 0.022004 0.019642 0.019642 0.027163 ... 0.020522 0.020522 \n", + "736423 0.946663 0.965407 0.965407 0.949585 ... 0.923381 0.923381 \n", + "736424 0.006675 0.005840 0.005840 0.019492 ... 0.013614 0.013614 \n", + "\n", + " 517 518 519 520 521 522 523 \\\n", + "0 0.954413 0.954413 0.960868 0.960868 0.943230 0.943230 0.946855 \n", + "1 0.942481 0.942481 0.964317 0.964317 0.945584 0.945584 0.962746 \n", + "2 0.025217 0.025217 0.019059 0.019059 0.031791 0.031791 0.017954 \n", + "3 0.971978 0.971978 0.968671 0.968671 0.966904 0.966904 0.972501 \n", + "4 0.012426 0.012426 0.020793 0.020793 0.014402 0.014402 0.018484 \n", + "... ... ... ... ... ... ... ... \n", + "736420 0.899942 0.899942 0.897113 0.897113 0.885093 0.885093 0.878564 \n", + "736421 0.012377 0.012377 0.011960 0.011960 0.006381 0.006381 0.014298 \n", + "736422 0.013245 0.013245 0.021643 0.021643 0.024515 0.024515 0.029187 \n", + "736423 0.861654 0.861654 0.904196 0.904196 0.929799 0.929799 0.953917 \n", + "736424 0.021223 0.021223 0.013646 0.013646 0.015869 0.015869 0.024592 \n", + "\n", + " 524 \n", + "0 0.946855 \n", + "1 0.962746 \n", + "2 0.017954 \n", + "3 0.972501 \n", + "4 0.018484 \n", + "... ... \n", + "736420 0.878564 \n", + "736421 0.014298 \n", + "736422 0.029187 \n", + "736423 0.953917 \n", + "736424 0.024592 \n", + "\n", + "[736425 rows x 525 columns]" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "df_beta_0 = pd.read_csv(\"source/GSE243529/all_beta_normalized_0.csv\")\n", + "df_beta_0\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0123456789...515516517518519520521522523524
0cg078810410.9440830.9440830.9503170.9503170.9343760.9343760.9574980.9574980.941509...0.9461690.9461690.9306920.9306920.9441370.9441370.9329170.9329170.9398900.939890
1cg035138740.9432960.9432960.9579030.9579030.9659490.9659490.9705100.9705100.968608...0.9513680.9513680.9506660.9506660.9421660.9421660.9395840.9395840.9457800.945780
2cg054518420.0125830.0125830.0317740.0317740.0340410.0340410.0286830.0286830.018919...0.0315860.0315860.0506210.0506210.0456720.0456720.0544360.0544360.0441020.044102
3cg147970420.9890790.9890790.9679840.9679840.9787040.9787040.9849510.9849510.981025...0.9809800.9809800.9752200.9752200.9858620.9858620.9655680.9655680.9655930.965593
4cg098385620.0096690.0096690.0195280.0195280.0157990.0157990.0149320.0149320.009279...0.0192500.0192500.0117910.0117910.0214680.0214680.0163490.0163490.0273410.027341
..................................................................
734768cg198129380.8816700.8816700.8847380.8847380.8691540.8691540.8691640.8691640.873994...0.8890170.8890170.8795610.8795610.8849090.8849090.8722810.8722810.8830360.883036
734769cg062720540.0085300.0085300.0162820.0162820.0120650.0120650.0047960.0047960.004077...0.0104720.0104720.0159690.0159690.0180770.0180770.0157170.0157170.0143370.014337
734770cg072553560.0132670.0132670.0229010.0229010.0193800.0193800.0213740.0213740.012466...0.0212600.0212600.0246790.0246790.0293460.0293460.0279830.0279830.0351890.035189
734771cg242208970.9344710.9344710.9441430.9441430.8841080.8841080.9547300.9547300.944178...0.9448230.9448230.9005500.9005500.9389260.9389260.9032420.9032420.9433920.943392
734772cg123255880.0091910.0091910.0208580.0208580.0171310.0171310.0149070.0149070.012069...0.0196270.0196270.0167400.0167400.0258140.0258140.0320430.0320430.0197990.019799
\n", + "

734773 rows × 523 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 1 2 3 4 5 \\\n", + "0 cg07881041 0.944083 0.944083 0.950317 0.950317 0.934376 \n", + "1 cg03513874 0.943296 0.943296 0.957903 0.957903 0.965949 \n", + "2 cg05451842 0.012583 0.012583 0.031774 0.031774 0.034041 \n", + "3 cg14797042 0.989079 0.989079 0.967984 0.967984 0.978704 \n", + "4 cg09838562 0.009669 0.009669 0.019528 0.019528 0.015799 \n", + "... ... ... ... ... ... ... \n", + "734768 cg19812938 0.881670 0.881670 0.884738 0.884738 0.869154 \n", + "734769 cg06272054 0.008530 0.008530 0.016282 0.016282 0.012065 \n", + "734770 cg07255356 0.013267 0.013267 0.022901 0.022901 0.019380 \n", + "734771 cg24220897 0.934471 0.934471 0.944143 0.944143 0.884108 \n", + "734772 cg12325588 0.009191 0.009191 0.020858 0.020858 0.017131 \n", + "\n", + " 6 7 8 9 ... 515 516 \\\n", + "0 0.934376 0.957498 0.957498 0.941509 ... 0.946169 0.946169 \n", + "1 0.965949 0.970510 0.970510 0.968608 ... 0.951368 0.951368 \n", + "2 0.034041 0.028683 0.028683 0.018919 ... 0.031586 0.031586 \n", + "3 0.978704 0.984951 0.984951 0.981025 ... 0.980980 0.980980 \n", + "4 0.015799 0.014932 0.014932 0.009279 ... 0.019250 0.019250 \n", + "... ... ... ... ... ... ... ... \n", + "734768 0.869154 0.869164 0.869164 0.873994 ... 0.889017 0.889017 \n", + "734769 0.012065 0.004796 0.004796 0.004077 ... 0.010472 0.010472 \n", + "734770 0.019380 0.021374 0.021374 0.012466 ... 0.021260 0.021260 \n", + "734771 0.884108 0.954730 0.954730 0.944178 ... 0.944823 0.944823 \n", + "734772 0.017131 0.014907 0.014907 0.012069 ... 0.019627 0.019627 \n", + "\n", + " 517 518 519 520 521 522 523 \\\n", + "0 0.930692 0.930692 0.944137 0.944137 0.932917 0.932917 0.939890 \n", + "1 0.950666 0.950666 0.942166 0.942166 0.939584 0.939584 0.945780 \n", + "2 0.050621 0.050621 0.045672 0.045672 0.054436 0.054436 0.044102 \n", + "3 0.975220 0.975220 0.985862 0.985862 0.965568 0.965568 0.965593 \n", + "4 0.011791 0.011791 0.021468 0.021468 0.016349 0.016349 0.027341 \n", + "... ... ... ... ... ... ... ... \n", + "734768 0.879561 0.879561 0.884909 0.884909 0.872281 0.872281 0.883036 \n", + "734769 0.015969 0.015969 0.018077 0.018077 0.015717 0.015717 0.014337 \n", + "734770 0.024679 0.024679 0.029346 0.029346 0.027983 0.027983 0.035189 \n", + "734771 0.900550 0.900550 0.938926 0.938926 0.903242 0.903242 0.943392 \n", + "734772 0.016740 0.016740 0.025814 0.025814 0.032043 0.032043 0.019799 \n", + "\n", + " 524 \n", + "0 0.939890 \n", + "1 0.945780 \n", + "2 0.044102 \n", + "3 0.965593 \n", + "4 0.027341 \n", + "... ... \n", + "734768 0.883036 \n", + "734769 0.014337 \n", + "734770 0.035189 \n", + "734771 0.943392 \n", + "734772 0.019799 \n", + "\n", + "[734773 rows x 523 columns]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_beta_1 = pd.read_csv(\"source/GSE243529/all_beta_normalized_1.csv\")\n", + "df_beta_1" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Unnamed: 0 1_x 2_x 3_x 4_x 5_x \\\n", + "0 cg07881041 0.891637 0.891637 0.932066 0.932066 0.940202 \n", + "1 cg03513874 0.942312 0.942312 0.935187 0.935187 0.964009 \n", + "2 cg05451842 0.029975 0.029975 0.022880 0.022880 0.017531 \n", + "3 cg14797042 0.983277 0.983277 0.989621 0.989621 0.987711 \n", + "4 cg09838562 0.009447 0.009447 0.009020 0.009020 0.007164 \n", + "... ... ... ... ... ... ... \n", + "730294 cg19812938 0.867959 0.867959 0.903661 0.903661 0.890041 \n", + "730295 cg06272054 0.008151 0.008151 0.011305 0.011305 0.011354 \n", + "730296 cg07255356 0.017649 0.017649 0.016949 0.016949 0.022004 \n", + "730297 cg24220897 0.932095 0.932095 0.921312 0.921312 0.946663 \n", + "730298 cg12325588 0.013883 0.013883 0.006455 0.006455 0.006675 \n", + "\n", + " 6_x 7_x 8_x 9_x ... 515_y 516_y \\\n", + "0 0.940202 0.945641 0.945641 0.940250 ... 0.946169 0.946169 \n", + "1 0.964009 0.966716 0.966716 0.945237 ... 0.951368 0.951368 \n", + "2 0.017531 0.026281 0.026281 0.034589 ... 0.031586 0.031586 \n", + "3 0.987711 0.960712 0.960712 0.966604 ... 0.980980 0.980980 \n", + "4 0.007164 0.007786 0.007786 0.024895 ... 0.019250 0.019250 \n", + "... ... ... ... ... ... ... ... \n", + "730294 0.890041 0.896655 0.896655 0.859622 ... 0.889017 0.889017 \n", + "730295 0.011354 0.009927 0.009927 0.008303 ... 0.010472 0.010472 \n", + "730296 0.022004 0.019642 0.019642 0.027163 ... 0.021260 0.021260 \n", + "730297 0.946663 0.965407 0.965407 0.949585 ... 0.944823 0.944823 \n", + "730298 0.006675 0.005840 0.005840 0.019492 ... 0.019627 0.019627 \n", + "\n", + " 517_y 518_y 519_y 520_y 521_y 522_y 523_y \\\n", + "0 0.930692 0.930692 0.944137 0.944137 0.932917 0.932917 0.939890 \n", + "1 0.950666 0.950666 0.942166 0.942166 0.939584 0.939584 0.945780 \n", + "2 0.050621 0.050621 0.045672 0.045672 0.054436 0.054436 0.044102 \n", + "3 0.975220 0.975220 0.985862 0.985862 0.965568 0.965568 0.965593 \n", + "4 0.011791 0.011791 0.021468 0.021468 0.016349 0.016349 0.027341 \n", + "... ... ... ... ... ... ... ... \n", + "730294 0.879561 0.879561 0.884909 0.884909 0.872281 0.872281 0.883036 \n", + "730295 0.015969 0.015969 0.018077 0.018077 0.015717 0.015717 0.014337 \n", + "730296 0.024679 0.024679 0.029346 0.029346 0.027983 0.027983 0.035189 \n", + "730297 0.900550 0.900550 0.938926 0.938926 0.903242 0.903242 0.943392 \n", + "730298 0.016740 0.016740 0.025814 0.025814 0.032043 0.032043 0.019799 \n", + "\n", + " 524_y \n", + "0 0.939890 \n", + "1 0.945780 \n", + "2 0.044102 \n", + "3 0.965593 \n", + "4 0.027341 \n", + "... ... \n", + "730294 0.883036 \n", + "730295 0.014337 \n", + "730296 0.035189 \n", + "730297 0.943392 \n", + "730298 0.019799 \n", + "\n", + "[730299 rows x 1047 columns]\n" + ] + } + ], + "source": [ + "df_beta = pd.merge(df_beta_0,df_beta_1,on=\"Unnamed: 0\")\n", + "print(df_beta)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 0 1 2 3 4 5 6 \\\n", + "257_x 0.944491 0.941055 0.019063 0.970588 0.016889 0.968430 0.601347 \n", + "259_x 0.936676 0.958219 0.031681 0.985476 0.010134 0.955828 0.604655 \n", + "261_x 0.932445 0.954776 0.023602 0.985671 0.005280 0.960710 0.631029 \n", + "263_x 0.950438 0.971993 0.025135 0.986416 0.014675 0.980988 0.677755 \n", + "265_x 0.935534 0.934625 0.034794 0.965526 0.019106 0.957349 0.592838 \n", + "... ... ... ... ... ... ... ... \n", + "515_x 0.927144 0.949742 0.030706 0.973674 0.009642 0.966152 0.610119 \n", + "517_x 0.954413 0.942481 0.025217 0.971978 0.012426 0.964821 0.639148 \n", + "519_x 0.960868 0.964317 0.019059 0.968671 0.020793 0.968693 0.637075 \n", + "521_x 0.943230 0.945584 0.031791 0.966904 0.014402 0.945293 0.620796 \n", + "523_x 0.946855 0.962746 0.017954 0.972501 0.018484 0.974604 0.634016 \n", + "\n", + " 7 8 9 ... 730289 730290 730291 \\\n", + "257_x 0.881432 0.492665 0.455735 ... 0.006310 0.897607 0.946030 \n", + "259_x 0.883578 0.587311 0.543591 ... 0.006204 0.930669 0.941054 \n", + "261_x 0.875564 0.651469 0.604075 ... 0.007425 0.911097 0.923278 \n", + "263_x 0.890447 0.644840 0.666678 ... 0.009980 0.920904 0.951211 \n", + "265_x 0.895628 0.568797 0.594449 ... 0.014064 0.898200 0.922606 \n", + "... ... ... ... ... ... ... ... \n", + "515_x 0.890040 0.622046 0.625218 ... 0.017826 0.906962 0.918184 \n", + "517_x 0.878195 0.542053 0.639054 ... 0.025804 0.927273 0.919722 \n", + "519_x 0.907694 0.675767 0.677234 ... 0.031725 0.902970 0.932410 \n", + "521_x 0.881455 0.554374 0.560200 ... 0.012560 0.878921 0.923077 \n", + "523_x 0.894717 0.559626 0.535682 ... 0.011249 0.894842 0.924142 \n", + "\n", + " 730292 730293 730294 730295 730296 730297 730298 \n", + "257_x 0.953652 0.832425 0.886375 0.009983 0.021550 0.955338 0.009822 \n", + "259_x 0.949772 0.838903 0.892014 0.007293 0.033496 0.935890 0.010103 \n", + "261_x 0.940460 0.812506 0.883188 0.012874 0.017124 0.953820 0.006297 \n", + "263_x 0.953876 0.892442 0.928424 0.012274 0.012906 0.918379 0.030021 \n", + "265_x 0.950515 0.873269 0.895948 0.012924 0.020729 0.905063 0.023880 \n", + "... ... ... ... ... ... ... ... \n", + "515_x 0.949464 0.852938 0.878742 0.016021 0.020522 0.923381 0.013614 \n", + "517_x 0.946991 0.797862 0.899942 0.012377 0.013245 0.861654 0.021223 \n", + "519_x 0.943649 0.823714 0.897113 0.011960 0.021643 0.904196 0.013646 \n", + "521_x 0.938862 0.828313 0.885093 0.006381 0.024515 0.929799 0.015869 \n", + "523_x 0.956803 0.834866 0.878564 0.014298 0.029187 0.953917 0.024592 \n", + "\n", + "[134 rows x 730299 columns]\n", + " 0 1 2 3 4 5 6 \\\n", + "1_x 0.891637 0.942312 0.029975 0.983277 0.009447 0.963909 0.547637 \n", + "3_x 0.932066 0.935187 0.022880 0.989621 0.009020 0.968153 0.630792 \n", + "5_x 0.940202 0.964009 0.017531 0.987711 0.007164 0.977007 0.657722 \n", + "7_x 0.945641 0.966716 0.026281 0.960712 0.007786 0.963226 0.627110 \n", + "9_x 0.940250 0.945237 0.034589 0.966604 0.024895 0.962018 0.648072 \n", + "... ... ... ... ... ... ... ... \n", + "247_x 0.963177 0.950974 0.047110 0.978634 0.012414 0.948015 0.692950 \n", + "249_x 0.925103 0.952803 0.022537 0.977123 0.011372 0.960816 0.612208 \n", + "251_x 0.935529 0.960803 0.037645 0.973661 0.029905 0.961988 0.644703 \n", + "253_x 0.932493 0.947340 0.036287 0.975147 0.016267 0.959567 0.631247 \n", + "255_x 0.937540 0.959682 0.034809 0.973619 0.027357 0.958788 0.647232 \n", + "\n", + " 7 8 9 ... 730289 730290 730291 \\\n", + "1_x 0.950321 0.753387 0.669000 ... 0.039640 0.897572 0.927209 \n", + "3_x 0.854900 0.529452 0.575943 ... 0.013298 0.914774 0.939838 \n", + "5_x 0.909154 0.561784 0.582170 ... 0.014250 0.911914 0.943766 \n", + "7_x 0.853463 0.533461 0.619980 ... 0.010525 0.926379 0.938161 \n", + "9_x 0.890485 0.544131 0.538939 ... 0.011702 0.885074 0.917745 \n", + "... ... ... ... ... ... ... ... \n", + "247_x 0.876160 0.590291 0.564501 ... 0.009770 0.894481 0.915441 \n", + "249_x 0.911642 0.570399 0.592302 ... 0.014391 0.882021 0.930739 \n", + "251_x 0.850623 0.534737 0.572251 ... 0.017095 0.894229 0.933776 \n", + "253_x 0.837581 0.562682 0.553462 ... 0.016572 0.892738 0.909585 \n", + "255_x 0.847405 0.575935 0.710056 ... 0.017406 0.894410 0.916764 \n", + "\n", + " 730292 730293 730294 730295 730296 730297 730298 \n", + "1_x 0.948472 0.792336 0.867959 0.008151 0.017649 0.932095 0.013883 \n", + "3_x 0.961787 0.914687 0.903661 0.011305 0.016949 0.921312 0.006455 \n", + "5_x 0.947047 0.874900 0.890041 0.011354 0.022004 0.946663 0.006675 \n", + "7_x 0.964461 0.905188 0.896655 0.009927 0.019642 0.965407 0.005840 \n", + "9_x 0.952082 0.867322 0.859622 0.008303 0.027163 0.949585 0.019492 \n", + "... ... ... ... ... ... ... ... \n", + "247_x 0.935785 0.892077 0.884135 0.007360 0.023650 0.919170 0.005686 \n", + "249_x 0.955235 0.823152 0.836735 0.010961 0.016117 0.927281 0.008247 \n", + "251_x 0.934698 0.879448 0.874811 0.020254 0.023272 0.901690 0.019272 \n", + "253_x 0.949632 0.849505 0.879413 0.008597 0.025104 0.934250 0.021318 \n", + "255_x 0.935998 0.872646 0.866350 0.017377 0.032841 0.903291 0.023316 \n", + "\n", + "[128 rows x 730299 columns]\n" + ] + } + ], + "source": [ + "\n", + "from sklearn.model_selection import train_test_split\n", + "import pandas as pd\n", + "\n", + "tumor_count = 256\n", + "_0 = 524 \n", + "train_normal_0 = df_beta.iloc[:,tumor_count+1:_0:2].T\n", + "train_tumor_0 = df_beta.iloc[:, 1:tumor_count+1:2].T\n", + "\n", + "print(train_normal_0)\n", + "print(train_tumor_0)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "134\n", + " 0 1 2 3 4 5 6 \\\n", + "1_y 0.944083 0.943296 0.012583 0.989079 0.009669 0.966741 0.622188 \n", + "3_y 0.950317 0.957903 0.031774 0.967984 0.019528 0.958993 0.680737 \n", + "5_y 0.934376 0.965949 0.034041 0.978704 0.015799 0.968882 0.621227 \n", + "7_y 0.957498 0.970510 0.028683 0.984951 0.014932 0.964969 0.656947 \n", + "9_y 0.941509 0.968608 0.018919 0.981025 0.009279 0.964774 0.587489 \n", + "... ... ... ... ... ... ... ... \n", + "247_y 0.933164 0.953317 0.029272 0.983260 0.018065 0.968165 0.696745 \n", + "249_y 0.940272 0.962836 0.041876 0.965957 0.016495 0.967315 0.612897 \n", + "251_y 0.953192 0.944884 0.034416 0.970273 0.018402 0.953568 0.674615 \n", + "253_y 0.942201 0.932417 0.052085 0.970230 0.014003 0.958073 0.662412 \n", + "255_y 0.939644 0.958758 0.029013 0.963957 0.026137 0.958626 0.654526 \n", + "\n", + " 7 8 9 ... 730289 730290 730291 \\\n", + "1_y 0.879809 0.566474 0.580040 ... 0.006486 0.915614 0.933590 \n", + "3_y 0.867633 0.547496 0.632484 ... 0.013535 0.924227 0.923572 \n", + "5_y 0.855763 0.538873 0.570404 ... 0.015836 0.931631 0.920583 \n", + "7_y 0.868741 0.544339 0.581719 ... 0.013378 0.910470 0.922881 \n", + "9_y 0.913547 0.575926 0.660618 ... 0.048633 0.885095 0.919603 \n", + "... ... ... ... ... ... ... ... \n", + "247_y 0.902057 0.634576 0.646066 ... 0.033331 0.910356 0.919106 \n", + "249_y 0.777522 0.511915 0.696985 ... 0.019725 0.865318 0.916751 \n", + "251_y 0.898157 0.495985 0.543045 ... 0.018069 0.891146 0.930765 \n", + "253_y 0.937203 0.508768 0.559363 ... 0.020081 0.871081 0.917148 \n", + "255_y 0.874118 0.594128 0.581761 ... 0.013689 0.902405 0.910143 \n", + "\n", + " 730292 730293 730294 730295 730296 730297 730298 \n", + "1_y 0.961454 0.889010 0.881670 0.008530 0.013267 0.934471 0.009191 \n", + "3_y 0.953404 0.871591 0.884738 0.016282 0.022901 0.944143 0.020858 \n", + "5_y 0.941646 0.867310 0.869154 0.012065 0.019380 0.884108 0.017131 \n", + "7_y 0.956457 0.887971 0.869164 0.004796 0.021374 0.954730 0.014907 \n", + "9_y 0.966316 0.808480 0.873994 0.004077 0.012466 0.944178 0.012069 \n", + "... ... ... ... ... ... ... ... \n", + "247_y 0.960668 0.902536 0.885621 0.017823 0.017965 0.910968 0.021480 \n", + "249_y 0.959807 0.843072 0.900634 0.008236 0.015977 0.936653 0.016717 \n", + "251_y 0.938507 0.885130 0.880515 0.011715 0.028832 0.936853 0.015853 \n", + "253_y 0.926329 0.866411 0.888477 0.013857 0.035328 0.941731 0.017161 \n", + "255_y 0.937106 0.900410 0.901021 0.019691 0.033695 0.932843 0.014222 \n", + "\n", + "[127 rows x 730299 columns]\n" + ] + } + ], + "source": [ + "\n", + "tumor_count = 254\n", + "_0_pos = _0+1\n", + "_1 = 522\n", + "train_normal_1 = df_beta.iloc[:,_0_pos+tumor_count:_0_pos+_1 :2].T\n", + "train_tumor_1 = df_beta.iloc[:, _0_pos:_0_pos+tumor_count:2].T\n", + "\n", + "print(len(train_normal_1))\n", + "print(train_tumor_1)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 0 1 2 3 4 5 6 \\\n", + "257_x 0.944491 0.941055 0.019063 0.970588 0.016889 0.968430 0.601347 \n", + "259_x 0.936676 0.958219 0.031681 0.985476 0.010134 0.955828 0.604655 \n", + "261_x 0.932445 0.954776 0.023602 0.985671 0.005280 0.960710 0.631029 \n", + "263_x 0.950438 0.971993 0.025135 0.986416 0.014675 0.980988 0.677755 \n", + "265_x 0.935534 0.934625 0.034794 0.965526 0.019106 0.957349 0.592838 \n", + "... ... ... ... ... ... ... ... \n", + "247_x 0.963177 0.950974 0.047110 0.978634 0.012414 0.948015 0.692950 \n", + "249_x 0.925103 0.952803 0.022537 0.977123 0.011372 0.960816 0.612208 \n", + "251_x 0.935529 0.960803 0.037645 0.973661 0.029905 0.961988 0.644703 \n", + "253_x 0.932493 0.947340 0.036287 0.975147 0.016267 0.959567 0.631247 \n", + "255_x 0.937540 0.959682 0.034809 0.973619 0.027357 0.958788 0.647232 \n", + "\n", + " 7 8 9 ... 730289 730290 730291 \\\n", + "257_x 0.881432 0.492665 0.455735 ... 0.006310 0.897607 0.946030 \n", + "259_x 0.883578 0.587311 0.543591 ... 0.006204 0.930669 0.941054 \n", + "261_x 0.875564 0.651469 0.604075 ... 0.007425 0.911097 0.923278 \n", + "263_x 0.890447 0.644840 0.666678 ... 0.009980 0.920904 0.951211 \n", + "265_x 0.895628 0.568797 0.594449 ... 0.014064 0.898200 0.922606 \n", + "... ... ... ... ... ... ... ... \n", + "247_x 0.876160 0.590291 0.564501 ... 0.009770 0.894481 0.915441 \n", + "249_x 0.911642 0.570399 0.592302 ... 0.014391 0.882021 0.930739 \n", + "251_x 0.850623 0.534737 0.572251 ... 0.017095 0.894229 0.933776 \n", + "253_x 0.837581 0.562682 0.553462 ... 0.016572 0.892738 0.909585 \n", + "255_x 0.847405 0.575935 0.710056 ... 0.017406 0.894410 0.916764 \n", + "\n", + " 730292 730293 730294 730295 730296 730297 730298 \n", + "257_x 0.953652 0.832425 0.886375 0.009983 0.021550 0.955338 0.009822 \n", + "259_x 0.949772 0.838903 0.892014 0.007293 0.033496 0.935890 0.010103 \n", + "261_x 0.940460 0.812506 0.883188 0.012874 0.017124 0.953820 0.006297 \n", + "263_x 0.953876 0.892442 0.928424 0.012274 0.012906 0.918379 0.030021 \n", + "265_x 0.950515 0.873269 0.895948 0.012924 0.020729 0.905063 0.023880 \n", + "... ... ... ... ... ... ... ... \n", + "247_x 0.935785 0.892077 0.884135 0.007360 0.023650 0.919170 0.005686 \n", + "249_x 0.955235 0.823152 0.836735 0.010961 0.016117 0.927281 0.008247 \n", + "251_x 0.934698 0.879448 0.874811 0.020254 0.023272 0.901690 0.019272 \n", + "253_x 0.949632 0.849505 0.879413 0.008597 0.025104 0.934250 0.021318 \n", + "255_x 0.935998 0.872646 0.866350 0.017377 0.032841 0.903291 0.023316 \n", + "\n", + "[262 rows x 730299 columns]\n" + ] + } + ], + "source": [ + "# X1 = train_normal_0.T + train_normal_1.T\n", + "X1 = pd.concat([train_normal_0, train_tumor_0], axis=0)\n", + "\n", + "\n", + "if len(train_normal_0):\n", + " y1 = [(0 if i < len(train_normal_0) else 1) for i in range(len(X1))]\n", + "# train : 128t/134n = 262 ⇒ 256/268 = 524\n", + "# test : 127t/134n = 262 ⇒ 254/268 = 522\n", + "\n", + "print((X1))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 0 1 2 3 4 5 6 \\\n", + "257_y 0.941835 0.952351 0.033843 0.965625 0.018656 0.971850 0.646164 \n", + "259_y 0.950556 0.965640 0.027113 0.974349 0.009933 0.973287 0.664429 \n", + "261_y 0.949528 0.957152 0.035225 0.978224 0.006902 0.967282 0.606291 \n", + "263_y 0.481182 0.940676 0.036639 0.969736 0.005657 0.927707 0.674127 \n", + "265_y 0.947247 0.931571 0.028956 0.980057 0.014180 0.972478 0.662947 \n", + "... ... ... ... ... ... ... ... \n", + "247_y 0.933164 0.953317 0.029272 0.983260 0.018065 0.968165 0.696745 \n", + "249_y 0.940272 0.962836 0.041876 0.965957 0.016495 0.967315 0.612897 \n", + "251_y 0.953192 0.944884 0.034416 0.970273 0.018402 0.953568 0.674615 \n", + "253_y 0.942201 0.932417 0.052085 0.970230 0.014003 0.958073 0.662412 \n", + "255_y 0.939644 0.958758 0.029013 0.963957 0.026137 0.958626 0.654526 \n", + "\n", + " 7 8 9 ... 730289 730290 730291 \\\n", + "257_y 0.851468 0.585871 0.644606 ... 0.016719 0.908681 0.932501 \n", + "259_y 0.916417 0.679561 0.731845 ... 0.010756 0.927696 0.934060 \n", + "261_y 0.857414 0.526725 0.496275 ... 0.020514 0.863676 0.913598 \n", + "263_y 0.885300 0.586345 0.621877 ... 0.013610 0.915543 0.923342 \n", + "265_y 0.872972 0.656456 0.675041 ... 0.010804 0.875236 0.921637 \n", + "... ... ... ... ... ... ... ... \n", + "247_y 0.902057 0.634576 0.646066 ... 0.033331 0.910356 0.919106 \n", + "249_y 0.777522 0.511915 0.696985 ... 0.019725 0.865318 0.916751 \n", + "251_y 0.898157 0.495985 0.543045 ... 0.018069 0.891146 0.930765 \n", + "253_y 0.937203 0.508768 0.559363 ... 0.020081 0.871081 0.917148 \n", + "255_y 0.874118 0.594128 0.581761 ... 0.013689 0.902405 0.910143 \n", + "\n", + " 730292 730293 730294 730295 730296 730297 730298 \n", + "257_y 0.957587 0.914597 0.886147 0.016699 0.020705 0.949263 0.024108 \n", + "259_y 0.960047 0.896899 0.890823 0.014341 0.012359 0.935507 0.011456 \n", + "261_y 0.941485 0.861490 0.875755 0.012761 0.025194 0.913934 0.011417 \n", + "263_y 0.946670 0.830302 0.884796 0.014711 0.025084 0.917105 0.016553 \n", + "265_y 0.935619 0.827401 0.886924 0.005517 0.016238 0.923354 0.019376 \n", + "... ... ... ... ... ... ... ... \n", + "247_y 0.960668 0.902536 0.885621 0.017823 0.017965 0.910968 0.021480 \n", + "249_y 0.959807 0.843072 0.900634 0.008236 0.015977 0.936653 0.016717 \n", + "251_y 0.938507 0.885130 0.880515 0.011715 0.028832 0.936853 0.015853 \n", + "253_y 0.926329 0.866411 0.888477 0.013857 0.035328 0.941731 0.017161 \n", + "255_y 0.937106 0.900410 0.901021 0.019691 0.033695 0.932843 0.014222 \n", + "\n", + "[261 rows x 730299 columns]\n" + ] + } + ], + "source": [ + "# X2 = train_normal_1 + train_tumor_1\n", + "X2 = pd.concat([train_normal_1, train_tumor_1], axis=0)\n", + "\n", + "if len(train_normal_1):\n", + " y2 = [(0 if i < len(train_normal_1) else 1) for i in range(len(X2))]\n", + "\n", + "# train : 128t/134n = 262 ⇒ 256/268 = 524\n", + "# test : 127t/134n = 263 ⇒ 254/268 = 522\n", + "\n", + "print(X2)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "訓練集樣本數量: 418\n", + "測試集樣本數量: 105\n", + "訓練集中各類別樣本數量:\n", + "Counter({0: 210, 1: 208})\n", + "測試集中各類別樣本數量:\n", + "Counter({0: 58, 1: 47})\n" + ] + } + ], + "source": [ + "X = pd.concat([X1, X2], axis=0)\n", + "y = y1 + y2\n", + "# print(X)\n", + "\n", + "test_ratio = 0.2\n", + "\n", + "seed = 42\n", + "\n", + "from collections import Counter\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(\n", + " X, y, test_size=test_ratio, random_state=seed\n", + ")\n", + "\n", + "print(f\"訓練集樣本數量: {len(X_train)}\")\n", + "print(f\"測試集樣本數量: {len(X_test)}\")\n", + "train_class_distribution = Counter(y_train)\n", + "val_class_distribution = Counter(y_test)\n", + "print(\"訓練集中各類別樣本數量:\")\n", + "print(train_class_distribution)\n", + "print(\"測試集中各類別樣本數量:\")\n", + "print(val_class_distribution)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "X_train[\"label\"] = y_train\n", + "X_test[\"label\"] = y_test\n", + "\n", + "X_train_sorted = X_train.sort_values(by=\"label\")\n", + "X_test_sorted = X_test.sort_values(by=\"label\")\n", + "\n", + "# print(X_train_sorted[X_train_sorted[\"label\"] == 0])\n", + "# print(X_train_sorted[X_train_sorted[\"label\"] == 1])\n", + "\n", + "\n", + "\n", + "train_normal = X_train_sorted[X_train_sorted[\"label\"] == 0].drop(columns=[\"label\"])\n", + "train_tumor = X_train_sorted[X_train_sorted[\"label\"] == 1].drop(columns=[\"label\"])\n", + "\n", + "\n", + "k = train_tumor\n", + "kk = train_normal" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0461_x487_y325_x333_x417_x355_x373_y329_y503_x...61_x171_x179_x131_y51_y39_y151_y225_x85_y199_x
0cg078810410.9369640.9494280.9318670.9275040.9408760.9350680.9438850.9413410.931477...0.9422430.9452630.9357650.9457910.9449680.9464320.9390400.9479150.9251480.908973
1cg035138740.9627190.9522010.9344610.9354500.9535760.9427980.9338520.9453660.940140...0.9537310.9542760.9441590.9647710.9515810.9561530.9597710.9680140.9389310.946057
2cg054518420.0256800.0298570.0214940.0426520.0365310.0268960.0276100.0435610.051736...0.0420910.0394760.0346990.0253500.0244450.0272730.0259660.0248160.0505230.031266
3cg147970420.9624760.9815260.9700980.9787890.9746920.9722800.9846150.9629270.980575...0.9766880.9728890.9756340.9796910.9876200.9733120.9732610.9760110.9737310.961352
4cg098385620.0170290.0173770.0229060.0213990.0296930.0142630.0201670.0132350.014649...0.0126460.0167930.0252780.0152610.0039840.0080680.0115140.0125200.0213040.027372
..................................................................
730294cg198129380.8723710.8871970.8948710.9029360.8753690.8950610.8918720.8940700.864369...0.8807740.8905530.9000910.8936450.8786580.8867230.8982970.8761150.8811850.874934
730295cg062720540.0175870.0116510.0079930.0161880.0142880.0002610.0114620.0129480.008948...0.0165250.0157790.0235840.0146770.0089680.0057190.0084810.0092760.0168650.016004
730296cg072553560.0200570.0190630.0248120.0257760.0305280.0245800.0193380.0278200.021167...0.0228550.0273970.0337440.0186610.0114570.0112550.0231390.0201770.0149280.022536
730297cg242208970.9015990.8946740.9341780.9464100.9369240.9509090.9349240.9154400.928410...0.9081630.9232110.9401200.9407490.9452740.9633180.9483810.9518940.8607620.892109
730298cg123255880.0146320.0155720.0219710.0248340.0171360.0098340.0149740.0182130.013185...0.0124930.0228520.0215910.0111240.0051570.0116350.0121880.0081020.0275240.019300
\n", + "

730299 rows × 419 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 461_x 487_y 325_x 333_x 417_x \\\n", + "0 cg07881041 0.936964 0.949428 0.931867 0.927504 0.940876 \n", + "1 cg03513874 0.962719 0.952201 0.934461 0.935450 0.953576 \n", + "2 cg05451842 0.025680 0.029857 0.021494 0.042652 0.036531 \n", + "3 cg14797042 0.962476 0.981526 0.970098 0.978789 0.974692 \n", + "4 cg09838562 0.017029 0.017377 0.022906 0.021399 0.029693 \n", + "... ... ... ... ... ... ... \n", + "730294 cg19812938 0.872371 0.887197 0.894871 0.902936 0.875369 \n", + "730295 cg06272054 0.017587 0.011651 0.007993 0.016188 0.014288 \n", + "730296 cg07255356 0.020057 0.019063 0.024812 0.025776 0.030528 \n", + "730297 cg24220897 0.901599 0.894674 0.934178 0.946410 0.936924 \n", + "730298 cg12325588 0.014632 0.015572 0.021971 0.024834 0.017136 \n", + "\n", + " 355_x 373_y 329_y 503_x ... 61_x 171_x \\\n", + "0 0.935068 0.943885 0.941341 0.931477 ... 0.942243 0.945263 \n", + "1 0.942798 0.933852 0.945366 0.940140 ... 0.953731 0.954276 \n", + "2 0.026896 0.027610 0.043561 0.051736 ... 0.042091 0.039476 \n", + "3 0.972280 0.984615 0.962927 0.980575 ... 0.976688 0.972889 \n", + "4 0.014263 0.020167 0.013235 0.014649 ... 0.012646 0.016793 \n", + "... ... ... ... ... ... ... ... \n", + "730294 0.895061 0.891872 0.894070 0.864369 ... 0.880774 0.890553 \n", + "730295 0.000261 0.011462 0.012948 0.008948 ... 0.016525 0.015779 \n", + "730296 0.024580 0.019338 0.027820 0.021167 ... 0.022855 0.027397 \n", + "730297 0.950909 0.934924 0.915440 0.928410 ... 0.908163 0.923211 \n", + "730298 0.009834 0.014974 0.018213 0.013185 ... 0.012493 0.022852 \n", + "\n", + " 179_x 131_y 51_y 39_y 151_y 225_x 85_y \\\n", + "0 0.935765 0.945791 0.944968 0.946432 0.939040 0.947915 0.925148 \n", + "1 0.944159 0.964771 0.951581 0.956153 0.959771 0.968014 0.938931 \n", + "2 0.034699 0.025350 0.024445 0.027273 0.025966 0.024816 0.050523 \n", + "3 0.975634 0.979691 0.987620 0.973312 0.973261 0.976011 0.973731 \n", + "4 0.025278 0.015261 0.003984 0.008068 0.011514 0.012520 0.021304 \n", + "... ... ... ... ... ... ... ... \n", + "730294 0.900091 0.893645 0.878658 0.886723 0.898297 0.876115 0.881185 \n", + "730295 0.023584 0.014677 0.008968 0.005719 0.008481 0.009276 0.016865 \n", + "730296 0.033744 0.018661 0.011457 0.011255 0.023139 0.020177 0.014928 \n", + "730297 0.940120 0.940749 0.945274 0.963318 0.948381 0.951894 0.860762 \n", + "730298 0.021591 0.011124 0.005157 0.011635 0.012188 0.008102 0.027524 \n", + "\n", + " 199_x \n", + "0 0.908973 \n", + "1 0.946057 \n", + "2 0.031266 \n", + "3 0.961352 \n", + "4 0.027372 \n", + "... ... \n", + "730294 0.874934 \n", + "730295 0.016004 \n", + "730296 0.022536 \n", + "730297 0.892109 \n", + "730298 0.019300 \n", + "\n", + "[730299 rows x 419 columns]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_train_csv = X_train_sorted.drop(columns=[\"label\"])\n", + "\n", + "X_train_csv = pd.concat([ df_beta[\"Unnamed: 0\"], X_train_csv.T], axis=1)\n", + "X_train_csv.to_csv(\"result/GSE243529_aba/X_train_sorted_0.8.csv\",index=False)\n", + "X_train_csv" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0403_x435_x293_x393_x275_x415_x459_x465_x287_y...233_y169_x153_x93_x129_y2011_y29_x87_x39_x
0cg078810410.9253960.9473030.9389540.9399750.9224420.9494390.9393030.9370670.931057...0.9478270.9372460.9339270.9470290.9531740.9616020.9440830.9269230.9219470.969780
1cg035138740.9331640.9449110.9562210.9480100.9442390.9707510.9437130.9529010.945893...0.9476470.9448910.9341900.9539340.9426260.9822560.9432960.9493770.9537430.952016
2cg054518420.0305780.0446310.0284410.0286370.0470840.0300670.0390090.0460110.030951...0.0200060.0268900.0356000.0192640.0253690.0346290.0125830.0346150.0342040.021382
3cg147970420.9612470.9744820.9807080.9757870.9701410.9648990.9836230.9832320.980500...0.9829130.9016770.9792600.9772940.9869770.9791320.9890790.9758110.9832980.986134
4cg098385620.0322000.0235810.0134230.0109730.0262290.0178950.0233790.0258630.010268...0.0165720.0210440.0168590.0140870.0108630.0174230.0096690.0170600.0222280.007662
..................................................................
730294cg198129380.8528150.9033330.8977620.8852460.8741310.8678780.8670810.8799540.883569...0.8873070.8822530.8727110.8841560.8735840.8688280.8816700.9027750.8893480.879664
730295cg062720540.0169530.0247170.0090950.0143410.0134130.0130330.0228020.0137710.008347...0.0127880.0162330.0071490.0173090.0096250.0083540.0085300.0111380.0163000.004846
730296cg072553560.0380070.0352570.0220100.0250080.0334870.0285280.0297840.0204120.012821...0.0218080.0281650.0237400.0262540.0113870.0231850.0132670.0254800.0257270.011394
730297cg242208970.8983440.9387140.9398350.9009010.9007200.9159280.9090810.9211050.929455...0.9219870.8924950.9193800.9318180.8629110.9583490.9344710.9436550.9199630.943813
730298cg123255880.0418630.0190650.0120270.0197120.0293540.0226300.0282940.0187760.013149...0.0125880.0107530.0296690.0074270.0125010.0129810.0091910.0054220.0150080.008226
\n", + "

730299 rows × 106 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 403_x 435_x 293_x 393_x 275_x \\\n", + "0 cg07881041 0.925396 0.947303 0.938954 0.939975 0.922442 \n", + "1 cg03513874 0.933164 0.944911 0.956221 0.948010 0.944239 \n", + "2 cg05451842 0.030578 0.044631 0.028441 0.028637 0.047084 \n", + "3 cg14797042 0.961247 0.974482 0.980708 0.975787 0.970141 \n", + "4 cg09838562 0.032200 0.023581 0.013423 0.010973 0.026229 \n", + "... ... ... ... ... ... ... \n", + "730294 cg19812938 0.852815 0.903333 0.897762 0.885246 0.874131 \n", + "730295 cg06272054 0.016953 0.024717 0.009095 0.014341 0.013413 \n", + "730296 cg07255356 0.038007 0.035257 0.022010 0.025008 0.033487 \n", + "730297 cg24220897 0.898344 0.938714 0.939835 0.900901 0.900720 \n", + "730298 cg12325588 0.041863 0.019065 0.012027 0.019712 0.029354 \n", + "\n", + " 415_x 459_x 465_x 287_y ... 233_y 169_x \\\n", + "0 0.949439 0.939303 0.937067 0.931057 ... 0.947827 0.937246 \n", + "1 0.970751 0.943713 0.952901 0.945893 ... 0.947647 0.944891 \n", + "2 0.030067 0.039009 0.046011 0.030951 ... 0.020006 0.026890 \n", + "3 0.964899 0.983623 0.983232 0.980500 ... 0.982913 0.901677 \n", + "4 0.017895 0.023379 0.025863 0.010268 ... 0.016572 0.021044 \n", + "... ... ... ... ... ... ... ... \n", + "730294 0.867878 0.867081 0.879954 0.883569 ... 0.887307 0.882253 \n", + "730295 0.013033 0.022802 0.013771 0.008347 ... 0.012788 0.016233 \n", + "730296 0.028528 0.029784 0.020412 0.012821 ... 0.021808 0.028165 \n", + "730297 0.915928 0.909081 0.921105 0.929455 ... 0.921987 0.892495 \n", + "730298 0.022630 0.028294 0.018776 0.013149 ... 0.012588 0.010753 \n", + "\n", + " 153_x 93_x 129_y 201 1_y 29_x 87_x \\\n", + "0 0.933927 0.947029 0.953174 0.961602 0.944083 0.926923 0.921947 \n", + "1 0.934190 0.953934 0.942626 0.982256 0.943296 0.949377 0.953743 \n", + "2 0.035600 0.019264 0.025369 0.034629 0.012583 0.034615 0.034204 \n", + "3 0.979260 0.977294 0.986977 0.979132 0.989079 0.975811 0.983298 \n", + "4 0.016859 0.014087 0.010863 0.017423 0.009669 0.017060 0.022228 \n", + "... ... ... ... ... ... ... ... \n", + "730294 0.872711 0.884156 0.873584 0.868828 0.881670 0.902775 0.889348 \n", + "730295 0.007149 0.017309 0.009625 0.008354 0.008530 0.011138 0.016300 \n", + "730296 0.023740 0.026254 0.011387 0.023185 0.013267 0.025480 0.025727 \n", + "730297 0.919380 0.931818 0.862911 0.958349 0.934471 0.943655 0.919963 \n", + "730298 0.029669 0.007427 0.012501 0.012981 0.009191 0.005422 0.015008 \n", + "\n", + " 39_x \n", + "0 0.969780 \n", + "1 0.952016 \n", + "2 0.021382 \n", + "3 0.986134 \n", + "4 0.007662 \n", + "... ... \n", + "730294 0.879664 \n", + "730295 0.004846 \n", + "730296 0.011394 \n", + "730297 0.943813 \n", + "730298 0.008226 \n", + "\n", + "[730299 rows x 106 columns]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_test_csv = X_test_sorted.drop(columns=[\"label\"])\n", + "\n", + "\n", + "X_test_csv = pd.concat([ df_beta[\"Unnamed: 0\"], X_test_csv.T], axis=1)\n", + "X_test_csv.to_csv(\"result/GSE243529_aba/X_test_sorted_0.2.csv\",index=False)\n", + "X_test_csv" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "def IQR(df):\n", + " Q1 = df.quantile(0.25)\n", + " Q3 = df.quantile(0.75)\n", + " IQR = Q3 - Q1\n", + " upper_fence = Q3 + IQR*1.5\n", + " lower_fence = Q1 - IQR*1.5\n", + " return upper_fence,lower_fence\n", + "def no_outlier(df):\n", + " upper_fence, lower_fence = IQR(df)\n", + " ddf=df[(df>lower_fence)&(df\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0123456789...730289730290730291730292730293730294730295730296730297730298
461_x0.9369640.9627190.0256800.9624760.0170290.9517550.6976160.8571800.5539330.552993...0.0184090.9166730.9164450.9579350.8653650.8723710.0175870.0200570.9015990.014632
487_y0.9494280.9522010.0298570.9815260.0173770.9598610.7151940.8678540.6053770.562242...0.0173520.9154970.9190450.9457060.8385620.8871970.0116510.0190630.8946740.015572
325_x0.9318670.9344610.0214940.9700980.0229060.9573120.6619960.9085780.5468830.603278...0.0172680.9135350.9214820.9396480.8934980.8948710.0079930.0248120.9341780.021971
333_x0.9275040.9354500.0426520.9787890.0213990.9624580.6630410.8635560.6043820.611538...0.0074890.9202780.9200770.9565430.8647720.9029360.0161880.0257760.9464100.024834
417_x0.9408760.9535760.0365310.9746920.0296930.9678380.6150060.8296320.5539010.608524...0.0105810.8950360.9085820.9415020.8694740.8753690.0142880.0305280.9369240.017136
..................................................................
353_x0.9396080.9563000.0252300.9860750.0041630.9597060.6634230.9056500.5486680.602290...0.0069330.9041470.9190350.9644160.8308130.8687420.0080680.0158730.9443290.009715
463_y0.9401370.9590910.0410880.9783230.0240300.9708320.6730750.9152030.6206700.697394...0.0180600.8972370.9447380.9531720.8480530.8741140.0186870.0299440.9277290.019857
373_x0.9230980.9622000.0371590.9859930.0216400.9495980.6555500.8192400.4945610.452911...0.0135620.8991840.8970510.9487600.8940750.8762270.0138280.0190090.9490250.021670
403_y0.9395410.9604390.0253400.9830610.0090960.9641330.7139380.8877660.5828120.592028...0.0105050.9154400.9357580.9649900.8657230.8859890.0083090.0171020.9525020.016356
331_x0.9324380.9500530.0338680.9728090.0119180.9523330.6670320.8787730.6385330.683002...0.0146660.8973050.9230250.9387390.8568730.8934050.0145080.0320130.9260200.012699
\n", + "

210 rows × 730299 columns

\n", + "" + ], + "text/plain": [ + " 0 1 2 3 4 5 6 \\\n", + "461_x 0.936964 0.962719 0.025680 0.962476 0.017029 0.951755 0.697616 \n", + "487_y 0.949428 0.952201 0.029857 0.981526 0.017377 0.959861 0.715194 \n", + "325_x 0.931867 0.934461 0.021494 0.970098 0.022906 0.957312 0.661996 \n", + "333_x 0.927504 0.935450 0.042652 0.978789 0.021399 0.962458 0.663041 \n", + "417_x 0.940876 0.953576 0.036531 0.974692 0.029693 0.967838 0.615006 \n", + "... ... ... ... ... ... ... ... \n", + "353_x 0.939608 0.956300 0.025230 0.986075 0.004163 0.959706 0.663423 \n", + "463_y 0.940137 0.959091 0.041088 0.978323 0.024030 0.970832 0.673075 \n", + "373_x 0.923098 0.962200 0.037159 0.985993 0.021640 0.949598 0.655550 \n", + "403_y 0.939541 0.960439 0.025340 0.983061 0.009096 0.964133 0.713938 \n", + "331_x 0.932438 0.950053 0.033868 0.972809 0.011918 0.952333 0.667032 \n", + "\n", + " 7 8 9 ... 730289 730290 730291 \\\n", + "461_x 0.857180 0.553933 0.552993 ... 0.018409 0.916673 0.916445 \n", + "487_y 0.867854 0.605377 0.562242 ... 0.017352 0.915497 0.919045 \n", + "325_x 0.908578 0.546883 0.603278 ... 0.017268 0.913535 0.921482 \n", + "333_x 0.863556 0.604382 0.611538 ... 0.007489 0.920278 0.920077 \n", + "417_x 0.829632 0.553901 0.608524 ... 0.010581 0.895036 0.908582 \n", + "... ... ... ... ... ... ... ... \n", + "353_x 0.905650 0.548668 0.602290 ... 0.006933 0.904147 0.919035 \n", + "463_y 0.915203 0.620670 0.697394 ... 0.018060 0.897237 0.944738 \n", + "373_x 0.819240 0.494561 0.452911 ... 0.013562 0.899184 0.897051 \n", + "403_y 0.887766 0.582812 0.592028 ... 0.010505 0.915440 0.935758 \n", + "331_x 0.878773 0.638533 0.683002 ... 0.014666 0.897305 0.923025 \n", + "\n", + " 730292 730293 730294 730295 730296 730297 730298 \n", + "461_x 0.957935 0.865365 0.872371 0.017587 0.020057 0.901599 0.014632 \n", + "487_y 0.945706 0.838562 0.887197 0.011651 0.019063 0.894674 0.015572 \n", + "325_x 0.939648 0.893498 0.894871 0.007993 0.024812 0.934178 0.021971 \n", + "333_x 0.956543 0.864772 0.902936 0.016188 0.025776 0.946410 0.024834 \n", + "417_x 0.941502 0.869474 0.875369 0.014288 0.030528 0.936924 0.017136 \n", + "... ... ... ... ... ... ... ... \n", + "353_x 0.964416 0.830813 0.868742 0.008068 0.015873 0.944329 0.009715 \n", + "463_y 0.953172 0.848053 0.874114 0.018687 0.029944 0.927729 0.019857 \n", + "373_x 0.948760 0.894075 0.876227 0.013828 0.019009 0.949025 0.021670 \n", + "403_y 0.964990 0.865723 0.885989 0.008309 0.017102 0.952502 0.016356 \n", + "331_x 0.938739 0.856873 0.893405 0.014508 0.032013 0.926020 0.012699 \n", + "\n", + "[210 rows x 730299 columns]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "k = train_tumor\n", + "kk = train_normal\n", + "\n", + "train_normal" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "all_beta_normalized_normal = no_outlier(train_normal)\n", + "all_beta_normalized_tumor = no_outlier(train_tumor)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0123456789...730289730290730291730292730293730294730295730296730297730298
253_x0.9324930.9473400.0362870.9751470.0162670.9595670.6312470.8375810.5626820.553462...0.0165720.8927380.9095850.9496320.8495050.8794130.0085970.0251040.9342500.021318
125_y0.9396420.9547460.0377450.9606920.0221650.9616340.6168710.8589670.5190190.537036...0.0193960.8793530.9098940.9320290.8840600.8639330.0111730.0326820.9419420.040035
247_x0.9631770.9509740.0471100.9786340.0124140.9480150.6929500.8761600.5902910.564501...0.0097700.8944810.9154410.9357850.8920770.8841350.0073600.0236500.9191700.005686
3_x0.9320660.9351870.0228800.9896210.0090200.9681530.6307920.8549000.5294520.575943...0.0132980.9147740.9398380.9617870.9146870.9036610.0113050.0169490.9213120.006455
215_y0.9577300.9592370.0274340.9722970.0177130.9661960.7433260.8489180.5109690.658933...0.0179390.8822410.9392980.9583130.8973940.8799690.0178620.0377480.9430660.017803
..................................................................
39_y0.9464320.9561530.0272730.9733120.0080680.9727540.6357960.8853580.5477710.616187...0.0078760.9058250.9278690.9544960.8988070.8867230.0057190.0112550.9633180.011635
151_y0.9390400.9597710.0259660.9732610.0115140.9696520.7349020.9104290.7033830.732262...0.0129930.9231330.9331970.9670270.9486620.8982970.0084810.0231390.9483810.012188
225_x0.9479150.9680140.0248160.9760110.0125200.9739320.6477340.9116900.5994660.567957...0.0146210.8969270.9341780.9574080.8284060.8761150.0092760.0201770.9518940.008102
85_y0.9251480.9389310.0505230.9737310.0213040.9465690.6722420.8918350.6195010.564449...0.0234340.9094210.9220700.9427390.8511900.8811850.0168650.0149280.8607620.027524
199_x0.9089730.9460570.0312660.9613520.0273720.9693110.6331440.9618960.7633990.842941...0.0129990.8850160.8985170.9555160.4785840.8749340.0160040.0225360.8921090.019300
\n", + "

208 rows × 730299 columns

\n", + "
" + ], + "text/plain": [ + " 0 1 2 3 4 5 6 \\\n", + "253_x 0.932493 0.947340 0.036287 0.975147 0.016267 0.959567 0.631247 \n", + "125_y 0.939642 0.954746 0.037745 0.960692 0.022165 0.961634 0.616871 \n", + "247_x 0.963177 0.950974 0.047110 0.978634 0.012414 0.948015 0.692950 \n", + "3_x 0.932066 0.935187 0.022880 0.989621 0.009020 0.968153 0.630792 \n", + "215_y 0.957730 0.959237 0.027434 0.972297 0.017713 0.966196 0.743326 \n", + "... ... ... ... ... ... ... ... \n", + "39_y 0.946432 0.956153 0.027273 0.973312 0.008068 0.972754 0.635796 \n", + "151_y 0.939040 0.959771 0.025966 0.973261 0.011514 0.969652 0.734902 \n", + "225_x 0.947915 0.968014 0.024816 0.976011 0.012520 0.973932 0.647734 \n", + "85_y 0.925148 0.938931 0.050523 0.973731 0.021304 0.946569 0.672242 \n", + "199_x 0.908973 0.946057 0.031266 0.961352 0.027372 0.969311 0.633144 \n", + "\n", + " 7 8 9 ... 730289 730290 730291 \\\n", + "253_x 0.837581 0.562682 0.553462 ... 0.016572 0.892738 0.909585 \n", + "125_y 0.858967 0.519019 0.537036 ... 0.019396 0.879353 0.909894 \n", + "247_x 0.876160 0.590291 0.564501 ... 0.009770 0.894481 0.915441 \n", + "3_x 0.854900 0.529452 0.575943 ... 0.013298 0.914774 0.939838 \n", + "215_y 0.848918 0.510969 0.658933 ... 0.017939 0.882241 0.939298 \n", + "... ... ... ... ... ... ... ... \n", + "39_y 0.885358 0.547771 0.616187 ... 0.007876 0.905825 0.927869 \n", + "151_y 0.910429 0.703383 0.732262 ... 0.012993 0.923133 0.933197 \n", + "225_x 0.911690 0.599466 0.567957 ... 0.014621 0.896927 0.934178 \n", + "85_y 0.891835 0.619501 0.564449 ... 0.023434 0.909421 0.922070 \n", + "199_x 0.961896 0.763399 0.842941 ... 0.012999 0.885016 0.898517 \n", + "\n", + " 730292 730293 730294 730295 730296 730297 730298 \n", + "253_x 0.949632 0.849505 0.879413 0.008597 0.025104 0.934250 0.021318 \n", + "125_y 0.932029 0.884060 0.863933 0.011173 0.032682 0.941942 0.040035 \n", + "247_x 0.935785 0.892077 0.884135 0.007360 0.023650 0.919170 0.005686 \n", + "3_x 0.961787 0.914687 0.903661 0.011305 0.016949 0.921312 0.006455 \n", + "215_y 0.958313 0.897394 0.879969 0.017862 0.037748 0.943066 0.017803 \n", + "... ... ... ... ... ... ... ... \n", + "39_y 0.954496 0.898807 0.886723 0.005719 0.011255 0.963318 0.011635 \n", + "151_y 0.967027 0.948662 0.898297 0.008481 0.023139 0.948381 0.012188 \n", + "225_x 0.957408 0.828406 0.876115 0.009276 0.020177 0.951894 0.008102 \n", + "85_y 0.942739 0.851190 0.881185 0.016865 0.014928 0.860762 0.027524 \n", + "199_x 0.955516 0.478584 0.874934 0.016004 0.022536 0.892109 0.019300 \n", + "\n", + "[208 rows x 730299 columns]" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_tumor" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 0.938926\n", + "1 0.952476\n", + "2 0.032351\n", + "3 0.974024\n", + "4 0.018999\n", + " ... \n", + "730294 0.881875\n", + "730295 0.014691\n", + "730296 0.025056\n", + "730297 0.921886\n", + "730298 0.018928\n", + "Length: 730299, dtype: float64" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_normal_avg = train_normal.mean(skipna=True, axis = 0)\n", + "train_normal_avg" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0123456789...730289730290730291730292730293730294730295730296730297730298
253_x-0.006434-0.0051350.0039360.001123-0.002732-0.001861-0.021329-0.037894-0.005184-0.033538...0.000557-0.007762-0.0123920.002060-0.003150-0.002462-0.0060940.0000480.0123640.002390
125_y0.0007160.0022700.005394-0.0133320.0031660.000206-0.035705-0.016508-0.048848-0.049963...0.003380-0.021147-0.012083-0.0155430.031404-0.017942-0.0035180.0076260.0200560.021108
247_x0.024251-0.0015010.0147590.004610-0.006585-0.0134130.0403740.0006850.022424-0.022499...-0.006246-0.006019-0.006536-0.0117860.0394220.002260-0.007331-0.001406-0.002716-0.013242
3_x-0.006860-0.017289-0.0094710.015597-0.0099790.006725-0.021784-0.020575-0.038415-0.011056...-0.0027180.0142740.0178620.0142150.0620320.021786-0.003386-0.008107-0.000574-0.012473
215_y0.0188040.006761-0.004917-0.001727-0.0012860.0047680.090750-0.026557-0.0568970.071934...0.001923-0.0182590.0173210.0107410.044739-0.0019060.0031710.0126910.021180-0.001125
..................................................................
39_y0.0075060.003677-0.005078-0.000712-0.0109310.011326-0.0167800.009883-0.0200950.029188...-0.0081400.0053250.0058930.0069240.0461510.004848-0.008972-0.0138020.041432-0.007292
151_y0.0001140.007296-0.006385-0.000763-0.0074850.0082250.0823260.0349540.1355170.145262...-0.0030220.0226330.0112210.0194550.0960070.016421-0.006210-0.0019170.026495-0.006740
225_x0.0089890.015538-0.0075350.001987-0.0064790.012505-0.0048410.0362150.031599-0.019043...-0.001395-0.0035720.0122020.009836-0.024249-0.005761-0.005415-0.0048790.030008-0.010826
85_y-0.013778-0.0135450.018172-0.0002930.002305-0.0148590.0196660.0163590.051634-0.022551...0.0074190.0089210.000093-0.004833-0.001465-0.0006900.002174-0.010128-0.0611240.008596
199_x-0.029953-0.006419-0.001085-0.0126710.0083730.007883-0.0194320.0864210.1955320.255941...-0.003016-0.015484-0.0234600.007944-0.374072-0.0069410.001313-0.002521-0.0297770.000372
\n", + "

208 rows × 730299 columns

\n", + "
" + ], + "text/plain": [ + " 0 1 2 3 4 5 6 \\\n", + "253_x -0.006434 -0.005135 0.003936 0.001123 -0.002732 -0.001861 -0.021329 \n", + "125_y 0.000716 0.002270 0.005394 -0.013332 0.003166 0.000206 -0.035705 \n", + "247_x 0.024251 -0.001501 0.014759 0.004610 -0.006585 -0.013413 0.040374 \n", + "3_x -0.006860 -0.017289 -0.009471 0.015597 -0.009979 0.006725 -0.021784 \n", + "215_y 0.018804 0.006761 -0.004917 -0.001727 -0.001286 0.004768 0.090750 \n", + "... ... ... ... ... ... ... ... \n", + "39_y 0.007506 0.003677 -0.005078 -0.000712 -0.010931 0.011326 -0.016780 \n", + "151_y 0.000114 0.007296 -0.006385 -0.000763 -0.007485 0.008225 0.082326 \n", + "225_x 0.008989 0.015538 -0.007535 0.001987 -0.006479 0.012505 -0.004841 \n", + "85_y -0.013778 -0.013545 0.018172 -0.000293 0.002305 -0.014859 0.019666 \n", + "199_x -0.029953 -0.006419 -0.001085 -0.012671 0.008373 0.007883 -0.019432 \n", + "\n", + " 7 8 9 ... 730289 730290 730291 \\\n", + "253_x -0.037894 -0.005184 -0.033538 ... 0.000557 -0.007762 -0.012392 \n", + "125_y -0.016508 -0.048848 -0.049963 ... 0.003380 -0.021147 -0.012083 \n", + "247_x 0.000685 0.022424 -0.022499 ... -0.006246 -0.006019 -0.006536 \n", + "3_x -0.020575 -0.038415 -0.011056 ... -0.002718 0.014274 0.017862 \n", + "215_y -0.026557 -0.056897 0.071934 ... 0.001923 -0.018259 0.017321 \n", + "... ... ... ... ... ... ... ... \n", + "39_y 0.009883 -0.020095 0.029188 ... -0.008140 0.005325 0.005893 \n", + "151_y 0.034954 0.135517 0.145262 ... -0.003022 0.022633 0.011221 \n", + "225_x 0.036215 0.031599 -0.019043 ... -0.001395 -0.003572 0.012202 \n", + "85_y 0.016359 0.051634 -0.022551 ... 0.007419 0.008921 0.000093 \n", + "199_x 0.086421 0.195532 0.255941 ... -0.003016 -0.015484 -0.023460 \n", + "\n", + " 730292 730293 730294 730295 730296 730297 730298 \n", + "253_x 0.002060 -0.003150 -0.002462 -0.006094 0.000048 0.012364 0.002390 \n", + "125_y -0.015543 0.031404 -0.017942 -0.003518 0.007626 0.020056 0.021108 \n", + "247_x -0.011786 0.039422 0.002260 -0.007331 -0.001406 -0.002716 -0.013242 \n", + "3_x 0.014215 0.062032 0.021786 -0.003386 -0.008107 -0.000574 -0.012473 \n", + "215_y 0.010741 0.044739 -0.001906 0.003171 0.012691 0.021180 -0.001125 \n", + "... ... ... ... ... ... ... ... \n", + "39_y 0.006924 0.046151 0.004848 -0.008972 -0.013802 0.041432 -0.007292 \n", + "151_y 0.019455 0.096007 0.016421 -0.006210 -0.001917 0.026495 -0.006740 \n", + "225_x 0.009836 -0.024249 -0.005761 -0.005415 -0.004879 0.030008 -0.010826 \n", + "85_y -0.004833 -0.001465 -0.000690 0.002174 -0.010128 -0.061124 0.008596 \n", + "199_x 0.007944 -0.374072 -0.006941 0.001313 -0.002521 -0.029777 0.000372 \n", + "\n", + "[208 rows x 730299 columns]" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_tumor=(train_tumor).subtract(train_normal_avg, axis = 1)\n", + "train_tumor" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0123456789...730289730290730291730292730293730294730295730296730297730298
253_x-0.006434-0.0051350.0039360.001123-0.002732-0.001861-0.021329-0.037894-0.005184-0.033538...0.000557-0.007762-0.0123920.002060-0.003150-0.002462-0.0060940.0000480.0123640.002390
125_y0.0007160.0022700.005394-0.0133320.0031660.000206-0.035705-0.016508-0.048848-0.049963...0.003380-0.021147-0.012083-0.0155430.031404-0.017942-0.0035180.0076260.020056NaN
247_x0.024251-0.0015010.0147590.004610-0.006585-0.0134130.0403740.0006850.022424-0.022499...-0.006246-0.006019-0.006536-0.0117860.0394220.002260-0.007331-0.001406-0.002716-0.013242
3_x-0.006860-0.017289-0.0094710.015597-0.0099790.006725-0.021784-0.020575-0.038415-0.011056...-0.0027180.0142740.0178620.0142150.0620320.021786-0.003386-0.008107-0.000574-0.012473
215_y0.0188040.006761-0.004917-0.001727-0.0012860.0047680.090750-0.026557-0.0568970.071934...0.001923-0.0182590.0173210.0107410.044739-0.0019060.0031710.0126910.021180-0.001125
..................................................................
39_y0.0075060.003677-0.005078-0.000712-0.0109310.011326-0.0167800.009883-0.0200950.029188...-0.0081400.0053250.0058930.0069240.0461510.004848-0.008972-0.0138020.041432-0.007292
151_y0.0001140.007296-0.006385-0.000763-0.0074850.0082250.0823260.0349540.1355170.145262...-0.0030220.0226330.0112210.0194550.0960070.016421-0.006210-0.0019170.026495-0.006740
225_x0.0089890.015538-0.0075350.001987-0.0064790.012505-0.0048410.0362150.031599-0.019043...-0.001395-0.0035720.0122020.009836-0.024249-0.005761-0.005415-0.0048790.030008-0.010826
85_y-0.013778-0.0135450.018172-0.0002930.002305-0.0148590.0196660.0163590.051634-0.022551...0.0074190.0089210.000093-0.004833-0.001465-0.0006900.002174-0.010128-0.0611240.008596
199_xNaN-0.006419-0.001085-0.0126710.0083730.007883-0.019432NaNNaNNaN...-0.003016-0.015484-0.0234600.007944NaN-0.0069410.001313-0.002521-0.0297770.000372
\n", + "

208 rows × 730299 columns

\n", + "
" + ], + "text/plain": [ + " 0 1 2 3 4 5 6 \\\n", + "253_x -0.006434 -0.005135 0.003936 0.001123 -0.002732 -0.001861 -0.021329 \n", + "125_y 0.000716 0.002270 0.005394 -0.013332 0.003166 0.000206 -0.035705 \n", + "247_x 0.024251 -0.001501 0.014759 0.004610 -0.006585 -0.013413 0.040374 \n", + "3_x -0.006860 -0.017289 -0.009471 0.015597 -0.009979 0.006725 -0.021784 \n", + "215_y 0.018804 0.006761 -0.004917 -0.001727 -0.001286 0.004768 0.090750 \n", + "... ... ... ... ... ... ... ... \n", + "39_y 0.007506 0.003677 -0.005078 -0.000712 -0.010931 0.011326 -0.016780 \n", + "151_y 0.000114 0.007296 -0.006385 -0.000763 -0.007485 0.008225 0.082326 \n", + "225_x 0.008989 0.015538 -0.007535 0.001987 -0.006479 0.012505 -0.004841 \n", + "85_y -0.013778 -0.013545 0.018172 -0.000293 0.002305 -0.014859 0.019666 \n", + "199_x NaN -0.006419 -0.001085 -0.012671 0.008373 0.007883 -0.019432 \n", + "\n", + " 7 8 9 ... 730289 730290 730291 \\\n", + "253_x -0.037894 -0.005184 -0.033538 ... 0.000557 -0.007762 -0.012392 \n", + "125_y -0.016508 -0.048848 -0.049963 ... 0.003380 -0.021147 -0.012083 \n", + "247_x 0.000685 0.022424 -0.022499 ... -0.006246 -0.006019 -0.006536 \n", + "3_x -0.020575 -0.038415 -0.011056 ... -0.002718 0.014274 0.017862 \n", + "215_y -0.026557 -0.056897 0.071934 ... 0.001923 -0.018259 0.017321 \n", + "... ... ... ... ... ... ... ... \n", + "39_y 0.009883 -0.020095 0.029188 ... -0.008140 0.005325 0.005893 \n", + "151_y 0.034954 0.135517 0.145262 ... -0.003022 0.022633 0.011221 \n", + "225_x 0.036215 0.031599 -0.019043 ... -0.001395 -0.003572 0.012202 \n", + "85_y 0.016359 0.051634 -0.022551 ... 0.007419 0.008921 0.000093 \n", + "199_x NaN NaN NaN ... -0.003016 -0.015484 -0.023460 \n", + "\n", + " 730292 730293 730294 730295 730296 730297 730298 \n", + "253_x 0.002060 -0.003150 -0.002462 -0.006094 0.000048 0.012364 0.002390 \n", + "125_y -0.015543 0.031404 -0.017942 -0.003518 0.007626 0.020056 NaN \n", + "247_x -0.011786 0.039422 0.002260 -0.007331 -0.001406 -0.002716 -0.013242 \n", + "3_x 0.014215 0.062032 0.021786 -0.003386 -0.008107 -0.000574 -0.012473 \n", + "215_y 0.010741 0.044739 -0.001906 0.003171 0.012691 0.021180 -0.001125 \n", + "... ... ... ... ... ... ... ... \n", + "39_y 0.006924 0.046151 0.004848 -0.008972 -0.013802 0.041432 -0.007292 \n", + "151_y 0.019455 0.096007 0.016421 -0.006210 -0.001917 0.026495 -0.006740 \n", + "225_x 0.009836 -0.024249 -0.005761 -0.005415 -0.004879 0.030008 -0.010826 \n", + "85_y -0.004833 -0.001465 -0.000690 0.002174 -0.010128 -0.061124 0.008596 \n", + "199_x 0.007944 NaN -0.006941 0.001313 -0.002521 -0.029777 0.000372 \n", + "\n", + "[208 rows x 730299 columns]" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_tumor=no_outlier(train_tumor)\n", + "train_tumor" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 0.001698\n", + "1 -0.001098\n", + "2 0.001686\n", + "3 0.000580\n", + "4 -0.000642\n", + " ... \n", + "730294 -0.000839\n", + "730295 -0.000743\n", + "730296 -0.000037\n", + "730297 0.001886\n", + "730298 -0.000306\n", + "Length: 730299, dtype: float64" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_tumor_mean = train_tumor.mean(skipna=True, axis = 0)\n", + "train_tumor_mean" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0dbeta
0cg078810410.001698
1cg03513874-0.001098
2cg054518420.001686
3cg147970420.000580
4cg09838562-0.000642
.........
730294cg19812938-0.000839
730295cg06272054-0.000743
730296cg07255356-0.000037
730297cg242208970.001886
730298cg12325588-0.000306
\n", + "

730299 rows × 2 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 dbeta\n", + "0 cg07881041 0.001698\n", + "1 cg03513874 -0.001098\n", + "2 cg05451842 0.001686\n", + "3 cg14797042 0.000580\n", + "4 cg09838562 -0.000642\n", + "... ... ...\n", + "730294 cg19812938 -0.000839\n", + "730295 cg06272054 -0.000743\n", + "730296 cg07255356 -0.000037\n", + "730297 cg24220897 0.001886\n", + "730298 cg12325588 -0.000306\n", + "\n", + "[730299 rows x 2 columns]" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Δβ = pd.merge(df_beta.iloc[:,:1], pd.DataFrame(train_tumor_mean, columns = [\"dbeta\"]), left_index=True, right_index=True)\n", + "Δβ" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0gene_xfeature_xgene_yfeature_y
0cg07677157NaNIGRNaNIGR
1cg01485645MLLT6BodyMLLT6Body
2cg15261712CDK63'UTRCDK63'UTR
3cg08173263LPHN1BodyLPHN1Body
4cg22652406DNAJC4TSS200DNAJC4TSS200
..................
212521cg06961284NaNNaNTUBGCP3Body
212522cg00895836NaNNaNNaNIGR
212523cg25296374NaNNaNNaNIGR
212524cg18254983NaNNaNKLK15Body
212525cg03266453NaNNaNEN1TSS1500
\n", + "

212526 rows × 5 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 gene_x feature_x gene_y feature_y\n", + "0 cg07677157 NaN IGR NaN IGR\n", + "1 cg01485645 MLLT6 Body MLLT6 Body\n", + "2 cg15261712 CDK6 3'UTR CDK6 3'UTR\n", + "3 cg08173263 LPHN1 Body LPHN1 Body\n", + "4 cg22652406 DNAJC4 TSS200 DNAJC4 TSS200\n", + "... ... ... ... ... ...\n", + "212521 cg06961284 NaN NaN TUBGCP3 Body\n", + "212522 cg00895836 NaN NaN NaN IGR\n", + "212523 cg25296374 NaN NaN NaN IGR\n", + "212524 cg18254983 NaN NaN KLK15 Body\n", + "212525 cg03266453 NaN NaN EN1 TSS1500\n", + "\n", + "[212526 rows x 5 columns]" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dmp_train_0 = pd.read_csv(f\"source/GSE243529/DMP_result_0.csv\")\n", + "dmp_train_1 = pd.read_csv(f\"source/GSE243529/DMP_result_1.csv\")\n", + "\n", + "dmp_train = pd.merge(left=dmp_train_0,right=dmp_train_1,on=\"Unnamed: 0\",how=\"outer\")\n", + "\n", + "# 去除重複值,實現UNION效果\n", + "\n", + "\n", + "result = dmp_train.drop_duplicates().reset_index(drop=True)\n", + "\n", + "(result[[\"Unnamed: 0\",\"gene_y\",\"feature_y\"]])\n", + "\n", + "result= result[[\"Unnamed: 0\",\"gene_x\",\"feature_x\",\"gene_y\",\"feature_y\"]]\n", + "# print(result.head(3))\n", + "result" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0genefeature
0cg07677157NaNIGR
1cg01485645MLLT6Body
2cg15261712CDK63'UTR
3cg08173263LPHN1Body
4cg22652406DNAJC4TSS200
............
212521cg06961284TUBGCP3Body
212522cg00895836NaNIGR
212523cg25296374NaNIGR
212524cg18254983KLK15Body
212525cg03266453EN1TSS1500
\n", + "

212526 rows × 3 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 gene feature\n", + "0 cg07677157 NaN IGR\n", + "1 cg01485645 MLLT6 Body\n", + "2 cg15261712 CDK6 3'UTR\n", + "3 cg08173263 LPHN1 Body\n", + "4 cg22652406 DNAJC4 TSS200\n", + "... ... ... ...\n", + "212521 cg06961284 TUBGCP3 Body\n", + "212522 cg00895836 NaN IGR\n", + "212523 cg25296374 NaN IGR\n", + "212524 cg18254983 KLK15 Body\n", + "212525 cg03266453 EN1 TSS1500\n", + "\n", + "[212526 rows x 3 columns]" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "result_tmp = result\n", + "\n", + "result_tmp['gene'] = result_tmp['gene_x'].combine_first(result_tmp['gene_y'])\n", + "result_tmp['feature'] = result_tmp['feature_x'].combine_first(result_tmp['feature_y'])\n", + "\n", + "# 移除多餘的欄位,只保留合併後的資料\n", + "result_tmp = result_tmp[['Unnamed: 0', 'gene', 'feature']]\n", + "\n", + "dmp_train = result_tmp\n", + "dmp_train\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "raw train shape: (212526, 3)\n", + "after dropna: (163189, 3)\n" + ] + } + ], + "source": [ + "# dmp_train = pd.read_csv(f\"../champ_result/DMP_result_{file_endings}.csv\")\n", + "\n", + "\n", + "print(f\"raw train shape: {dmp_train.shape}\")\n", + "dmp_train = dmp_train[[\"Unnamed: 0\", \"gene\",\"feature\"]]\n", + "dmp_train.dropna(inplace=True)\n", + "print(f\"after dropna: {dmp_train.shape}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0dbetagenefeature
0cg054518420.001686ITPK1Body
1cg23875663-0.011174PCSK2Body
2cg12406992-0.004469MEX3ABody
3cg05493344-0.009112SARDHBody
4cg10136773-0.000650SESN33'UTR
...............
161998cg112364290.001712NBLA00301Body
161999cg03641640-0.008229RASA3Body
162000cg161157200.001475CD341stExon
162001cg26660754-0.000271APCTSS200
162002cg23020486-0.000175EDARADD5'UTR
\n", + "

162003 rows × 4 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 dbeta gene feature\n", + "0 cg05451842 0.001686 ITPK1 Body\n", + "1 cg23875663 -0.011174 PCSK2 Body\n", + "2 cg12406992 -0.004469 MEX3A Body\n", + "3 cg05493344 -0.009112 SARDH Body\n", + "4 cg10136773 -0.000650 SESN3 3'UTR\n", + "... ... ... ... ...\n", + "161998 cg11236429 0.001712 NBLA00301 Body\n", + "161999 cg03641640 -0.008229 RASA3 Body\n", + "162000 cg16115720 0.001475 CD34 1stExon\n", + "162001 cg26660754 -0.000271 APC TSS200\n", + "162002 cg23020486 -0.000175 EDARADD 5'UTR\n", + "\n", + "[162003 rows x 4 columns]" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "result = pd.merge(Δβ, dmp_train, on=\"Unnamed: 0\", how=\"inner\")\n", + "result" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "def find_max_dBeta_grouped(group):\n", + " idx_max = group['dbeta'].abs().idxmax()\n", + " return group.loc[idx_max]\n", + "\n", + "result_max_per_gene = result.groupby(\"gene\").apply(find_max_dBeta_grouped).reset_index(drop=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "single = pd.read_csv('external_result/matchgene174_single_3Y10__OR2.txt', sep='\\t', header=None)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0dbetagenefeature
1cg10222734-0.010651A1CF5'UTR
4cg11139127-0.009722A2MBody
5cg23546356-0.016178A2ML1TSS1500
12cg13001012-0.008898AADACTSS1500
16cg00309402-0.022852AADAT3'UTR
...............
18435cg213172790.009295ZNRD1Body
18438cg21918728-0.008992ZNRF3Body
18455cg106598860.027345ZSCAN18Body
18475cg022863350.007187ZWINTTSS200
18479cg031001960.003925ZYXTSS1500
\n", + "

7904 rows × 4 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 dbeta gene feature\n", + "1 cg10222734 -0.010651 A1CF 5'UTR\n", + "4 cg11139127 -0.009722 A2M Body\n", + "5 cg23546356 -0.016178 A2ML1 TSS1500\n", + "12 cg13001012 -0.008898 AADAC TSS1500\n", + "16 cg00309402 -0.022852 AADAT 3'UTR\n", + "... ... ... ... ...\n", + "18435 cg21317279 0.009295 ZNRD1 Body\n", + "18438 cg21918728 -0.008992 ZNRF3 Body\n", + "18455 cg10659886 0.027345 ZSCAN18 Body\n", + "18475 cg02286335 0.007187 ZWINT TSS200\n", + "18479 cg03100196 0.003925 ZYX TSS1500\n", + "\n", + "[7904 rows x 4 columns]" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "result_max_per_gene_single = result_max_per_gene[result_max_per_gene['gene'].isin(single[0])]\n", + "result_max_per_gene_single" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "result_max_per_gene_single.to_csv(f\"result/aba_GSE243529/dbeta.csv\", index=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0dbetagenefeature
1cg10222734-0.010651A1CF5'UTR
4cg11139127-0.009722A2MBody
5cg23546356-0.016178A2ML1TSS1500
12cg13001012-0.008898AADACTSS1500
16cg00309402-0.022852AADAT3'UTR
...............
18435cg213172790.009295ZNRD1Body
18438cg21918728-0.008992ZNRF3Body
18455cg106598860.027345ZSCAN18Body
18475cg022863350.007187ZWINTTSS200
18479cg031001960.003925ZYXTSS1500
\n", + "

7904 rows × 4 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 dbeta gene feature\n", + "1 cg10222734 -0.010651 A1CF 5'UTR\n", + "4 cg11139127 -0.009722 A2M Body\n", + "5 cg23546356 -0.016178 A2ML1 TSS1500\n", + "12 cg13001012 -0.008898 AADAC TSS1500\n", + "16 cg00309402 -0.022852 AADAT 3'UTR\n", + "... ... ... ... ...\n", + "18435 cg21317279 0.009295 ZNRD1 Body\n", + "18438 cg21918728 -0.008992 ZNRF3 Body\n", + "18455 cg10659886 0.027345 ZSCAN18 Body\n", + "18475 cg02286335 0.007187 ZWINT TSS200\n", + "18479 cg03100196 0.003925 ZYX TSS1500\n", + "\n", + "[7904 rows x 4 columns]" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "result_max_per_gene_single" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(592, 4)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0dbetagenefeature
51cg101184560.028641ABCC1Body
84cg134605560.024486ABHD2Body
93cg15626105-0.026561ABI3BPBody
99cg120204640.027008ABOBody
108cg076606270.035745ACACABody
...............
18133cg016720420.041204ZNF423Body
18205cg14269096-0.032189ZNF5325'UTR
18315cg206719100.025048ZNF687Body
18317cg070001160.023883ZNF689Body
18455cg106598860.027345ZSCAN18Body
\n", + "

592 rows × 4 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 dbeta gene feature\n", + "51 cg10118456 0.028641 ABCC1 Body\n", + "84 cg13460556 0.024486 ABHD2 Body\n", + "93 cg15626105 -0.026561 ABI3BP Body\n", + "99 cg12020464 0.027008 ABO Body\n", + "108 cg07660627 0.035745 ACACA Body\n", + "... ... ... ... ...\n", + "18133 cg01672042 0.041204 ZNF423 Body\n", + "18205 cg14269096 -0.032189 ZNF532 5'UTR\n", + "18315 cg20671910 0.025048 ZNF687 Body\n", + "18317 cg07000116 0.023883 ZNF689 Body\n", + "18455 cg10659886 0.027345 ZSCAN18 Body\n", + "\n", + "[592 rows x 4 columns]" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "check = result_max_per_gene_single.loc[result_max_per_gene_single[\"dbeta\"].abs() > 0.023]\n", + "print(check.shape)\n", + "check" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHHCAYAAACiOWx7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5mklEQVR4nO3deXhTZdoG8DtJm6RbWkrpBqWUnbJKESyLbJWy6IiiojBYFHFUcISOyzD6AaOOODgijCK4AioI6KDjAIJlVaCILBVkE8rSQlfokq5Zz/dHm9OGtpC22U56/64r19DkzTlv0jh5+j7PeV6ZIAgCiIiIiOim5K6eABEREZEUMGgiIiIisgGDJiIiIiIbMGgiIiIisgGDJiIiIiIbMGgiIiIisgGDJiIiIiIbMGgiIiIisgGDJiIiIiIbMGgiIiurV6+GTCbDpUuXAAAjRozAiBEjHHrOS5cuQSaTYfXq1bccO336dHTo0MGh8yEiqg+DJiLyeOvWrcPSpUtdPQ0ikjgvV0+AiNzbDz/84PBzREdHo6KiAt7e3g45/rp16/Dbb79hzpw5Djk+EbUMXGkioptSKpVQKpUOPYdMJoNarYZCoXDoeaSqrKzM1VMgIjBoIqJbqK+m6cqVK5g4cSL8/PwQGhqKuXPnYvv27ZDJZNizZ484rkOHDpg+ffotj9lQTdO3336LXr16Qa1Wo1evXvjmm2+aNP8tW7bg8uXLkMlkkMlkYk3UjfVbFnv27KnzWkaMGIFevXrh+PHjGD58OHx9fdG5c2d8/fXXAIC9e/di0KBB8PHxQbdu3bBjx446czl27BjGjRsHjUYDf39/jB49GgcPHrQaY5nT3r178cwzzyA0NBTt2rWz+fX+61//wuDBg9G6dWv4+PggLi5OnKNFr169MHLkyDrPNZvNaNu2LR544AHxvuvXr2PatGnQaDQICgpCUlISfv31V5tr0Ig8CdNzRNQoFRUVGD16NDIyMvDnP/8ZkZGR+Pzzz7Fr1y67nueHH37ApEmTEBsbi0WLFuH69et47LHHGhVAAMDLL7+M4uJiXLlyBe+88w4AwN/fv0lzKiwsxN13342HH34YDz74IFasWIGHH34Ya9euxZw5c/DUU09hypQpeOutt/DAAw8gMzMTAQEBAICTJ09i2LBh0Gg0ePHFF+Ht7Y0PPvgAI0aMEAOu2p555hm0adMG8+fPb9RK07Jly/CHP/wBU6dOhV6vx/r16/Hggw9i8+bNmDBhAgBg8uTJWLhwIXJychAeHi4+d9++fcjKysLDDz8MoCqIuueee3Do0CE8/fTT6N69O/773/8iKSmpSe8fkeQJRES1rFq1SgAgXLx4URAEQRg+fLgwfPhw8fGlS5cKAISNGzeK95WVlQmdO3cWAAi7d+8W74+OjhaSkpLqnOPGY168eFEAIKxatUq8r1+/fkJERIRQVFQk3vfDDz8IAITo6OhGvaYJEybU+5wbX6vF7t2767yW4cOHCwCEdevWifedOXNGACDI5XLh4MGD4v3bt2+v83omTpwoKJVKIT09XbwvKytLCAgIEO688846cxo6dKhgNBob9ToFQRDKy8utftbr9UKvXr2EUaNGifedPXtWACC8++67VmOfeeYZwd/fXzzGf/7zHwGAsHTpUnGMyWQSRo0aVef1EbUETM8RUaNs3boVERERVikcX19fPPnkk3Y7R3Z2NtLS0pCUlITAwEDx/rvuuguxsbF2O09j+fv7i6swANCtWzcEBQWhR48eVitFln9fuHABAGAymfDDDz9g4sSJ6NixozguIiICU6ZMwb59+6DVaq3ONXPmzCbVePn4+Ij/LiwsRHFxMYYNG4ajR4+K93ft2hX9+vXDhg0bxPtMJhO+/vpr3HPPPeIxtm3bBm9vb8ycOVMcJ5fLMWvWrEbPi8gTMGgioka5fPkyOnfuDJlMZnV/t27d7HoOAOjSpUudx+x5nsZq165dndcdGBiIqKioOvcBVUELAOTn56O8vLzeuffo0QNmsxmZmZlW98fExDRpjps3b8Ydd9wBtVqN4OBgtGnTBitWrEBxcbHVuMmTJ2P//v24evUqgKo6rry8PEyePFkcc/nyZURERMDX19fquZ07d27S3IikjkETETnMjQGGhclkcvJM6tfY+TW08tPQ/YIgNG1isF4xstVPP/2EP/zhD1Cr1Xj//fexdetWpKSkYMqUKXXmMnnyZAiCgK+++goAsHHjRgQGBmLs2LFNnjORp2PQRESNEh0djfT09DpfwmfPnq0ztlWrVigqKqpzv2Ul6WbnAIBz587Veay+89xKQ8FRq1atAKDOHG81v8Zq06YNfH196537mTNnIJfL66xWNcV//vMfqNVqbN++HY8//jjGjRuHhISEesfGxMRg4MCB2LBhA4xGIzZt2oSJEydCpVKJY6Kjo5GdnY3y8nKr554/f77ZcyWSIgZNRNQo48ePR1ZWltVl7OXl5fjwww/rjO3UqRMOHjwIvV4v3rd58+Y6qagbRUREoF+/flizZo1VWiklJQWnTp1q9Jz9/PzqpKcs8wOAH3/8UbzPZDLV+1qaQ6FQYMyYMfjvf/9r1d4gNzcX69atw9ChQ6HRaOxyHplMZrVSdunSJXz77bf1jp88eTIOHjyITz/9FNeuXbNKzQFAYmIiDAYDPvroI/E+s9mM5cuXN3uuRFLElgNE1CgzZ87Ee++9h0cffRRHjhxBREQEPv/88zp1LwDwxBNP4Ouvv8bYsWPx0EMPIT09HV988YUYrNzMokWLMGHCBAwdOhSPP/44CgoK8O6776Jnz54oLS1t1Jzj4uKwYcMGJCcn4/bbb4e/vz/uuece9OzZE3fccQfmzZuHgoICBAcHY/369TAajY06vi1ef/11pKSkYOjQoXjmmWfg5eWFDz74ADqdDosXL7bLOSZMmIAlS5Zg7NixmDJlCvLy8rB8+XJ07twZx48frzP+oYcewvPPP4/nn38ewcHBdValJk6ciIEDB+Ivf/kLzp8/j+7du+O7775DQUEBgIZX8Ig8lmsv3iMid3OrlgOCIAiXL18W/vCHPwi+vr5CSEiI8Nxzzwnbtm2rc5m+IAjC22+/LbRt21ZQqVTCkCFDhMOHD9vUckAQqi5579Gjh6BSqYTY2Fhh06ZNQlJSUqNbDpSWlgpTpkwRgoKC6rQsSE9PFxISEgSVSiWEhYUJf/vb34SUlJR6Ww707NmzzrGjo6OFCRMm1LkfgDBr1iyr+44ePSokJiYK/v7+gq+vrzBy5EjhwIEDVmMs7/8vv/zSqNdo8cknnwhdunQRVCqV0L17d2HVqlXCggULhIb+737IkCECAOGJJ56o9/H8/HxhypQpQkBAgBAYGChMnz5d2L9/vwBAWL9+fZPmSCRVMkFoRqUiEVG1PXv2YOTIkdi9e3edDuLkWb799lvcd9992LdvH4YMGeLq6RA5DWuaiIioQRUVFVY/m0wmvPvuu9BoNOjfv7+LZkXkGqxpIiLJKigosCoyv5FCoUCbNm2cOCPHMJlMyM/Pv+kYf3//Jm8PczPPPvssKioqEB8fD51Oh02bNuHAgQN44403mtQWgUjKGDQRkWTdf//92Lt3b4OPR0dH19mMV4oyMzNv2exywYIFWLhwod3PPWrUKLz99tvYvHkzKisr0blzZ7z77ruYPXu23c9F5O5Y00REknXkyBGx63Z9fHx8PKLmprKyEvv27bvpmI4dO1pt0UJE9segiYiIiMgGLAQnIiIisgFrmuzEbDYjKysLAQEBbPhGREQkEYIgoKSkBJGRkZDLb76WxKDJTrKysuyydxQRERE5X2ZmJtq1a3fTMQya7CQgIABA1Ztujz2kiIiIyPG0Wi2ioqLE7/GbYdBkJ5aUnEajYdBEREQkMbaU1rAQnIiIiMgGDJqIiIiIbMCgiYiIiMgGDJqIiIiIbMCgiYiIiMgGDJqIiIiIbMCgiYiIiMgGDJqIiIiIbMCgiYiIiMgGDJqIiIiIbMCgiYiIiMgGDJqIiIiIbMCgyUNkFpSjTGd09TSIiIg8FoMmD5BZUI4739qNP31+xNVTISIi8lgMmjzA5evlEATg99wSV0+FiIjIYzFo8gCVBhMAoLjC4OKZEBEReS4GTR6g0lgVNOmMZjGAIiIiIvti0OQBKvQ1gZK2kqtNREREjsCgyQNUGs3iv7VM0RERETkEgyYPoKuVkiuuYNsBIiIiR2DQ5AGs0nNcaSIiInIIBk0ewFIIDvAKOiIiIkdh0OQBKg21appYCE5EROQQDJo8QEXtmqZyBk1ERESOwKDJA1QamJ4jIiJyNJcGTStWrECfPn2g0Wig0WgQHx+P77//Xnx8xIgRkMlkVrennnrK6hgZGRmYMGECfH19ERoaihdeeAFGo/UVZHv27EH//v2hUqnQuXNnrF69us5cli9fjg4dOkCtVmPQoEE4dOiQQ16zI+iYniMiInI4lwZN7dq1w5tvvokjR47g8OHDGDVqFO69916cPHlSHDNz5kxkZ2eLt8WLF4uPmUwmTJgwAXq9HgcOHMCaNWuwevVqzJ8/Xxxz8eJFTJgwASNHjkRaWhrmzJmDJ554Atu3bxfHbNiwAcnJyViwYAGOHj2Kvn37IjExEXl5ec55I5qJK01ERESOJxMEQXD1JGoLDg7GW2+9hRkzZmDEiBHo168fli5dWu/Y77//HnfffTeysrIQFhYGAFi5ciVeeukl5OfnQ6lU4qWXXsKWLVvw22+/ic97+OGHUVRUhG3btgEABg0ahNtvvx3vvfceAMBsNiMqKgrPPvss/vrXv9o0b61Wi8DAQBQXF0Oj0TTjHWi8KR8dxIH06wCAOzoGY/2T8U49PxERkVQ15vvbbWqaTCYT1q9fj7KyMsTH13zpr127FiEhIejVqxfmzZuH8vJy8bHU1FT07t1bDJgAIDExEVqtVlytSk1NRUJCgtW5EhMTkZqaCgDQ6/U4cuSI1Ri5XI6EhARxTH10Oh20Wq3VzVVqrzRp2dySiIjIIbxcPYETJ04gPj4elZWV8Pf3xzfffIPY2FgAwJQpUxAdHY3IyEgcP34cL730Es6ePYtNmzYBAHJycqwCJgDizzk5OTcdo9VqUVFRgcLCQphMpnrHnDlzpsF5L1q0CH//+9+b9+LtpHbLAabniIiIHMPlQVO3bt2QlpaG4uJifP3110hKSsLevXsRGxuLJ598UhzXu3dvREREYPTo0UhPT0enTp1cOGtg3rx5SE5OFn/WarWIiopyyVysV5oYNBERETmCy4MmpVKJzp07AwDi4uLwyy+/YNmyZfjggw/qjB00aBAA4Pz58+jUqRPCw8PrXOWWm5sLAAgPDxf/13Jf7TEajQY+Pj5QKBRQKBT1jrEcoz4qlQoqlaqRr9YxagdNJTojTGYBCrnMhTMiIqKWqKBMDx9vBXyUCldPxSHcpqbJwmw2Q6fT1ftYWloaACAiIgIAEB8fjxMnTlhd5ZaSkgKNRiOm+OLj47Fz506r46SkpIh1U0qlEnFxcVZjzGYzdu7caVVb5c4qjWarn0vYdoCIiJzsSmE5hry5C1M+Pgg3u8bMbly60jRv3jyMGzcO7du3R0lJCdatW4c9e/Zg+/btSE9Px7p16zB+/Hi0bt0ax48fx9y5c3HnnXeiT58+AIAxY8YgNjYW06ZNw+LFi5GTk4NXXnkFs2bNEleBnnrqKbz33nt48cUX8fjjj2PXrl3YuHEjtmzZIs4jOTkZSUlJGDBgAAYOHIilS5eirKwMjz32mEvel8aqvdIEVNU1BfkqXTQbIiJqiXadyUOFwYRjGUXYczYfI7uHunpKdufSoCkvLw+PPvoosrOzERgYiD59+mD79u246667kJmZiR07dogBTFRUFCZNmoRXXnlFfL5CocDmzZvx9NNPIz4+Hn5+fkhKSsKrr74qjomJicGWLVswd+5cLFu2DO3atcPHH3+MxMREcczkyZORn5+P+fPnIycnB/369cO2bdvqFIe7I0EQxG1UvOQyGM0Cr6AjIiKn23/+mvjvFXvTPTJocrs+TVLlqj5NOqMJ3V6p6jcVGahGVnElvpgxCEO7hDhtDkRE1LKZzAJue/UHaCtr/mjf9Mxg9G/fyoWzso0k+zRR09RuNxCqUQNg2wEiInKuk1nF0FYaEaDywn23tQUAfLj3gotnZX8MmiTOUs8klwGt/arqmLj/HBEROdP+81W7UgzqGIxnRlS1BNp+KgcX8ktdOS27Y9AkcZagycdbgUAfbwBcaSIiIuc6kF5VzzS4Uwi6hAUgoUcoBAH46CfPWm1i0CRxlvSc2lsBDYMmIiJyMp3RhF8uFQAAhnSuqqf90/Cq1ab/HLmKvJJKl83N3hg0SZxlpUlda6WJXcGJiMhZjmUUodJgRoi/Cl3D/AEAA6JboX/7IOhNZqzef8m1E7QjBk0SVyEGTXKm54iIyOkOnLek5lpDJqvajUImk+Gp6tWmzw9eRqnOM1rhMGiSuNorTUzPERGRs+1PryoCH9K5tdX9CT3C0KmNH0oqjdh6ItsVU7M7Bk0SV7umSUzPVXpGRE9ERO6tVGfEr5lFAKqKwGuTy2W4vUMwACCn2DPqmhg0SVxlPek51jQREZEzHLp4HUazgPbBvogK9q3zuKeVjTBokrjaLQc0PlW74njKh5OIiNybpT/Tjak5C08rG2HQJHGWoEl1Q58m7o5DRESOdqC6nunG1JwFV5rIrVRYapq8aoImk1lAud7kymkREZGHu16qw+lsLYCqK+fqw6CJ3IqYnlPK4eOtgJe86nJPT/mAEhGRe0q9ULXK1D08AK39VfWO8bRaWwZNEldprC4E91JAJpN5XFRPRETuqaaeqf7UHMCVJnIzulotBwDPi+qJiMg9Hb9SBAAYGBPc4BgGTeRWKvSW9FxV0BTgYR9QIiJyP4Ig4NK1MgBA51D/BsdZgqZyvQkGk9kpc3MkBk0SZ0nPqbyqfpWeFtUTEZH7uVaqR5neBLkMaNfKp8FxlpYDgGd8LzFokrja26gAYFdwIiJyuMvXq1aZIoN8oPJSNDhOIZchQOU5PQQZNElcRZ2aJs/5cBIRkXu6WJ2aiwnxu+VYT2pwyaBJ4mp3BAcAjZqF4ERE5FiXr5cDAKJb19065UaeVDbCoEnidLX2ngN49RwRETnexer0XIfWt15p8qTvJQZNElfZQMsBT4joiYjIPV1uQtDkCd9LDJokruKGQnBPyh0TEZH7EQQBl69Vpec6hDQiPVcu/e8lBk0SV9lQeq5S+h9OIiJyP9fL9CjRGSGTAVHBNgRNvp7zxzyDJolrqOWAJ3w4iYjI/YjtBgJv3m7AwpO+lxg0SdyNNU2Wq+c84cNJRETu52IjUnOAZ5WNMGiSMJNZgL66Lb3PDStNlQYzdNXdwomIiOylMUXgAFeayE3UDoosNU0Bai/IZFX3aSvYFZyIiOzrUnWPJgZNJCmW1BwAqKvzynK5DP4e1LKeiIjci2WjXlsaWwI1QVOJB2zvxaBJwiztBpRecsjlMvF+XkFHRESOIAgCLl23fQsVgCtN5CbEK+e8rH+NnvQBJSIi91FYbkBJpe3tBoCa76RSnRFGk/kWo90bgyYJu7HdgAX3nyMiIkewbNQbGehT57unIRq1l/hvrcRTdAyaJKyhoMmT9vkhIiL3YblyztZ6JgDwUsg9ptaWQZOEWQrBfRoImqT+4SQiIvdSUwRuWz2Thad8LzFokrAbt1Cx8KSW9URE5D4s7QZibGxsaeEpDS5dGjStWLECffr0gUajgUajQXx8PL7//nvx8crKSsyaNQutW7eGv78/Jk2ahNzcXKtjZGRkYMKECfD19UVoaCheeOEFGI3WOdM9e/agf//+UKlU6Ny5M1avXl1nLsuXL0eHDh2gVqsxaNAgHDp0yCGv2Z4sV8+p6tQ0VS2Dsk8TERHZU016rrErTUzPNVu7du3w5ptv4siRIzh8+DBGjRqFe++9FydPngQAzJ07F//73//w1VdfYe/evcjKysL9998vPt9kMmHChAnQ6/U4cOAA1qxZg9WrV2P+/PnimIsXL2LChAkYOXIk0tLSMGfOHDzxxBPYvn27OGbDhg1ITk7GggULcPToUfTt2xeJiYnIy8tz3pvRBEzPERGRswiCIBaC29puwMJTvpdcGjTdc889GD9+PLp06YKuXbviH//4B/z9/XHw4EEUFxfjk08+wZIlSzBq1CjExcVh1apVOHDgAA4ePAgA+OGHH3Dq1Cl88cUX6NevH8aNG4fXXnsNy5cvh16vBwCsXLkSMTExePvtt9GjRw/Mnj0bDzzwAN555x1xHkuWLMHMmTPx2GOPITY2FitXroSvry8+/fRTl7wvtmooPecpy6BEROQ+isoN4tVv7W1sN2DhKRcouU1Nk8lkwvr161FWVob4+HgcOXIEBoMBCQkJ4pju3bujffv2SE1NBQCkpqaid+/eCAsLE8ckJiZCq9WKq1WpqalWx7CMsRxDr9fjyJEjVmPkcjkSEhLEMfXR6XTQarVWN2drsOUAm1sSEZGdWZpaRgSqbW43YMGVJjs5ceIE/P39oVKp8NRTT+Gbb75BbGwscnJyoFQqERQUZDU+LCwMOTk5AICcnByrgMnyuOWxm43RarWoqKjAtWvXYDKZ6h1jOUZ9Fi1ahMDAQPEWFRXVpNffHDXNLZmeIyIix7rUyI16axO/l8ql/b3k8qCpW7duSEtLw88//4ynn34aSUlJOHXqlKundUvz5s1DcXGxeMvMzHT6HMSaJiWDJiIicqxL16o36m3klXOA53wved16iGMplUp07twZABAXF4dffvkFy5Ytw+TJk6HX61FUVGS12pSbm4vw8HAAQHh4eJ2r3CxX19Uec+MVd7m5udBoNPDx8YFCoYBCoah3jOUY9VGpVFCpVE170XZSKV49d0NNk7qmZb3ZLFjtS0dERNQUl5p45RzgObW2Ll9pupHZbIZOp0NcXBy8vb2xc+dO8bGzZ88iIyMD8fHxAID4+HicOHHC6iq3lJQUaDQaxMbGimNqH8MyxnIMpVKJuLg4qzFmsxk7d+4Ux7iriluk5wTBM3aVJiIi17P0aGpWek7iQZNLV5rmzZuHcePGoX379igpKcG6deuwZ88ebN++HYGBgZgxYwaSk5MRHBwMjUaDZ599FvHx8bjjjjsAAGPGjEFsbCymTZuGxYsXIycnB6+88gpmzZolrgI99dRTeO+99/Diiy/i8ccfx65du7Bx40Zs2bJFnEdycjKSkpIwYMAADBw4EEuXLkVZWRkee+wxl7wvtmooPaf0ksPHW4EKgwnFFQax2SUREVFTWXo0MT3nInl5eXj00UeRnZ2NwMBA9OnTB9u3b8ddd90FAHjnnXcgl8sxadIk6HQ6JCYm4v333xefr1AosHnzZjz99NOIj4+Hn58fkpKS8Oqrr4pjYmJisGXLFsydOxfLli1Du3bt8PHHHyMxMVEcM3nyZOTn52P+/PnIyclBv379sG3btjrF4e6m0mhZaaq7YKjx8UKFwcQr6IiIqNmKyvUoqi7ijg5u+kqT1FsOuDRo+uSTT276uFqtxvLly7F8+fIGx0RHR2Pr1q03Pc6IESNw7Nixm46ZPXs2Zs+efdMx7kbXQMsBoOoDmqvVST6qJyIi17Ok5sI16jrZDVtYappKdEaYzAIUEq21dbuaJrKdpaapvg+wpyyFEhGR69Vs1Nv41BxQ850ESHu1iUGThFlqmlReDJqIiMhxLlQHTR3bND41BwDeCjl8q//Al/L3EoMmCWtoGxWgpu2AlCN6IiJyD5eauOdcbZ7wxzyDJgmruElNk6f0xCAiItezbNTblHYDFgyayKV0lpYDNwmaePUcERE1hyAI4kpTU9NzgGf8Mc+gScIa2rAXqB3Rs7klERE13bVSPUp0RshlQFRw0wrBAa40kYtV3KSmyRM+nERE5HqW1FzbVj71XnhkK0/4XmLQJFGCIIgrTfWm59RVLbhYCE5ERM1RUwTu36zjeEKDSwZNEmUwCTALVf9W3SQ9J+UPJxERuZ6l3UBME3s0WXCliVzGsoUK0EB6zlf6H04iInI9e7QbABg0kQtV6quCJpkMUCpu0qep0gBBEJw6NyIi8hxiuwEGTQyapKqyVrsBmazuHj6WD6fBJIgF40RERI1hNgu4dL263YCdapoYNJHTWdJz9bUbAABfpQJe1RsiSvkDSkRErpOtrYTOaIa3Qoa2rXyadSz2aSKXqahOz6m96v8VymSymgaX7NVERERNcDG/apWpfbAvFPK6WY3G4EoTuYzY2FLZcM8MT/iAEhGR61y8bp92A0DNd1JJpREmszRrbRk0SVSlsaqmSX2TRmPs1URERM1hWWmKCWleuwGgJmgCgBKJbvHFoEmiKm/SDdzCE/LHRETkOhevlQKwz0qT0ksuNmOW6vcSgyaJutm+cxZMzxERUXNcul4OoPk9miyk/r3EoEmibraFioVYCC7RZVAiInIdg8mMjAIGTbUxaJIoS58mrjQREZEjZBaUw2QW4OOtQJhGZZdjSv17iUGTRFkaVqpuUtMk9Q8nERG5jqWpZYcQv3qbKDeF1GttGTRJlE3pOTX7NBERUdNcyLd0ArdPag6Q/h/zDJokqjHpObYcICKixqpZaWp+uwELBk3kEra0HJD6h5OIiFzHslGvPdoNWEj9j3kGTRJl29Vz1c0tefUcERE1Uk1jS3um56q+l6T6xzyDJolinyYiInKUSoMJWcWVAOwcNPlK+3uJQZNEWWqaVDYETeV6Ewwms1PmRURE0mepZwr08UYrX+9bjLad1P+YZ9AkUZaWA2qvhn+FAeqaD7pU88dEROR8l67Zv90AwKCJXESsaVI2vNKkkMsQoJJ2/piIiJzvwjX7txsAagVN5dL8TmLQJFGVxuqWA14NB01A7a1U2KuJiIhs44gicKCmf2CJzghBEOx6bGdg0CRRlfpbF4ID0u++SkREzle7G7g9WepwBQHQS7DWlkGTRFUaLem5m/8KpX55JxEROZ8juoED1r0FLRc0SQmDJomy1DSpbpWeU0u7kRgRETlXcbkB18v0AOyfnlMq5LDUleuqv8ekhEGTRNmyjQog/SsViIjIudKvlQIAIgLV8Ku+mMheZDKZWIvLlSZymgobtlEBpN+ynoiInCs9rypo6tjGvqtMFpbvLUuZiZS4NGhatGgRbr/9dgQEBCA0NBQTJ07E2bNnrcaMGDECMpnM6vbUU09ZjcnIyMCECRPg6+uL0NBQvPDCCzAara8W27NnD/r37w+VSoXOnTtj9erVdeazfPlydOjQAWq1GoMGDcKhQ4fs/prtwWwWoK++eu5m26gAta+eY9BERES3Zmk30KmN/facq82SIalkeq5x9u7di1mzZuHgwYNISUmBwWDAmDFjUFZWZjVu5syZyM7OFm+LFy8WHzOZTJgwYQL0ej0OHDiANWvWYPXq1Zg/f7445uLFi5gwYQJGjhyJtLQ0zJkzB0888QS2b98ujtmwYQOSk5OxYMECHD16FH379kViYiLy8vIc/0Y0ks5Ys6TJ9BwREdmTuNJk53omC8v3Vu3vMqmwb7KykbZt22b18+rVqxEaGoojR47gzjvvFO/39fVFeHh4vcf44YcfcOrUKezYsQNhYWHo168fXnvtNbz00ktYuHAhlEolVq5ciZiYGLz99tsAgB49emDfvn145513kJiYCABYsmQJZs6cicceewwAsHLlSmzZsgWffvop/vrXvzri5TdZRa3onEETERHZk7jSFOqYlSZV9U4WXGlqpuLiYgBAcHCw1f1r165FSEgIevXqhXnz5qG8vFx8LDU1Fb1790ZYWJh4X2JiIrRaLU6ePCmOSUhIsDpmYmIiUlNTAQB6vR5HjhyxGiOXy5GQkCCOuZFOp4NWq7W6OYvlg6ZUyKGQ37y9vaa65YC2gs0tiYjo5owmMy5X92jq6PD0HFeamsxsNmPOnDkYMmQIevXqJd4/ZcoUREdHIzIyEsePH8dLL72Es2fPYtOmTQCAnJwcq4AJgPhzTk7OTcdotVpUVFSgsLAQJpOp3jFnzpypd76LFi3C3//+9+a96CYS2w3coggc4EoTERHZLrOwAgaTAB9vBSI0aoecQ8orTW4TNM2aNQu//fYb9u3bZ3X/k08+Kf67d+/eiIiIwOjRo5Geno5OnTo5e5qiefPmITk5WfxZq9UiKirKKee2td0AUNOniUETERHdiqWeKSbED/JbZDKaSsqF4G4RNM2ePRubN2/Gjz/+iHbt2t107KBBgwAA58+fR6dOnRAeHl7nKrfc3FwAEOugwsPDxftqj9FoNPDx8YFCoYBCoah3TEO1VCqVCiqVyvYXaUe2thsAalaaSioNMJsFh/1HQERE0nfhmmPbDQC1Ww5ILz3n0pomQRAwe/ZsfPPNN9i1axdiYmJu+Zy0tDQAQEREBAAgPj4eJ06csLrKLSUlBRqNBrGxseKYnTt3Wh0nJSUF8fHxAAClUom4uDirMWazGTt37hTHuBNLF9VbtRsAaloOmAWgVM+6JiIialh6nmPbDQC1rp6T4EqTS4OmWbNm4YsvvsC6desQEBCAnJwc5OTkoKKiAgCQnp6O1157DUeOHMGlS5fw3Xff4dFHH8Wdd96JPn36AADGjBmD2NhYTJs2Db/++iu2b9+OV155BbNmzRJXgp566ilcuHABL774Is6cOYP3338fGzduxNy5c8W5JCcn46OPPsKaNWtw+vRpPP300ygrKxOvpnMnloZgtqTn1N4KKKvzx2xwSUREN+OUlSYvpueaZMWKFQCqGljWtmrVKkyfPh1KpRI7duzA0qVLUVZWhqioKEyaNAmvvPKKOFahUGDz5s14+umnER8fDz8/PyQlJeHVV18Vx8TExGDLli2YO3culi1bhnbt2uHjjz8W2w0AwOTJk5Gfn4/58+cjJycH/fr1w7Zt2+oUh7uDCn11TdMt9p2zCPTxRn6JDsUVBrRr5ciZERGRlFk26nXsSpOlEFx66TmXBk2CINz08aioKOzdu/eWx4mOjsbWrVtvOmbEiBE4duzYTcfMnj0bs2fPvuX5XM0SnauVjQ+aiIiI6lNUrhc36nVsTZN0V5rcqk8T2UZMz3nZ9uvTqNmriYiIbi69epUpMlANX6Xj1lRUlqCJe8+RMzSm5QDATXuJiOjW0vMt9UyOS80B0k7PMWiSoMpGtBwA2OCSiIhuraaeyXGpOUDaheAMmiSoshEtB4CatgPaSgZNRERUP+etNEl3GxUGTRJUs9LUuPQcV5qIiKghF6qDJkdeOQfUZEl0rGkiZ6gQ956zcaWJW6kQEdFNGExmXL5eDsCxV84BvHqOnMyypGlreo6F4EREdDOZBeUwmgX4KhUId9BGvRYsBCenamwhuIbpOSIiuglLuwFHbtRrwUJwcqrG1jRpfKr6bTBoIiKi+lxwUhE4wD5N5GRNTs9VsrklERHV5ax2A0CtQnCm58gZ2KeJiIjsyVntBgAWgpOT6YxV0bnKxg17LTVNeqNZkh9SIiJyrAvXnLnSZEnPcaWJnMBgqvqgeSts+/X5K71gqevjFXRERFRbYZkeBdUb9caEOD5oUlXvm6o3mmE2Cw4/nz0xaJIgvRg02XaFg1wu4xV0RERUrwvXqlJzbYN8HLpRr0Xti5h0ElttYtAkQUZTVWTu7WX7r8/S4JJbqRARUW3peVWpOUc3tbRQ1/ruklrJCIMmCbKk55Q2pucAFoMTEVH9Ll2vCpo6tHZO0OSlkMOrumZEam0HGDRJkCVo8rIxPQewVxMREdXPsn1KByfUM1lIddNeBk0SpDc2rhAcqL2VCns1ERFRjZqVJl+nnbNmKxWuNJGDGauvNmB6joiImkMQBHGlKdpJ6TmgpmUOgyZyuMa2HABqCsEZNBERkcX1Mj1KdUbIZEBUsI/TzivVTXsZNEmMIAgwVF8917iaJkt6jkETERFVuVydmosM9LG5YbI9qCW6/1yTgqYLFy7Yex5kI0vABDStpokrTUREZHHpmqUI3Hn1TEBN0KRrCem5zp07Y+TIkfjiiy9QWVlp7znRTRjNNUuZjalpYnNLIiK6kWWlyZn1TEALS88dPXoUffr0QXJyMsLDw/GnP/0Jhw4dsvfcqB4GY+2VJtvTc+LVc5W8eo6IiKpcsrQbcOKVcwCgbkmF4P369cOyZcuQlZWFTz/9FNnZ2Rg6dCh69eqFJUuWID8/397zpGqWLVQAQCFvQtDElSYiIqrmupWmFhQ0WXh5eeH+++/HV199hX/+8584f/48nn/+eURFReHRRx9Fdna2veZJ1Wp3A5fJGlEIrmZzSyIislaz0uTcoEllSc+1pL3nDh8+jGeeeQYRERFYsmQJnn/+eaSnpyMlJQVZWVm499577TVPqibuO9eI1BwAtPZTAQBKdUboJHa1AhER2V9RuV78Q7p9sGsKwaW20tSk7YyXLFmCVatW4ezZsxg/fjw+++wzjB8/HnJ5VQwWExOD1atXo0OHDvacK6EmPdeYzXqBqm1UvOQyGM0CrpfqERnkvH4cRETkfiyrTGEaFXyUzms3ANSuaZLWSlOTgqYVK1bg8ccfx/Tp0xEREVHvmNDQUHzyySfNmhzVJe47J29c0CSTydDaX4lcrY5BExERuayeCai5ek5qmY8mBU3nzp275RilUomkpKSmHJ5uoqamqXHpOQAI8VchV6vDtTKdvadFREQSI/ZocvKVc0AL27B31apV+Oqrr+rc/9VXX2HNmjXNnhQ1zNDE9BwAtPavqmu6VsKgiYiopXOLlSaJ1TQ1KWhatGgRQkJC6twfGhqKN954o9mTooYZxELwxv/qQvyUAKr2GiIiopbtcoFrrpwDam3YK7H0XJOCpoyMDMTExNS5Pzo6GhkZGc2eFDWspqapCem5gKqVpuulXGkiImrpalaaXJGea0EdwUNDQ3H8+PE69//6669o3bp1sydFDRNrmpqSnqteabpWypUmIqKWrKTSIH4XuCZokmbLgSYFTY888gj+/Oc/Y/fu3TCZTDCZTNi1axeee+45PPzww/aeI9WiNzY9PSfWNHGliYioRbtc3W4gxF+JALW308+vaknbqLz22msYNGgQRo8eDR8fH/j4+GDMmDEYNWpUo2qaFi1ahNtvvx0BAQEIDQ3FxIkTcfbsWasxlZWVmDVrFlq3bg1/f39MmjQJubm5VmMyMjIwYcIE+Pr6IjQ0FC+88AKMRus91vbs2YP+/ftDpVKhc+fOWL16dZ35LF++HB06dIBarcagQYPccj89y4a9jW1uCQCt/atrmrjSRETUolmCJlcUgQMtLD2nVCqxYcMGnDlzBmvXrsWmTZuQnp6OTz/9FEql0ubj7N27F7NmzcLBgweRkpICg8GAMWPGoKysTBwzd+5c/O9//8NXX32FvXv3IisrC/fff7/4uMlkwoQJE6DX63HgwAGsWbMGq1evxvz588UxFy9exIQJEzBy5EikpaVhzpw5eOKJJ7B9+3ZxzIYNG5CcnIwFCxbg6NGj6Nu3LxITE5GXl9eUt8hhxKvnmrDS1IYrTUREBOCSC+uZgFrpOYkVgkNwI3l5eQIAYe/evYIgCEJRUZHg7e0tfPXVV+KY06dPCwCE1NRUQRAEYevWrYJcLhdycnLEMStWrBA0Go2g0+kEQRCEF198UejZs6fVuSZPniwkJiaKPw8cOFCYNWuW+LPJZBIiIyOFRYsW2TT34uJiAYBQXFzcyFfdOBsOZQjRL20WHlt1qNHPzSoqF6Jf2ix0mrdFMJnMDpgdERFJwQtfpQnRL20Wlu343SXnP5ZRKES/tFkYvGinS85fW2O+v5u00mQymfDJJ59gypQpSEhIwKhRo6xuTVVcXAwACA4OBgAcOXIEBoMBCQkJ4pju3bujffv2SE1NBQCkpqaid+/eCAsLE8ckJiZCq9Xi5MmT4pjax7CMsRxDr9fjyJEjVmPkcjkSEhLEMTfS6XTQarVWN2cQt1FpQnouuLoQ3GgWoK3kxr1ERC3VJTE956qVJkt6TlorTU3qCP7cc89h9erVmDBhAnr16gWZrPFf4Dcym82YM2cOhgwZgl69egEAcnJyoFQqERQUZDU2LCwMOTk54pjaAZPlcctjNxuj1WpRUVGBwsJCmEymesecOXOm3vkuWrQIf//735v2YpvB2Iz0nMpLAY3aC9pKI66V6hDka3sqlYiIPIel3YArejQBtfeeawFB0/r167Fx40aMHz/ebhOZNWsWfvvtN+zbt89ux3SkefPmITk5WfxZq9UiKirK4edtTnNLoGorlaqgSY/OofacGRERSUG53ohcbVVtq8uCJrGmqYUUgnfu3Nluk5g9ezY2b96M3bt3o127duL94eHh0Ov1KCoqshqfm5uL8PBwccyNV9NZfr7VGI1GAx8fH4SEhEChUNQ7xnKMG6lUKmg0GqubMzQnPQfwCjoiopYuo7oTeKCPNwJ9nd9uAKhJz5nMgniBkxQ0KWj6y1/+gmXLlkEQhGadXBAEzJ49G9988w127dpVp8t4XFwcvL29sXPnTvG+s2fPIiMjA/Hx8QCA+Ph4nDhxwuoqt5SUFGg0GsTGxopjah/DMsZyDKVSibi4OKsxZrMZO3fuFMe4i+ZcPQdUrTQBvIKOiKilcuVGvRaWlSZAWim6JqXn9u3bh927d+P7779Hz5494e1tHalu2rTJpuPMmjUL69atw3//+18EBASINUiBgYHw8fFBYGAgZsyYgeTkZAQHB0Oj0eDZZ59FfHw87rjjDgDAmDFjEBsbi2nTpmHx4sXIycnBK6+8glmzZkGlqgoQnnrqKbz33nt48cUX8fjjj2PXrl3YuHEjtmzZIs4lOTkZSUlJGDBgAAYOHIilS5eirKwMjz32WFPeIocxNjM9V7PSxKCJiKglcuVGvRaqWrtaVBrMCFC7bCqN0qSgKSgoCPfdd1+zT75ixQoAwIgRI6zuX7VqFaZPnw4AeOeddyCXyzFp0iTodDokJibi/fffF8cqFAps3rwZTz/9NOLj4+Hn54ekpCS8+uqr4piYmBhs2bIFc+fOxbJly9CuXTt8/PHHSExMFMdMnjwZ+fn5mD9/PnJyctCvXz9s27atTnG4qxmam57zq15p4qa9REQtkuXKOVeuNMlkMqi85NAZzZ6/0rRq1Sq7nNyW9J5arcby5cuxfPnyBsdER0dj69atNz3OiBEjcOzYsZuOmT17NmbPnn3LObmSvrnpuepNe6+VcKWJiKglcoeVJqAqRaczmqGTUIPLpn3zAjAajdixYwc++OADlJSUAACysrJQWlpqt8lRXc2uaaru1XSdK01ERC2SZQuVDiGuW2kCpLmVSpNWmi5fvoyxY8ciIyMDOp0Od911FwICAvDPf/4TOp0OK1eutPc8qZqlpknp1dSapqqVJtY0ERG1PKU6I7KKKwC4rt2AhaUY3ONXmp577jkMGDAAhYWF8PHxEe+/77776lylRvZlSc95yZtW0xRSXQh+jS0HiIhanN+uFkMQgLZBPuIf0a5S0+DSw1eafvrpJxw4cKDO5rwdOnTA1atX7TIxql9zm1ta/iMp1RlRaTBZXfZJRESe7fiVIgBA77aBrp0IpLmVSpO+ec1mM0ymui/yypUrCAgIaPakqGGG6u6p3k1Mz2nUXlBWB1ysayIialmOX6na47V3O9cHTSpv6a00Nembd8yYMVi6dKn4s0wmQ2lpKRYsWGDXrVWoLqO56sOlbGLLAZlMJvZq4hV0REQty4mrVUFT33ZBrp0Iano1SWmlqUnpubfffhuJiYmIjY1FZWUlpkyZgnPnziEkJARffvmlvedIteir03Ne8iZf+IjW/kpkF1fiehmDJiKilqKoXC9eOece6TnL/nMeHjS1a9cOv/76K9avX4/jx4+jtLQUM2bMwNSpU60Kw8n+mpueA2o1uGQxOBFRi2FZZYpu7euyPedqU0swPdekoAkAvLy88Mc//tGecyEbWPo0NTU9B3D/OSKilshSz9THDVJzAKBuKem5zz777KaPP/roo02aDN2awdy8q+eAmrYD17nSRETUYliunOvjBqk5oFafJk8Pmp577jmrnw0GA8rLy6FUKuHr68ugyYHE9FwzgiZu2ktE1PKccKMr54BaLQeM0knPNembt7Cw0OpWWlqKs2fPYujQoSwEdzBLes6rGek51jQREbUs+SU6ZBVXQiYDernZSpOU0nNNX664QZcuXfDmm2/WWYUi+6qpaWpGei6ANU1ERC3JiatFAIBObfzhr2pyObNdteigCagqDs/KyrLnIekGze0IDgCtuWkvEVGL8mumpQjcPVaZgNp9mqSTnmtSuPndd99Z/SwIArKzs/Hee+9hyJAhdpkY1c+y0tS8QvCqlaaCMj3MZgHyJu5jR0RE0mBpN+AuReCANFeamhQ0TZw40epnmUyGNm3aYNSoUXj77bftMS9qQE3Q1PRAJ7h6pclkFlBUYRB/JiIizyMIQq3tU4JcO5laappbevhKk9ksnRfoaeyRnlN6yRHo443iCgOul+oYNBERebDs4kpcK9VBIZehZ6TG1dMRtZgNe8l1xJWmZnQEB2raDuSzGJyIyKNZVpm6hgWIqzvuQO3VQvo0JScn2zx2yZIlTTkFNcAe6Tmgqq7pQn4ZG1wSEXk4d2tqadFitlE5duwYjh07BoPBgG7dugEAfv/9dygUCvTv318cJ5OxwNieTGYB1Q3B4d2MDXuB2l3BudJEROTJxCLwKHcLmizNLT18pemee+5BQEAA1qxZg1atWgGoanj52GOPYdiwYfjLX/5i10lSFcsqE2CH9BwbXBIRebzaReB92ga5djI3qNlGRTorTU365n377bexaNEiMWACgFatWuH111/n1XMOZBU02SE9BwDXy7jSRETkqTIKylFcYYBSIUe38ABXT8eKFFeamhQ0abVa5Ofn17k/Pz8fJSUlzZ4U1c9y5RzQ/PScpRCcK01ERJ7LssrUIyIAymZmKOxN5SW9Pk1Negfvu+8+PPbYY9i0aROuXLmCK1eu4D//+Q9mzJiB+++/395zpGqWlSaFXNbshpQhYtDElSYiIk91NKMQgPts0ltb7UJwQRBuMdo9NKmmaeXKlXj++ecxZcoUGAyGqgN5eWHGjBl466237DpBqqE32ufKOaBWeo4rTUREHuvH36uyQoM7hbh4JnWpvGvWbXRGs1u1Q2hIk4ImX19fvP/++3jrrbeQnp4OAOjUqRP8/PzsOjmyZjQ3v7GlRWsxaOJKExGRJ8osKEd6fhkUchmGdHa/oMnSpwmoKgaXQtDUrG/f7OxsZGdno0uXLvDz85PM8ppUWdJzSrsETVXpuTK9CRV66eSTiYjINnurV5n6tw9CoI+3i2dTl7dCBkuliVSKwZv07Xv9+nWMHj0aXbt2xfjx45GdnQ0AmDFjBtsNOJAlPedlh/RcgMpLLApkXRMRkefZc7YqaBrRLdTFM6mfTCaT3Ka9TQqa5s6dC29vb2RkZMDX11e8f/Lkydi2bZvdJkfWarqBN3+lSSaTIaR6z7nrZaxrIiLyJHqjGQfSrwEAhndt4+LZNExqXcGbVNP0ww8/YPv27WjXrp3V/V26dMHly5ftMjGqy1LTZI/0HFBV15RVXMm6JiIiD3P4UgHK9SaE+KsQG+E+m/TeSO0lrU17m/TtW1ZWZrXCZFFQUACVStXsSVH9DEb7rTQBbDtAROSpLPVMd3YNaXaLGkdqEem5YcOG4bPPPhN/lslkMJvNWLx4MUaOHGm3yZE1vcl+NU1AzRV0bHBJRORZ3L2eyUJlCZqMHpyeW7x4MUaPHo3Dhw9Dr9fjxRdfxMmTJ1FQUID9+/fbe45UzdIR3F4rTWGaqqApu7jCLscjIiLXyy6uwNncEshlwDA3bDVQm7iViievNPXq1Qu///47hg4dinvvvRdlZWW4//77cezYMXTq1Mnec6RqRju2HACAqFZVKdbMAgZNRESewtLQsm9UEFpVX/DjrtQS20ql0d++BoMBo0ePRl5eHl5++WVs3LgRW7duxeuvv46IiIhGHevHH3/EPffcg8jISMhkMnz77bdWj0+fPh0ymczqNnbsWKsxBQUFmDp1KjQaDYKCgjBjxgyUlpZajTl+/DiGDRsGtVqNqKgoLF68uM5cvvrqK3Tv3h1qtRq9e/fG1q1bG/VanMGSnvP2sk96Liq4OmgqLLfL8YiIyPUsqTl3vmrOwrLSpJPI1XONDpq8vb1x/Phxu5y8rKwMffv2xfLlyxscM3bsWLGJZnZ2Nr788kurx6dOnYqTJ08iJSUFmzdvxo8//ognn3xSfFyr1WLMmDGIjo7GkSNH8NZbb2HhwoX48MMPxTEHDhzAI488ghkzZuDYsWOYOHEiJk6ciN9++80ur9NeLOk5r2Zu1mthWWm6UlgBs5mNSYmIpM5gMmPfuapWA+5ezwTUKgSXSHPLJtU0/fGPf8Qnn3yCN998s1knHzduHMaNG3fTMSqVCuHh4fU+dvr0aWzbtg2//PILBgwYAAB49913MX78ePzrX/9CZGQk1q5dC71ej08//RRKpRI9e/ZEWloalixZIgZXy5Ytw9ixY/HCCy8AAF577TWkpKTgvffew8qVK5v1Gu3Jnn2aACAiSA25rKqfx7VSHUI1arscl4iIXONYRhFKdEa08vVG77but0nvjaR29VyTgiaj0YhPP/0UO3bsQFxcXJ0955YsWWKXyQHAnj17EBoailatWmHUqFF4/fXX0bp1awBAamoqgoKCxIAJABISEiCXy/Hzzz/jvvvuQ2pqKu68804olTV53cTERPzzn/9EYWEhWrVqhdTUVCQnJ1udNzExsU660NXEmiY7pee8FXJEBPrgalEFMgvLGTQREUnc3t/zAADDurSBwo1bDVjUFIJLIz3XqKDpwoUL6NChA3777Tf0798fAPD7779bjZHJ7PdLGjt2LO6//37ExMQgPT0df/vb3zBu3DikpqZCoVAgJycHoaHWy49eXl4IDg5GTk4OACAnJwcxMTFWY8LCwsTHWrVqhZycHPG+2mMsx6iPTqeDTlfT30ir1TbrtdpCb+er5wCgXavqoKmgAnHRdjssERG5QE2rAfevZwIAlcQKwRsVNHXp0gXZ2dnYvXs3gKptU/7973/XCTjs5eGHHxb/3bt3b/Tp0wedOnXCnj17MHr0aIec01aLFi3C3//+d6ee05Kes1dNE1BVDP7zxQJkFrAYnIhIyq4UluNkVtUf8MO6SCNokto2Ko369hUE62Lh77//HmVlZXad0M107NgRISEhOH/+PAAgPDwceXl5VmOMRiMKCgrEOqjw8HDk5uZajbH8fKsxDdVSAcC8efNQXFws3jIzM5v34mxg6Qhur/QcUKvtAK+gIyKStC8PZQAAhnRujTYB0tidQ7x6TiKF4M1asrgxiHK0K1eu4Pr162Jrg/j4eBQVFeHIkSPimF27dsFsNmPQoEHimB9//BEGg0Eck5KSgm7duqFVq1bimJ07d1qdKyUlBfHx8Q3ORaVSQaPRWN0czWB2THoOqLqCjoiIpElvNGPDL1V/vP9xkHRqLTx6pcnSK+nG+5qqtLQUaWlpSEtLAwBcvHgRaWlpyMjIQGlpKV544QUcPHgQly5dws6dO3Hvvfeic+fOSExMBAD06NEDY8eOxcyZM3Ho0CHs378fs2fPxsMPP4zIyEgAwJQpU6BUKjFjxgycPHkSGzZswLJly6wKv5977jls27YNb7/9Ns6cOYOFCxfi8OHDmD17dpNfmyPY++o5gL2aiIg8wbaTObhWqkdogAoJsY4pmXEEccNeiaw0NaqmSRAETJ8+XdyUt7KyEk899VSdq+c2bdpk0/EOHz5stVedJZBJSkrCihUrcPz4caxZswZFRUWIjIzEmDFj8Nprr1ltCrx27VrMnj0bo0ePhlwux6RJk/Dvf/9bfDwwMBA//PADZs2ahbi4OISEhGD+/PlWvZwGDx6MdevW4ZVXXsHf/vY3dOnSBd9++y169erVmLfH4SzpOXvtPQcAUcFVK01ZRZUwmszwsmNARkREzvHFwcsAgEcGtrfrH9aOZllp0nliIXhSUpLVz3/84x+bdfIRI0bcNMW3ffv2Wx4jODgY69atu+mYPn364KeffrrpmAcffBAPPvjgLc/nSgY7b6MCAGEBaigVcuhNZmQXV4orT0REJA2/55bg0MUCKOQyPDKwvaun0ygqT245sGrVKkfNg2zgiJomuVyGtq18cPFaGTILyxk0ERFJzNrqVaaEHqEID5RWvz2P33uOXMeSnrP30iuLwYmIpKlMZ8R/jl4FAEy7o4NrJ9MEUttGhUGThNQUgtu3y2s7yx507NVERCQp/03LQqnOiJgQPwzu1NrV02k0qaXnGDRJiMEBHcGBmmLwTK40ERFJhiAIYgH41EHtIZfAtik3ktrecwyaJMQRLQeAWg0uudJERCQZxzKLcCpbC5WXHA/EtXP1dJqkpqaJK01kZ45Kz7FXExGR9Hz04wUAwD19IxHkq7zFaPckdgTnShPZm8PSc9WF4LlanWRa2RMRtWSHLhbg+99yIJcBTwyLufUT3BQLwclh9A5KzwX7KeGrrPrgXmVdExGRWzObBby6+SQA4OGB7dE93PHbeDmKJWgymASYzM7dmq0pGDRJiNFB6TmZTCa2HWAxOBGRe/vP0Sv47aoWASovJN/V1dXTaRZLeg6QRjE4gyYJEdNzXvb/tbEYnIjI/ZXpjFi8/SwA4NnRnRHir7rFM9ybpRAcYNBEdiYWgssdEDSxGJyIyO2t2JOO/BIdolv7ImlwB1dPp9nkcpm4NVil0f2voGPQJCF6B6XngFpdwQuYniMickdXCsvx4U9VV8z9bXwPqGqt0khZTYNLrjSRHYkrTY5Iz1WvNF3hShMRkVt68/sz0BvNiO/YGmNiw1w9HbuRUoNLBk0SYqyuaVLa+eo5oFZNEwvBiYjczulsLTYfz4ZMBvzf3bGQyaTX/bshagltpcKgSUIsK01ejkjPVW+lUlCmR5nOaPfjExFR0206egUAkBgbjthI6bYYqI+lGFwKfQIZNEmI3uiYPk0AoFF7I9DHGwCLwYmI3InJLOC/aVkAgPv7t3XxbOzPkp7TcaWJ7MngwPQcUGvjXhaDExG5jf3nryGvRIdWvt4Y0S3U1dOxOzULwckRjGbHrTQBNXVNLAYnInIf3xy7CgC4u08klA64EMjVpLSViue9+x5KEARxpckRNU1ArV5NXGkiInILZTojtv2WAwCYeJvnpeYAQOXFQnCyM0vABDhypcmylQpXmoiI3MH2kzmoMJjQobUv+rcPcvV0HELFlgNkb5Yr5wDH1TS141YqRERuxZKam3hbW49qM1Cb5eo5rjSR3RitVpoclZ6r7gpeWAFBcP/dpomIPFmuthL7z18DANznoak5gIXg5AD6WitNCrljgqZ2rXwhkwGlOiOuleodcg4iIrLNd2lZMAtAXHQrRLf2c/V0HMaHheBkb5b0nFIhd9gSrdpbgU5t/AEAx68UOeQcRERkm03VqTlPXmUCAF9lVdBUrmPQRHZicOBmvbX1iwoCAKRlFjn0PERE1LAzOVqcztZCqZDj7j4Rrp6OQ/mpvAAAZXr3342CQZNEWK6ec8RmvbUxaCIicr1NR6tWmUZ2b4MgX6WLZ+NYvtVBE1eayG7EfefkzguazGYWgxMROVvG9XJ8lnoJADCpfzvXTsYJ/KrTc1xpIrupqWlybHquW3gAVF5ylFQacfF6mUPPRURE1gRBwN++OYFKgxl3dAzGXbFhrp6Sw/kqq9NzEtgsnkGTRIg1TQ5Oz3kr5OjdNhAAkJZR5NBzERGRta+PXMG+89eg8pJj0f19PLY3U23+lvScnuk5shOxpslBjS1rY10TEZHz5Zfo8PqW0wCAOQldERPiuW0GavNVVaXnSrnSRPZSc/WcE4Km6lb9DJqIiJzn7/87ieIKA3pGajBzWIyrp+M0fkquNJGdOavlAFCz0nQ6WyuJDq1ERFK341QuNh/PhkIuwz8n9YGXE/5Adhd+1StNrGkiu9EbnZeeaxvkgxB/FYxmASezih1+PiKilqyk0oBXvv0NAPDEsBj0qq4rbSksK006oxlGk3vvP8egSSKMZuetNMlkMvSLqi4Gz2TQRETkSIu+P4McbSWiW/tibkJXV0/H6Sw1TQBQ5uYpOgZNEuHMmiaAxeBERM5wIP0a1v2cAQD456Q+UHsrbvEMz6PyUogLAuVu3qvJpUHTjz/+iHvuuQeRkZGQyWT49ttvrR4XBAHz589HREQEfHx8kJCQgHPnzlmNKSgowNSpU6HRaBAUFIQZM2agtLTUaszx48cxbNgwqNVqREVFYfHixXXm8tVXX6F79+5Qq9Xo3bs3tm7davfX2xwGJ6bnAKBfVCsAQFpmoVPOR0TU0pTrjfjrf04AAP54R3vc0bG1i2fkOjW9mrjS1KCysjL07dsXy5cvr/fxxYsX49///jdWrlyJn3/+GX5+fkhMTERlZaU4ZurUqTh58iRSUlKwefNm/Pjjj3jyySfFx7VaLcaMGYPo6GgcOXIEb731FhYuXIgPP/xQHHPgwAE88sgjmDFjBo4dO4aJEydi4sSJ+O233xz34htJ78RCcADoExUImQzILKjA9VKdU85JRNSS/Gv778goKEdkoBovje3u6um4lNgV3N2LwQU3AUD45ptvxJ/NZrMQHh4uvPXWW+J9RUVFgkqlEr788ktBEATh1KlTAgDhl19+Ecd8//33gkwmE65evSoIgiC8//77QqtWrQSdTieOeemll4Ru3bqJPz/00EPChAkTrOYzaNAg4U9/+pPN8y8uLhYACMXFxTY/pzFW7bsgRL+0WZi19ohDjl+f0W/vEaJf2izsOJXjtHMSEbUEhy8VCB3+ulmIfmmzsPtMrqun43IJ1d83+8/nO/3cjfn+dtuaposXLyInJwcJCQnifYGBgRg0aBBSU1MBAKmpqQgKCsKAAQPEMQkJCZDL5fj555/FMXfeeSeUypoNDxMTE3H27FkUFhaKY2qfxzLGcp766HQ6aLVaq5sjWZpbKp14GWrfdkEAgF9Z10REZDeVBhNe/PpXCELV3nIjuoW6ekouJ5VNe902aMrJyQEAhIVZ77sTFhYmPpaTk4PQUOsPm5eXF4KDg63G1HeM2udoaIzl8fosWrQIgYGB4i0qKqqxL7FRLOk5Lyel54CaJpfHGDQREdnN0h3nkJ5fhjYBKvzf3T1cPR23IJVNe902aHJ38+bNQ3FxsXjLzMx06PmcffUcANxWfQXdr5lFMJsFp52XiMhTfX8iGyv3pgMAXru3F4J8lbd4Rsvgp2IheLOEh4cDAHJzc63uz83NFR8LDw9HXl6e1eNGoxEFBQVWY+o7Ru1zNDTG8nh9VCoVNBqN1c2RjE7ce86iW3gAVF5yaCuNuHi9zGnnJSLyRL9dLUbyxl8BANMHd8DYXg1/x7Q0lpUmthxoopiYGISHh2Pnzp3ifVqtFj///DPi4+MBAPHx8SgqKsKRI0fEMbt27YLZbMagQYPEMT/++CMMBoM4JiUlBd26dUOrVq3EMbXPYxljOY87sKw0Kb2c9yvzVsjRu7ozbVpGkdPOS0TkafJKKjHzs8OoMJhwZ9c2eGUC03K1WWqa3H3TXpcGTaWlpUhLS0NaWhqAquLvtLQ0ZGRkQCaTYc6cOXj99dfx3Xff4cSJE3j00UcRGRmJiRMnAgB69OiBsWPHYubMmTh06BD279+P2bNn4+GHH0ZkZCQAYMqUKVAqlZgxYwZOnjyJDRs2YNmyZUhOThbn8dxzz2Hbtm14++23cebMGSxcuBCHDx/G7Nmznf2WNEisaZI7r6YJqGlyeYz9moiImqTSYMKTnx1BdnElOrbxw7uP3Nai9pazRc1KE9NzDTp8+DBuu+023HbbbQCA5ORk3HbbbZg/fz4A4MUXX8Szzz6LJ598ErfffjtKS0uxbds2qNVq8Rhr165F9+7dMXr0aIwfPx5Dhw616sEUGBiIH374ARcvXkRcXBz+8pe/YP78+Va9nAYPHox169bhww8/RN++ffH111/j22+/Ra9evZz0TtyaK2qaAGBAh2AAwM8XCpx6XiIiTyAIAuZtOoG0zCIE+njjk6TbEejj7eppuZ2amib3XmnycuXJR4wYAUFouMBYJpPh1VdfxauvvtrgmODgYKxbt+6m5+nTpw9++umnm4558MEH8eCDD958wi5kqWlyZnoOAO7oGAyZDDiXV4q8kkqEBqhv/SQiIgIArNibjm+OXYVCLsOKqf0RE+Ln6im5JcumvVxpIrtwdkdwiyBfJWIjqorcU9OvO/XcRERStv1kDt7afhYAsPCeWAzuHOLiGbkvy6a9rGkiu7A0t/SSO/9XNrhT1X5IDJqIiGxzKkuLuRvSIAjAo/HRmBbfwdVTcmv+luaWvHqO7MFgrF5pcnJ6DgAGd6r66+gAgyYiolvKK6nEE2t+QbnehKGdQzD/7lhXT8ntccNesiujubrlgJPTcwBwe0wwFHIZMgrKcaWw3OnnJyKSikqDCX/6/AiyiivRMcQPy6f055VyNpDKhr38TUqE3gXNLS38VV7o266qXxNTdERE9RMEAX/bdALHMoqgUXvh46QBCPTllXK28FOxEJzsyJKec9VfLPGsayIiuqmPfrqATdVXyr0/NQ4d2/i7ekqS4afi3nNkR2JHcBek5wDruqabtYkgImqJ9pzNw5vfnwEAzL87FkO78Eq5xqipaWLQRHZgMLsuPQcAcdGtoFTIkaOtxMVr3IeOiMjiQn4pnv3yGMwCMHlAFB6Nj3b1lCTHkp4zmAToqzMr7ohBk0SIV8+5KGhSeyvQPzoIAK+iIyKy0FYa8MRnh1FSaURcdCu8OrEnZDLXZASkzLe6EBxw77YDDJokwpKe83JReg6oSdGxromICDCZBcxZn4YL+WWICFRjxR/7Q+WluPUTqQ5vhVzc8cKdG1wyaJKImpom1/3KxGLwC9dhNrOuiYhaLpNZwMvfnMCuM3lQecnxwbQ4bjPVTP4SuIKOQZNEGFzYcsCib7sg+HgrUFCmx+95JS6bBxGRKxlMZjy3/hjW/5IJuQx468G+6NMuyNXTkjxfCfRqYtAkEQaTa2uagKrNgm+PCQYAHDjPFB0RtTyW5pWbj2fDWyHDu4/0xx/6Rrp6Wh7BTwJdwRk0SYTBRRv23siyDx2LwYmopSnVGTF91SExJffhowMwoU+Eq6flMXwl0KvJy9UTINu4Q3oOqAmafr5wHUaTmdsDEFGLUFSuR9KqX/BrZhH8VVXdvu/o2NrV0/IoUti0l994EiGuNLlgw97aekYGQqP2QonOiNQLXG0iIs93rVSHhz88iF8zixDk6411MwcxYHKAmpompueomdwlPaeQy3DfbW0BAGsOXHbpXIiIHC1XW4nJH6TiTE4JQvxV2PBkPIu+HcRPAl3BGTRJgMkswHKFv7fc9b+yRwd3AADsPJOLjOvlrp0MEZGDXCksx0MfpCK9ug/Txj/dgW7hAa6elseydAUvY8sBag7LKhPg+vQcAHRq44/hXdtAEIDPUi+5ejpERHZ36VoZJn9wEJevlyMq2Acb/xTPDXgdzFIIXs6VJmoOq6DJxek5i+lDOgAANhzOdOulVCKixsq4Xo5HPjqIq0UV6NjGD1/9aTCign1dPS2PJ6bnWAhOzWG5cg5wj/QcAAzv0gYxIX4oqTRi07Grrp4OEZFdZBZUBUzZxZXoHOqPDU/GIzyQnb6dQUzPsRCcmsOy0qSQyyCXu8dKk1wuQ1L1Tt6r91+EIHBbFSKStqtFFZjycfUKU4gf1j0xCG0CVK6eVovhV331HFsOULPoje5x5dyNJsW1g7/KC+n5Zdh3/pqrp0NE1GQ5xZWY8tFBZBZUoENrX6ybeQdCNVxhcibf6pUmbthLzWI0u0djyxsFqL3xQFw7AMDq/ZdcOxkioiY6mVWMhz9MFYu+1828gyk5F/C3FILz6jlqDkt6TulmQRMAJFW3H9h1Ng+XrpW5djJERI1gMJnx753ncO97+3HpejnaBvngy5l3IDLIx9VTa5F82aeJ7MGSnvNys/QcAMSE+GFkt6r2A6sPXHL1dIiIbHIutwT3v38AS1J+h9EsYGzPcPx39hC0a8Wr5FyFG/aSXdR0A3fPX9eMoR0BAOt+zmCzSyJya4Ig4NN9FzHh3X04cbUYGrUXlj3cDyv+2B8h/iz6diUpbNjrnt/CZMVS0+SO6TkAGNK5NYZ1CYHeZMai70+7ejpERPXSVhrw9BdH8ermU9AbzRjRrQ1Skofj3n5tIZO530p+S1OzYa/Jba/Ids9vYbJiMLr3SpNMJsMrE2IhlwHf/5aDn7mRLxG5md+uFuPuf+/DtpM58FbIsPCeWKyafjvCeIWc27Bs2GsyC9AZzbcY7Rru+S1MVvQm961psugWHoCHB7YHALy+5TTMZvf8K4GIWhZBEPDFwcu4f8UBZBRUFXt//dRgTB8Sw9UlN2MpBAfctxicQZMEWDqCu+tKk0XyXV0RoPLCiavF7BJORC535HIh7l9xAK98+xv0RjMSeoRi65+HoW9UkKunRvVQyGXw8XbvtgPu/S1MAACjG7ccqC3EX4VZozoDAN7afsatu7oSkefKuF6OWWuPYtKKAziWUQQfbwVeHt8DHz06AIG+3q6eHt2En5sXg3vdegi5miU95+3l/kvJjw3pgLU/X0ZmQQU+2HsBc+/q6uopEVELUaE3YdnOc/h030XoTWbIZMBDcVFIHtOVtUsSUZWi0zM9R01nSc95uclmvTej8lJg3rgeAIAPfkxHZgFbEBCR4+07dw2JS3/Eyr3p0JvMGNYlBFv/PAz/fKAPAyYJcfdNe7nSJAHu3qfpRuN6hWNgTDAOXSzAU18cwX+eHgx1dZ6aiMieCsr0eH3LKWw6WlVHGRGoxqv39sJdsWEunhk1hbtv2uvW38ILFy6ETCazunXv3l18vLKyErNmzULr1q3h7++PSZMmITc31+oYGRkZmDBhAnx9fREaGooXXngBRqP1L2PPnj3o378/VCoVOnfujNWrVzvj5dlMrGmSQHoOqGpB8M7kfgj2U+JklhZ/23TCbXtuEJE0GUxmfHHwMhKW7MWmo1chkwHTB3dASvJwBkwSVrNpr3uuNLl10AQAPXv2RHZ2tnjbt2+f+NjcuXPxv//9D1999RX27t2LrKws3H///eLjJpMJEyZMgF6vx4EDB7BmzRqsXr0a8+fPF8dcvHgREyZMwMiRI5GWloY5c+bgiSeewPbt2536Om9GL5Gr52prG+SD96bcBoVchk3HruKz1MuunhIReQBBELD9ZA4Sl/6IV779DQVlenQLC8B/nh6MhX/oKTZIJGmq2bTXPVea3P7T5eXlhfDw8Dr3FxcX45NPPsG6deswatQoAMCqVavQo0cPHDx4EHfccQd++OEHnDp1Cjt27EBYWBj69euH1157DS+99BIWLlwIpVKJlStXIiYmBm+//TYAoEePHti3bx/eeecdJCYmOvW1NsSSnpNCTVNtgzuFYN647nh9y2m8tvkUYiM1uL1DsKunRUQS9WtmEV7bfAqHLxcCAFr7KfFcQhc8MrC9pP6opIb5uvn+c27/KTt37hwiIyPRsWNHTJ06FRkZGQCAI0eOwGAwICEhQRzbvXt3tG/fHqmpqQCA1NRU9O7dG2FhNUu1iYmJ0Gq1OHnypDim9jEsYyzHaIhOp4NWq7W6OYqlI7hU0nO1zRgag3v6RsJoFvDM2qPI1Va6ekpEJDGCIODDH9Nx/4oDOHy5EGpvOWaP7Iw9L4zAo/EdGDB5EEtNE6+ea4JBgwZh9erV2LZtG1asWIGLFy9i2LBhKCkpQU5ODpRKJYKCgqyeExYWhpycHABATk6OVcBkedzy2M3GaLVaVFRUNDi3RYsWITAwULxFRUU19+U2SGqF4LXJZDL8c1JvdAsLQH6JDk9+dtht/2MgIvdTXGHAnz4/gje2noHJLGBCnwjseX4knk/shgA1ey55GvHqOTdNz7n1t/C4cePw4IMPok+fPkhMTMTWrVtRVFSEjRs3unpqmDdvHoqLi8VbZmamw85lMEuvpqk2X6UXPpgWhyBfb/x6pRhPfXEEOqN7Lr0Skfs4mVWMP7y3Dz+cyoVSIcdrE3vhvUduQ3ggWwh4KkvQVM70XPMFBQWha9euOH/+PMLDw6HX61FUVGQ1Jjc3V6yBCg8Pr3M1neXnW43RaDTw8fFpcC4qlQoajcbq5iiW9Jw77z13Kx1C/LD6sYHwVSrw07lrSN7wK0zcn46I6pFxvRyvbz6F+98/gMvXq/aL++qpeEy7I5r7xXk4y6a9XGmyg9LSUqSnpyMiIgJxcXHw9vbGzp07xcfPnj2LjIwMxMfHAwDi4+Nx4sQJ5OXliWNSUlKg0WgQGxsrjql9DMsYyzHcgUEi26jcSr+oIHw4bQCUCjm2nMjGK9/+xlYERASgqm7pp3P5eGLNLxj+r934eN9F6IxmjOzWBlv+PJT7xbUQfmIhuHsGTW599dzzzz+Pe+65B9HR0cjKysKCBQugUCjwyCOPIDAwEDNmzEBycjKCg4Oh0Wjw7LPPIj4+HnfccQcAYMyYMYiNjcW0adOwePFi5OTk4JVXXsGsWbOgUqkAAE899RTee+89vPjii3j88cexa9cubNy4EVu2bHHlS7cixZYDDRnaJQTLHu6HWeuO4stDGWjl640Xx3a/9ROJyCNVtRDIxTspv+Nsbol4//CubTB9cAeM6NaGq0stSE1Nk3um59w6aLpy5QoeeeQRXL9+HW3atMHQoUNx8OBBtGnTBgDwzjvvQC6XY9KkSdDpdEhMTMT7778vPl+hUGDz5s14+umnER8fDz8/PyQlJeHVV18Vx8TExGDLli2YO3culi1bhnbt2uHjjz92m3YDQE1zS08ImgBgXO8I/OO+3pi36QTe35OOvBIdFtwTy6JOohZEEATsO38N/9p+Fr9eKQYA+Ku88EBcO0yLj0anNv4uniG5gq+b92mSCcyP2IVWq0VgYCCKi4vtXt80Z/0xfJuWhVcm9MATwzra9diu9PFPF/CPrachCFXNMJc81BeDOrZ29bSIyMHSMovw5vencfBCAYCqOpYZQ2PwxLCOCPThH08t2aGLBXjog1TEhPhh9/MjnHLOxnx/u/VKE1UxeFB6rrYnhnVEn3ZBSN6YhiuFFXj4o4N48s6OSL6rK1Re3KuOyNNcLarAW9vO4Nu0LACA0kuOaXdE4+kRnRDir3Lx7Mgd+Kncu08TgyYJ0HtYeq62gTHB+P65YXht8ylsPHwFH+y9gB2ncvHS2O64KzaMtQxEHqBUZ8TKPen46KcL0BnNkMmA+29rh7+M6YrIoIavUqaWx1IIXs6aJmqqmpomzwwgAtTeWPxAXyT0CMO8TSeQnl+GJz8/ggHRrfDXcd0xgFuvEEmOzmjC/vPX8P2JHPxwKhfFFQYAwKCYYPzf3bHo1TbQxTMkd2SpaSrTGyEIgtv94cygSQIs6Tmll+etNNU2pmc47ujUGh/sTccn+y7i8OVCPLAyFXfFhmH+3bGICvZ19RSJ6CZKdUbsPZuPbSdzsPtMHkprpVg6tPbFvPE9MIYryHQTlg2XBQGoMJjEvejchXvNhuqll+iGvU2hUXvjhcTumHZHByzd8Ts2Hs5EyqlcpKZfx6v39sR9t7Xl/+ESuZH8Eh12nM7FDydzsP/8dfH/rwAgTKPC2J7hSOwVjoEdguHlgSUGZF9qLwVksqqgqUzHoImawODh6bn6hAeq8eakPpgxNAZ/3XQCRy4XInnjr9h5Og//uK8XgnyVrp4iUYuWcb0cy3efx3+OXoGxVnf/Dq19kVgdKPVrFwS5vOX8/xY1n1wug6+3AmV6E8p0RrQJcK8LBBg0SYDRcvWch6fn6tMlLAAbnrwDK/akY9nOc9hyIhuHLxfgXw/2xbAubVw9PaIWJ7OgHO/tsg6W+rQLRGLPcIyJDUPnUH+uBlOz+Km8qoImN+zVxKBJAjxlG5Wm8lLI8ezoLhjerQ3mrE/DhWtlmPbJIUwZ1B7zxnVnU0wiB8vVVmLP2TzsPpOPHadzxWBpWJcQzEnogrhoXqxB9uOn8gJKdG55BR2DJgmoqWlq2X+99WkXhM1/HopFW8/g84OXse7nDOw5k4c3J/XBnV256kRkD4Ig4EphBU5mFePXK8XYezYfp7K1VmMYLJEjWTbtLXXDXk0MmiRArGlqgem5G/kqvfDaxF4Y1zscL/3nODILKvDop4cweUAU7uvfFm2DfBARqGbBKdFNmM0C8kp0uFpUjiuFFcgqqsTVonKczyvFqSwttJXWX1YyWdUfLSO7tUFCjzC2CyCHEns16bjSRE1gqWlqqem5+gzuFILtc+7E4m1nsfrAJWw4nIkNhzMBAHIZEBHog86h/hjVPRQJsWFoywZ61EIJgoDU9Os4eLEAF/JLcSG/DBevlaHC0PAXklIhR9dwf/SMCMQdnYJxZ5c2aM2O3eQkfrV6NbkbBk0SYPDgjuDN4av0wsI/9MT43hFYsec8Ll0vx9XCCuhNZlwtqsDVogrs/T0fC747iZ6RGtwVG4ZR3UPRKzKQV/RQi3A+rxSvbj6FH3/Pr/OYl1yG8EA12gb5VN1a+aB9sC96Rgaic6i/x/eFI/flq7KsNDFooibQG6trmlpQy4HGGBgTjIExAwFUpR2uleqQWViOw5cKkXIqF0cyCnEyS4uTWVos3XEOIf5K3NmlDYZ3a4M7u7RBKz+2LyDPUlxhwLId5/BZ6iUYzQKUCjnu7huB7uEB6Bjij45t/BAV7Ms/xMgt+SktK01Mz1ETGJies5lcLkOoRo1QjRpx0cH40/BOuF6qw84zedhxKhf7z1/DtVI9Nh27ik3HrkIhl2FU91A8GNcOI7uH8kuEJEdnNCGzoKoeKT2/DOfzSrH393wUlOkBAAk9wvDKhB7oEOLn4pkS2caveqXJHTftZdAkAUYz03PN0dpfhYcGROGhAVHQG804crkQe37Pw96z+TiTU4KUU7lIOZWLEH8l7u/fDiO6tkGXsACE+CvZb4bcRnZxBb48lInU9GsoKjdAW2lAcYUBlQZzveM7h/pj/t2xvLKUJMedN+1l0OTmBEEQV5paUkdwR1F6yRHfqTXiO7XGvHE9cC63BF8duYJNR6/gWqkeH/54AR/+eAEAEOTrjS6h/ugc6o/2wX5oH+yLqOCquo9AH28GVORwZrOAfeev4YuDl7HzTB5MtTpv1+anVKBTqD86tan6vHYLC8Dwbm34hxZJkmXTXrYcoEazBEwAeBm9A3QJC8DfxvfAC4ndsPtMHr5Nu4qTWVpkFJSjqNyAXy4V4pdLhXWeF+jjjU5t/NCxTdUXVfvqzYT1JhP0RjP0RjNU3gqEBqjQJkCF0AA1WvspWYDeApnMAo5lFKKo3IA+7QIRqlHXGVOqM+J4ZhF+zy1BtrYSucWVyC6uxOXr5cjRVorjBsUE44G4dmgb5AONjzcCfbyhUXtD4+PFIJ48hmXT3nJePUeNZai1+SVrmhzHWyHHmJ7hGNMzHABQaTAhPb8U5/OqbpkF5cgsrEBGQTnyS3QorjDgaEYRjmYU2XwOuaxq2dlHqYCvUgFfpRfCNCrc0bE1BncKQWykBopaQVVBmR7n80pxrVQHtbccai8F1EoFfLwVaNfKh53QXay43IB956/hp3P50BvN6BoegG7hAegeHoDWfiocvHAd207m4IeTubhWqhOf1zbIB/2ighAbqcGVwgocyyjE77klaGARCQEqL0yKa4epg9qjS1iAk14dketYNuktY58maixjrZUmpuecR+2tQM/IQPSMrNvEr0JvwqXrZUiv7nmTnl+KK4UVUMhlUHnJ4a2QQ6mQo8JgQl6JDvkllbhepodZAEp0RpTUWnI+lQ3sPlt1ObhG7YUBHYJRqjMiPa8U16sLeRvSMcQPPdsGondbDTqH+gMA9EYBRrMZRpOAYD8luocHoE2AiqsQt1CmM+JklhZZRRUI9PVGsK8SwX5VN73RjGulOuSX6JBfqsOF/DL8dC4faZlFDQY6CrnMKpWmUXshPFCNc3mlYjuMLSeyrZ7TNsgHPSM1aNuqqkFrmEaNiEAf9Gqrcbud3okcSbx6juk5aizLFioyGaxWIch1fJQK9IjQoEeExubnGE1mFJTpUaY3oVxvRLnehHK9Cel5pTiQfh0/X7gObaURu87kWT2vbZAPIoPU0BvNqDCYUGEwoUxnQkGZHheuleHCtTL879esm547yNcb3cICEBPiB73JjHJd1UaYlnoBf5WXePNTecFbIYOXQg5vuQwKuRxyGWA0CzCZBZgEAWazgNb+SkRa+vsE+SDEX9Xo1KMgVAUV9g7oBEFAfqkOcpkMGrW3Vb+hcr0RGQXlyLhejsvXy3EqW4sTV4uRnl8KoYEA6Ga6hPpjeNc2CPTxxpncEvyeU4IL18pgMgsI8VdiTM9wjO0Zjjs6tobSSy6m4Y5lFuF0thZtW/ngtqhWuK19EMLqSdsRtUTi1XMsBKfGEhtbyuVcLZAwL4W83lqW4V3b4PGhMTCazDiZpcXRjMLqAvQAdGzj1+AKw/VSHX7L0uK3q8X47WoxMgrKoZDL4CWvCni85DLkaCtx6VoZisoN+PliAX6+WOCw1+etkCE0QI3wwOqbRg1VdbAiABCEqkvj87Q6ZBdXIFerQ662EnK5DG38VQjVqNDGX4XW/iqovatW6ryrb2ZBQKXRBJ3BDJ3RBINJQJsAFdoG+aBdq6pbhd6Mw5cLcPhyIY5cKrSqA1J5yaHx8YYgCLhW2vDqXbhGjQ4hviipNKKgTI/rZXqxR1qQrzdC/KvmGB6oxqCYYNzZtQ0i6+k0rzOakFusQ9tWPnX+0PFXeWFw5xAM7hxih3edyDNZOoKzpokaraYbOAMmT+alkKNvVBD6RgXZNL61vwrDu7bB8FtcTl5pMOF8XinO5pQgs7Acam8F/FRe8Fcp4Kf0goCqJfCy6rRhmc4Io6nqik2T2QyDWYAgCNUBmRxymQwyGZBfokNWUQWyiiqQo62EwSSIaadGMTfxebcgl0FMnemMZuSX1NQUBfp4I7q1L6KCfdEtLAC92waiV9tAtAmw3iZEEASU603wUsig8lLYfG6VlwLtW/va5XUQtUQ1NU0MmqiRxHYD3NKAmkDtrUCv6qDAUYwmM3JLdMgprqy6aSuRq62E3miGTAbIUBVoeSvkCNOoEK5RI6x6Ncpkrkql5ZdU3a6X6qE3Va0m6Y1m6E1myKpfh9pbDpWXAgq5DHnaSlwtqsCVwgpcLayATAb0j26FAdGtEBcdjH5RQVXpsEojtJVVPY0EAYhq5YtAX9sK6GUymZgmICLn8VexEJyaiPvOkbvzUsjF2qamiAp23KpMoK+3zUESEbkH3+pC8AqDCSaz4Fb1vPwmdnM1NU3u86EhIiJylNorvBUG91ptYtDk5sSgiek5IiJqAVRecnG16UJ+qYtnY43fxG6uZgsV/qqIiMjzyWQyjOwWCgDYcjz7FqOdi9/Ebo41TURE1NLc3ScCALD5eLbY080d8JvYzbHlABERtTQju4fCT6nA1aIKHMsscvV0RAya3JzeyPQcERG1LGpvBRJiwwAAm391nxQdv4ndnNHMlSYiImp57u4TCQDYeiIb5oY2enQyBk0S4Fu9sz0REVFLcWfXEASovJCjrcThy4Wung4ANrd0e3f3iRSjbSIiopZC5aXAXT3DsOnoVWw5noWBMcGunhJXmoiIiMg93WNJ0f2WA5MbpOgYNBEREZFbGtI5BIE+3sgv0eHni9ddPR0GTTdavnw5OnToALVajUGDBuHQoUOunhIREVGLpPSSY2zPcABVPZtcjUFTLRs2bEBycjIWLFiAo0ePom/fvkhMTEReXp6rp0ZERNQi3d23qtHltt9yYKzuXegqDJpqWbJkCWbOnInHHnsMsbGxWLlyJXx9ffHpp5+6empEREQtUnzH1mjtp0RBmR4H0l2bomPQVE2v1+PIkSNISEgQ75PL5UhISEBqamqd8TqdDlqt1upGRERE9uWlkGNsL0uKLsulc2HQVO3atWswmUwICwuzuj8sLAw5OTl1xi9atAiBgYHiLSoqyllTJSIialHu7hOJEH8V2gSoXDoPBk1NNG/ePBQXF4u3zMxMV0+JiIjIIw2KCcbPfxuNFxK7u3QebG5ZLSQkBAqFArm5uVb35+bmIjw8vM54lUoFlcq1ES8REVFLIJe7x1ZiXGmqplQqERcXh507d4r3mc1m7Ny5E/Hx8S6cGREREbkDrjTVkpycjKSkJAwYMAADBw7E0qVLUVZWhscee8zVUyMiIiIXY9BUy+TJk5Gfn4/58+cjJycH/fr1w7Zt2+oUhxMREVHLIxMEwfWbuXgArVaLwMBAFBcXQ6PRuHo6REREZIPGfH+zpomIiIjIBgyaiIiIiGzAoImIiIjIBgyaiIiIiGzAoImIiIjIBgyaiIiIiGzAoImIiIjIBgyaiIiIiGzAoImIiIjIBtxGxU4sjdW1Wq2LZ0JERES2snxv27JBCoMmOykpKQEAREVFuXgmRERE1FglJSUIDAy86RjuPWcnZrMZWVlZCAgIgEwms+uxtVotoqKikJmZyX3tHIzvtfPwvXYevtfOw/faeez1XguCgJKSEkRGRkIuv3nVElea7EQul6Ndu3YOPYdGo+F/hE7C99p5+F47D99r5+F77Tz2eK9vtcJkwUJwIiIiIhswaCIiIiKyAYMmCVCpVFiwYAFUKpWrp+Lx+F47D99r5+F77Tx8r53HFe81C8GJiIiIbMCVJiIiIiIbMGgiIiIisgGDJiIiIiIbMGgiIiIisgGDJjexfPlydOjQAWq1GoMGDcKhQ4duOv6rr75C9+7doVar0bt3b2zdutVJM5W+xrzXH330EYYNG4ZWrVqhVatWSEhIuOXvhmo09nNtsX79eshkMkycONGxE/QgjX2vi4qKMGvWLEREREClUqFr1678/xEbNfa9Xrp0Kbp16wYfHx9ERUVh7ty5qKysdNJspevHH3/EPffcg8jISMhkMnz77be3fM6ePXvQv39/qFQqdO7cGatXr7bvpARyufXr1wtKpVL49NNPhZMnTwozZ84UgoKChNzc3HrH79+/X1AoFMLixYuFU6dOCa+88org7e0tnDhxwskzl57GvtdTpkwRli9fLhw7dkw4ffq0MH36dCEwMFC4cuWKk2cuPY19ry0uXrwotG3bVhg2bJhw7733OmeyEtfY91qn0wkDBgwQxo8fL+zbt0+4ePGisGfPHiEtLc3JM5eexr7Xa9euFVQqlbB27Vrh4sWLwvbt24WIiAhh7ty5Tp659GzdulV4+eWXhU2bNgkAhG+++eam4y9cuCD4+voKycnJwqlTp4R3331XUCgUwrZt2+w2JwZNbmDgwIHCrFmzxJ9NJpMQGRkpLFq0qN7xDz30kDBhwgSr+wYNGiT86U9/cug8PUFj3+sbGY1GISAgQFizZo2jpugxmvJeG41GYfDgwcLHH38sJCUlMWiyUWPf6xUrVggdO3YU9Hq9s6boMRr7Xs+aNUsYNWqU1X3JycnCkCFDHDpPT2NL0PTiiy8KPXv2tLpv8uTJQmJiot3mwfSci+n1ehw5cgQJCQnifXK5HAkJCUhNTa33OampqVbjASAxMbHB8VSlKe/1jcrLy2EwGBAcHOyoaXqEpr7Xr776KkJDQzFjxgxnTNMjNOW9/u677xAfH49Zs2YhLCwMvXr1whtvvAGTyeSsaUtSU97rwYMH48iRI2IK78KFC9i6dSvGjx/vlDm3JM74buSGvS527do1mEwmhIWFWd0fFhaGM2fO1PucnJycesfn5OQ4bJ6eoCnv9Y1eeuklREZG1vkPk6w15b3et28fPvnkE6SlpTlhhp6jKe/1hQsXsGvXLkydOhVbt27F+fPn8cwzz8BgMGDBggXOmLYkNeW9njJlCq5du4ahQ4dCEAQYjUY89dRT+Nvf/uaMKbcoDX03arVaVFRUwMfHp9nn4EoTkY3efPNNrF+/Ht988w3UarWrp+NRSkpKMG3aNHz00UcICQlx9XQ8ntlsRmhoKD788EPExcVh8uTJePnll7Fy5UpXT83j7NmzB2+88Qbef/99HD16FJs2bcKWLVvw2muvuXpq1ARcaXKxkJAQKBQK5ObmWt2fm5uL8PDwep8THh7eqPFUpSnvtcW//vUvvPnmm9ixYwf69OnjyGl6hMa+1+np6bh06RLuuece8T6z2QwA8PLywtmzZ9GpUyfHTlqimvK5joiIgLe3NxQKhXhfjx49kJOTA71eD6VS6dA5S1VT3uv/+7//w7Rp0/DEE08AAHr37o2ysjI8+eSTePnllyGXc+3CXhr6btRoNHZZZQK40uRySqUScXFx2Llzp3if2WzGzp07ER8fX+9z4uPjrcYDQEpKSoPjqUpT3msAWLx4MV577TVs27YNAwYMcMZUJa+x73X37t1x4sQJpKWlibc//OEPGDlyJNLS0hAVFeXM6UtKUz7XQ4YMwfnz58XAFAB+//13REREMGC6iaa81+Xl5XUCI0uwKnDrV7tyynej3UrKqcnWr18vqFQqYfXq1cKpU6eEJ598UggKChJycnIEQRCEadOmCX/961/F8fv37xe8vLyEf/3rX8Lp06eFBQsWsOWAjRr7Xr/55puCUqkUvv76ayE7O1u8lZSUuOolSEZj3+sb8eo52zX2vc7IyBACAgKE2bNnC2fPnhU2b94shIaGCq+//rqrXoJkNPa9XrBggRAQECB8+eWXwoULF4QffvhB6NSpk/DQQw+56iVIRklJiXDs2DHh2LFjAgBhyZIlwrFjx4TLly8LgiAIf/3rX4Vp06aJ4y0tB1544QXh9OnTwvLly9lywFO9++67Qvv27QWlUikMHDhQOHjwoPjY8OHDhaSkJKvxGzduFLp27SoolUqhZ8+ewpYtW5w8Y+lqzHsdHR0tAKhzW7BggfMnLkGN/VzXxqCpcRr7Xh84cEAYNGiQoFKphI4dOwr/+Mc/BKPR6ORZS1Nj3muDwSAsXLhQ6NSpk6BWq4WoqCjhmWeeEQoLC50/cYnZvXt3vf//a3l/k5KShOHDh9d5Tr9+/QSlUil07NhRWLVqlV3nJBMErg8SERER3QprmoiIiIhswKCJiIiIyAYMmoiIiIhswKCJiIiIyAYMmoiIiIhswKCJiIiIyAYMmoiIiIhswKCJiJpsxIgRmDNnDgCgQ4cOWLp0qV2Pv3r1agQFBd10zMKFC9GvXz+7npeIqD7csJeI7OKXX36Bn5+fXY85efJkjB8/3m7Hmz59OoqKivDtt9/a7ZhE1HIwaCIiu2jTpo3dj+nj42O33cmlwGQyQSaT1dnglYjcA//LJCK7uDE9d+7cOdx5551Qq9WIjY1FSkoKZDKZuMqzZ88eyGQyFBUVic9JS0uDTCbDpUuXANSfnnvzzTcRFhaGgIAAzJgxA5WVlTbNb+HChVizZg3++9//QiaTQSaTYc+ePY2ax+bNm9GtWzf4+vrigQceQHl5OdasWYMOHTqgVatW+POf/wyTySQep7CwEI8++ihatWoFX19fjBs3DufOnRMftxz3u+++Q2xsLFQqFTIyMm76On755RfcddddCAkJQWBgIIYPH46jR4+Kj0+ZMgWTJ0+2eo7BYEBISAg+++wzAEBJSQmmTp0KPz8/RERE4J133rFKtRJR/Rg0EZHdmc1m3H///VAqlfj555+xcuVKvPTSS80+7saNG7Fw4UK88cYbOHz4MCIiIvD+++/b9Nznn38eDz30EMaOHYvs7GxkZ2dj8ODBNp+7vLwc//73v7F+/Xps27YNe/bswX333YetW7di69at+Pzzz/HBBx/g66+/Fp8zffp0HD58GN999x1SU1MhCALGjx8Pg8Fgddx//vOf+Pjjj3Hy5EmEhobedB4lJSVISkrCvn37cPDgQXTp0gXjx49HSUkJAGDq1Kn43//+h9LSUvE527dvR3l5Oe677z4AQHJyMvbv34/vvvsOKSkp+Omnn6wCLyKqH9NzRGR3O3bswJkzZ7B9+3ZERkYCAN544w2MGzeuWcddunQpZsyYgRkzZgAAXn/9dezYscOm1SZ/f3/4+PhAp9MhPDy80ec2GAxYsWIFOnXqBAB44IEH8PnnnyM3Nxf+/v6IjY3FyJEjsXv3bkyePBnnzp3Dd999h/3794vB2dq1axEVFYVvv/0WDz74oHjc999/H3379rVpHqNGjbL6+cMPP0RQUBD27t2Lu+++G4mJifDz88M333yDadOmAQDWrVuHP/zhDwgICEBJSQnWrFmDdevWYfTo0QCAVatWib8nImoYV5qIyO5Onz6NqKgoqy/i+Ph4uxx30KBBVvfZ47i28PX1FQMmAAgLC0OHDh3g7+9vdV9eXp44Vy8vL6v5tm7dGt26dcPp06fF+5RKJfr06WPzPHJzczFz5kx06dIFgYGB0Gg0KC0tFdN6Xl5eeOihh7B27VoAQFlZGf773/9i6tSpAIALFy7AYDBg4MCB4jEDAwPRrVu3xrwdRC0SV5qIyCUsxc6CIIj31U5buds8vL29rX6WyWT13mc2mxt1fh8fH8hkMpvHJyUl4fr161i2bBmio6OhUqkQHx8PvV4vjpk6dSqGDx+OvLw8pKSkwMfHB2PHjm3UvIioLq40EZHd9ejRA5mZmcjOzhbvO3jwoNUYy9V2tcekpaXd8rg///yz1X03HvdmlEqlVaF2U+dhix49esBoNFrN9/r16zh79ixiY2ObfNz9+/fjz3/+M8aPH4+ePXtCpVLh2rVrVmMGDx6MqKgobNiwAWvXrsWDDz4oBngdO3aEt7c3fvnlF3F8cXExfv/99ybPiailYNBERHaXkJCArl27IikpCb/++it++uknvPzyy1ZjOnfujKioKCxcuBDnzp3Dli1b8Pbbb9/0uM899xw+/fRTrFq1Cr///jsWLFiAkydP2jyvDh064Pjx4zh79iyuXbsGg8HQpHnYokuXLrj33nsxc+ZM7Nu3D7/++iv++Mc/om3btrj33nubddzPP/8cp0+fxs8//4ypU6fW25ZhypQpWLlyJVJSUsTUHAAEBAQgKSkJL7zwAnbv3o2TJ09ixowZkMvljVrxImqJGDQRkd3J5XJ88803qKiowMCBA/HEE0/gH//4h9UYb29vfPnllzhz5gz69OmDf/7zn3j99ddvetzJkyfj//7v//Diiy8iLi4Oly9fxtNPP23zvGbOnIlu3bphwIABaNOmDfbv39+kedhq1apViIuLw9133434+HgIgoCtW7fWSes1xieffILCwkL0798f06ZNw5///Od6r7ibOnUqTp06hbZt22LIkCFWjy1ZsgTx8fG4++67kZCQgCFDhqBHjx5Qq9VNnhdRSyATaifyiYgcSCaT4ZtvvsHEiRNdPRWqpaysDG3btsXbb78tXplIRHWxEJyIqIU5duwYzpw5g4EDB6K4uBivvvoqADQrbUjUEjBoIiKPUfvy/xt9//33GDZsmBNn0zTOeg3/+te/cPbsWSiVSsTFxeGnn35CSEiIXY5N5KmYniMij3H+/PkGH2vbtq0k9rHzhNdA5KkYNBERERHZgFfPEREREdmAQRMRERGRDRg0EREREdmAQRMRERGRDRg0EREREdmAQRMRERGRDRg0EREREdmAQRMRERGRDf4fPT92P1cMR2kAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "253_x 0.596056\n", + "125_y 0.583733\n", + "247_x 0.591512\n", + "3_x 0.586937\n", + "215_y 0.603334\n", + " ... \n", + "39_y 0.594678\n", + "151_y 0.610348\n", + "225_x 0.593444\n", + "85_y 0.593369\n", + "199_x 0.568784\n", + "Length: 208, dtype: float64\n", + "0 0.939303\n", + "1 0.951060\n", + "2 0.034716\n", + "3 0.973576\n", + "4 0.019429\n", + " ... \n", + "730294 0.881254\n", + "730295 0.015123\n", + "730296 0.026083\n", + "730297 0.919887\n", + "730298 0.019284\n", + "Length: 730299, dtype: float64\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "liquid_tumor_avg = k.mean(skipna=True, axis = 0)\n", + "\n", + "freq, bins = np.histogram(liquid_tumor_avg, bins=100, range=(0, 1))\n", + "\n", + "plt.plot(bins[:-1], freq, linestyle='-')\n", + "plt.xlabel('liquid_tumor_avg')\n", + "plt.ylabel('Frequency')\n", + "plt.title('liquid_tumor_avg')\n", + "plt.show()\n", + "\n", + "print(k.mean(skipna=True, axis = 1))\n", + "print(k.mean(skipna=True, axis = 0))" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHHCAYAAACiOWx7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+MUlEQVR4nO3deVzUdf4H8NcczHAOiMgliHiL56pplJaahcqWlttamqKZri3smnStu6662S/L0nTLsl1L3U0zbbVt1TTzqFS8ULyPVBRUBlSO4Z7r+/sDvl+YQI5hTng9Hw8eycxnvvOZgZy3n/f78/7IBEEQQERERER1kjt7AkRERETugEETERERUQMwaCIiIiJqAAZNRERERA3AoImIiIioARg0ERERETUAgyYiIiKiBmDQRERERNQADJqIiIiIGoBBE1ELt2bNGshkMly7dg0AMHToUAwdOtSuz3nt2jXIZDKsWbOm3rFTpkxB+/bt7TofdyGTybBgwQJnT4OoxWLQRERERNQASmdPgIhcy3fffWf354iKikJpaSk8PDzs/lxERLbCoImILKhUKrs/h0wmg6enp92fx56MRiPMZrND3i8icg1MzxGRhdpqmm7cuIGxY8fCx8cHwcHBmD17Nnbu3AmZTIZ9+/ZJ49q3b48pU6bUe8171TR9/fXX6NmzJzw9PdGzZ09s2bLF6tfQs2dPnDt3DsOGDYO3tzfatm2LxYsX1xibk5ODadOmISQkBJ6enujTpw/Wrl1rMUac73vvvYdly5ahY8eOUKvVOHfuHBYsWACZTIZLly7hueeeg7+/P9q0aYO//vWvEAQBmZmZGDNmDDQaDUJDQ7FkyRKLa+v1esybNw/9+/eHv78/fHx8MGTIEOzdu9eq1/5L7733Hh544AG0bt0aXl5e6N+/P7766iuLMT179sSwYcNqPNZsNqNt27b4zW9+I9129+5dTJo0CRqNBgEBAUhISMDJkycbXKNG5M640kREdSotLcUjjzyCjIwM/PGPf0R4eDj+/e9/Y8+ePTZ9nu+++w7jxo1DTEwMFi1ahLt372Lq1KmIiIiw6np5eXkYOXIknnrqKfz2t7/FV199hddffx29evXCqFGjAFS8tqFDh+Ly5ctISkpCdHQ0Nm3ahClTpiA/Px+zZs2yuObq1atRVlaGGTNmQK1WIzAwULpv/Pjx6N69O95++21s27YNb775JgIDA/HJJ59g+PDheOedd7Bu3Tq88soruO+++/DQQw8BAHQ6HVatWoVnn30W06dPR2FhIT799FPExcXhyJEj6Nu3r3VvaKXly5fjiSeewMSJE6HX67FhwwY8/fTT2Lp1K+Lj46W5L1iwAFqtFqGhodJj9+/fj1u3buGZZ54BUBFEPf744zhy5AhefPFFdOvWDf/973+RkJDQpDkSuQ2BiFq01atXCwCE9PR0QRAE4eGHHxYefvhh6f5ly5YJAISNGzdKtxUXFwudOnUSAAh79+6Vbo+KihISEhJqPMcvr5meni4AEFavXi3d1rdvXyEsLEzIz8+Xbvvuu+8EAEJUVFSjXtPDDz8sABD+9a9/SbeVl5cLoaGhwrhx42q8ts8//1y6Ta/XC7GxsYKvr6+g0+ks5qvRaIScnByL55o/f74AQJgxY4Z0m9FoFCIiIgSZTCa8/fbb0u15eXmCl5eXxXtkNBqF8vJyi2vm5eUJISEhwvPPP29xOwBh/vz5jXovSkpKLL7X6/VCz549heHDh0u3Xbx4UQAgfPDBBxZjf//73wu+vr7SNf7zn/8IAIRly5ZJY0wmkzB8+PAaP0+i5ojpOSKq0/bt2xEWFmaRovH29saMGTNs9hxZWVlIS0tDQkIC/P39pdsfffRRxMTEWHVNX19fPPfcc9L3KpUKAwcOxNWrV6Xbtm/fjtDQUDz77LPSbR4eHvjjH/+IoqIi/PDDDxbXHDduHNq0aVPr873wwgvSnxUKBQYMGABBEDBt2jTp9oCAAHTt2tViDgqFQqqLMpvNyM3NhdFoxIABA3D8+HGrXnt1Xl5e0p/z8vJQUFCAIUOGWFy7S5cu6Nu3L7788kvpNpPJhK+++gqPP/64dI0dO3bAw8MD06dPl8bJ5XIkJiY2eZ5E7oBBExHV6fr16+jUqRNkMpnF7V27drXpcwBA586da9xn7fNERETUmHOrVq2Ql5dn8bydO3eGXG75V2H37t0t5iWKjo6+5/O1a9fO4nt/f394enoiKCioxu3V5wAAa9euRe/eveHp6YnWrVujTZs22LZtGwoKCup5lfXbunUr7r//fnh6eiIwMBBt2rTBxx9/XOPa48ePx4EDB3Dz5k0AwL59+5CTk4Px48dLY65fv46wsDB4e3tbPLZTp05NnieRO2DQREQ288sgRWQymRw8k4oVnNoIgmD1Nauv2jTk+Royh88//xxTpkxBx44d8emnn2LHjh3YtWsXhg8fDrPZbPVcAeCnn37CE088AU9PT3z00UfYvn07du3ahQkTJtR4H8aPHw9BELBp0yYAwMaNG+Hv74+RI0c2aQ5EzQkLwYmoTlFRUThz5gwEQbAIii5evFhjbKtWrZCfn1/j9uvXr6NDhw51PgcA/PzzzzXuq+15bCUqKgqnTp2C2Wy2WG26cOGCxbzs6auvvkKHDh2wefNmi/d3/vz5Tb72f/7zH3h6emLnzp1Qq9XS7atXr64xNjo6GgMHDsSXX36JpKQkbN68GWPHjrV4XFRUFPbu3YuSkhKL1abLly83ea5E7oArTURUp9GjR+PWrVsW29RLSkrwj3/8o8bYjh074tChQ9Dr9dJtW7duRWZmZp3PERYWhr59+2Lt2rUWaaNdu3bh3LlzNngVtRs9ejS0Wq1FLY/RaMQHH3wAX19fPPzww3Z7bpG4GlV95efw4cNISUmxybVlMpnFSt+1a9fw9ddf1zp+/PjxOHToED777DPcuXPHIjUHAHFxcTAYDPjnP/8p3WY2m7FixYomz5XIHXCliYjqNH36dHz44YeYPHkyUlNTERYWhn//+9816lqAimLor776CiNHjsRvf/tbXLlyBZ9//jk6duxY7/MsWrQI8fHxGDx4MJ5//nnk5ubigw8+QI8ePVBUVGSPl4YZM2bgk08+wZQpU5Camor27dvjq6++woEDB7Bs2TL4+fnZ5Xmr+/Wvf43NmzfjySefRHx8PNLT07Fy5UrExMQ0+XXHx8dj6dKlGDlyJCZMmICcnBysWLECnTp1wqlTp2qM/+1vf4tXXnkFr7zyCgIDAzFixAiL+8eOHYuBAwfi5ZdfxuXLl9GtWzd88803yM3NBXDv9CxRc8GVJiKqk7e3N3bv3o3HHnsMH3zwAd58800MHjy41kaRcXFxWLJkCS5duoSXXnoJKSkp2Lp1a4N6LY0cORKbNm2CyWTCnDlzsHnzZqxevRoDBgywx8sCUFGjtG/fPkycOBFr167Fyy+/jNzcXKxevbpGjyZ7mTJlCt566y2cPHkSf/zjH7Fz5058/vnnNnndw4cPx6effgqtVouXXnoJX3zxBd555x08+eSTtY6PiIjAAw88gMLCQjz11FM1jrlRKBTYtm0bxo8fj7Vr1+Ivf/kLwsPDpZUmd+/yTlQfmdCUqkgiarH27duHYcOGYe/evTU6iFPL8vXXX+PJJ5/E/v378eCDDzp7OkR2w5UmIiJqsNLSUovvTSYTPvjgA2g0GvTr189JsyJyDNY0EZHbyM3NtSgy/yWFQnHP5pPNiclkwu3bt+sc4+vrC19fX5s/9x/+8AeUlpYiNjYW5eXl2Lx5Mw4ePIi33nqrzpYMRM0BgyYichtPPfVUjS7d1UVFReHatWuOm5CTZGZm1tloE6hoWbBgwQKbP/fw4cOxZMkSbN26FWVlZejUqRM++OADJCUl2fy5iFwNa5qIyG2kpqbW6KZdnZeXV4uoqSkrK8P+/fvrHNOhQ4c6e2MRUeMxaCIiIiJqABaCExERETUAa5psxGw249atW/Dz82ODNyIiIjchCAIKCwsRHh5e4/DuX2LQZCO3bt1CZGSks6dBREREVsjMzKy3Ea/LBE1vv/025syZg1mzZmHZsmUAKoodX375ZWzYsAHl5eWIi4vDRx99hJCQEOlxGRkZePHFF7F37174+voiISEBixYtglJZ9dL27duH5ORknD17FpGRkZg7dy6mTJli8fwrVqzAu+++C61Wiz59+uCDDz7AwIEDGzx/8biFzMxMaDQa698IIiIichidTofIyMgGHZvkEkHT0aNH8cknn6B3794Wt8+ePRvbtm3Dpk2b4O/vj6SkJDz11FM4cOAAgIpeJfHx8QgNDcXBgweRlZWFyZMnw8PDA2+99RYAID09HfHx8Zg5cybWrVuH3bt344UXXkBYWBji4uIAAF9++SWSk5OxcuVKDBo0CMuWLUNcXBwuXryI4ODgBr0GMSWn0WgYNBEREbmZBpXWCE5WWFgodO7cWdi1a5fw8MMPC7NmzRIEQRDy8/MFDw8PYdOmTdLY8+fPCwCElJQUQRAEYfv27YJcLhe0Wq005uOPPxY0Go1QXl4uCIIgvPbaa0KPHj0snnP8+PFCXFyc9P3AgQOFxMRE6XuTySSEh4cLixYtavDrKCgoEAAIBQUFDX/xRERE5FSN+fx2+u65xMRExMfH1zhNOzU1FQaDweL2bt26oV27dkhJSQEApKSkoFevXhbpuri4OOh0Opw9e1Ya88trx8XFSdfQ6/VITU21GCOXyzFixAhpTG3Ky8uh0+ksvoiIiKj5cmp6bsOGDTh+/DiOHj1a4z6tVguVSoWAgACL20NCQqDVaqUx1QMm8X7xvrrG6HQ6lJaWIi8vDyaTqdYxFy5cuOfcFy1ahL/97W8Ne6FERETk9py20pSZmYlZs2Zh3bp18PT0dNY0rDZnzhwUFBRIX5mZmc6eEhEREdmR04Km1NRU5OTkoF+/flAqlVAqlfjhhx/w97//HUqlEiEhIdDr9cjPz7d4XHZ2NkJDQwEAoaGhyM7OrnG/eF9dYzQaDby8vBAUFASFQlHrGPEatVGr1VLRN4u/iYiImj+nBU2PPPIITp8+jbS0NOlrwIABmDhxovRnDw8P7N69W3rMxYsXkZGRgdjYWABAbGwsTp8+jZycHGnMrl27oNFoEBMTI42pfg1xjHgNlUqF/v37W4wxm83YvXu3NIaIiIjIaTVNfn5+6Nmzp8VtPj4+aN26tXT7tGnTkJycjMDAQGg0GvzhD39AbGws7r//fgDAY489hpiYGEyaNAmLFy+GVqvF3LlzkZiYCLVaDQCYOXMmPvzwQ7z22mt4/vnnsWfPHmzcuBHbtm2Tnjc5ORkJCQkYMGAABg4ciGXLlqG4uBhTp0510LtBRERErs4l+jTdy/vvvw+5XI5x48ZZNLcUKRQKbN26FS+++CJiY2Ph4+ODhIQEvPHGG9KY6OhobNu2DbNnz8by5csRERGBVatWST2aAGD8+PG4ffs25s2bB61Wi759+2LHjh01isOJiIio5ZIJgiA4exLNgU6ng7+/PwoKCljfRERE5CYa8/nt9D5NRERERO6AQRMRERFRAzBoIiIiImoABk3NRGZuCYrLjc6eBhERUbPFoKkZyMwtwUPv7sXv/p3q7KkQERE1WwyamoHrd0sgCMDlnCJnT4WIiKjZYtDUDJQaTACAwjKDk2dCRETUfDFoagbEoKlYb4LJzLZbRERE9sCgqRko05ukPxeVsRiciIjIHhg0NQNlxqqgSccUHRERkV0waGoGSqutNBVypYmIiMguGDQ1A2JNE8BicCIiInth0NQMVA+aitjgkoiIyC4YNDUDZUzPERER2R2DpmaA6TkiIiL7Y9DUDJQazNKfdVxpIiIisgsGTc1AmYHpOSIiIntj0NQMlDE9R0REZHcMmpoB9mkiIiKyPwZNzQBbDhAREdkfg6ZmgLvniIiI7I9BUzPAPk1ERET2x6CpGSgzVrUcYNBERERkHwyamoHqheA6pueIiIjsgkGTmxMEoUYhuNksOHFGREREzRODJjdXXi01BwCCABTrmaIjIiKyNQZNbq56ak4hlwFg2wEiInI8o8mM+f89g41HM509FbtROnsC1DRias5DIYOvWom8EgMKy4wI83fyxIiIqEU5cOUu1qZch0IuQ7+oAHQK9nP2lGyOK01uTgyaPD0U8PP0AMBeTURE5HhpGfkAAJNZwKLtF5w7GTth0OTmxHPnvDwU8POsWDjUse0AERE5WFpmnvTn3RdycPDyHSfOxj4YNLk5KWhSVQVN7NVERESOJAgC0jLzAQADoloBAP5v+/lmt5ubQZObK9VX7J7zYnqOiIicJCO3BHklBqgUcnw4oR/8PJU4e0uHzSduOntqNuXUoOnjjz9G7969odFooNFoEBsbi2+//Va6f+jQoZDJZBZfM2fOtLhGRkYG4uPj4e3tjeDgYLz66qswGi1XWvbt24d+/fpBrVajU6dOWLNmTY25rFixAu3bt4enpycGDRqEI0eO2OU125plTRNXmoiIyPHEVabu4RqE+nsiaVgnAMB7Oy9a7PJ2d04NmiIiIvD2228jNTUVx44dw/DhwzFmzBicPXtWGjN9+nRkZWVJX4sXL5buM5lMiI+Ph16vx8GDB7F27VqsWbMG8+bNk8akp6cjPj4ew4YNQ1paGl566SW88MIL2LlzpzTmyy+/RHJyMubPn4/jx4+jT58+iIuLQ05OjmPeiCaoCprk0FSuNBUxaCIiIgc6UVkE/qvIAABAwgPtEdHKC1pdGVb9dNV5E7MxpwZNjz/+OEaPHo3OnTujS5cu+L//+z/4+vri0KFD0hhvb2+EhoZKXxqNRrrvu+++w7lz5/D555+jb9++GDVqFBYuXIgVK1ZAr9cDAFauXIno6GgsWbIE3bt3R1JSEn7zm9/g/fffl66zdOlSTJ8+HVOnTkVMTAxWrlwJb29vfPbZZ457M6wkHtbrZbHSxPQcERE5jrjS1LcyaPL0UOC1kd0AAB//cAU5hWVOmpltuUxNk8lkwoYNG1BcXIzY2Fjp9nXr1iEoKAg9e/bEnDlzUFJSIt2XkpKCXr16ISQkRLotLi4OOp1OWq1KSUnBiBEjLJ4rLi4OKSkpAAC9Xo/U1FSLMXK5HCNGjJDG1Ka8vBw6nc7iyxlKqxWC+6qZniMiIscqN5pw7lbFZ6AYNAHA473D0DvCHyV6E3ac0Tppdrbl9OaWp0+fRmxsLMrKyuDr64stW7YgJiYGADBhwgRERUUhPDwcp06dwuuvv46LFy9i8+bNAACtVmsRMAGQvtdqtXWO0el0KC0tRV5eHkwmU61jLly4d5+JRYsW4W9/+1vTXrwNlNXSp4ktB4iIyFEuZBVCbzKjlbcHolp7S7fLZDL0jvDHqRsFuFOkd+IMbcfpQVPXrl2RlpaGgoICfPXVV0hISMAPP/yAmJgYzJgxQxrXq1cvhIWF4ZFHHsGVK1fQsWNHJ84amDNnDpKTk6XvdTodIiMjHT6P0lr6NDE9R0REjiKm5vpEBkAmk1nc5+9V+Y/50ubxueT0oEmlUqFTp4oq+/79++Po0aNYvnw5PvnkkxpjBw0aBAC4fPkyOnbsiNDQ0Bq73LKzswEAoaGh0n/F26qP0Wg08PLygkKhgEKhqHWMeI3aqNVqqNXqRr5a26s9aOJKExEROcYv65mqC/BSAQDyS5rHSpPL1DSJzGYzysvLa70vLS0NABAWFgYAiI2NxenTpy12ue3atQsajUZK8cXGxmL37t0W19m1a5dUN6VSqdC/f3+LMWazGbt377aorXJVUiG4qlqfpvLmEdETEZHrqytoEleaCrjS1HRz5szBqFGj0K5dOxQWFmL9+vXYt28fdu7ciStXrmD9+vUYPXo0WrdujVOnTmH27Nl46KGH0Lt3bwDAY489hpiYGEyaNAmLFy+GVqvF3LlzkZiYKK0CzZw5Ex9++CFee+01PP/889izZw82btyIbdu2SfNITk5GQkICBgwYgIEDB2LZsmUoLi7G1KlTnfK+NEb1Pk2aypUmthwgIiJHyC/RI/1OMYDagyYNgybbycnJweTJk5GVlQV/f3/07t0bO3fuxKOPPorMzEx8//33UgATGRmJcePGYe7cudLjFQoFtm7dihdffBGxsbHw8fFBQkIC3njjDWlMdHQ0tm3bhtmzZ2P58uWIiIjAqlWrEBcXJ40ZP348bt++jXnz5kGr1aJv377YsWNHjeJwV1RqqOgIbnlgrxGCINTILRMREdmSuMoUHeSDAG9VjfsDvCs+l/IZNDXdp59+es/7IiMj8cMPP9R7jaioKGzfvr3OMUOHDsWJEyfqHJOUlISkpKR6n8/VVD+w17dypcloFlBmMMNLpXDm1IiIqJmrKzUHNL9CcJeraaLGqTqwVw4flQLyysUl7qAjIiJ7k3bORfjXen/1miZBcP/Dexk0ubnSah3BZTKZ1OCSvZqIiMieBEHASXGlqV2rWseIQZPBJKCkGZxBx6DJzVUvBAdQra6JK01ERGQ/1++WIK/EAJVCju5hfrWO8VYp4KGoSIE0h2JwBk1urnqfJgDs1URERA4hpuZiwjVQK2uvoZXJZM2q7QCDJjcn9mkSV5o0lStNReUMmoiIyH7qKwIXiW0H8ksYNJGTVT+wFwCPUiEiIoc4c7MAQP1BUwBXmshVlFX2aRLTc75MzxERkQNcrWxq2SnYt85xzantAIMmNyYIQi2F4Nw9R0RE9lVQakBuccV5cu2DfOocKwZN+aXuf/4cgyY3Vm40S3+uSs9x9xwREdnXtcpVpmA/tdTq5l7ETuFMz5FTlVbreeGprPhRcvccERHZ27W7FUFTfatMQPM6f45BkxsTU3MqhRxKhRg0caWJiIjs6+rtiqApunX9QZM/d8+RKxCDJrVH1Y9RU7nSxJYDRERkL41ZaeLuOXIJ1Y9QETE9R0RE9ibWNEUHedc7lrvnyCWUGy17NAGAr1pMzzFoIiIi2xMEAelS0FR3uwEA8PcWd88xaCInKtVb9mgC2NySiIjsK7dYL7W1iWpd/0oT03PkEn7ZowlgnyYiIrIvsZ4p3N/T4vPnXqqn58xmwa5zszcGTW7sl4f1AlW75/RGs5S+IyIispX0OyUAGlYEDlS1HDALQKGbb1Ji0OTGxMN6LWuaqpqMsa6JiIhsraoIvGFBk6eHAp6Vu7zdvRicQZMbq0rPVf0YFXKZFDgVMWgiIiIbS7/buKAJqErRuXtdE4MmN1ZWS00TwLYDRERkP+mVjS3bN6Cxpai5NLhk0OTGaqtpAqpSdNxBR0REtiQIQqMaW4oCvJrH+XMMmtzYvYIm7qAjIiJ7uF1YjhK9CXIZ0C6w/nYDouZy/hyDJjdWWyE4wPPniIjIPsSmlhGtvKFSNjyEkNJzpXq7zMtRGDS5sdr6NAGsaSIiIvuwJjUHAAHeXGkiJys11OwIDlRfaWLQREREtnNVbDfQgE7g1TWX8+cYNLkx8cDeX640aSpXmorK3fuXk4iIXIvYo6mxK03cPUdOV3Vgr+WPkek5IiKyh2uN7AYuYnqOnE5cabp3ywEGTUREZBtmc1W7gQ6NDJq4e46c7t6F4JW5Y+6eIyIiG8nSlaHcaIZSLkPbAK9GPZbpOXK6+vo0caWJiIhsRaxnahfoDaWiceFDAAvBydnYp4mIiBwl3coicKBqpamw3AijyWzTeTkSgyY3xpUmIiJyFHGlqTEH9YrEmibAvU+rYNDkxsoq+zTVbDlQ8ctZVO6+v5hERORarG1sCQAeCrm0Scmdi8GdGjR9/PHH6N27NzQaDTQaDWJjY/Htt99K95eVlSExMRGtW7eGr68vxo0bh+zsbItrZGRkID4+Ht7e3ggODsarr74Ko9EyWNi3bx/69esHtVqNTp06Yc2aNTXmsmLFCrRv3x6enp4YNGgQjhw5YpfXbCuCINTbEbxEb3LrZVAiInIdVY0tGx80AVUpOgZNVoqIiMDbb7+N1NRUHDt2DMOHD8eYMWNw9uxZAMDs2bPxv//9D5s2bcIPP/yAW7du4amnnpIebzKZEB8fD71ej4MHD2Lt2rVYs2YN5s2bJ41JT09HfHw8hg0bhrS0NLz00kt44YUXsHPnTmnMl19+ieTkZMyfPx/Hjx9Hnz59EBcXh5ycHMe9GY1UbqwKhn5Z0+RbGTQBXG0iIqKmM5rMyMwVezQ1rhu4SCPtoHPj8+cEF9OqVSth1apVQn5+vuDh4SFs2rRJuu/8+fMCACElJUUQBEHYvn27IJfLBa1WK435+OOPBY1GI5SXlwuCIAivvfaa0KNHD4vnGD9+vBAXFyd9P3DgQCExMVH63mQyCeHh4cKiRYsaPO+CggIBgFBQUNC4F2yl3KJyIer1rULU61sFg9FU4/6uc7cLUa9vFTLuFjtkPkRE1Hxdv1MsRL2+Vej8l+2CyWS26hrPfJIiRL2+Vfj6xA0bz65pGvP57TI1TSaTCRs2bEBxcTFiY2ORmpoKg8GAESNGSGO6deuGdu3aISUlBQCQkpKCXr16ISQkRBoTFxcHnU4nrValpKRYXEMcI15Dr9cjNTXVYoxcLseIESOkMbUpLy+HTqez+HIkMTWnUshr3frJXk1ERGQr6ZX1TFGB3pDLZVZdozmcP+f0oOn06dPw9fWFWq3GzJkzsWXLFsTExECr1UKlUiEgIMBifEhICLRaLQBAq9VaBEzi/eJ9dY3R6XQoLS3FnTt3YDKZah0jXqM2ixYtgr+/v/QVGRlp1eu3VlU9U+0/Qu6gIyIiW7nehCJwUXNocOn0oKlr165IS0vD4cOH8eKLLyIhIQHnzp1z9rTqNWfOHBQUFEhfmZmZDn3+0nv0aBJV9Wpi0ERERE1z/W5FPVNUoHX1TADg3wzOn1PWP8S+VCoVOnXqBADo378/jh49iuXLl2P8+PHQ6/XIz8+3WG3Kzs5GaGgoACA0NLTGLjdxd131Mb/ccZednQ2NRgMvLy8oFAooFIpax4jXqI1arYZarbbuRduAeFjvL3fOiTSVK01F5e77y0lERK5BCppaNyFo4u452zObzSgvL0f//v3h4eGB3bt3S/ddvHgRGRkZiI2NBQDExsbi9OnTFrvcdu3aBY1Gg5iYGGlM9WuIY8RrqFQq9O/f32KM2WzG7t27pTGuqFRfsXvul40tRWJ6TlfKlSYiImqajNzKI1SsbDcAVEvPuXHQ5NSVpjlz5mDUqFFo164dCgsLsX79euzbtw87d+6Ev78/pk2bhuTkZAQGBkKj0eAPf/gDYmNjcf/99wMAHnvsMcTExGDSpElYvHgxtFot5s6di8TERGkVaObMmfjwww/x2muv4fnnn8eePXuwceNGbNu2TZpHcnIyEhISMGDAAAwcOBDLli1DcXExpk6d6pT3pSHu1aNJpOFRKkREZAOCICAj1wbpuWaw0uTUoCknJweTJ09GVlYW/P390bt3b+zcuROPPvooAOD999+HXC7HuHHjUF5ejri4OHz00UfS4xUKBbZu3YoXX3wRsbGx8PHxQUJCAt544w1pTHR0NLZt24bZs2dj+fLliIiIwKpVqxAXFyeNGT9+PG7fvo158+ZBq9Wib9++2LFjR43icFdyryNURGI/DHduV09ERM6XU1iOMoMZCrkMbVt5WX2dAG/33z3n1KDp008/rfN+T09PrFixAitWrLjnmKioKGzfvr3O6wwdOhQnTpyoc0xSUhKSkpLqHONK7nVYr8hPLe6ec99fTiIicj7xzLnwAE941NLipqG4e46cpsErTaxpIiKiJrgudgJvQj0T0DzScwya3FS9NU1elYXgXGkiIqImyKjcOdeuCfVMABDgpQJQ8fkl7gB3Nwya3FRZPc0txUJwd84dExGR84krTU1pNwBU7OqWVTYTd9fVJgZNbqq+9FzVMSpMzxERkfUyKruBtwtsWnpOLpdJ9bbu+g96Bk1uqr5CcDE9x0JwIiJqClutNAFAgHdFio4rTeRQDe3TpCs1QhAEh82LiIiaj4JSg7Tbrak1TYD776Bj0OSmSg11dwQXd8/pTWaUG80OmxcRETUfYhF4kK8aPuqmdyly9x10DJrcVH0H9vqoFJBXFty5a+6YiIic63rl8Sm2SM0B7n9oL4MmNyVu17zXSpNMJmMxOBERNYl0UK8NUnMA03PkJOJK071aDgDs1URERE1zXdw5Z6uVJqbnyBnqKwQH2KuJiIiaRlxpamo3cFGAl3t/LjFoclP19WkCqgVNTM8REZEVMirbDdh6pSmfQRM5Un19moCK7quA+0b0RETkPGUGE7S6MgC2r2lieo4cqkErTZW/nIVcaSIioka6kVcCQQB81UoE+qhsck3uniOnaFRNEwvBiYioka5XO6hXJh4a10TcPUcOJwgCysTmlnWk56Tdc24a0RMRkfNI7QZsVM8EVAVN7vq5xKDJDVXv8F3XShP7NBERkbVsXQQOAD6qin/M601mGE3ud1oFgyY3JPZoAgBPZR19mjx5aC8REVlH7NEUFWibdgOA5T/0y9zwiC8GTW5IrGdSKeRQKupqbuney6BEROQ89kjPqav9Q7/MYKpjpGti0OSGqorA6/7xsU8TERFZw2QWkJln+6BJLpdBVRk4MWgih6jvsF4R+zQREZE1sgpKYTAJ8FDIEObvZdNre0pBE9Nz5ABlDejRBFTbpcCaJiIiaoSMytRcZCtvKOS2aTcgEuuauNJEDiFG53XtnAOq0nNlBjP0blhwR0REznHdDjvnROJnV7mRQRM5QEMaWwKAb2V6DuAOOiIiajipCNxGx6dUJ9bjMj1HDtGQI1QAQCGXwU9dWdfEYnAiImqgjNyKdgPtWtuu3YCI6TlyqIYc1itiMTgRETWWXVealGLQxJUmcoCGrjQBPLSXiIgaRxAEXLtTsdLUPsj2QZPagy0HyIEaWtME8NBeIiJqnNtF5SjWmyCXAZF2WGkS/8FfxkJwcgSp5YCq/h8fD+0lIqLGuHanIjUXHuAFtbL+f5w3lvgP/upHgrkLBk1uqDHpOT+uNBERUSOIqbnoINsXgQNVu+fK3bAVDoMmNyQWgjcsPSce2suaJiIiql965UG97e2wcw7g7jlysEbVNPHQXiIiaoSqInAGTb/k1KBp0aJFuO++++Dn54fg4GCMHTsWFy9etBgzdOhQyGQyi6+ZM2dajMnIyEB8fDy8vb0RHByMV199FUaj5crKvn370K9fP6jVanTq1Alr1qypMZ8VK1agffv28PT0xKBBg3DkyBGbv2ZbKK3cptmg3XM8tJeIiBohXUrP2b4IHODZc1b74YcfkJiYiEOHDmHXrl0wGAx47LHHUFxcbDFu+vTpyMrKkr4WL14s3WcymRAfHw+9Xo+DBw9i7dq1WLNmDebNmyeNSU9PR3x8PIYNG4a0tDS89NJLeOGFF7Bz505pzJdffonk5GTMnz8fx48fR58+fRAXF4ecnBz7vxGN1NADewH2aSIiooYTBEHq0WSv9JzajVealPUPsZ8dO3ZYfL9mzRoEBwcjNTUVDz30kHS7t7c3QkNDa73Gd999h3PnzuH7779HSEgI+vbti4ULF+L111/HggULoFKpsHLlSkRHR2PJkiUAgO7du2P//v14//33ERcXBwBYunQppk+fjqlTpwIAVq5ciW3btuGzzz7Dn/70J3u8fKs19MBeoFp6joXgRERUj2xdOUoNJijkMru0GwCqpedYCN40BQUFAIDAwECL29etW4egoCD07NkTc+bMQUlJiXRfSkoKevXqhZCQEOm2uLg46HQ6nD17VhozYsQIi2vGxcUhJSUFAKDX65GammoxRi6XY8SIEdKYXyovL4dOp7P4cpQyK/o0sRCciIjqI6bmIlt5wUNhnxDB042bWzp1pak6s9mMl156CQ8++CB69uwp3T5hwgRERUUhPDwcp06dwuuvv46LFy9i8+bNAACtVmsRMAGQvtdqtXWO0el0KC0tRV5eHkwmU61jLly4UOt8Fy1ahL/97W9Ne9FWEhuCqZXs00RERLZz7a59i8CB6seoMGiyWmJiIs6cOYP9+/db3D5jxgzpz7169UJYWBgeeeQRXLlyBR07dnT0NCVz5sxBcnKy9L1Op0NkZKRDnttoEgAAqgYETX4sBCciogaSds7ZqZ4JqMqSlLthIbhLBE1JSUnYunUrfvzxR0RERNQ5dtCgQQCAy5cvo2PHjggNDa2xyy07OxsApDqo0NBQ6bbqYzQaDby8vKBQKKBQKGodc69aKrVaDbVa3fAXaUN6U8UvmlIuq3es2KepqNwIk1mAogGPISKilindzo0tgarTLHiMSiMJgoCkpCRs2bIFe/bsQXR0dL2PSUtLAwCEhYUBAGJjY3H69GmLXW67du2CRqNBTEyMNGb37t0W19m1axdiY2MBACqVCv3797cYYzabsXv3bmmMKzFUBk0ejVhpAoAirjYREVEdHJme4zEqjZSYmIjPP/8c69evh5+fH7RaLbRaLUpLSwEAV65cwcKFC5Gamopr167hm2++weTJk/HQQw+hd+/eAIDHHnsMMTExmDRpEk6ePImdO3di7ty5SExMlFaCZs6ciatXr+K1117DhQsX8NFHH2Hjxo2YPXu2NJfk5GT885//xNq1a3H+/Hm8+OKLKC4ulnbTuRIxPechr//Hp1LKpV123EFHRET3YjYLuFbZbiDajuk5tRsf2OvU9NzHH38MoKKBZXWrV6/GlClToFKp8P3332PZsmUoLi5GZGQkxo0bh7lz50pjFQoFtm7dihdffBGxsbHw8fFBQkIC3njjDWlMdHQ0tm3bhtmzZ2P58uWIiIjAqlWrpHYDADB+/Hjcvn0b8+bNg1arRd++fbFjx44axeGuoGqlqWGpNo2XEqUGEwpKDXBM1RUREbmbWwWl0BvN8FDIEB7gabfnqdo9x5qmRhEEoc77IyMj8cMPP9R7naioKGzfvr3OMUOHDsWJEyfqHJOUlISkpKR6n8/ZDJUrTcoGrDQBFSm6bF05V5qIiOiert2pWGWKDPSG0k7tBgAeo0IOJq40qRr4S62RuoKzpomIiGonHtRrz9Qc4N675xg0uSGppqnB6TmxwSVXmoiIqHb2PqhXJJ49pzeZYTLXnXFyNQya3IwgCNVaDjR0pYm9moiIqG7XHNBuALA8zaLczYrBGTS5mepReUPTczy0l4iI6iOl5xwYNLlbMTiDJjcjFoEDgFLRuPQcC8GJiKg2RpMZmbkVheD2Ts8p5DJ4VH5+uVsxOIMmNyOm5gA0+DBFHtpLRER1uZVfBoNJgFopR5jGfu0GRO56/hyDJjdjtAiaGt6nCWB6joiIaiem5qJae0PugOO2PFVi0MT0HNlRVY8mGWSyhv1iVx3ay6CJiIhqcsRBvdVJDS5ZCE72JPZoamg9E8A+TUREVDdHHNRbnZSec7Pz5xg0uRnpCJVGdGtlITgREdXFEQf1VufppufPWRU0Xb161dbzoAYyVrYcaGi7AYCF4EREVDenpedaQk1Tp06dMGzYMHz++ecoKyuz9ZyoDnqjFem5ykLwwjIDzG7WfZWIiOzLYDIjM68UgAPTc256/pxVQdPx48fRu3dvJCcnIzQ0FL/73e9w5MgRW8+NamFVeq5ypcksAMV6rjYREVGVG3mlMJkFeHkoEKJRO+Q51coWtHuub9++WL58OW7duoXPPvsMWVlZGDx4MHr27ImlS5fi9u3btp4nVRLTc40JmtRKuZTO41EqRERUXfqdIgAV7QYauiu7qarScy1gpUmkVCrx1FNPYdOmTXjnnXdw+fJlvPLKK4iMjMTkyZORlZVlq3lSJYNRXGlq+C+2TCazSNERERGJ0u9UdAJ3VGoOaGGF4KJjx47h97//PcLCwrB06VK88soruHLlCnbt2oVbt25hzJgxtponVTKYxT5NjfvRSYf2su0AERFVIxaBd2jjyKDJPQvBldY8aOnSpVi9ejUuXryI0aNH41//+hdGjx4NeeUHeXR0NNasWYP27dvbcq6EaitNysYFTTy0l4iIapPu4J1zQFWfpnI3S89ZFTR9/PHHeP755zFlyhSEhYXVOiY4OBiffvppkyZHNRnNFUGTqhHpOYC9moiIqHbpTlhp8lK55+45q4Kmn3/+ud4xKpUKCQkJ1lye6qA3NS09x15NREQkKjOYcDNfbDfg67DnrWo54F7pOatqmlavXo1NmzbVuH3Tpk1Yu3ZtkydF92Zteo6H9hIR0S+JncD9vTzQytvDYc+rrvwMK3WzlSargqZFixYhKCioxu3BwcF46623mjwpujcxPefRyFOoeWgvERH9UvrtqjPnHNVuAGhhzS0zMjIQHR1d4/aoqChkZGQ0eVJ0b2J6rjF9mgAe2ktERDVdFeuZHNhuAKjecqAFpOeCg4Nx6tSpGrefPHkSrVu3bvKk6N6MpsYfowKwEJyIiGoS2w04skcT0MKaWz777LP44x//iL1798JkMsFkMmHPnj2YNWsWnnnmGVvPkaoRj1FpzIG9AAvBiYioJnHnXLQDd84BLazlwMKFC3Ht2jU88sgjUCorLmE2mzF58mTWNNmZwcr0nNSniStNRERUyRk9mgD33T1nVdCkUqnw5ZdfYuHChTh58iS8vLzQq1cvREVF2Xp+9AuGpqbnuHuOiIgAFJQYcLdYD8CJ6Tk3O0bFqqBJ1KVLF3Tp0sVWc6EGEIOmxheCizVNTM8RERGQXtluIESjho+6SeFAo7nr7jmr3iWTyYQ1a9Zg9+7dyMnJgdlsuby2Z88em0yOajJK6bnGrTQFVPbfKCg1wGwWIG9kywIiImpe0u8UAXD8KhPQws6emzVrFtasWYP4+Hj07NnTob0dWjq9lStNrbxVAACTWUB+qQGBPiqbz42IiNxHVY8mx3UCF7WolaYNGzZg48aNGD16tK3nQ/UQV5qUjQyaVEo5/L08UFBqwJ2icgZNREQtnLN6NAFVQVO50exW2Q+rWg6oVCp06tTJ1nOhBqhqOdD4X7Ag34pA6U5RuU3nRERE7ifdST2agKqgCagInNyFVUHTyy+/jOXLl0MQBFvPh+phsHKlCQCCfNUAgDtFepvOiYiI3IsgCFJjy/bOCJqqnZ/qTik6q9Jz+/fvx969e/Htt9+iR48e8PCwPORv8+bNNpkc1WTt7jmgKmi6y5UmIqIW7XZhOYr1JshlQLtAb4c/v1Ihh1Iug9EsuFXbAatWmgICAvDkk0/i4YcfRlBQEPz9/S2+GmrRokW477774Ofnh+DgYIwdOxYXL160GFNWVobExES0bt0avr6+GDduHLKzsy3GZGRkID4+Ht7e3ggODsarr74Ko9Fya/2+ffvQr18/qNVqdOrUCWvWrKkxnxUrVqB9+/bw9PTEoEGDcOTIkYa/KQ7C9BwRETWVWM8UGegNldKqUKDJ3LHBpVUrTatXr7bJk//www9ITEzEfffdB6PRiD//+c947LHHcO7cOfj4VCwXzp49G9u2bcOmTZvg7++PpKQkPPXUUzhw4ACAivYH8fHxCA0NxcGDB5GVlYXJkyfDw8ND6k6enp6O+Ph4zJw5E+vWrcPu3bvxwgsvICwsDHFxcQCAL7/8EsnJyVi5ciUGDRqEZcuWIS4uDhcvXkRwcLBNXq8t2CQ9V8j0HBFRS+bMeiaRp4ccReXulZ6zOrw0Go34/vvv8cknn6CwsBAAcOvWLRQVFTX4Gjt27MCUKVPQo0cP9OnTB2vWrEFGRgZSU1MBAAUFBfj000+xdOlSDB8+HP3798fq1atx8OBBHDp0CADw3Xff4dy5c/j888/Rt29fjBo1CgsXLsSKFSug11cEBytXrkR0dDSWLFmC7t27IykpCb/5zW/w/vvvS3NZunQppk+fjqlTpyImJgYrV66Et7c3PvvsM2vfIrtoSnqutZieK+ZKExFRS+YKQZNa6X5tB6wKmq5fv45evXphzJgxSExMxO3btwEA77zzDl555RWrJ1NQUAAACAwMBACkpqbCYDBgxIgR0phu3bqhXbt2SElJAQCkpKSgV69eCAkJkcbExcVBp9Ph7Nmz0pjq1xDHiNfQ6/VITU21GCOXyzFixAhpzC+Vl5dDp9NZfDmC0SwGTdan526zEJyIqEW7ett57QZE7tjg0qqgadasWRgwYADy8vLg5eUl3f7kk09i9+7dVk3EbDbjpZdewoMPPoiePXsCALRaLVQqFQICAizGhoSEQKvVSmOqB0zi/eJ9dY3R6XQoLS3FnTt3YDKZah0jXuOXFi1aZFHHFRkZadXrbiyD0boDewEgyE9Mz3GliYioJavqBu74xpYiqabJjQrBrapp+umnn3Dw4EGoVJYNEtu3b4+bN29aNZHExEScOXMG+/fvt+rxjjZnzhwkJydL3+t0OocETobKlSalFY3Agnyq0nOCILCTOxFRC2Q0mZGRWwIAaB/k+J1zIqnBpRul56wKmsxmM0ymmi/yxo0b8PPza/T1kpKSsHXrVvz444+IiIiQbg8NDYVer0d+fr7FalN2djZCQ0OlMb/c5Sburqs+5pc77rKzs6HRaODl5QWFQgGFQlHrGPEav6RWq6FWqxv9WptKqmmyYrdDkF9FkFtmMKNYb4Kvgw9oJCIi57uZXwqDSYBKKUe4v1f9D7ATLzfcPWdVeu6xxx7DsmXLpO9lMhmKioowf/78Rh2tIggCkpKSsGXLFuzZswfR0dEW9/fv3x8eHh4WKb+LFy8iIyMDsbGxAIDY2FicPn0aOTk50phdu3ZBo9EgJiZGGvPLtOGuXbuka6hUKvTv399ijNlsxu7du6UxrkJMz6msSM95q5TSLylTdERELZNUBN7ax6nHl1TVNDXzlaYlS5YgLi4OMTExKCsrw4QJE/Dzzz8jKCgIX3zxRYOvk5iYiPXr1+O///0v/Pz8pPohf39/eHl5wd/fH9OmTUNycjICAwOh0Wjwhz/8AbGxsbj//vsBVARwMTExmDRpEhYvXgytVou5c+ciMTFRWgmaOXMmPvzwQ7z22mt4/vnnsWfPHmzcuBHbtm2T5pKcnIyEhAQMGDAAAwcOxLJly1BcXIypU6da8xbZTVPSc0DFalNmbinuFpc7pQssERE5lyvsnAMAtRse2mtV0BQREYGTJ09iw4YNOHXqFIqKijBt2jRMnDjRojC8Ph9//DEAYOjQoRa3r169GlOmTAEAvP/++5DL5Rg3bhzKy8sRFxeHjz76SBqrUCiwdetWvPjii4iNjYWPjw8SEhLwxhtvSGOio6Oxbds2zJ49G8uXL0dERARWrVol9WgCgPHjx+P27duYN28etFot+vbtix07dtQoDne2pqTngIpeTZm5pbjNXk1ERC2SFDS1cW7Q5FnZcqDUjdJzVhe1KJVKPPfcc0168oacXefp6YkVK1ZgxYoV9xwTFRWF7du313mdoUOH4sSJE3WOSUpKQlJSUr1zciZjZXNLD7l1QVNrH/ZqIiJqyVxlpanFpOf+9a9/1Xn/5MmTrZoM1a9qpcm69FybymJwdgUnImqZXKFHE9CCWg7MmjXL4nuDwYCSkhKoVCp4e3szaLIj6RgVK1eapKNUeP4cEVGLU1BqwK2CUgBAhzbO69EEVK00lbtRes6qT968vDyLr6KiIly8eBGDBw9uVCE4NV7Vgb3WpucqVpqYniMiannSMvMhCEC7QG8E+qjqf4AdebaUY1Rq07lzZ7z99ts1VqHItpqanqvqCs70HBFRS3P8eh4AoF+7AOdOBNXScy0xaAIqisNv3bply0tSNYIgMD1HRERWO55RGTRFtXLyTNzz7Dmrapq++eYbi+8FQUBWVhY+/PBDPPjggzaZGNVkNFftNrQ2PSce2sugiYioZTGbBaRl5gMA+rVzftCkbimF4GPHjrX4XiaToU2bNhg+fDiWLFlii3lRLcR2AwCgVFiZnqtcadKVGVFuNEFdmVMmIqLm7fLtIhSWGeHloUC30MYfeWZrXm6YnrP67DlyPL2p6n33sHKlyd/LA0q5DEazgLtFeoQHOO/cISIichyxnql3hD+UVn6G2JJnSzl7jpzDaBE0WbfSJJPJ0LoyRXe3iMXgREQthSvVMwEtqLllcnJyg8cuXbrUmqegWlQVgcsgk1l/yGKQrxrZunLWNRERtSDHM/IBAP1doJ4JcM/dc1YFTSdOnMCJEydgMBjQtWtXAMClS5egUCjQr18/aVxTPtipJrHdgLX1TKLWlXVNtxk0ERG1CAUlBlzOKQIA/MoF2g0A1fs0uU96zqqg6fHHH4efnx/Wrl2LVq0qIta8vDxMnToVQ4YMwcsvv2zTSVIFqUdTE3PRQUzPERG1KCcyK1Jz7Vt7S/9wdjYpPedGu+es+vRdsmQJFi1aJAVMANCqVSu8+eab3D1nR2J6ztp2A6I27NVERNSiiKk5V2g1IHLH9JxVn746nQ63b9+ucfvt27dRWFjY5ElR7WyXnhNXmhg0ERG1BOLOuV+5SBE4AKirNbcUBKGe0a7BqqDpySefxNSpU7F582bcuHEDN27cwH/+8x9MmzYNTz31lK3nSJVsl54TV5qYniMiau5MFk0tA5w6l+rElSYAKDe6R12TVTVNK1euxCuvvIIJEybAYDBUXEipxLRp0/Duu+/adIJURewIbrugiStNRETN3c85hSgqN8JbpUDXEOc3tRR5VmuuXG4wWwRRrsqqoMnb2xsfffQR3n33XVy5cgUA0LFjR/j4+Nh0cmTJYBRXmmyTnuNKExFR83f8ej4AoE9EgEs0tRR5KGSQywCzUFEM7g8PZ0+pXk1697KyspCVlYXOnTvDx8fHbXKS7krsCG7tYb0isRA8t7gcJjN/ZkREzVlVU8sA507kF2QymdsVg1v16Xv37l088sgj6NKlC0aPHo2srCwAwLRp09huwI7Es+c8lE0LmgJ9KlaazAKQV8LVJiKi5kwKmlxo55zIy82OUrHq03f27Nnw8PBARkYGvL29pdvHjx+PHTt22GxyZEksBFc1MT2nVMjRyrtiGZS9moiImq/8Ej2u3i4GAPzKBYMmd1tpsqqm6bvvvsPOnTsRERFhcXvnzp1x/fp1m0yMajKYxWNUmp6TDvJVI6/EgDtF5egK1ykMJCIi2zlR2Z8pOshHyjK4ErHtQKmbBE1WffoWFxdbrDCJcnNzoVa7RqfR5kgqBG9ieg7gDjoiopbgyLVcAK5zdMovVR2l0oyDpiFDhuBf//qX9L1MJoPZbMbixYsxbNgwm02OLBnNlUGTvOln+nEHHRFR8yYIAr49XVFz/HCXNk6eTe08qzW4dAdWpecWL16MRx55BMeOHYNer8drr72Gs2fPIjc3FwcOHLD1HKmS3mSbPk0AV5qIiJq7Mzd1uHa3BJ4ecozoHuLs6dRKrGkqd5Pz56z69O3ZsycuXbqEwYMHY8yYMSguLsZTTz2FEydOoGPHjraeI1Uy2ugYFQBo41cZNBUyaCIiao62nroFABjeLRg+aqvWSOyu2ReCGwwGjBw5EitXrsRf/vIXe8yJ7qFq91zTV5paVxYE3i1meo6IqLkRBAFbT1Wk5n7dO9zJs7k3d0vPNfrT18PDA6dOnbLHXKgeBqbniIioAU5k5uNmfim8VQoM6xrs7OncU4soBH/uuefw6aef2nouVA+DDdNzYiE4+zQRETU/W09WrDKN6B4CL5XrnummdrPmllYlOY1GIz777DN8//336N+/f40z55YuXWqTyZElMWiy5UrT7aJyCIIAmazpgRgRETmf2Sxge+Wuucf7uG5qDqiWnnOTQvBGBU1Xr15F+/btcebMGfTr1w8AcOnSJYsx/PC1H+kYFRusNIlBk95oRmG5ERpP1z8okYiI6nfseh60ujL4eSrxUJcgZ0+nTl7NuRC8c+fOyMrKwt69ewFUHJvy97//HSEhrrmVsbnR23ClyUulgI9KgWK9CXeL9AyaiIiaCXHX3GMxoVArXTc1B1TfPece6blGffoKgmDx/bfffovi4mKbTojuTVxpUtogaAKAID8WgxMRNSdGk1lKzf26T5iTZ1M/MT1X7iYrTU369P1lENVYP/74Ix5//HGEh4dDJpPh66+/trh/ypQpkMlkFl8jR460GJObm4uJEydCo9EgICAA06ZNQ1FRkcWYU6dOYciQIfD09ERkZCQWL15cYy6bNm1Ct27d4OnpiV69emH79u1Nem32YKsDe0XSDjr2aiIiahYOp+fiTpEeAd4eGNzJtVNzQNVKU7M8e04MXH55m7WKi4vRp08frFix4p5jRo4ciaysLOnriy++sLh/4sSJOHv2LHbt2oWtW7fixx9/xIwZM6T7dTodHnvsMURFRSE1NRXvvvsuFixYgH/84x/SmIMHD+LZZ5/FtGnTcOLECYwdOxZjx47FmTNnrH5t9qCXds/ZZqVJ7NV0h72aiIiaBTE1N7JHqE1KOezN3VoONKqmSRAETJkyRTqUt6ysDDNnzqyxe27z5s0Nut6oUaMwatSoOseo1WqEhobWet/58+exY8cOHD16FAMGDAAAfPDBBxg9ejTee+89hIeHY926ddDr9fjss8+gUqnQo0cPpKWlYenSpVJwtXz5cowcORKvvvoqAGDhwoXYtWsXPvzwQ6xcubJBr8URjDbs0wRUpeduc6WJiMjtGUxm7DijBeDaDS2rUzfn5pYJCQkIDg6Gv78//P398dxzzyE8PFz6XvyypX379iE4OBhdu3bFiy++iLt370r3paSkICAgQAqYAGDEiBGQy+U4fPiwNOahhx6CSqWSxsTFxeHixYvIy8uTxowYMcLieePi4pCSknLPeZWXl0On01l82Zut03NtA7wAADdyS2xyPSIicp4Dl+8gr8SAIF8V7u8Q6OzpNIhUCN4cWw6sXr3aXvOo1ciRI/HUU08hOjoaV65cwZ///GeMGjUKKSkpUCgU0Gq1CA627HSqVCoRGBgIrbYi2tZqtYiOjrYYI+7202q1aNWqFbRabY0dgCEhIdI1arNo0SL87W9/s8XLbDCDjQvB27euWCG8dpfF/ERE7k48NmVUzzCbfU7Ym7vtnnPNE/wqPfPMM9Kfe/Xqhd69e6Njx47Yt28fHnnkESfODJgzZw6Sk5Ol73U6HSIjI+36nLZsbgkAUa29AQAZXGkiInJr5UYTdp4VU3Ouv2tO5KlsQbvnHK1Dhw4ICgrC5cuXAQChoaHIycmxGGM0GpGbmyvVQYWGhiI7O9tijPh9fWPuVUsFVNRaaTQaiy97M5rFoMk26bl2lUHTnSI9isqNNrkmERE53o+X7qCwzIgQjRr3tXeP1BxQfaWJQZPN3bhxA3fv3kVYWEUUHRsbi/z8fKSmpkpj9uzZA7PZjEGDBkljfvzxRxgMBmnMrl270LVrV7Rq1Uoas3v3bovn2rVrF2JjY+39khrFYLRtIbjG0wOBlTvorjNFR0TktsRdc/G9wiGXu8/JHFU1Te6RnnNq0FRUVIS0tDSkpaUBANLT05GWloaMjAwUFRXh1VdfxaFDh3Dt2jXs3r0bY8aMQadOnRAXFwcA6N69O0aOHInp06fjyJEjOHDgAJKSkvDMM88gPLxi58CECROgUqkwbdo0nD17Fl9++SWWL19ukVqbNWsWduzYgSVLluDChQtYsGABjh07hqSkJIe/J3WRWg7Y8H+IdoGVKbq7TNEREbmjUr0Ju85VZEvcoaFlde52jIpTg6Zjx47hV7/6FX71q18BAJKTk/GrX/0K8+bNg0KhwKlTp/DEE0+gS5cumDZtGvr374+ffvpJankAAOvWrUO3bt3wyCOPYPTo0Rg8eLBFDyZ/f3989913SE9PR//+/fHyyy9j3rx5Fr2cHnjgAaxfvx7/+Mc/0KdPH3z11Vf4+uuv0bNnT8e9GQ0gpeeUtvuxiXVN11nXRETklvZezEGJ3oS2AV74VWSAs6fTKNKBvQZTkxtmO4JTC8GHDh1a55u0c+fOeq8RGBiI9evX1zmmd+/e+Omnn+oc8/TTT+Ppp5+u9/mcSUzPqWy4KyKqcgcd03NERO5JTM39uk9YkxpOO4O6cqXJLFTsEFcpXXv+blXT1NIZzLZPz0VVpueuMz1HROR2isqN2H2+YkPU427S0LI6caUJcI+jVBg0uRGp5YA90nMMmoiI3M7u89koN5oRHeSDHuH238VtayqFHOLimDu0HWDQ5EakY1Tktk/P3SooRbmbdGQlIqIK/ztZ0dDy173dLzUHVJxfW3X+nOvvoGPQ5EaqVpps9z9GkK8K3ioFBAG4kVdqs+sSEZF9FZQa8MOlitScu5w1VxupGNwN/uHOoMmN6I1iTZPtfmwymYxtB4iI3NB3Z7UwmAR0CfFF11A/Z0/Hau7U4JJBkxsxmm2/ew7gGXRERO5o47FMAO69ygS41/lzDJrciD3ScwCLwYmI3M3xjDwcvZYHD4UM4++z77mn9qZWVvVqcnUMmtyEIAgwVBaC2zI9B1SdQceDe4mI3MOqn64CAMb2bYsQjaeTZ9M0TM+RzYmpOcB+6Tk2uCQicn3X7xZjxxktAGD6Qx2cPJum83Kj8+cYNLkJsd0AACgVtk3PiYXgmbmlMJldv409EVFL9un+dJgFYGjXNugS4r4F4KLqR6m4OgZNbkI8rBcAPGy80hQe4AUPhQx6kxlaXZlNr01ERLaTV6yXCsBnDHH/VSagKj3H5pZkMwaLoMm2K00KuQyRrcRicKboiIhc1eeHrqPMYEaPcA1iO7Z29nRsQgyaeIwK2YxRKgKX2aXrazvuoCMicmllBhPWplwDAMx4qINbdgCvTVV6jjVNZCPiSpOt65lEPLiXiMi1bTlxE3eK9Ggb4IXRvcKcPR2bUSu5e45sTOrRZON6JpF4Bl1GLtNzRESuxmwW8M/KNgNTH2xvt88CZ/BWMT1HNib2aLJ1uwGR2ODy2h2uNBERuZodZ7W4ersYfmolnhnYztnTsSkftRIAUFLOoIlsxO7puWoNLgWBbQeIiFyFySxg6a5LAICpg6PhWxlkNBfiSlOx3ujkmdSPQZObsHd6LqKVN2QyoKjciNxivV2eg4iIGu9/J2/hck4RNJ5KTBsc7ezp2JyPqnKlSc+VJrIRMT1nr6DJ00OBsMpW/NdYDE5E5BKMJjOWfV+xyvS7hzvC38vDyTOyPW915UpTOVeayEaM0kqT/baYVp1Bx2JwIiJXsPn4TVy7W4JAHxWmPNDe2dOxC640kc2JHcFtfVhvdVVn0HGliYjI2fRGM5bv/hkA8OLDHaWC6eZGqmniShPZitjc0kNpvx8ZG1wSEbmOjccycTO/FG381Hju/ihnT8duxGCQheBkM2IhuMqO6bmoQHGliek5IiJnKjOY8OGeywCApGGd4FW5GtMcseUA2ZzBLB6jYr8fWfW2A0RE5DzrD2dAqytDuL8nnhkY6ezp2JVPtZYDrt7yhkGTmzAYKwvB7ZieE4OmO0V6FJQa7PY8RER0b4VlBqzYW7nKNLyzdMxIc+VdudJkFoByo2ufP8egyU1IfZrk9kvP+Xl6IDLQCwBw+kaB3Z6HiIjubeUPV3C3WI8ObXzw9IAIZ0/H7rw8qoJCVy8GZ9DkJsT0nL3PG/pVZCsAwImMPLs+DxER1ZRVUIpVP6UDAP40sluzOmPuXhRymRQ4uXrbgeb/02gmxPScvY5REf2qXQAA4ERmvl2fh4iIalry3SWUG824r30rPBoT4uzpOIyP2j2OUmHQ5CaMZnH3nJ1XmtpVrTS5ekEeEVFzcu6WDv85fgMA8OfR3SGT2fcfya7Eu7LBZbGL76Bj0OQmxGNU7L3SFBOmgUopR16Jgf2aiIgcaNG35yEIQHzvMOkfsC2F2OCyhCtNZAv2PrBXpFLK0SNcAwBIY4qOiMghfrx0Gz/9fAceChlej+vm7Ok4nNTgkitNZAuOCpoAFoMTETmSySxg0bcXAACT7m8vnc7QkrjLUSoMmtyEmJ6z54G9IhaDExE5zmf703E+Swc/TyX+MLyTs6fjFFWH9jJouqcff/wRjz/+OMLDwyGTyfD1119b3C8IAubNm4ewsDB4eXlhxIgR+Pnnny3G5ObmYuLEidBoNAgICMC0adNQVFRkMebUqVMYMmQIPD09ERkZicWLF9eYy6ZNm9CtWzd4enqiV69e2L59u81fb1M4dKWpMmg6d0uHMoNrL5USEbmzExl5eGdHxSrTn0Z1QysflZNn5BxV58+59meOU4Om4uJi9OnTBytWrKj1/sWLF+Pvf/87Vq5cicOHD8PHxwdxcXEoKyuTxkycOBFnz57Frl27sHXrVvz444+YMWOGdL9Op8Njjz2GqKgopKam4t1338WCBQvwj3/8Qxpz8OBBPPvss5g2bRpOnDiBsWPHYuzYsThz5oz9XnwjiUGT0gFBU9sAL7TxU8NoFnDmJptcEhHZQ0GpAX/44gSMZgHxvcIwYWA7Z0/JacSWAyVMz93bqFGj8Oabb+LJJ5+scZ8gCFi2bBnmzp2LMWPGoHfv3vjXv/6FW7duSStS58+fx44dO7Bq1SoMGjQIgwcPxgcffIANGzbg1q1bAIB169ZBr9fjs88+Q48ePfDMM8/gj3/8I5YuXSo91/LlyzFy5Ei8+uqr6N69OxYuXIh+/frhww8/dMj70BDGyvScPQ/sFclkMvSNDAAAnMjIt/vzERG1NIIg4E//OYUbeaWIDPTConG9WlSLgV+SWg5wpck66enp0Gq1GDFihHSbv78/Bg0ahJSUFABASkoKAgICMGDAAGnMiBEjIJfLcfjwYWnMQw89BJWqaskzLi4OFy9eRF5enjSm+vOIY8TnqU15eTl0Op3Flz3pHbjSBFSl6LiDjojI9j4/dB3fntHCQyHDh8/2g8bTw9lTciofthxoGq1WCwAICbHsiBoSEiLdp9VqERwcbHG/UqlEYGCgxZjarlH9Oe41Rry/NosWLYK/v7/0FRlp31OojSbHHKMi4g46IiL7OHurAAu3ngcAvD6yG/pUruy3ZN5sOdC8zZkzBwUFBdJXZmamXZ9PrGlyRHoOAHpH+EMuA24VlEFbUFb/A4iIqF5Gkxmzv0yD3mTGI92CMW1wtLOn5BK40tREoaGhAIDs7GyL27Ozs6X7QkNDkZOTY3G/0WhEbm6uxZjarlH9Oe41Rry/Nmq1GhqNxuLLnqo6gjvmR+ajVqJLiB8AIC2Tq01ERLbwxdFMXMouQitvD7z3dJ8WXcdUHVeamig6OhqhoaHYvXu3dJtOp8Phw4cRGxsLAIiNjUV+fj5SU1OlMXv27IHZbMagQYOkMT/++CMMBoM0ZteuXejatStatWoljan+POIY8XlcgSNbDoiqzqHLd9hzEhE1V7oyA97fdQkAMPvRLi22vUBtuNLUAEVFRUhLS0NaWhqAiuLvtLQ0ZGRkQCaT4aWXXsKbb76Jb775BqdPn8bkyZMRHh6OsWPHAgC6d++OkSNHYvr06Thy5AgOHDiApKQkPPPMMwgPDwcATJgwASqVCtOmTcPZs2fx5ZdfYvny5UhOTpbmMWvWLOzYsQNLlizBhQsXsGDBAhw7dgxJSUmOfkvuqSpocty/SqQmlwyaiIiabMXey8gt1qNjGx8824LbC9TGXXbPKZ355MeOHcOwYcOk78VAJiEhAWvWrMFrr72G4uJizJgxA/n5+Rg8eDB27NgBT09P6THr1q1DUlISHnnkEcjlcowbNw5///vfpfv9/f3x3XffITExEf3790dQUBDmzZtn0cvpgQcewPr16zF37lz8+c9/RufOnfH111+jZ8+eDngXGsbRheAA0K8yaDp1Mx9Gk9lhqUEiouYmM7cEq/dfAwD8Jb67Q/8udwdinyZXP0bFqUHT0KFDIQjCPe+XyWR444038MYbb9xzTGBgINavX1/n8/Tu3Rs//fRTnWOefvppPP3003VP2ImklgNyx600dQjyhZ+nEoVlRlzQFqJnW3+HPTcRUXPy9o4L0JvMGNwpCMO6Btf/gBam6sBe1w6aGOq6CaO5Mj2ndNyPTC6v1uSS/ZqIiKySej0X205lQSarWGVi8XdNVWfPmepcTHE2Bk1uwmAUO4I79kf2q8qg6Uh6rkOfl4ioOTCbBbxR2ZNp/IBIdA+z705rd+VdmZ4zmgUps+KKGDS5CYPZ8ek5AHioSxsAwA8Xc6RidCIiql+ZwYR535zBycx8eKsUSH6si7On5LK8PRTSn0tcuO0AgyY3Ie2ec2B6DqhoO9DaRwVdmRFHudpERNQgF7WFGPPhAXx+KAMAMGdUNwT7edbzqJZLqZBDXfn5VuzCbQcYNLkJMT3nIXfsj0whl2F4t4qixe/OZdczmoioZRMEAf9OuYYnPtyPi9mFCPJVYc3U+zAptr2zp+byxGLwEhduO8CgyU1UFYI7voBwREzFuXzfn8926QI9IiJnMpkF/OGLE/jrf8+i3GjGw13a4NtZD2Eod8s1iLfK9dsOOLXlADWc3ijWNDk+zh3SOQhqpRw38kpxQVvIQkYiolos3nEBW09lwUMhw+sju+H5B6Mhd3AdqjurvoPOVXGlyU0Yzc7ZPQdUdGod0jkIAPA9U3RERDVsOXEDn/x4FQCw5Ld98cKQDgyYGsnbDRpcMmhyE2IhuNKBx6hUN6J7RYpu13kGTURE1aVl5uP1/5wGACQO64gn+oQ7eUbuiStNZBOCIMDghGNUqnukewhkMuDUjQJoC8qcMgciIleTrSvD7/59DHqjGSO6B+PlR7s6e0puS6xpKuJKEzWFmJoDnJOeA4A2fmqpO/j3XG0iIkKZwYQZ/05Ftq4cnYN98f74vkzJNYGvtHuOQRM1QfWmks5KzwHAo9V20RERtWRlBhNe/DwVJzPz4e/lgVUJA+Dn6eHsabm1qpompueoCcTUHOC89BwAPFYZNB28fNell0+JiOypqNyIqauPYu/F2/D0kOPj5/ohqrWPs6fl9qpqmlz384VBkxuovtLk4cSVpo5tfNG+tTf0JjN+unTbafMgInKWghIDnlt1GClX78JXrcTaqQPxQMcgZ0+rWfCuDJqKWQhOTWGsXGlSymVOPR1bJpNJKbpdbD1ARC3MnaJyPPPPQ0jLzEeAtwfWvTAIgzq0dva0mg2fyvRciQtnMhg0uQFntxuoTmw9sOdiDow8wJeIWoicwjKM/yQF57N0CPJVY8OM+9GncnMM2QZXmsgmpMN6nVjPJOof1QqBPirklxiw9yJTdETU/N0uLMeEfx7GldvFCPf3xMbf3Y9uoTwZwdaklSbWNFFTiIXgzmo3UJ1SIcfTAyIAAKsPpDt5NkRE9nWnqBwTVx3C5ZwihPl7YsOMWHRo4+vsaTVL0koTd89RU7hSeg4AJse2h0Iuw8Erd3FBq3P2dIiI7CK3WI/nVh3GpewihGo88cX0+9Gutbezp9Vs+ai40kQ24ErpOQBoG+CFkT1CAQCr919z7mSIiOwgr1iPiasO44K2EMF+anwx4360D2JbAXvyVnOliWzA2Ueo1Ob5we0BAFvSbuJuUblzJ0NEZEPns3QYs+IAzmfp0KYyYIpmwGR34kpTMVeaqCmM0kqTa6TnAKBfu1boHeEPvdGM9YcznD0dIiKb+ObkLTz10UFk5JYgopUXvph+PzqyhskhfMRjVLjSRE2hF2ua5K7z45LJZHj+wWgAwL8PXYfeyPYDROS+jCYz3tx6Dn/84gRKDSY81KUNtv5hMDoFM2ByFLEjuN5kdtnPFNf5FKZ7Eptbeihd68c1ulcYgv3UyCksx/bTWc6eDhGRVXKL9Zj06RGs2l+xIzhxWEesnnIfArxVTp5Zy+JVmZ4DgFIX7dXkWp/CVCuxEFzlQuk5AFAp5Zh0fxQA4LMD6RAEoZ5HEBG5lp+zCzF2xQHpWJSVz/XHq3HdoJC71t+3LYFKKZda67hqXRODJjfgiuk50YRB7aBSynHqRgGOZ+Q5ezpERA2290IOnqysX2oX6I0tv38AI3uGOntaLZq3ize4dL1PYarBVdNzANDaV40n+7YFAHyw5zJXm4jI5QmCgFU/XcW0tUdRVG7EoOhAfJ34IDqH+Dl7ai2ej4s3uHS9T2GqQerT5KLLxdMf6gAPhQz7Lt7GNydvOXs6RET3VG404fX/nMKb287DLADP3BeJf08bhEAf1i+5Am8XbzvAoMkNGMyu16epuk7Bvkga1hkA8Lf/nWPfJiJySdqCMoz/5BA2HrsBuQz4669jsOipXlC54Cp+S+Xt4m0H+JviBgxG1zpGpTYvDu2IbqF+yC3WY8H/zjl7OkREFo5dy8XjH+5HWmY+/L08sGbqQEwbHA2ZzHX/Xm2JXL3BJYMmN2A0i7vnXPfHpVLK8e5v+kAhl+F/J2/hu7NaZ0+JiAgms4B/H7qOZ/95CLcLy9Et1A/fJD2Ih7q0cfbUqBbiob0lLtpyQOnsCVD9xGNUXHmlCQB6Rfhj+pAOWPnDFcz9+gwGdWgNfy8PZ0+LiFqgi9pCbD5+A1tO3EROYUXJwOheoXj3N32kztPkenwqd88Vl3OlqdEWLFgAmUxm8dWtWzfp/rKyMiQmJqJ169bw9fXFuHHjkJ2dbXGNjIwMxMfHw9vbG8HBwXj11VdhNFr+MPbt24d+/fpBrVajU6dOWLNmjSNeXoOJnVFdtaapupdGdEaHIB/kFJbj/7YxTUdEjiMIAjYfv4Fff/AT4pb9iE9+vIqcwnK08vbAnFHdsGJCPwZMLs7HxQ/tdfnfnh49euD777+Xvlcqq6Y8e/ZsbNu2DZs2bYK/vz+SkpLw1FNP4cCBAwAAk8mE+Ph4hIaG4uDBg8jKysLkyZPh4eGBt956CwCQnp6O+Ph4zJw5E+vWrcPu3bvxwgsvICwsDHFxcY59sfcgpufcIWjy9FBg8W964+lPUrDx2A3c36E1nuoX4expEVEzd/1uMf685TQOXL4LoOKszuHdgvFUvwgM6xrMYm83IdY0uWqfJpcPmpRKJUJDazYbKygowKeffor169dj+PDhAIDVq1eje/fuOHToEO6//3589913OHfuHL7//nuEhISgb9++WLhwIV5//XUsWLAAKpUKK1euRHR0NJYsWQIA6N69O/bv34/333/fZYImMT3nSgf21mVA+0D87qGOWPnDFbz61Sn4eXrg0ZgQZ0+LiJoho8mMVfvTsez7SygzmKFWyvHHRzrj2YHt2EbADYk1TSwEt9LPP/+M8PBwdOjQARMnTkRGRgYAIDU1FQaDASNGjJDGduvWDe3atUNKSgoAICUlBb169UJISNUHdlxcHHQ6Hc6ePSuNqX4NcYx4DVcg9Wlyg5Um0WtxXTGuXwRMZgGJ64/j4JU7zp4SETUjgiBg78UcjFlxAG9/ewFlBjMe7NQa381+CInDOjFgclNiTZOrthxw6ZWmQYMGYc2aNejatSuysrLwt7/9DUOGDMGZM2eg1WqhUqkQEBBg8ZiQkBBotRU7t7RarUXAJN4v3lfXGJ1Oh9LSUnh5edU6t/LycpSXV/Uj0ul0TXqtdRGDJqUbBU1yuQzvjOuFwjIDvjuXjelrj2H99PvRJzLA2VMjIjdmMgvYfjoLH++7gnNZFX/v+nt5YG58d/ymfwRbCLg5V19pcumgadSoUdKfe/fujUGDBiEqKgobN268ZzDjKIsWLcLf/vY3hzyXeIyKqx3YWx+lQo6/P/srPL/mKA5euYspq49g4+9ieVQBETWaySzgP6k38NG+y7h2twRARffoCQPbYebQjgjyVTt5hmQL0kqTi7YccJ+lCwABAQHo0qULLl++jNDQUOj1euTn51uMyc7OlmqgQkNDa+ymE7+vb4xGo6kzMJszZw4KCgqkr8zMzKa+vHvSu+FKk8jTQ4F/TB6APpEByCsx4Nl/HsLZWwXOnhYRuQlBELDnQjZGLf8Rr/3nFK7dLUErbw/MHtEFB14fjrm/jmHA1IxIK01sOdB0RUVFuHLlCsLCwtC/f394eHhg9+7d0v0XL15ERkYGYmNjAQCxsbE4ffo0cnJypDG7du2CRqNBTEyMNKb6NcQx4jXuRa1WQ6PRWHzZS1UhuFv9uCS+aiXWTLkPMWEa3CnS45lPDuFIeq6zp0VELu7UjXxM+OdhPL/mGC5lF8HfywN/Gd0dB/40HLNGdEYr1i01Oz4u3tzSpT+FX3nlFfzwww+4du0aDh48iCeffBIKhQLPPvss/P39MW3aNCQnJ2Pv3r1ITU3F1KlTERsbi/vvvx8A8NhjjyEmJgaTJk3CyZMnsXPnTsydOxeJiYlQqyv+ZTJz5kxcvXoVr732Gi5cuICPPvoIGzduxOzZs5350i0YTWJHcPdKz1XXykeFDb+7HwPbB6Kw3IhJnx7GngvZ9T+QiFqcMzcL8Lt/H8MTHx5AytW7UCnl+N1DHfDjq8Mw/aEO0moENT/eatc+RsWlf/Nu3LiBZ599Fnfv3kWbNm0wePBgHDp0CG3aVLS/f//99yGXyzFu3DiUl5cjLi4OH330kfR4hUKBrVu34sUXX0RsbCx8fHyQkJCAN954QxoTHR2Nbdu2Yfbs2Vi+fDkiIiKwatUql2k3ALhnIXhtNJ4eWPv8QCSuP449F3Iw/V+pWPJ0H4z9VVtnT42IXEBaZj4+2P0zdl+oyA7IZMDYvm3x8mNdENHK28mzI0eQVppcdPecTBAEwdmTaA50Oh38/f1RUFBg81RdwmdH8MOl23jv6T74TX/3bxRpMJnx2lensOXETQDAM/dF4uXHuqKNH+sSiFqi3GI9XvvqFL4/X7H6LJcBj/cJR9KwTtw40sJk5pZgyOK9UCvluPjmqPofYAON+fx26ZUmqlDVp8l903PVeSjkWPJ0HwT6qPDp/nRsOJqJbaey8IdHOmHKA9Hs3EvUgpy9VYAZ/0rFzfxSKOQyjO3bFonDOqJDG19nT42cwLfyGJVyoxlGk9nlMiyuNRuqldHNC8FrI5fL8Ndfx+CrmbHo1dYfheVGvLX9AuKW/Yi9F3LqvwARub3/pt3EuI8P4mZ+KaJae2PbHwdjyW/7MGBqwcSaJgAoMbheiq75fAo3Y1LLAXnzWGmqbkD7QPw38UEs/k1vBPmqkX6nGFPXHMXv16UiR1fm7OkRkR0Ulxvx5tZzmLUhDWUGM4Z2bYNvEgejW6j9diGTe1Ap5NJnnSvWNTE95wak9FwzTVvJ5TL8dkAkRvUMxQd7LuPT/enYflqLny7dweujumHCwHaQN8OAkagluF1YjpOZ+TiXpcP5yq/ruSUQq2kTh3VE8qNdoeD/4wRAJpPBW6WArszokjvoGDS5gaqO4M0zaBL5eXrgz6O7Y0zfcPx582mcvFGAuV+fwebjN/D++L6Iau3j7CkSUT1u5JVg++ksnMwsQFpmPm7ml9Y6rm2AF+bGd8eoXmEOniG5Oh+1EroyI1eayDqGZpyeq02PcH9s/v2D+HfKNby78yKOZ+TjiQ8P4OOJ/fBApyBnT4+IapFbrMeKvZfx75TrUkkBUNE2oHOwL3q29UdMmAbdQjXoHuaH1uziTffgrXLdXk0MmtyAwdy803O1UchlmPJgNB7rEYoX1x3Hycx8TPrsCOY/HoNJ90fxUE4iF1GiN2L1gWtYue8KCiuPvhgYHYhhXYPRJ9Ifvdr6w8/Tw8mzJHfioxa7gjNoIisYjJW75+QtJ2gShQd44csZ92PO5tPYcuIm5v33LC5oC/G3J3o0q92ERO5CEARk5pbi4JU7SLl6Fz/9fAe5xXoAQEyYBn8a1Q1DOgfxHzZkNWmliek5soZRWmlqmX8JeXoosPS3fdA11A/v7LiA9YczcDIzH+Pvi8SonmFsiknkABe0Omw4kold57Jr1ClFBnrhlce64vHe4dy0QU1Wdf4cV5rICnqjWNPUcldWZDIZZj7cEZ2DfTFrQxrO3tJh3n/PYsE3Z3F/h9YY3SsM3cP8EOzniWCNGmqlov6LEpGkRG/E3SI9PD0U8PSQw8tDgXKjGf87eQsbjmYiLTNfGquUy/CrdgGI7dAasR2D0D+qFZvSks14V6bnuNJEVjG0kN1zDfFI9xDseflhfHPyFv53KgsnM/Nx8MpdHLxy12JcoI8KkYHe6N+uFe5r3wr927dCsJ+nk2ZN5Jpu5JVgz4Uc7D6fg5Srd6V/oNVGKZfh0ZgQ/KZ/BGI7tuahuWQ3PlJ6jitNZAUxPadsJseoNFWwxhMvDOmAF4Z0QGZuCbadzsLeCzm4VVCK7IJy6E1m5BbrkVusx8nMfHx2IB0A0L61NwZGB2JQdGvc37E12gZ4OfmVEDmGwWTG9bvFuJxTjCu3i3AlpwhnbhXgUnaRxTiVUl4jcIoO8sH4+yIxrl8EU+HkEGIheLGeK03USIIgSCtNLHyuKTLQGzMf7oiZD3cEUPF+5ZcYoNWV4VJ2IY5ey8Wxa3m4mF2Ia3dLcO1uCTYeuwEAiGjlhcGdgjBhUDv0jghw4qsgsh1dmQFH03NxQVuIi5VfV+8USX+PVCeXAQOiAjG8ezBGdA9Gx8rjS8qNZpQZTNCbzGjjq2ZRNzmUuNLEmiZqNKO56i86pufqJ5PJ0MpHhVY+KnQP02BM37YAgIJSA45n5OHw1VwcunoXp28W4EZeKTYczcSGo5no1y4AUx+MxsieoQxOye3cyCvB9+ey8f35HBy6etfi7w2Rj0qBjsG+6NjGF50q/3t/h0AEeKtqjK2oa2JdIDkHa5rIaoZqTeKYnrOev5cHhnUNxrCuwQCAonIjjl7LxTdpt7D11C0cz8jH8YwTCNGoMaRzG7QN8Kr4auWF1r4qlBvMKNYbUao3odRgQpCvGr3a+kvLyESOdCu/FEev5eLotVwcSc+tkWbrEOSDXhH+6Brqh26hfugS4oe2AV5cMSK3wJUmslr1JXWugNiOr1opBVFzRnXDusMZWHc4A9m6cnyVeqNB15DLgC4hfugbGYCuoX7QlRqRXViG7IIyZBeWQQaZFHi1DfBCRCsvRAf5oF1rb+7uowa7XViOs7cKcPaWDmdvFeBkZkGNLf9yWcXh1492D8GImBBEB/HIIXJf4iYD1jRRo1VfafLgSpNdBGs8MfvRLvj9sI7YeyEHl3OKcDO/FDfzy3AzrwR5JQZ4eSjgpVLAW1WRtriRW4JbBWW4oC3EBW3hPa99+mZBjdvkMqBtKy90CPJFu0BvhPp7IkTjiRCNGsF+nlDIZTCZBRjNZpjMAmSQwUslh7dKCW+VAt4qJbd3uwmjyYyUq3ex7VQWtLoyRLTyQrtAb7QL9EZEK294eiggl1WklWWoqEcS65AuZlf8N6ewvMZ1FXIZeoRrMCAqEAOjW2FgdGsE+tRMsxG5Ix915UoTd89RY4mH9SrlMi6t25laqcDIng0/PDRHV4YTmfk4mZmPK7eLEOijQrCfZ2UQpIbJDNzMK8HN/FLcyCtFZl4Jrt0pQVG5EZm5pcjMrf0g04YI8PaQPnzbBXqjfWsfxIRr0DnEl6tYdmAyC7h6uwhnb+nwc04h7hTqcbdYj7vF5ZW9jeTo2KaiTqhjsA9aeauw50IOtp/Owp0ifZOeWyarSLf1CPdHj3ANerb1R9/IAKaGqdniShNZTTqsl6tMLidY44m4HqGI6xHa4McIgoDbReVIv12Mq3eKcTOvFFpdGbIrv24XlsMsVATJCrkMSrkMZgEoNZhQqjdJB6HmlxiQX1KAUzcsV7KUchk6h/ihZ7gGXUP90Cm4oug33N8LcrkMOYVlOHw1F4fT7+Joeh6K9UYphRjRyhsRrbzQIcgHHdv4olULWrkwmwUUlBpwu6gc2oIyaAvKkFVQhqyCUlzKLsT5rEKUGur+C/yXdUWiVt4eGN0rDD3C/XEzvwSZuaXIyC3BjbxSGExmmAUBEACzIMBLpUDnYL+qWqRQP3QN8WOARC2KtNLEmiZqLPFDkvVMzYNMJqvoWu7niUEdWjf68QaTGSXlJtwqqPjgzcwtwfW7JbhSuQpSUGrA+SwdzmfpLB7n5aFAoI+qRi0MANzIKwXSaz5XoI8KHdv4IMzfC0qFDB5yecV/FfKKoK7yNoVcBrWHHAFeKrTy9oC/twcCvFQwms3QlRpRWGaArsyAcqMZvmol/Dw9oPFUQuPlAbVSDqVcDrm8ouO9h0IGjZdHnb/v5UYT0u8U41J2EX7OLsSl7ELoSo3w9VTCz1MJjacHfNVK6E1mFJYZUFhmRFF5RRE/AEhVgkJFOuxOkR55JXqYatlxVp23SoHuYRp0D/NDiJ8nWvuqEeijQmtfFYrLjbhyu6IH0tXbRcgqKEP/qFZ4ok84HuwUxP9/iRpBWmni7jlqLCO7gVM1Hgo5/L3l8Pf2QPcwjcV9giDgZn5pZcGwDj9nF+JyThGu3S1GqcGEm/mlkMmA7qEaDOoQiEHRgWjtq8bNvNKqFGJuCdLvFONmfqnUIBTIc/jr9PNUopV3RRAml8tQVBn4FJUZUaQ3Qqg7vrGav5cHwvwrUqxh/p4I1XihfZA3erb1R/vWPlDUca7a0K72mRNRS8Oz58hqTM9RQ8lkssoUm7dFytBoMiMjtwQ5heXoHqqBv7eHxePua1/zWiV6I65WrpzcLiyH0SzAaDJX/lew/N5sRqnejIJSA/JLKlZtCkoN8FDIofH0qFj9qVxVKio3QldmRGFp1eqTySxIX2J/ocIyIwrLjMjIrf21+qmV6Bziiy4hFdvpW/uqKq5dubJVVG6Ep4cCvmplxZenEl4eCshkQEXJdUWtkJ+nEoE+KgT5qtHKW8UCeyIXUJWeM8FsFlzqEGgGTS7OwPQcNZFSIUeHNr7oUNntuSG8VUr0bOuPnm397TizmkxmAbpSA3JL9Mgv0SO32ACTWYDGU1mZfqsIwlr7qLgxgqiZql7DV2IwwdeFavpcZyZUKx6hQi2JQl7V0Z2IWia1Ug61Uo5yoxkZd0sQE66p/0EOwk9iF2eUVpr4r2oiImr+ZDIZHurSBgCw/XSWk2djiUGTixN3zynl/FEREVHL8OveFT3z/nfqFgR77fywAj+JXZyUnmOBKhERtRAjuofA00OO63dLcOamrv4HOAg/iV2cmJ5TMT1HREQthI9aiUe6hQAAtp665eTZVGHQ5OKYniMiopZITNFtPZXlMik6fhK7uKjWPpg4qB0e6R7s7KkQERE5zLBuwfBRKXAzvxTHM/KdPR0AbDng8vpGBqBvZICzp0FERORQnh4KPBoTgq/TbmHrqVvoH9XK2VPiShMRERG5pl/3DgcAbDuVVe/5kI7AoImIiIhc0pAuQdB4KpFTWI6j1+5xrpIDMWj6hRUrVqB9+/bw9PTEoEGDcOTIEWdPiYiIqEVSKxXSWZr/O+n8XXQMmqr58ssvkZycjPnz5+P48ePo06cP4uLikJOT4+ypERERtUi/7lORottxRiu14XEWBk3VLF26FNOnT8fUqVMRExODlStXwtvbG5999pmzp0ZERNQiPdCxNQJ9VLhbrEfK1btOnQuDpkp6vR6pqakYMWKEdJtcLseIESOQkpJSY3x5eTl0Op3FFxEREdmWh0KOkT1dI0XHoKnSnTt3YDKZEBISYnF7SEgItFptjfGLFi2Cv7+/9BUZGemoqRIREbUov+4dhiBfFYL9PJ06DwZNVpozZw4KCgqkr8zMTGdPiYiIqFm6P7o1Ds15BK/EdXXqPNjcslJQUBAUCgWys7Mtbs/OzkZoaGiN8Wq1Gmq12lHTIyIiarHkchnkcP4ZrFxpqqRSqdC/f3/s3r1bus1sNmP37t2IjY114syIiIjIFXClqZrk5GQkJCRgwIABGDhwIJYtW4bi4mJMnTrV2VMjIiIiJ2PQVM348eNx+/ZtzJs3D1qtFn379sWOHTtqFIcTERFRyyMTBMH5h7k0AzqdDv7+/igoKIBGo3H2dIiIiKgBGvP5zZomIiIiogZg0ERERETUAAyaiIiIiBqAQRMRERFRAzBoIiIiImoABk1EREREDcCgiYiIiKgBGDQRERERNQCDJiIiIqIG4DEqNiI2VtfpdE6eCRERETWU+LndkANSGDTZSGFhIQAgMjLSyTMhIiKixiosLIS/v3+dY3j2nI2YzWbcunULfn5+kMlkNr22TqdDZGQkMjMzea6dnfG9dhy+147D99px+F47jq3ea0EQUFhYiPDwcMjldVctcaXJRuRyOSIiIuz6HBqNhv8TOgjfa8fhe+04fK8dh++149jiva5vhUnEQnAiIiKiBmDQRERERNQADJrcgFqtxvz586FWq509lWaP77Xj8L12HL7XjsP32nGc8V6zEJyIiIioAbjSRERERNQADJqIiIiIGoBBExEREVEDMGgiIiIiagAGTS5ixYoVaN++PTw9PTFo0CAcOXKkzvGbNm1Ct27d4OnpiV69emH79u0Omqn7a8x7/c9//hNDhgxBq1at0KpVK4wYMaLenw1VaezvtWjDhg2QyWQYO3asfSfYjDT2vc7Pz0diYiLCwsKgVqvRpUsX/j3SQI19r5ctW4auXbvCy8sLkZGRmD17NsrKyhw0W/f1448/4vHHH0d4eDhkMhm+/vrreh+zb98+9OvXD2q1Gp06dcKaNWtsOymBnG7Dhg2CSqUSPvvsM+Hs2bPC9OnThYCAACE7O7vW8QcOHBAUCoWwePFi4dy5c8LcuXMFDw8P4fTp0w6euftp7Hs9YcIEYcWKFcKJEyeE8+fPC1OmTBH8/f2FGzduOHjm7qex77UoPT1daNu2rTBkyBBhzJgxjpmsm2vse11eXi4MGDBAGD16tLB//34hPT1d2Ldvn5CWlubgmbufxr7X69atE9RqtbBu3TohPT1d2LlzpxAWFibMnj3bwTN3P9u3bxf+8pe/CJs3bxYACFu2bKlz/NWrVwVvb28hOTlZOHfunPDBBx8ICoVC2LFjh83mxKDJBQwcOFBITEyUvjeZTEJ4eLiwaNGiWsf/9re/FeLj4y1uGzRokPC73/3OrvNsDhr7Xv+S0WgU/Pz8hLVr19pris2GNe+10WgUHnjgAWHVqlVCQkICg6YGaux7/fHHHwsdOnQQ9Hq9o6bYbDT2vU5MTBSGDx9ucVtycrLw4IMP2nWezU1DgqbXXntN6NGjh8Vt48ePF+Li4mw2D6bnnEyv1yM1NRUjRoyQbpPL5RgxYgRSUlJqfUxKSorFeACIi4u753iqYM17/UslJSUwGAwIDAy01zSbBWvf6zfeeAPBwcGYNm2aI6bZLFjzXn/zzTeIjY1FYmIiQkJC0LNnT7z11lswmUyOmrZbsua9fuCBB5Camiql8K5evYrt27dj9OjRDplzS+KIz0Ye2Otkd+7cgclkQkhIiMXtISEhuHDhQq2P0Wq1tY7XarV2m2dzYM17/Uuvv/46wsPDa/yPSZasea/379+PTz/9FGlpaQ6YYfNhzXt99epV7NmzBxMnTsT27dtx+fJl/P73v4fBYMD8+fMdMW23ZM17PWHCBNy5cweDBw+GIAgwGo2YOXMm/vznPztiyi3KvT4bdTodSktL4eXl1eTn4EoTUQO9/fbb2LBhA7Zs2QJPT09nT6dZKSwsxKRJk/DPf/4TQUFBzp5Os2c2mxEcHIx//OMf6N+/P8aPH4+//OUvWLlypbOn1uzs27cPb731Fj766CMcP34cmzdvxrZt27Bw4UJnT42swJUmJwsKCoJCoUB2drbF7dnZ2QgNDa31MaGhoY0aTxWsea9F7733Ht5++218//336N27tz2n2Sw09r2+cuUKrl27hscff1y6zWw2AwCUSiUuXryIjh072nfSbsqa3+uwsDB4eHhAoVBIt3Xv3h1arRZ6vR4qlcquc3ZX1rzXf/3rXzFp0iS88MILAIBevXqhuLgYM2bMwF/+8hfI5Vy7sJV7fTZqNBqbrDIBXGlyOpVKhf79+2P37t3SbWazGbt370ZsbGytj4mNjbUYDwC7du2653iqYM17DQCLFy/GwoULsWPHDgwYMMARU3V7jX2vu3XrhtOnTyMtLU36euKJJzBs2DCkpaUhMjLSkdN3K9b8Xj/44IO4fPmyFJgCwKVLlxAWFsaAqQ7WvNclJSU1AiMxWBV49KtNOeSz0WYl5WS1DRs2CGq1WlizZo1w7tw5YcaMGUJAQICg1WoFQRCESZMmCX/605+k8QcOHBCUSqXw3nvvCefPnxfmz5/PlgMN1Nj3+u233xZUKpXw1VdfCVlZWdJXYWGhs16C22jse/1L3D3XcI19rzMyMgQ/Pz8hKSlJuHjxorB161YhODhYePPNN531EtxGY9/r+fPnC35+fsIXX3whXL16Vfjuu++Ejh07Cr/97W+d9RLcRmFhoXDixAnhxIkTAgBh6dKlwokTJ4Tr168LgiAIf/rTn4RJkyZJ48WWA6+++qpw/vx5YcWKFWw50Fx98MEHQrt27QSVSiUMHDhQOHTokHTfww8/LCQkJFiM37hxo9ClSxdBpVIJPXr0ELZt2+bgGbuvxrzXUVFRAoAaX/Pnz3f8xN1QY3+vq2PQ1DiNfa8PHjwoDBo0SFCr1UKHDh2E//u//xOMRqODZ+2eGvNeGwwGYcGCBULHjh0FT09PITIyUvj9738v5OXlOX7ibmbv3r21/v0rvr8JCQnCww8/XOMxffv2FVQqldChQwdh9erVNp2TTBC4PkhERERUH9Y0ERERETUAgyYiIiKiBmDQRERERNQADJqIiIiIGoBBExEREVEDMGgiIiIiagAGTUREREQNwKCJiBpl6NCheOmllwAA7du3x7Jly2x6/TVr1iAgIKDOMQsWLEDfvn1t+ryupPp7TESugwf2EpHVjh49Ch8fH5tec/z48Rg9erRNr0lEZAsMmojIam3atLH5Nb28vGx2Irm9mEwmyGQynlBP1MLw/3gistov03M///wzHnroIXh6eiImJga7du2CTCbD119/DQDYt28fZDIZ8vPzpcekpaVBJpPh2rVrAGpPz7399tsICQmBn58fpk2bhrKysgbPccqUKRg7dizee+89hIWFoXXr1khMTITBYJDG5OXlYfLkyWjVqhW8vb0xatQo/Pzzz9L94py++eYbxMTEQK1WIyMjA+3bt8ebb76JyZMnw9fXF1FRUfjmm29w+/ZtjBkzBr6+vujduzeOHTsmXevu3bt49tln0bZtW3h7e6NXr1744osvGvx6funf//43BgwYAD8/P4SGhmLChAnIyckBAJjNZkRERODjjz+2eMyJEycgl8tx/fp1AMCFCxcwePBg6ef2/fffW/zciKgCgyYisgmz2YynnnoKKpUKhw8fxsqVK/H66683+bobN27EggUL8NZbb+HYsWMICwvDRx991Khr7N27F1euXMHevXuxdu1arFmzBmvWrJHunzJlCo4dO4ZvvvkGKSkpEAQBo0ePtgisSkpK8M4772DVqlU4e/YsgoODAQDvv/8+HnzwQZw4cQLx8fGYNGkSJk+ejOeeew7Hjx9Hx44dMXnyZIjHfJaVlaF///7Ytm0bzpw5gxkzZmDSpEk4cuSIVe+PwWDAwoULcfLkSXz99de4du0apkyZAgCQy+V49tlnsX79eovHrFu3Dg8++CCioqJgMpkwduxYeHt74/Dhw/jHP/6Bv/zlL1bNhajZs+nxv0TU7D388MPCrFmzBEEQhKioKOH9998XBEEQdu7cKSiVSuHmzZvS2G+//VYAIGzZskUQhKpTy6uf8H7ixAkBgJCeni4IgiCsXr1a8Pf3l+6PjY0Vfv/731vMYdCgQUKfPn0aNN+EhAQhKipKMBqN0m1PP/20MH78eEEQBOHSpUsCAOHAgQPS/Xfu3BG8vLyEjRs3SnMCIKSlpVlcOyoqSnjuueek77OysgQAwl//+lfptpSUFAGAkJWVdc85xsfHCy+//LL0ffX3uLGOHj0qABAKCwsFQah4f2UymXD9+nVBEATBZDIJbdu2FT7++GNBECp+Rkql0mJ+u3btsvi5EVEFrjQRkU2cP38ekZGRCA8Pl26LjY21yXUHDRpkcVtjr9ujRw8oFArp+7CwMCmFdf78eSiVSovnaN26Nbp27Yrz589Lt6lUKvTu3bvGtavfFhISAgDo1atXjdvE5zOZTFi4cCF69eqFwMBA+Pr6YufOncjIyGjUaxKlpqbi8ccfR7t27eDn54eHH34YAKTr9e3bF927d5dWm3744Qfk5OTg6aefBgBcvHgRkZGRCA0Nla45cOBAq+ZC1NwxaCIihxELp4XKVBUAixSYvXh4eFh8L5PJYDabG3UNLy8vyGSyOq8t3l/bbeLzvfvuu1i+fDlef/117N27F2lpaYiLi4Ner2/UfACguLgYcXFx0Gg0WLduHY4ePYotW7YAgMX1Jk6cKAVN69evx8iRI9G6detGPx9RS8egiYhsonv37sjMzERWVpZ026FDhyzGiLvtqo9JS0ur97qHDx+2uO2X122K7t27w2g0WjzH3bt3cfHiRcTExNjseUQHDhzAmDFj8Nxzz6FPnz7o0KEDLl26ZNW1Lly4gLt37+Ltt9/GkCFD0K1bN2lFq7oJEybgzJkzSE1NxVdffYWJEydK93Xt2hWZmZnIzs6Wbjt69KhV8yFq7hg0EZFNjBgxAl26dEFCQgJOnjyJn376qUZBcadOnRAZGYkFCxbg559/xrZt27BkyZI6rztr1ix89tlnWL16NS5duoT58+fj7NmzNpt3586dMWbMGEyfPh379+/HyZMn8dxzz6Ft27YYM2aMzZ6n+vPt2rULBw8exPnz5/G73/3OImBpjHbt2kGlUuGDDz7A1atX8c0332DhwoU1xrVv3x4PPPAApk2bBpPJhCeeeEK679FHH0XHjh2RkJCAU6dO4cCBA5g7dy4A1LqyRtSSMWgiIpuQy+XYsmULSktLMXDgQLzwwgv4v//7P4sxHh4e+OKLL3DhwgX07t0b77zzDt588806rzt+/Hj89a9/xWuvvYb+/fvj+vXrePHFF20699WrV6N///749a9/jdjYWAiCgO3bt9dI69nC3Llz0a9fP8TFxWHo0KEIDQ3F2LFjrbpWmzZtsGbNGmzatAkxMTF4++238d5779U6duLEiTh58iSefPJJiz5YCoUCX3/9NYqKinDffffhhRdekIJdT09Pq+ZF1FzJhOrFBURENiaTybBlyxarAwNyvAMHDmDw4MG4fPkyOnbs6OzpELkMdgQnImrhtmzZAl9fX3Tu3BmXL1/GrFmz8OCDDzJgIvoFBk1E5NZ8fX3ved+3336LIUOGOHA2tvXTTz9h1KhR97y/qKjIJs9TWFiI119/HRkZGQgKCsKIESPqrTUjaomYniMit3b58uV73te2bVuXP8euLqWlpbh58+Y97+/UqZMDZ0NEDJqIiIiIGoC754iIiIgagEETERERUQMwaCIiIiJqAAZNRERERA3AoImIiIioARg0ERERETUAgyYiIiKiBmDQRERERNQA/w9UBCEAiSCpzwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "461_x 0.594288\n", + "487_y 0.595312\n", + "325_x 0.592389\n", + "333_x 0.597179\n", + "417_x 0.591353\n", + " ... \n", + "353_x 0.594432\n", + "463_y 0.599920\n", + "373_x 0.587521\n", + "403_y 0.598754\n", + "331_x 0.591103\n", + "Length: 210, dtype: float64\n", + "0 0.938926\n", + "1 0.952476\n", + "2 0.032351\n", + "3 0.974024\n", + "4 0.018999\n", + " ... \n", + "730294 0.881875\n", + "730295 0.014691\n", + "730296 0.025056\n", + "730297 0.921886\n", + "730298 0.018928\n", + "Length: 730299, dtype: float64\n" + ] + } + ], + "source": [ + "\n", + "liquid_normal_avg = kk.mean(skipna=True, axis = 0)\n", + "\n", + "freq, bins = np.histogram(liquid_normal_avg, bins=100, range=(0, 1))\n", + "\n", + "plt.plot(bins[:-1], freq, linestyle='-')\n", + "plt.xlabel('liquid_normal_avg')\n", + "plt.ylabel('Frequency')\n", + "plt.title('liquid_normal_avg')\n", + "plt.show()\n", + "print(kk.mean(skipna=True, axis = 1))\n", + "print(kk.mean(skipna=True, axis = 0))" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHHCAYAAACiOWx7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACZ40lEQVR4nOzdd3zT1f7H8Vd296K0pVD23oKCFRUQpCp6RVFRUYagoqAMEUW9ivK7ojhREPWqgIoyXFcBQWQ4AAWRJSAbitCW1TadaZqc3x/fNjS0QFvSJimf5+ORh+Sb0+/3pFTy7uec7zk6pZRCCCGEEEKck97bHRBCCCGE8AcSmoQQQgghykFCkxBCCCFEOUhoEkIIIYQoBwlNQgghhBDlIKFJCCGEEKIcJDQJIYQQQpSDhCYhhBBCiHKQ0CSEEEIIUQ4SmoQQopIOHjyITqdj9uzZ3u6KKMOkSZPQ6XTe7oaoQSQ0CXEWOp2uXI/Vq1d7u6s+rUePHuh0Om666aZSrxWHjldffdULPfOOJUuWoNPpiI+Px+l0ers7PuHYsWMYjUbuueees7bJysoiMDCQW2+9tRp7JoQ7o7c7IISv+uSTT9yef/zxxyxfvrzU8VatWlVnt/zWokWL2LhxI507d/Z2V7xq7ty5NGzYkIMHD7Jy5Up69+7t7S55XUxMDNdeey3/+9//yM3NJSgoqFSbr776ivz8/HMGKyGqmoQmIc7izH+cf/vtN5YvX+53/2grpcjPzycwMNBrfahfvz5ZWVk8//zzfPvtt1V2nfz8fMxmM3q9bxbRc3Jy+N///seUKVOYNWsWc+fOrfbQ5As/D2UZOHAgS5cu5dtvv+XOO+8s9fpnn31GeHg4ffv29ULvhND45r8sQviJhg0bMmTIkFLHe/ToQY8ePVzPV69ejU6nY8GCBTz//PPUrVuX0NBQbrvtNjIzM7HZbIwZM4aYmBhCQkIYOnQoNpvN7ZyFhYVMnjyZJk2aYLFYaNiwIU899VSpdg0bNuTGG29k2bJlXHrppQQGBvLee++V2f9Ro0YREhJCbm5uqdfuuusu4uLicDgcAPzxxx8kJSURHR1NYGAgjRo14r777ivX9yk0NJSxY8fy3Xff8eeff563/f79+7n99tuJiooiKCiIyy+/nMWLF7u1Kf6ezps3j2eeeYa6desSFBSE1WplyJAhhISEkJyczI033khISAh169ZlxowZAGzbto1rrrmG4OBgGjRowGeffeZ27lOnTjF+/HjatWtHSEgIYWFhXH/99WzZsqVc7/dsvv76a/Ly8rj99tu58847XdWTYm3btqVnz56lvs7pdFK3bl1uu+02t2Nvvvkmbdq0ISAggNjYWB588EHS09PdvvZcPw+zZs3immuuISYmBovFQuvWrZk5c2aZ1580aRLx8fEEBQXRs2dPduzYUebPf0ZGBmPGjCEhIQGLxULTpk15+eWXzzsUecsttxAcHFzq7wK04bsVK1Zw2223YbFY+OWXX7j99tupX78+FouFhIQExo4dS15e3jmvca45aDqdjkmTJrkdO3LkCPfddx+xsbFYLBbatGnDRx99dM5riJpNKk1CVKMpU6YQGBjIk08+yd69e3n77bcxmUzo9XrS09OZNGkSv/32G7Nnz6ZRo0Y8++yzrq8dPnw4c+bM4bbbbuOxxx7j999/Z8qUKezcuZOvv/7a7Tq7du3irrvu4sEHH+T++++nRYsWZfZnwIABzJgxg8WLF3P77be7jufm5vLdd98xZMgQDAYDx44do0+fPtSuXZsnn3ySiIgIDh48yFdffVXu9z569GjeeOMNJk2adM5qU1paGldccQW5ubk8+uij1KpVizlz5vCvf/2LL774gltuucWt/eTJkzGbzYwfPx6bzYbZbAbA4XBw/fXXc/XVVzN16lTmzp3LqFGjCA4O5umnn2bgwIHceuutvPvuuwwaNIjExEQaNWoEaKHtm2++4fbbb6dRo0akpaXx3nvv0b17d3bs2EF8fHy533dJc+fOpWfPnsTFxXHnnXfy5JNP8t1337m+9wMGDGDSpEmkpqYSFxfn+rpff/2Vo0ePulVgHnzwQWbPns3QoUN59NFHOXDgANOnT2fTpk2sWbMGk8nkanu2n4eZM2fSpk0b/vWvf2E0Gvnuu+94+OGHcTqdjBw50vX1EydOZOrUqdx0000kJSWxZcsWkpKS3AIfaD833bt358iRIzz44IPUr1+ftWvXMnHiRFJSUnjzzTfP+r0JDg7m5ptv5osvvuDUqVNERUW5Xps/fz4Oh4OBAwcCsHDhQnJzc3nooYeoVasW69ev5+233+aff/5h4cKFlfibKS0tLY3LL78cnU7HqFGjqF27Nt9//z3Dhg3DarUyZswYj1xH+BklhCiXkSNHqjP/l2nQoIEaPHhwqbbdu3dX3bt3dz1ftWqVAlTbtm1VQUGB6/hdd92ldDqduv76692+PjExUTVo0MD1fPPmzQpQw4cPd2s3fvx4BaiVK1e69QlQS5cuPe97cjqdqm7duqp///5uxxcsWKAA9fPPPyullPr6668VoDZs2HDec56pe/fuqk2bNkoppZ5//nkFqI0bNyqllDpw4IAC1CuvvOJqP2bMGAWoX375xXUsKytLNWrUSDVs2FA5HA6l1OnvaePGjVVubq7bNQcPHqwA9eKLL7qOpaenq8DAQKXT6dS8efNcx//++28FqOeee851LD8/33WdYgcOHFAWi0W98MILbscANWvWrPN+H9LS0pTRaFT//e9/XceuuOIKdfPNN7ue79q1SwHq7bffdvvahx9+WIWEhLje5y+//KIANXfuXLd2S5cuLXX8XD8PZ37flFIqKSlJNW7c2PU8NTVVGY1G1a9fP7d2kyZNUoDbz//kyZNVcHCw2r17t1vbJ598UhkMBpWcnFzqeiUtXrxYAeq9995zO3755ZerunXruv5Oyur3lClTlE6nU4cOHXIde+6559z+nz3X39eZPwPDhg1TderUUSdOnHBrd+edd6rw8PAy+yBqPhmeE6IaDRo0yK0C0LVrV5RSpYa5unbtyuHDhyksLAS0O64Axo0b59buscceAyg1dNWoUSOSkpLO2x+dTsftt9/OkiVLyM7Odh2fP38+devW5corrwQgIiIC0CZz2+328rzVMo0ePZrIyEief/75s7ZZsmQJXbp0cV0bICQkhAceeICDBw+yY8cOt/aDBw8+6/yc4cOHu/4cERFBixYtCA4O5o477nAdb9GiBREREezfv991zGKxuOZFORwOTp48SUhICC1atCjX8GJZ5s2bh16vp3///q5jd911F99//71rSK158+Z07NiR+fPnu9o4HA6++OILbrrpJtf7XLhwIeHh4Vx77bWcOHHC9ejcuTMhISGsWrXK7dpn+3ko+X3LzMzkxIkTdO/enf3795OZmQnAihUrKCws5OGHH3b72kceeaTU+RYuXMhVV11FZGSkW7969+6Nw+Hg559/Puf3qLiaWXKI7sCBA/z222/cddddrr+Tkv3OycnhxIkTXHHFFSil2LRp0zmvUR5KKb788ktuuukmlFJu7yUpKYnMzMxK/xwI/yahSYhqVL9+fbfn4eHhACQkJJQ67nQ6XR9chw4dQq/X07RpU7d2cXFxREREcOjQIbfjxcNM5TFgwADy8vJcQ2bZ2dksWbKE22+/3bXGTffu3enfvz/PP/880dHR3HzzzcyaNavUfKrzCQ8PZ8yYMXz77bdn/XA7dOhQmcOJxXcplve9BgQEULt27VLXr1evXqm1e8LDw93mAjmdTt544w2aNWuGxWIhOjqa2rVrs3XrVtffSUV9+umndOnShZMnT7J371727t3LJZdcQkFBgduQ0oABA1izZg1HjhwBtLlbx44dY8CAAa42e/bsITMzk5iYGGrXru32yM7O5tixY+X6Hq1Zs4bevXsTHBxMREQEtWvX5qmnngJw+9kDSv3sRUVFERkZ6XZsz549LF26tFSfiie7n9mvMxmNRgYMGMAvv/ziev/FAap4aA4gOTmZIUOGEBUVRUhICLVr16Z79+5u/b4Qx48fJyMjg/fff7/Uexk6dGi53ouomWROkxAX4GwL5zkcDgwGQ6njZR0713GlVLmud6aK3Bl1+eWX07BhQxYsWMDdd9/Nd999R15entuHtE6n44svvuC3337ju+++Y9myZdx333289tpr/Pbbb4SEhJT7esVzm55//vlzznEpr7O91wv5Xr/44ov8+9//5r777mPy5MlERUWh1+sZM2ZMpdZW2rNnDxs2bACgWbNmpV6fO3cuDzzwAKCFpokTJ7Jw4ULGjBnDggULCA8P57rrrnO1dzqdxMTEMHfu3DKvd2ZYLOt7tG/fPnr16kXLli15/fXXSUhIwGw2s2TJEt54441KvU+n08m1117LhAkTyny9efPm5z3HPffcw/Tp0/n8888ZP348n3/+Oa1bt6Zjx46A9v/Wtddey6lTp3jiiSdo2bIlwcHBHDlyhCFDhpyz3+f6//XM91Hcl8GDB5f5Ne3btz/vexE1j4QmIS5AZGQkGRkZpY4fOnSIxo0be+w6DRo0wOl0smfPHrd1odLS0sjIyKBBgwYXdP477riDadOmYbVamT9/Pg0bNuTyyy8v1e7yyy/n8ssv5z//+Q+fffYZAwcOZN68eW7DYOdTXG2aNGlSmR9IDRo0YNeuXaWO//33367Xq9oXX3xBz549+fDDD92OZ2RkEB0dXeHzzZ07F5PJxCeffFIqtP3666+89dZbJCcnU79+fRo1akSXLl2YP38+o0aN4quvvqJfv35YLBbX1zRp0oQff/yRbt26VXrpgO+++w6bzca3337rVgE9c2iv+Pu9d+9et4rVyZMnS92p16RJE7Kzsy9oGYWuXbvSpEkTPvvsM6699lq2b9/Of/7zH9fr27ZtY/fu3cyZM4dBgwa5ji9fvvy85y6ujJ35/+yZ1cvatWsTGhqKw+GQdbSEGxmeE+ICNGnShN9++42CggLXsUWLFnH48GGPXueGG24AKFWZef311wEueO2aAQMGYLPZmDNnDkuXLnWb8wOQnp5equpV/Jt/RYfoAMaMGUNERAQvvPBCqdduuOEG1q9fz7p161zHcnJyeP/992nYsCGtW7eu8PUqymAwlHq/CxcudA0ZVdTcuXO56qqrGDBgALfddpvb4/HHHwfg888/d7UfMGAAv/32Gx999BEnTpxwq/qBFnIdDgeTJ08uda3CwsIyg/yZisNbyfeZmZnJrFmz3Nr16tULo9FYaimC6dOnlzrnHXfcwbp161i2bFmp1zIyMlxz9M5n4MCBbNq0ieeeew6dTsfdd999zn4rpZg2bdp5zxsWFkZ0dHSpuVXvvPOO23ODwUD//v358ssv+euvv0qd5/jx4+V6H6LmkUqTEBdg+PDhfPHFF1x33XXccccd7Nu3j08//ZQmTZp49DodOnRg8ODBvP/++2RkZNC9e3fWr1/PnDlz6NevX5lr+1REp06daNq0KU8//TQ2m63Uh/ScOXN45513uOWWW2jSpAlZWVn897//JSwszBXoKiI8PJzRo0eXOSH8ySef5PPPP+f666/n0UcfJSoqijlz5nDgwAG+/PLLalm48sYbb+SFF15g6NChXHHFFWzbto25c+dWqnr4+++/s3fvXkaNGlXm63Xr1qVTp07MnTuXJ554AtDCx/jx4xk/fjxRUVGlqh3du3fnwQcfZMqUKWzevJk+ffpgMpnYs2cPCxcuZNq0aW5rOpWlT58+mM1mbrrpJh588EGys7P573//S0xMDCkpKa52sbGxjB49mtdee41//etfXHfddWzZsoXvv/+e6OhotyGvxx9/nG+//ZYbb7yRIUOG0LlzZ3Jycti2bRtffPEFBw8eLFel7p577uGFF17gf//7H926daNhw4au11q2bEmTJk0YP348R44cISwsjC+//LJU1etshg8fzksvvcTw4cO59NJL+fnnn9m9e3epdi+99BKrVq2ia9eu3H///bRu3ZpTp07x559/8uOPP3Lq1KlyXU/UMF66a08Iv1PWkgNKKfXaa6+punXrKovForp166b++OOPsy45sHDhQrevnTVrVpm38hffKn38+HHXMbvdrp5//nnVqFEjZTKZVEJCgpo4caLKz893+9oGDRqovn37Vvj9Pf300wpQTZs2LfXan3/+qe666y5Vv359ZbFYVExMjLrxxhvVH3/8cd7zllxyoKT09HQVHh5easkBpZTat2+fuu2221RERIQKCAhQXbp0UYsWLXJrc7bvqVLakgPBwcHl7suZ37P8/Hz12GOPqTp16qjAwEDVrVs3tW7dulJ/r+VZcuCRRx5RgNq3b99Z2xTfvr9lyxbXsW7dupW5zERJ77//vurcubMKDAxUoaGhql27dmrChAnq6NGjZ31vJX377beqffv2KiAgQDVs2FC9/PLL6qOPPlKAOnDggKtdYWGh+ve//63i4uJUYGCguuaaa9TOnTtVrVq11IgRI9zOmZWVpSZOnKiaNm2qzGazio6OVldccYV69dVX3ZbbOJ/LLrtMAeqdd94p9dqOHTtU7969VUhIiIqOjlb333+/2rJlS6m/izOXHFBKW65g2LBhKjw8XIWGhqo77rhDHTt2rNSSA0ppy0SMHDlSJSQkKJPJpOLi4lSvXr3U+++/X+73IWoWnVJn1KCFEEKI88jIyCAyMpL/+7//4+mnn/Z2d4SoFjKnSQghxDmVtT1J8fy6ktsFCVHTyZwmIYQQ5zR//nxmz57NDTfcQEhICL/++iuff/45ffr0oVu3bt7unhDVRkKTEEKIc2rfvj1Go5GpU6ditVpdk8P/7//+z9tdE6JayZwmIYQQQohykDlNQgghhBDlIKFJCCGEEKIcZE6ThzidTo4ePUpoaGi59wcTQgghhHcppcjKyiI+Pv68i+dKaPKQo0ePltqpXgghhBD+4fDhw9SrV++cbXwmNL300ktMnDiR0aNHu9b/yM/P57HHHmPevHnYbDaSkpJ45513iI2NdX1dcnIyDz30EKtWrSIkJITBgwczZcoUjMbTb2316tWMGzeO7du3k5CQwDPPPMOQIUPcrj9jxgxeeeUVUlNT6dChA2+//TZdunQpd/9DQ0MB7ZseFhZW+W+EEEIIIaqN1WolISHB9Tl+Lj4RmjZs2MB7771H+/bt3Y6PHTuWxYsXs3DhQsLDwxk1ahS33nora9asAcDhcNC3b1/i4uJYu3YtKSkpDBo0CJPJxIsvvgjAgQMH6Nu3LyNGjGDu3LmsWLGC4cOHU6dOHZKSkgBtDZJx48bx7rvv0rVrV958802SkpLYtWsXMTEx5XoPxUNyYWFhEpqEEEIIP1OuqTVe3cRFafsUNWvWTC1fvlx1795djR49WimlVEZGhjKZTG77Su3cuVMBat26dUoppZYsWaL0er1KTU11tZk5c6YKCwtTNptNKaXUhAkTSu01NWDAAJWUlOR63qVLFzVy5EjXc4fDoeLj49WUKVPK/T4yMzMVoDIzM8v/5oUQQgjhVRX5/Pb63XMjR46kb9++pXbx3rhxI3a73e14y5YtqV+/PuvWrQNg3bp1tGvXzm24LikpCavVyvbt211tzjx3UlKS6xwFBQVs3LjRrY1er6d3796uNmWx2WxYrVa3hxBCCCFqLq8Oz82bN48///yTDRs2lHotNTUVs9lMRESE2/HY2FhSU1NdbUoGpuLXi187Vxur1UpeXh7p6ek4HI4y2/z9999n7fuUKVN4/vnny/dGhRBCCOH3vBaaDh8+zOjRo1m+fDkBAQHe6kalTZw4kXHjxrmeF08kE0KUzeFwYLfbvd2Ni5rZbD7vLdVCiLPzWmjauHEjx44do1OnTq5jDoeDn3/+menTp7Ns2TIKCgrIyMhwqzalpaURFxcHQFxcHOvXr3c7b1pamuu14v8WHyvZJiwsjMDAQAwGAwaDocw2xecoi8ViwWKxVPyNC3GRUUqRmppKRkaGt7ty0dPr9TRq1Aiz2eztrgjhl7wWmnr16sW2bdvcjg0dOpSWLVvyxBNPkJCQgMlkYsWKFfTv3x+AXbt2kZycTGJiIgCJiYn85z//4dixY6673JYvX05YWBitW7d2tVmyZInbdZYvX+46h9lspnPnzqxYsYJ+/foB2kKVK1asYNSoUVX2/oW4WBQHppiYGIKCgmTxVy8pXoA3JSWF+vXry9+DEJXgtdAUGhpK27Zt3Y4FBwdTq1Yt1/Fhw4Yxbtw4oqKiCAsL45FHHiExMZHLL78cgD59+tC6dWvuvfdepk6dSmpqKs888wwjR450VYFGjBjB9OnTmTBhAvfddx8rV65kwYIFLF682HXdcePGMXjwYC699FK6dOnCm2++SU5ODkOHDq2m74YQNZPD4XAFplq1anm7Oxe92rVrc/ToUQoLCzGZTN7ujhB+xyfWaTqbN954A71eT//+/d0WtyxmMBhYtGgRDz30EImJiQQHBzN48GBeeOEFV5tGjRqxePFixo4dy7Rp06hXrx4ffPCBa40mgAEDBnD8+HGeffZZUlNT6dixI0uXLi01OVwIUTHFc5iCgoK83BMBuIblHA6HhCYhKkGnlFLe7kRNYLVaCQ8PJzMzUxa3FKJIfn4+Bw4coFGjRn55w0dNI38fQpRWkc9vuY1CCCGEEKIcJDQJIUQNsXr1anQ6ndypKEQVkdAkhBBlGDJkCDqdjpdeesnt+DfffCN3nglxkZLQVEPk5YHMThPCswICAnj55ZdJT0/32DkLCgo8di4hRPWS0FQDpKVBXBwMHOjtnghRs/Tu3Zu4uDimTJly1jZffvklbdq0wWKx0LBhQ1577TW31xs2bMjkyZMZNGgQYWFhPPDAA8yePZuIiAgWLVpEixYtCAoK4rbbbiM3N5c5c+bQsGFDIiMjefTRR3E4HK5zffLJJ1x66aWEhoYSFxfH3XffzbFjx6rs/Qsh3Pn0kgOifP76C6xW+PVXb/dEiPNTCnJzq/+6QUFQ0VE1g8HAiy++yN13382jjz5KvXr13F7fuHEjd9xxB5MmTWLAgAGsXbuWhx9+mFq1ajFkyBBXu1dffZVnn32W5557DoBffvmF3Nxc3nrrLebNm0dWVha33nort9xyCxERESxZsoT9+/fTv39/unXrxoABAwBtCYfJkyfTokULjh07xrhx4xgyZEipBXyFEFVDQlMNUPwBlJnp3X4IUR65uRASUv3Xzc6G4OCKf90tt9xCx44dee655/jwww/dXnv99dfp1asX//73vwFo3rw5O3bs4JVXXnELTddccw2PPfaY6/kvv/yC3W5n5syZNGnSBIDbbruNTz75hLS0NEJCQmjdujU9e/Zk1apVrtB03333uc7RuHFj3nrrLS677DKys7MJ8cY3VYiLjAzP1QB5edp/s7LA6fRuX4SoiV5++WXmzJnDzp073Y7v3LmTbt26uR3r1q0be/bscRtWu/TSS0udMygoyBWYAGJjY2nYsKFb+ImNjXUbftu4cSM33XQT9evXJzQ0lO7duwOQnJx8YW9QCFEuUmmqAYorTUppwSk83Lv9EeJcgoK0qo83rltZV199NUlJSUycONGtglRewWWUuM5ckVun05V5zFn0m1BOTg5JSUkkJSUxd+5cateuTXJyMklJSTK5XIhqIqGpBig5PyQzU0KT8G06XeWGybztpZdeomPHjrRo0cJ1rFWrVqxZs8at3Zo1a2jevDkGg8Gj1//77785efIkL730EgkJCQD88ccfHr2GEOLcZHiuBjgzNAkhPK9du3YMHDiQt956y3XsscceY8WKFUyePJndu3czZ84cpk+fzvjx4z1+/fr162M2m3n77bfZv38/3377LZMnT/b4dYQQZyehqQaQ0CRE9XjhhRdcw2UAnTp1YsGCBcybN4+2bdvy7LPP8sILL1RqCO98ateuzezZs1m4cCGtW7fmpZde4tVXX/X4dYQQZycb9nqINzfsffJJePll7c+LF8MNN1Tr5YU4K9kg1rfI34cQpcmGvReZ4rvnQCpNQgghRFWR0FQDyPCcEEIIUfUkNNUAEpqEEEKIqiehqQaQ0CSEEEJUPQlNNYCEJiGEEKLqSWiqASQ0CSGEEFVPQlMNUDI0Wa3e64cQQghRk0loqgHy8qAx+wgmWypNQgghRBWR0FQDRGUeYA/N+IZ+EpqEEEKIKiKhqQaIy9mHHkUbtktoEkIIIaqIhKYaQJ+vTWqKJJ3MDNkVR4gLodPpzvmYNGmSt7sohPASo7c7IC6MUmCwaaEpABt2ax5KBaHTebljQviplJQU15/nz5/Ps88+y65du1zHQkJCvNGtUgoKCjCbzd7uhhAXFak0+TmbDQI4vflcmDOdnBwvdkgIPxcXF+d6hIeHo9PpXM/fffddrrzySrf2b775Jg0bNnQ9HzJkCP369ePFF18kNjaWiIgIXnjhBQoLC3n88ceJioqiXr16zJo1y+0827Zt45prriEwMJBatWrxwAMPkJ2dXeq8//nPf4iPj6dFixZV+n0QQpQmlSY/l5cHQZxecyCKU1itdfGRX4aFKE0p93UyqktQENVVgl25ciX16tXj559/Zs2aNQwbNoy1a9dy9dVX8/vvvzN//nwefPBBrr32WurVq0dOTg5JSUkkJiayYcMGjh07xvDhwxk1ahSzZ892nXfFihWEhYWxfPnyankfQlSEUjBtGrRpA9de6+3eVA0JTX4uN9c9NEWSTmYmxMd7sVNCnEtuLl5J9dnZEBxcLZeKiorirbfeQq/X06JFC6ZOnUpubi5PPfUUABMnTuSll17i119/5c477+Szzz4jPz+fjz/+mOCiPk6fPp2bbrqJl19+mdjYWACCg4P54IMPZFhO+KRff4WxYyEwEPbsgbp1vd0jz5PhOT93ZmiK4pTcQSeEl7Vp0wa9/vQ/r7GxsbRr18713GAwUKtWLY4dOwbAzp076dChgyswAXTr1g2n0+k2n6pdu3YSmITPWrtW+29eHjzzjHf7UlWk0uTnJDQJvxMUpFV9vHHdC6TX61HK/Q5Vu91eqp3JZHJ7rtPpyjzmdDordP3gaqqUCVEZ69ef/vOcOTB6NHTs6LXuVAkJTX4uNxcCS0wELx6eE8Jn6XTVNkzmabVr1yY1NRWlFLqi+VGbN2++4PO2atWK2bNnk5OT4wpGa9ascQ3vCeEPfv9d+2+LFrBrF4wfD8uXV9tUwmohw3N+TipNQlSfHj16cPz4caZOncq+ffuYMWMG33///QWfd+DAgQQEBDB48GD++usvVq1axSOPPMK9997rms8khC87ckR7GAzw5ZdgscCKFbBkibd75lleDU0zZ86kffv2hIWFERYWRmJiots/QD169Ci1sNyIESPczpGcnEzfvn0JCgoiJiaGxx9/nMLCQrc2q1evplOnTlgsFpo2bep2N0qxGTNm0LBhQwICAujatSvrS9YZfVhZE8Fl014hqkarVq145513mDFjBh06dGD9+vWMHz/+gs8bFBTEsmXLOHXqFJdddhm33XYbvXr1Yvr06R7otRBVr7jK1Latdvfc6NHa88cfhzM+kv2b8qJvv/1WLV68WO3evVvt2rVLPfXUU8pkMqm//vpLKaVU9+7d1f33369SUlJcj8zMTNfXFxYWqrZt26revXurTZs2qSVLlqjo6Gg1ceJEV5v9+/eroKAgNW7cOLVjxw719ttvK4PBoJYuXepqM2/ePGU2m9VHH32ktm/fru6//34VERGh0tLSyv1eMjMzFeDWv+owf75SX3OzUtrdnupzBqh//7tauyDEWeXl5akdO3aovLw8b3dFKPn7EFVnwgTtY+iBB7TnGRlK1aqlHZs507t9O5+KfH57NTSVJTIyUn3wwQdKKS00jR49+qxtlyxZovR6vUpNTXUdmzlzpgoLC1M2m00ppdSECRNUmzZt3L5uwIABKikpyfW8S5cuauTIka7nDodDxcfHqylTppS7394KTbNmKbWUPq7QtJQ+6tFHq7ULQpyVfEj7Fvn7EFWle3ftY6jo41sppdTbb2vHatdWqpo/GiukIp/fPjOnyeFwMG/ePHJyckhMTHQdnzt3LtHR0bRt25aJEyeSW2JRvHXr1tGuXTu3Mf+kpCSsVivbt293tendu7fbtZKSkli3bh2gbUWwceNGtzZ6vZ7evXu72pTFZrNhtVrdHt4gc5qEEEJ4k8MBf/yh/blr19PHH3wQmjeH48dh/nzv9M3TvH733LZt20hMTCQ/P5+QkBC+/vprWrduDcDdd99NgwYNiI+PZ+vWrTzxxBPs2rWLr776CoDU1NRSkySLn6empp6zjdVqJS8vj/T0dBwOR5lt/v7777P2e8qUKTz//PMX9uY94GyLWwohhBDVYft2yMnR1qxt1er0cZMJevSA3bvh6FGvdc+jvB6aWrRowebNm8nMzOSLL75g8ODB/PTTT7Ru3ZoHHnjA1a5du3bUqVOHXr16sW/fPpo0aeLFXmsr+o4bN8713Gq1kpCQUO39kEqTEEIIbyqeBH7ZZdrdcyVFRWn/TU+v3j5VFa+HJrPZTNOmTQHo3LkzGzZsYNq0abz33nul2nYtqvvt3buXJk2aEBcXV+out7S0NEDbdLP4v8XHSrYJCwsjMDAQg8GAwWAos03xOcpisViwWCwVfLeed2ZoiiADa4YTWU1C+BJ1xoKQwjvk70FUheLQ1LUrYLVq6w0UfT5GRmqv1ZTQ5HOfrE6nE5vNVuZrxYvI1alTB4DExES2bdvm2ooAYPny5YSFhbmG+BITE1mxYoXbeZYvX+6aN2U2m+ncubNbG6fTyYoVK9zmVvmqMxe31KNQGVJqEr6heBXsXG9s0CtKKSgoALRtXITwlOLaRY8mh6FePejTR7s1idOh6dQpL3XOw7xaaZo4cSLXX3899evXJysri88++4zVq1ezbNky9u3bx2effcYNN9xArVq12Lp1K2PHjuXqq6+mffv2APTp04fWrVtz7733MnXqVFJTU3nmmWcYOXKkqwo0YsQIpk+fzoQJE7jvvvtYuXIlCxYsYPHixa5+jBs3jsGDB3PppZfSpUsX3nzzTXJychg6dKhXvi8VkZfnXmkCMGSeAiK90yEhSjAYDERERLh+sQkKCnKtpC2ql9Pp5Pjx4wQFBWE0en2QQdQQ2dnanCaAy9P+B1lZ8PPPsHgx3HijDM950rFjxxg0aBApKSmEh4fTvn17li1bxrXXXsvhw4f58ccfXQEmISGB/v3780yJXQANBgOLFi3ioYceIjExkeDgYAYPHswLL7zgatOoUSMWL17M2LFjmTZtGvXq1eODDz4gKSnJ1WbAgAEcP36cZ599ltTUVDp27MjSpUv9YiXe3BzlCk3KZEJnt2Ow1pCfTlEjFA9zl6wIC+/Q6/XUr19fgqvwmD/+AKcTEhIg/Ldlp1+YPBn69iUyUvtZqymhSadkkNsjrFYr4eHhZGZmEhYWVm3XveNf+Sz4LhAAZ0ID9IcP0YdlfJvXh4CAauuGEOflcDjK3NxWVB+z2Yxe73OzMoQfe/llePJJuPPWAj5fFqXdRqfXa0nqhx/YFH0tnTpBXBykpHi7t2WryOe31Gj9nDP79NCcLqEuHD7kWnZAQpPwJcU3XQghao7iSeD9YtZqgSkmBu68E956CyZPJuqTa4GaU2mSXzn8nCNbmwTuNJjQxcQAsuyAEEKI6lEcmhKzf9D+cO21MGECmM3wyy9E7/gZAJtNm4Pr7yQ0+TmVo1WaHJZA14IYssClEEKIqvbPP9qilQYD1N1eFJqSkqBuXbjvPgCCXp/sWrupJtxBJ6HJz+nytNDkDAhy3dsZxSm8tKuLEEKIi0RxlemqlscxbP5Te1K8JdmTT4LRiO7HH+kd8htQM4boJDT5ueLQpAKDXJUmGZ4TQghR1YpD08DYH7V1mdq3h6J1FGnQAAYNAuAJ+/8BEpqELygeJC4RmmR4TgghRFUr3qS3e37RUgMllvIBYOJE0OvpmbuYjmyS4Tnhffr8orvnggLdhuckNAkhhKhK2p72iga7i+Yz9enj3qBpU7jxRgB6sUIqTcK7lAKDTQtN+mCpNAkhhKge2dnauktt2I75RAoEBsKVV5Zu2KABoP0yL6FJeJXNBoFFq4HrQoKk0iSEEKJa7N2r/ffWoKKhue7dy14csMQv8zI8J7wqN/f0vnOGEKk0CSGEqB579mj/7Ws6y9BcsRI3KEmlSXhVXh4Eok0E15eoNAWTS266zZtdE0IIUYPt2QMB5HFJtrZ4ZalJ4MUkNAlfUbLSRGAghIejijbidJ6sAT+dQgghfNLu3XAVv2B25GuLWbZqVXbDEqFJhueEV7mFpqAg0Ouxh2jVJl16DfjpFEII4ZP27IE+lBiaK/qFvRSpNAlfUSo0AY5QLTTpMyQ0CSGEqBp79sCV/Ko9KV4FvCwSmoSvyM09PaepODQ5I7UfUGNWDfjpFEII4XMyMuD4cUULdmkH2rc/e+OiubbhWLGetFd956qYhCY/VlalSRel/YBacqTSJIQQwvP27IHaHCeSDG1YrkmTszcuCk0AKj0Dpaq+f1VJQpMfKzURHDDU1ipNwfZ07P4f6oUQQviYPXugObu1Jw0auD5/ymQ0osLCAAhzppOdXQ0drEISmvxYXl7pSpOp9ukFLq1Wb/VMCCFETeUWmpo3P/8X1KA76CQ0+bGyhuf00bLApRBCiKqzZw+n5zOVIzTpatBkcAlNfqysieAlE72EJiGEEJ52IZUmCU3Ca8qa01Q86U4qTUIIITxNKW1hS1doatHi/F8kw3PCF5Q1PCeVJiGEEFXl5EmwZjhoStGOvVJpEv6izNAUeXoiuIQmIYQQnrRnDzTgEBYKwGKBhITzf1GJzyUJTcJryrp7rjjRy/CcEEIIT3Obz9SsGRgM5/8iGZ4TviA3R5WeCF5iTpM1089XERNCCOFTKjwJHNx+mZdKk/Caghw7Rhzak+KJ4EU/nEYc5B/P8lLPhBBC1ES7d1dsuQFA5jQJ3+DIyj39pLjSFBiI3RigvX7cz+ugQgghfIpbpak8d86BDM8J3+DM1kKTU28Ak8l13BakDdE5T/p5pBdCCOEzlLqw4TmpNAmvUrnafCanJUjbNLGIPVT7AdWl+3mkF0II4TPS0sCRnUsDkrUDlQhNGaecVdS76iGhyY+pnKJKU4D7ZomOMK3SpM/080gvhBDCZ+zezen1maKiIDq6fF9YdIOSASf2U/4911ZCkx/T52uhSQUEuR1XkVqqN2VJpUkIIYRnVGpoDiAwEBWgzbU1ZJ7C6cfFJglNfkyXVxSagtxDky5KS/WWHAlNQgghPKOiG/W6cS074N8LL0to8mPFlSbOCE3G2toPZ0C+DM8JIYTwjEpXmgBdibWa/PkOOq+GppkzZ9K+fXvCwsIICwsjMTGR77//3vV6fn4+I0eOpFatWoSEhNC/f3/S0tLczpGcnEzfvn0JCgoiJiaGxx9/nMLCQrc2q1evplOnTlgsFpo2bcrs2bNL9WXGjBk0bNiQgIAAunbtyvr166vkPXuKUqC3aRPB9cFnhKYY7YczpOAUDke1d00IIUQNVKnlBorVkDvovBqa6tWrx0svvcTGjRv5448/uOaaa7j55pvZvn07AGPHjuW7775j4cKF/PTTTxw9epRbb73V9fUOh4O+fftSUFDA2rVrmTNnDrNnz+bZZ591tTlw4AB9+/alZ8+ebN68mTFjxjB8+HCWLVvmajN//nzGjRvHc889x59//kmHDh1ISkri2LFj1ffNqCCbDQKLtlDRB7tPBLfUOb0qeJZ/z7kTQgjhA5zOC6s01ZTQhPIxkZGR6oMPPlAZGRnKZDKphQsXul7buXOnAtS6deuUUkotWbJE6fV6lZqa6mozc+ZMFRYWpmw2m1JKqQkTJqg2bdq4XWPAgAEqKSnJ9bxLly5q5MiRrucOh0PFx8erKVOmlLvfmZmZClCZmZkVe8OVdPKkUg8yUylQjptvcX/xs8+UArWCnurgwWrpjhBCiBosOVmpWhxXShvoUConp2InuO8+pUBN5D9q/vyq6WNlVeTz22fmNDkcDubNm0dOTg6JiYls3LgRu91O7969XW1atmxJ/fr1WbduHQDr1q2jXbt2xMbGutokJSVhtVpd1ap169a5naO4TfE5CgoK2Lhxo1sbvV5P7969XW3KYrPZsFqtbo/qlJt7erNefYj78FzJ/ef8ecKdEEII3+BWZapfv9Rc2vOqIauCez00bdu2jZCQECwWCyNGjODrr7+mdevWpKamYjabiYiIcGsfGxtLamoqAKmpqW6Bqfj14tfO1cZqtZKXl8eJEydwOBxltik+R1mmTJlCeHi465GQkFCp919ZeXmU3qy3WIkfTglNQgghLtTevRcwNAc1ZnjO66GpRYsWbN68md9//52HHnqIwYMHs2PHDm9367wmTpxIZmam63H48OFqvX7JSpNrs95iJSpN1VwAE0IIUQPt23cByw1AjQlNRm93wGw207RpUwA6d+7Mhg0bmDZtGgMGDKCgoICMjAy3alNaWhpxcXEAxMXFlbrLrfjuupJtzrzjLi0tjbCwMAIDAzEYDBgMhjLbFJ+jLBaLBYvFUrk37QFuoekslaYwsrCetAMmhBBCiMratw/uquydc+D6ZV6G5zzM6XRis9no3LkzJpOJFStWuF7btWsXycnJJCYmApCYmMi2bdvc7nJbvnw5YWFhtG7d2tWm5DmK2xSfw2w207lzZ7c2TqeTFStWuNr4onOGphIhMz/FjyO9EEIIn7Bvn2eG5yJJl0pTZU2cOJHrr7+e+vXrk5WVxWeffcbq1atZtmwZ4eHhDBs2jHHjxhEVFUVYWBiPPPIIiYmJXH755QD06dOH1q1bc++99zJ16lRSU1N55plnGDlypKsKNGLECKZPn86ECRO47777WLlyJQsWLGDx4sWufowbN47Bgwdz6aWX0qVLF958801ycnIYOnSoV74v5XHO0GQwkGsOJ6ggk4K0dCCm2vsnhBCiZlAKDux10Iw92gEZnvOOY8eOMWjQIFJSUggPD6d9+/YsW7aMa6+9FoA33ngDvV5P//79sdlsJCUl8c4777i+3mAwsGjRIh566CESExMJDg5m8ODBvPDCC642jRo1YvHixYwdO5Zp06ZRr149PvjgA5KSklxtBgwYwPHjx3n22WdJTU2lY8eOLF26tNTkcF+Sm3uOieBAXkAUQQWZFB7z4zqoEEIIrzt+HCKyDxOADWU2o2vQoOInqSF3z3k1NH344YfnfD0gIIAZM2YwY8aMs7Zp0KABS5YsOed5evTowaZNm87ZZtSoUYwaNeqcbXxJXh7EnG0iOGALjgTrAdQpP470QgghvK7k0JyuaVMwGCp+kqLQFEg+uSfzgNKfW/7A5+Y0ifI55/AcUBiq/YD6daQXQgjhdRd85xxAaCiqKGzp0v33c0lCk586X2hyhmt3Khgy/feHUwghhPft2wct+Vt70rJl5U6i06EitV/mzTmnsNs91LlqJqHJT50vNKmiUqgxS4bnhBBCVJ5HQhOgq3V6XlNGhgc65gUSmvzU+SaCG2pplSZLroQmIYQQlec2PFeZNZqK6Eqs1eSvd9BJaPJT51wRHDDGFE26y5PhOSGEEJWXuieLehzRnlxAaCq5VpO/TreV0OSnzjc8Z4nTEn1QgZ/GeSGEEF6XnQ0Rx7U755wxsa6VvSulBqzVJKHJT+XlnTs0BcRrP5wRzlPYbNXZMyGEEDXF/v2n5zPpW15AlQkkNAnvsWXbMVGoPSkjNAXGnx47zsyszp4JIYSoKTw1CRyoEQtcSmjyU47svNNPypjTpI8+PXbsr3cpCCGE8K69ez0zCRyQSpPwHme2NjSndDoo2mfPTYm7FDLSVXV2TQghRA1RVZUmCU2iWqkcLTQ5LEGg05VuUPTDacZOVlpudXZNCCFEDeG2Ua8Mz0lo8lu5WhByBpSezwRAcDB2nUlr+o+f/nQKIYTwqrxdyQSSj9Nsgcps1FuSrNMkvCZPm9OkAs8SmnQ6ckzaD2hBmp/+dAohhPAaux3CjmpDc47GzSq3UW9JJdZpktAkqpUur2hOU8DZd4rODdR+QO1pUmkSQghRMYcOQVOnNgnc2OYCJ4GDKzSFY8V60j83n5PQ5Kf0+Vpo0pWx3EAxW6BWaXKc8NNIL4QQwmtKTgLXXeh8JoCICNcfHSczLvx8XiChyQ8pBQZbUWgKPntoKgjVUr06KZUmIYQQFeOpPedcjEYcoeEA6DP883NJQpMfstkgoGizXn3I2UOTI0yrNOkzpdIkhBCiYjy63ECxSO2X+SDbKRwOz5yyOklo8kMl953TB599TpOK0H44jVb/TPRCCCG8J+XvTOqQqj3xRKUJoNbpZQfy8z1zyuokockPuYWmc1Sa9LW0SpMpRypNQgghKsa5Uxuay4+qA2FhHjmnvkRoyss7T2MfJKHJD51vs95i+traD2dgrlSahBBClJ9SEPKPNjTnbO6hoTlAF3V6rSYJTaJalKw0nSs0mWO0H85Am1SahBBClF9KCjSya5UmS3sPDc2B21pNuX64WYWEJj+UmwuBRRPBzxWaAuK1H85Qu1SahBBClF/JSeCG1p6rNJXcSkUqTaJauFWaAs8+ETyorlZpCnemU1hYHT0TQghRE1TJnXMgoUlUv/IOzwUnnP7hzMysjp4JIYSoCQ7sKaQpe7UnnrpzDiQ0iepX3tBkrF1UaSKTjJN+uCCGEEIIr7BuPYiFAuzGAKhf33MnltAkqlt5Q1PxjtJ6FNlHpNQkhBCifHS7tUngOXWbg96DUUFCk6hueXnlmwiO2UyuPhiA3CNyB50QQojyCT5cNJ+phQfnM4GEJlH9yjsRHCDLqP2A5h+VO+iEEEKc36lTUD9PC03BnTw4nwlcm/ZGkk5ervLsuauBhCY/VO7hOSDHog3R2VKl0iSEEOL89uw5vVGvqZ2HK03B2uiHASe2bLtnz10NJDT5oYqEpvxArdLkOC6VJiGEEOe3eze0Yqf2xJN3zoHb6Eih1f9Wt5TQ5IfKu7glQEGwVmlSJyU0CSGEOL8jm49TmxPaE0+u0QRgNuPUadGjMMv/JjVJaPJDFZnTVBimVZrIkOE5IYQQ52fbrFWZMiIbuobTPEanw27UPrccWVJpqpApU6Zw2WWXERoaSkxMDP369WPXrl1ubXr06IFOp3N7jBgxwq1NcnIyffv2JSgoiJiYGB5//HEKz1gCe/Xq1XTq1AmLxULTpk2ZPXt2qf7MmDGDhg0bEhAQQNeuXVm/fr3H37MnlHfDXgBnuFZpMmRKpUkIIcT5mfZqoSm/UasqOX+hqSg0ZUulqUJ++uknRo4cyW+//cby5cux2+306dOHnJwct3b3338/KSkprsfUqVNdrzkcDvr27UtBQQFr165lzpw5zJ49m2effdbV5sCBA/Tt25eePXuyefNmxowZw/Dhw1m2bJmrzfz58xk3bhzPPfccf/75Jx06dCApKYljx45V/TeigvKzC7FQoD05T2gqvr3TlCWVJiGEEOemFESm7gDA2K51lVyj0Kx9bjlz/C80Gb158aVLl7o9nz17NjExMWzcuJGrr77adTwoKIi4uLgyz/HDDz+wY8cOfvzxR2JjY+nYsSOTJ0/miSeeYNKkSZjNZt59910aNWrEa6+9BkCrVq349ddfeeONN0hKSgLg9ddf5/7772fo0KEAvPvuuyxevJiPPvqIJ598sirefqW5pfPzhCZDtFZpCsiVSpMQQohzO34cmhRolabwy6um0uQwa5UmlSvDcxcks2iDtKii6kixuXPnEh0dTdu2bZk4cSK5Jb7R69ato127dsTGxrqOJSUlYbVa2b59u6tN79693c6ZlJTEunXrACgoKGDjxo1ubfR6Pb1793a18SVuoSkg4JxtjTHa9zIgXypNQgghzm3PHmiNVmkydaiaSpPDUvTLfq5UmirN6XQyZswYunXrRtu2bV3H7777bho0aEB8fDxbt27liSeeYNeuXXz11VcApKamugUmwPU8NTX1nG2sVit5eXmkp6fjcDjKbPP333+X2V+bzYbNZnM9t1qtlXznlVAUGh2WQAw63TmbmmO1SlNIgVSahBBCnNvBrVa6cUR70qpqKk3KolWadHn+V2nymdA0cuRI/vrrL3799Ve34w888IDrz+3ataNOnTr06tWLffv20aRJk+rupsuUKVN4/vnnvXJtg604NAVhOE/bwLpapSm0UCpNQgghzs36e9Gdc0F1iChavdvTVEDRXd9+uI+KTwzPjRo1ikWLFrFq1Srq1at3zrZdu3YFYO/evQDExcWRlpbm1qb4efE8qLO1CQsLIzAwkOjoaAwGQ5ltzjaXauLEiWRmZroehw8fLue7vXDGAi00OQPOMwkcCEnQKk2R6hROZ5V2SwghhJ9z7tBCk7Vu1VSZAFTRXFy9TUJThSilGDVqFF9//TUrV66kUaNG5/2azZs3A1CnTh0AEhMT2bZtm9tdbsuXLycsLIzWrVu72qxYscLtPMuXLycxMREAs9lM586d3do4nU5WrFjhanMmi8VCWFiY26O6GAq0HzRVntBUX6s0BZFH1vH8Ku2XEEII/xZ8SJvP5GhRNfOZANf6gnqb/w3PeTU0jRw5kk8//ZTPPvuM0NBQUlNTSU1NJa+oZLdv3z4mT57Mxo0bOXjwIN9++y2DBg3i6quvpn379gD06dOH1q1bc++997JlyxaWLVvGM888w8iRI7FYLACMGDGC/fv3M2HCBP7++2/eeecdFixYwNixY119GTduHP/973+ZM2cOO3fu5KGHHiInJ8d1N50vMdm1HzRXifMcAmLCcKLNe8pKliE6IYQQZVMKYk5qlaagzlUXmnTB2i/8Bj+sNKG8CCjzMWvWLKWUUsnJyerqq69WUVFRymKxqKZNm6rHH39cZWZmup3n4MGD6vrrr1eBgYEqOjpaPfbYY8put7u1WbVqlerYsaMym82qcePGrmuU9Pbbb6v69esrs9msunTpon777bdyv5fMzEwFlOpbVRgS/pVSoLI7XlGu9id1UUqB2vnl9irumRBCCH919KhSe2msFKiCH1ZV2XWO3f6QUqBeC3m2yq5RERX5/PbqRHCl1DlfT0hI4KeffjrveRo0aMCSJUvO2aZHjx5s2rTpnG1GjRrFqFGjzns9bzMXFm+hcv7hOYAsYyRR9lPkHZE76IQQQpRt3195XMEBoOqWGwDQh2ifXUa7/1WafGIiuKgYV2g632rgRbLN2rymgjQZnhNCCFG247/uQo/CaoqC2rWr7DqGEG1qSfFUE38iockPmQqL0nlw+UJTXoAWmuzHpNIkhBCibPl/apPAj0e3hvOsAXghjEWhyezM87u7uiU0+RmlwOLQ0rku6PwTwQFsQdqyA84TUmkSQghRNuMebRJ4XsOqW24AwBim/cIfSB75fnZTt4QmP+NwQCBaaNKXs9JkDy3aluaUVJqEEEKULSJFqzQZqmij3mKmMO0X/iBy/W59SwlNfsZu137Q4PRkuvNxhGuVJn2mVJqEEEKU5nRCvayq3ai3mCH0dKVJQpOoUgUFFQ9NKlKrNBmtUmkSQghR2pGDdpqqPQDE9KjaSlPx4pZSaRJVzm7X0jmAPqR8c5r0UVqlyZwjlSYhhBClHflpLyYKydGFYGx47u3MLliQVJpENXGrNJVzTpOhtlZpCsiTSpMQQojSrL9p85mOhLWq0jvnAKk0iepTMjSVd50mc5xWaQqySaVJCCFEaY7t2nymjPgqHpoDV2iSSpOociUngpc3NAXGa5WmMLtUmoQQQpQWdLBoo97mVTsJXLvYRTY8t3//fk/3Q5RTQcHpOU3Faf18gupqlaYwZ7q20JMQQghRQswJrdIU0Kn6Kk0XzfBc06ZN6dmzJ59++in5/rYylZ+z2yGAou95OUNTcELR3XM4UNasquqaEEIIP+QocNDQ9jcAta+u3kpTrp/tpFKp0PTnn3/Svn17xo0bR1xcHA8++CDr16/3dN9EGQoKwEyB9sRsLtfXRNQJJB8LALn/yBCdEEKI01LWHSSQfPKxUOeKRlV/waJf+E0Ukp9lr/rreVClQlPHjh2ZNm0aR48e5aOPPiIlJYUrr7yStm3b8vrrr3P8+HFP91MUsdsrHpqCguAUWrUp5x+ZDC6EEOK04z9rQ3MHLS0wmA1Vf8ESoySFWf41PndBE8GNRiO33norCxcu5OWXX2bv3r2MHz+ehIQEBg0aREpKiqf6KYpUptKk04HVoM1rkkqTEEKIkvI2aUNzx2tVw9AcQECA649260UUmv744w8efvhh6tSpw+uvv8748ePZt28fy5cv5+jRo9x8882e6qcoUpnQBJBl0ipN+SlSaRJCCFHCnt0A5DdoUT3X0+koMGrVJkeWf01qMlbmi15//XVmzZrFrl27uOGGG/j444+54YYb0Ou1DNaoUSNmz55Nw4YNPdlXQeWG5wDyLJGQDwVpUmkSQghxWshRLTQZWjevtmsWGIMwF+bhyPavSlOlQtPMmTO57777GDJkCHXq1CmzTUxMDB9++OEFdU6UVtlKU15QFGSC47hUmoQQQpwWm6mFpojLqi80FZoCIR+c2RdBpWnPnj3nbWM2mxk8eHBlTi/OobKVJnuwNqdJnZJKkxBCCE3BySxiHdr84/juzartug6ztuyAyvWvSlOl5jTNmjWLhQsXljq+cOFC5syZc8GdEmdXYFOVC01h2pwmXbpUmoQQQmiO/qQVQY7rahPbIqLaruuwaHOaVI5/VZoqFZqmTJlCdHR0qeMxMTG8+OKLF9wpcXaF+YXoKVrVuwKhSYVrlSaDVSpNQgghNCfXaUNzR4KaV/k+vSU5i0KTvy0JXqnQlJycTKNGpRfAatCgAcnJyRfcKXF2jryC008qEJp0tbRKkylbKk1CCCE0+du0SlN6TPXNZwJwBhTtnXoxhKaYmBi2bt1a6viWLVuoVavWBXdKnF1lQ5MhWqs0BeRKpUkIIYTGsE+rNBU2qt7QRIBWadLlXQTDc3fddRePPvooq1atwuFw4HA4WLlyJaNHj+bOO+/0dB9FCc78EqHJWP55/MYYrdIUmC+VJiGEEJrwNC00mdtWb2hSRfvP6Wz+VWmq1N1zkydP5uDBg/Tq1Qtj0Qe30+lk0KBBMqepihVXmux6M6YKDEBb4rRKU2jBySrplxBCCD+jFHWytdAUdXn1hiZd0VYqRpt/VZoqFZrMZjPz589n8uTJbNmyhcDAQNq1a0eDBg083T9xBmXTQpPDYMZUga8LqB8DQLAzWxtDLrH3jxBCiItP9sETRKgMnOio171JtV5bF6xVmvQFF0GlqVjz5s1p3ryax0EvcsXDcw5D+eczAYTWC8eGGQsFkJYGslq7EEJc1I6u3k1z4Ig+gYT46v1FWh9cVGm6GEKTw+Fg9uzZrFixgmPHjuF0Ot1eX7lypUc6J0orWWmqiMgoHanE0YBkVGoaOglNQghxUctYrw3NpYY2J6Gar60P0UKTyX4RDM+NHj2a2bNn07dvX9q2bYuuOhd3uMidrjRZKvR1tWvDVmJpQDI5+1IJubwqeieEEMJf2Hdoyw1Y61T/iJEhVBueMxVeBJWmefPmsWDBAm644QZP90ech6vSZKxYpSkgAE4Y46AQsvelEVIVnRNCCOE3TAe1SpOzSfWHJmNRpcnsyEUpqnVhzQtRqSUHzGYzTZs29XRfRHkUaKHJWcHQBJAdFAtA/sFUj3ZJCCGE/4k6roWmwA7VH5pM4VqlKZA8bLZqv3ylVSo0PfbYY0ybNg2llKf7I86juNKkKhGacsPiACg8kubRPgkhhPAvyuGkbp42PFe7mxdCU5hWaQoi168WBa/U8Nyvv/7KqlWr+P7772nTpg0mk/vN71999ZVHOifKcAGVpsJasfAP6NKk0iSEEBez9G3/EEU+BZiof1X1LxdkDNVCUyB55OVBZGS1d6FSKlVpioiI4JZbbqF79+5ER0cTHh7u9iivKVOmcNlllxEaGkpMTAz9+vVj165dbm3y8/MZOXIktWrVIiQkhP79+5OW5l4pSU5Opm/fvgQFBRETE8Pjjz9OYWGhW5vVq1fTqVMnLBYLTZs2Zfbs2aX6M2PGDBo2bEhAQABdu3Zl/fr15f+mVJei0KRMFQ9NKlarNBlPSaVJCCEuZik/aUNzycbGBIZe0OpDlRN0engu149uoKvUd2rWrFkeufhPP/3EyJEjueyyyygsLOSpp56iT58+7Nixg+DgYADGjh3L4sWLWbhwIeHh4YwaNYpbb72VNWvWANryB3379iUuLo61a9eSkpLCoEGDMJlMrtXJDxw4QN++fRkxYgRz585lxYoVDB8+nDp16pCUlATA/PnzGTduHO+++y5du3blzTffJCkpiV27dhETE+OR9+sJOntRpakSoclQVwtNgZlSaRJCiIuZdaMWmo5HNMcrM5QD/XN4DlVJdrtdLV++XL377rvKarUqpZQ6cuSIysrKquwp1bFjxxSgfvrpJ6WUUhkZGcpkMqmFCxe62uzcuVMBat26dUoppZYsWaL0er1KTU11tZk5c6YKCwtTNptNKaXUhAkTVJs2bdyuNWDAAJWUlOR63qVLFzVy5EjXc4fDoeLj49WUKVPK1ffMzEwFqMzMzAq+64p5td1spUAdbnd9hb927qTdSoHKNYZUQc+EEEL4i18uG6MUqOUdHvNOB9auVQrUXhqr33/3TheKVeTzu1LDc4cOHaJdu3bcfPPNjBw5kuPHjwPw8ssvM378+EoHuMzMTACiorTNZTdu3Ijdbqd3796uNi1btqR+/fqsW7cOgHXr1tGuXTtiY2NdbZKSkrBarWzfvt3VpuQ5itsUn6OgoICNGze6tdHr9fTu3dvV5kw2mw2r1er2qA66wqLhOXPFK00hTYsqTYXZkJPj0X4JIYTwH4GHtUoT3trVw08rTZUKTaNHj+bSSy8lPT2dwBJ7mN1yyy2sWLGiUh1xOp2MGTOGbt260bZtWwBSU1Mxm81ERES4tY2NjSU1NdXVpmRgKn69+LVztbFareTl5XHixAkcDkeZbYrPcaYpU6a4zeNKSKie9VSLh+eoxPBcVP0Qcin6+0qTeU1CCHGxij6lhaaQTl4KTSXmNNX40PTLL7/wzDPPYD6j2tGwYUOOHDlSqY6MHDmSv/76i3nz5lXq66vbxIkTyczMdD0OHz5cLdfV24sWtLBUPDTFxmlbqQBwljAohBCiZnPmF1C34AAAsVdJpakiKhWanE4nDoej1PF//vmH0NDQCp9v1KhRLFq0iFWrVlGvXj3X8bi4OAoKCsjIyHBrn5aWRlxcnKvNmXfTFT8/X5uwsDACAwOJjo7GYDCU2ab4HGeyWCyEhYW5PaqDvmh4jkoMz8XGQhpaNc2WLJUmIYS4GKX9dgAjDrIJJqFLHe90oig0mbGTn1M6T/iqSoWmPn368Oabb7qe63Q6srOzee655yq0tYpSilGjRvH111+zcuVKGjVq5PZ6586dMZlMbkN+u3btIjk5mcTERAASExPZtm0bx44dc7VZvnw5YWFhtG7d2tXmzGHD5cuXu85hNpvp3LmzWxun08mKFStcbXyFvmh4TleJ0BQaCsf0WgjM3iuVJiGEuBgd+7VouQFLM4wmL+1fUjQ8B1CQ6T+lpkotOfDaa6+RlJRE69atyc/P5+6772bPnj1ER0fz+eefl/s8I0eO5LPPPuN///sfoaGhrvlD4eHhBAYGEh4ezrBhwxg3bhxRUVGEhYXxyCOPkJiYyOWXazvO9unTh9atW3PvvfcydepUUlNTeeaZZxg5ciQWi7ap7YgRI5g+fToTJkzgvvvuY+XKlSxYsIDFixe7+jJu3DgGDx7MpZdeSpcuXXjzzTfJyclh6NChlfkWVRmDo6jSVInhOZ0OsoJiIRvyDkqlSQghLkY5m7TQdLKWl4bmQNsQtUihNRf8ZEfUSoWmevXqsWXLFubNm8fWrVvJzs5m2LBhDBw40G1i+PnMnDkTgB49ergdnzVrFkOGDAHgjTfeQK/X079/f2w2G0lJSbzzzjuutgaDgUWLFvHQQw+RmJhIcHAwgwcP5oUXXnC1adSoEYsXL2bs2LFMmzaNevXq8cEHH7jWaAIYMGAAx48f59lnnyU1NZWOHTuydOnSUpPDva14eE5fidAEkBcWB9lQ+I9UmoQQ4qK0R9s+Jb++F0OTXk+BIQCzI5/CrBpeaQIwGo3cc889F3RxVY696wICApgxYwYzZsw4a5sGDRqwZMmSc56nR48ebNq06ZxtRo0axahRo87bJ28qrjTpKhmaCqJi4Shy95wQQlykgo9qlSZDSy+GJsBuDMTsyMeR5T9LglcqNH388cfnfH3QoEGV6ow4v+LQpA+oXGhSMUVbqZyUSpMQQlyMYjO00BR+mZdDkykIbOk4smt4pWn06NFuz+12O7m5uZjNZoKCgiQ0VaELDU2GeG24MSBTKk1CCHGxyU0+QZxDWxoovmcLr/al0KRN5/Gn0FSpu+fS09PdHtnZ2ezatYsrr7yyQhPBRcUZnEXDcwGWSn29pYFWaQrNSYVyDI8KIYSoOfZ9rm1Ev8/QnLiWEV7ti8OshSaV4z/Dc5UKTWVp1qwZL730UqkqlPAsY1FoMgRWrtIU0kSrNFkceZCd7bF+CSGE8H2ZP/wOwOG6l6Pz0moDxRwWbdkBlVvDK01nYzQaOXr0qCdPKUpQ6nRoquzwXK36wWQV39opq4ILIcRFJWibFpoKO3f1ck/AadEqTbo8/6k0VWpO07fffuv2XClFSkoK06dPp1u3bh7pmCjN4QAzF1ZpKl4VPJRs7Q66Zs082UUhhBA+SjkVjU5ow3O1b/R+aFIBRQtc+tE+KpUKTf369XN7rtPpqF27Ntdccw2vvfaaJ/olymC3eyY07SKOpuyj8J/Uyq85IYQQwq8cXrmH+iqdPAJocXt7b3cHVbSuoz6/hleanE6np/shyqGg4HRoMgZVLjRFRcGxov3ncvanEe6x3gkhhPBlh7/4jfrAnpBOtA81ebs76IpDk81/Kk0endMkqlbJ0FTZSpPBAJmB2h10eQdkTpMQQlwsCtdo85lONfP+0Bzg2n9OX+A/oalSlaZx48aVu+3rr79emUuIMpQcnqvsRHCAvLBYyAP7EVmrSQghLha192mhydLdN0KTLlirNBltNXx4btOmTWzatAm73U6LFtriWLt378ZgMNCpUydXO52372esYUpWmjBXPjTZIuMgDbl7TgghLhI5J/JolrcFgIZ3+EZoMoRolSajvYZXmm666SZCQ0OZM2cOkZGRgLbg5dChQ7nqqqt47LHHPNpJoSlZabqQ0KRiYuFvMJ6QSpMQQlwMds3bRCcKOaaPpc7lDbzdHQAMIVqlyWT3n0pTpeY0vfbaa0yZMsUVmAAiIyP5v//7P7l7rgoVFIAFm/bkAkKToa42pykgQypNQghxMTj1vTY0dyiuK15f1bKIIVSrNJkK/afSVKnQZLVaOX78eKnjx48fJysr64I7JcrmqUqTOUG7ey44J022UhFCiIuAebMWmmwdfWNoDsAYqlWazI5cv/koqlRouuWWWxg6dChfffUV//zzD//88w9ffvklw4YN49Zbb/V0H0URT81pKt5Kxey0QWamJ7omhBDCRykFDVK10BR1ne+EJlOYFpoCyaOgwMudKadKzWl69913GT9+PHfffTd2u107kdHIsGHDeOWVVzzaQXGap0JTdEIgmYQRjlVbFTwiwjMdFEII4XMO/JZGY+dBnOhocudl3u6OiylcG54LJI+8PLBUbh/6alWpSlNQUBDvvPMOJ0+edN1Jd+rUKd555x2Cg4M93UdRxFPDczExkIo2r0nuoBNCiJrt4HytynQwsBWW2mFe7s1pxcNzQeT6zU4qF7S4ZUpKCikpKTRr1ozg4GCUvwxK+ilPVZqK958DcB6V0CSEEDWZ7WctNJ1o7DtDcwC6YPdKkz+oVGg6efIkvXr1onnz5txwww2kpKQAMGzYMFluoArZ8x0YKNrC5gJCU+3apytNeQdl2QEhhKjJIvdoocnQ7XIv9+QMgRdJpWns2LGYTCaSk5MJKloGHWDAgAEsXbrUY50T7gpzS8yUu4DQZLFAhlmrNMlWKkIIUXNlZTpplb0BgHq3+ValqXgbFX+qNFVqIvgPP/zAsmXLqFevntvxZs2acejQIY90TJTmzC8Rmi5wxlxOWBycAPs/UmkSQoiaavuXf3M5VnJ1QcT2bOPt7rgLPH33nL+EpkpVmnJyctwqTMVOnTqFxR+mv/spt0qT6cJ2qC6I1CpNSiaCCyFEjXXsu6JJ4NGXgrFSdZKqc7EMz1111VV8/PHHruc6nQ6n08nUqVPp2bOnxzon3DnytNBk15kueEVXZ21tTpNBtlIRQogaS/fTagDsnXxsPhO4hucCsJGX4/RyZ8qnUrFz6tSp9OrViz/++IOCggImTJjA9u3bOXXqFGvWrPF0H0WR4uG5Qr2ZC6szgSFeqzTJVipCCFEz7d7p4PL0JQA0fOh6L/emDEWVJgBbRh7g+0sWVarS1LZtW3bv3s2VV17JzTffTE5ODrfeeiubNm2iSZMmnu6jKFJcaXIYKj8JvJi5vlZpCs45Bk7/SPhCCCHK79fX11ObE2QZIwi/oZu3u1NaidBkt/rH+FyFK012u53rrruOd999l6effroq+iTOQtlOV5ouVHCjGACMTjukp0OtWhd8TiGEEL7D/s0iAI53vo7QC5wHWyUMBux6MyZnAYXWXG/3plwqXGkymUxs3bq1KvoizqN4eM4Tlaba9SycIlJ7kibzmoQQoib56y9IPPEdALH33ejl3pxdgUGrNhVm+UelqVLDc/fccw8ffvihp/sizqO40uSJ0CRbqQghRM219L1DtGcbDvQE97/O2905K7tJmwzuyPaP0FSpieCFhYV89NFH/Pjjj3Tu3LnUfnOvv/66Rzon3BVXmpweCE2xsZBMLK3ZKZUmIYSoQZSC7PmLATjZohsxPjz9otCoVZqc2f4xPFeh0LR//34aNmzIX3/9RadOnQDYvXu3WxvdBd4KL87OVWkyeiY0rS+qNNkOpSKrawkhRM2weTN0Oa7NZwof6LtDcwCFZq3S5MypgZWmZs2akZKSwqpVqwBt25S33nqL2NjYKumcOIPNBoDTA6EpOBiOG+qAA/L2HpHQJIQQNcRXn+TwNCsBsPT37dDkMGuVJpXjH5WmCs1pUkq5Pf/+++/JycnxaIfE2RVXmjwRmnQ6OBXeCADH3v0XfD4hhBDepxSkzf2RAGxkxzaGVq283aVzcgQU7S7iJ0uCV2oieLEzQ1RF/fzzz9x0003Ex8ej0+n45ptv3F4fMmQIOp3O7XHdde4T2k6dOsXAgQMJCwsjIiKCYcOGkZ2d7dZm69atXHXVVQQEBJCQkMDUqVNL9WXhwoW0bNmSgIAA2rVrx5IlSy7ovVUFnV0LTcoDoQkgs7a2ppbxkIQmIYSoCTZsgMuOaUNzlltvvODdI6qashSt1VQTQ1NxcDnzWGXl5OTQoUMHZsyYcdY21113HSkpKa7H559/7vb6wIED2b59O8uXL2fRokX8/PPPPPDAA67XrVYrffr0oUGDBmzcuJFXXnmFSZMm8f7777varF27lrvuuothw4axadMm+vXrR79+/fjrr78q/d6qgiooqjSZPBOa8us0BiAwZZ/264kQQgi/tmCekxvRQpPpFt8emgNQAVpo0uX5x/BcheY0KaUYMmSIa1Pe/Px8RowYUeruua+++qpc57v++uu5/vpzL+1usViIi4sr87WdO3eydOlSNmzYwKWXXgrA22+/zQ033MCrr75KfHw8c+fOpaCggI8++giz2UybNm3YvHkzr7/+uitcTZs2jeuuu47HH38cgMmTJ7N8+XKmT5/Ou+++W673Uh10RaFJeSg00bAhTnSYbdlw4gTUru2Z8wohhKh2TifsnPsndUjFHhCC6eqrvd2l81JF+8/pbDWw0jR48GBiYmIIDw8nPDyce+65h/j4eNfz4ocnrV69mpiYGFq0aMFDDz3EyZMnXa+tW7eOiIgIV2AC6N27N3q9nt9//93V5uqrr8ZsPh00kpKS2LVrF+np6a42vXv3drtuUlIS69at8+h7uWB2z4amOo0COEJd7cm+fR45pxBCCO9Yu/b00Jz+uiSw+P4tPrqirVQM+TWw0jRr1qyq6keZrrvuOm699VYaNWrEvn37eOqpp7j++utZt24dBoOB1NRUYmJi3L7GaDQSFRVFatGCjampqTRq1MitTfHdfqmpqURGRpKamlrqDsDY2FjXOcpis9mwFd3NBtowYFUrrjThodDUtCnsowkJ/AP798PlPrgLthBCiHKZPx8GFw3NGW72/aE5AIK1SpO+wD8qTZVa3LK63Hnnna4/t2vXjvbt29OkSRNWr15Nr169vNgzmDJlCs8//3y1XlNfWBSazJ4JTU2awHYa04OfpNIkhBB+zOGA9Z/v4202onQ6dOeZ+uIr9EFapclY4B+Vpgu6e666NW7cmOjoaPbu3QtAXFwcx44dc2tTWFjIqVOnXPOg4uLiSDtjxevi5+drc7a5VAATJ04kMzPT9Th8+PCFvblycN0956GSa5MmWqUJoHC33EEnhBD+6qef4M6T0wFQfa7TVjD2A/oQrdJktPtHpcmvQtM///zDyZMnqVOnDgCJiYlkZGSwceNGV5uVK1fidDrp2rWrq83PP/+M3W53tVm+fDktWrQgMjLS1WbFihVu11q+fDmJiYln7YvFYiEsLMztUdU8XWmqVQtSA7U76Gw7pdIkhBD+6ptPsriPjwDQjx3t5d6UnyFEqzSZJDSdX3Z2Nps3b2bz5s0AHDhwgM2bN5OcnEx2djaPP/44v/32GwcPHmTFihXcfPPNNG3alKSkJABatWrFddddx/3338/69etZs2YNo0aN4s477yQ+Ph6Au+++G7PZzLBhw9i+fTvz589n2rRpjBs3ztWP0aNHs3TpUl577TX+/vtvJk2axB9//MGoUaOq/XtyLrqi0KTzUGjS6cBeX6s06Q9KpUkIIfyR3Q5BC2YTjpWchJbQp4+3u1RuxlAtNJkL/WN4DuVFq1atUkCpx+DBg1Vubq7q06ePql27tjKZTKpBgwbq/vvvV6mpqW7nOHnypLrrrrtUSEiICgsLU0OHDlVZWVlubbZs2aKuvPJKZbFYVN26ddVLL71Uqi8LFixQzZs3V2azWbVp00YtXry4Qu8lMzNTASozM7Pi34hy+jRmrFKg9t7+pMfOed+/jiulrdKkVG6ux84rhBCieny/2KF20UwpUIVvzfB2dyrk1KsfKgVqEX291oeKfH57dSJ4jx49zrmq+LJly857jqioKD777LNztmnfvj2//PLLOdvcfvvt3H777ee9njcVD8/pLB5apwmIbV2LzG/DCMcKBw/6/JL7Qggh3O18/XuuYw+55nCChg7ydncqxBSmVZoCycVuB5PJyx06D7+a03SxMzg8H5qaNNWxH21ek9xBJ4QQ/sVmgw4/TQPg5C3DISTEyz2qGHOENhE8kDy/2ElFQpMfKQ5N+gAPhqYSd9CxX+Y1CSGEP1nz3x1cU7gcB3rqvuhb83DLo7jSFESuhCbhWVVRaWraFFelyblHKk1CCOFPnNPeBmB7k5vRN27o3c5Ugi6oeHhOKk3Cw4zOokpToOdCU3w8JBu1SlPeDqk0CSGEv8g9kk7i3o8BMIzzn2UG3ASdHp7L9YMb6CQ0+RFDUWgyeHB4Tq+HvDpapUntlUqTEEL4i31PvE8wuew0taf1CN/fnLdMgTI8J6qIyantdefJOU0A+mZapSkg5YC2TbYQQgjflpZG4/kvArC19zh0ep2XO1RJQTIRXFSR4uE5gweH5wDC2iRQiAGjPR9SUjx6biGEEJ6X8eAEggutbOBSLnntHm93p/JclaY88nLPvgSRr5DQ5CeUApOqmtDUqLmJQzTQnsgddEII4dt+/ZWI/32MEx0Lu8+geSuDt3tUeUWVJgBbZr4XO1I+Epr8hMMBZrTQZAzybGhq2rTEsgOyVpMQQviuwkLsD44E4AOGc/N/uni5QxeoqNIEYLf6/vichCY/UVBwOjR5utLUpMnpZQfUPqk0CSGEz3rnHUw7tnKSKL6+9EW6dfN2hy6Q0UihTtucxJ7p+7fPSWjyE3Z71VWaGjSA/Tqt0pS/XSpNQgjhk1JTUf/+NwBP8SL3T4z2coc8w2bQhugKs6TSJDykZKXJ06HJbIbs2lqlyb5bKk1CCOGTnngCnVWb/L2q8XBuvtnbHfIMu1EboivMkkqT8JCSlSZPLzkA4GykVZpMyVJpEkIIn7NtG3ysTf5+mHcY85gBgx/P/y7JbtIqTY5sqTQJDylZacJi8fj5A1prlabArOOQleXx8wshhLgAH34IwFfcyoFalzFkiHe740mFJq3SpLKl0iQ8pGSlCbPnK031WodxnKLxcVl2QAghfEdBAerTTwH4kGE8/LDbnfp+r9AslSbhYW6VpioITSXvoJPQJIQQPuS779CdPMk/1OUncx9GjfJ2hzxLWbRKk4Qm4THVEZpkrSYhhPA96qOPAJjDYO6730BMjJc75GEqoGh4Lsf3h+eM3u6AKB+7zYmJQu1JFYWmb4sqTbYd+/D8rCkhhBAVduQILF0KwOfmISx/2sv9qQIqUBuec+ZIpUl4iD3XfvpJFYSm4GA4EVa0VtNOGZ4TQghfoOZ8jM7p5GeuImlUM+rU8XaPPE8XVLQqeK7vV5okNPkJR17B6SdVEJoACutrlSb9ARmeE0IIr1OKnBmzAJhrvo8nnvByf6qILqRoVnu+VJqEhxTmlghNJlOVXMPUUqs0BR0/BIWFVXINIYQQ5eP8ZQ0hR/eQRQh1Hrmtxs1lKmYI1ipNeglNwlOKK02FGKiqFc2i2sZjJRSDsxB27KiSawghhCifQ89pE8C/Md3Bo0+FeLk3VccQqlWajLYcL/fk/CQ0+YniSlOhvmqG5gCaNNPzO121J2vXVtl1hBBCnJsjM5uYnxYAYL/3PqKivNyhKmSIDAXAXOD7CytLaPITrkqTrupCU9OmsJYrtCfr1lXZdYQQQpzb7+MXEqxy2KtvTv/XrvB2d6qUqSg0BdizUMrLnTkPCU1+QuXbgCquNDU5HZqca6TSJIQQ3mCz2oie8yoA/1w7lPAInZd7VLXMtbTQFKKyKCg4T2Mvk9DkJ1yVJkPVhaaoKEiO04bn9Pv2wrFjVXYtIYQQZdt6y3M0t+/guD6Gy96/39vdqXKWaC00hZJFdraXO3MeEpr8hDO/6uc06XTQKjGCv2ijHZAhOiGEqFbWZevotPIVADY/9D7B9Wt5uUdVzxAhoUl4WHFoclRhpQng8stlXpMQQnhFbi62uwZjwMm3EfdyzbSbvd2j6hEqoUl4mLJ5ITTJHXRCCFFtrKOeonb6Ho4QT+B706pqdRnfUyI0Zfn4DXQSmvxEcWhyVnFo6twZ1usTtWuu34DPz8oTQoiaYPVqwmZNA+DtDh/S+/ZIL3eoGkmlSXiaa3jOWLVb6QYHQ0D75pwkCp0tHzZvrtLrCSHERS8rC9vAoQC8z/3c8dF16Gr2DXPuikJTEHnkZPr2bhQSmvxFUcXHaazaShNA18t1MkQnhBDVRI17DMvRgxykARsGvEanTt7uUTUrCk0A+Sd8u9QkoclPuIbnqiE0yWRwIYSoJosWofvgvwA8YJrNMy+HnucLaiCLBbtO21O14KRvT2ryamj6+eefuemmm4iPj0en0/HNN9+4va6U4tlnn6VOnToEBgbSu3dv9uzZ49bm1KlTDBw4kLCwMCIiIhg2bBjZZwyKbt26lauuuoqAgAASEhKYOnVqqb4sXLiQli1bEhAQQLt27ViyZInH3+8FsVdvaFpH0bwmqTQJIUTVOHGCwqHDAXidsXR7ugcNGni5T15iM2lhsTBdQtNZ5eTk0KFDB2bMmFHm61OnTuWtt97i3Xff5ffffyc4OJikpCTy8/NdbQYOHMj27dtZvnw5ixYt4ueff+aBBx5wvW61WunTpw8NGjRg48aNvPLKK0yaNIn333/f1Wbt2rXcddddDBs2jE2bNtGvXz/69evHX3/9VXVvvqKKKk3KVPWhqVkz2BtxGYUY0P3zDxw+XOXXFEKIi4pSOB4YgfFEGttpzfdXvsjTT3u7U95js/hHaEL5CEB9/fXXrudOp1PFxcWpV155xXUsIyNDWSwW9fnnnyullNqxY4cC1IYNG1xtvv/+e6XT6dSRI0eUUkq98847KjIyUtlsNlebJ554QrVo0cL1/I477lB9+/Z160/Xrl3Vgw8+WO7+Z2ZmKkBlZmaW+2sq4vPEaUqB+qvdnVVy/jNdd51SG+isFCg1b161XFMIIS4an3yiFKgCjKpn+Eb1zz/e7pB3HY1uqxSod29bXu3Xrsjnt8/OaTpw4ACpqan07t3bdSw8PJyuXbuyrmiezbp164iIiODSSy91tenduzd6vZ7ff//d1ebqq6/GbD5doUlKSmLXrl2kp6e72pS8TnGbdeeYz2Oz2bBarW6PKlVQfZUmgK5dTw/RybwmIYTwoMOHsT84CoDneY7H5naibl0v98nLCgO1SpOy+nalyWdDU2pqKgCxsbFux2NjY12vpaamEhMT4/a60WgkKirKrU1Z5yh5jbO1KX69LFOmTCE8PNz1SEhIqOhbrBCdvXpDkyxyKYQQVaCggPzb78WUm8lvdMU+7kn69vV2p7zPURSafH11S58NTb5u4sSJZGZmuh6Hq3jeT3Fowlw9oalLl9OhSW3aBLm51XJdIYSosZRCDR9OwO8/kUUIr7b7mMlTjN7ulU9QwSEA6LIlNFVKXFwcAGlpaW7H09LSXK/FxcVx7Ngxt9cLCws5deqUW5uyzlHyGmdrU/x6WSwWC2FhYW6PqqQrrN7QFBUFgc3rc4R4dIWF8Mcf1XJdIYSosZ57Dt0nn1CIgXssX/DK/5pX1z/pPk+FaJUmfY6Epkpp1KgRcXFxrFixwnXMarXy+++/k5iozbVJTEwkIyODjRs3utqsXLkSp9NJ165dXW1+/vln7Ha7q83y5ctp0aIFkZGRrjYlr1Pcpvg6vkBfzaEJtEUuXfOaZIhOCCEq78MPYfJkAB7kPTpNTKJRIy/3yYfowrTQZMyT0HRW2dnZbN68mc1FW3UcOHCAzZs3k5ycjE6nY8yYMfzf//0f3377Ldu2bWPQoEHEx8fTr18/AFq1asV1113H/fffz/r161mzZg2jRo3izjvvJD4+HoC7774bs9nMsGHD2L59O/Pnz2fatGmMGzfO1Y/Ro0ezdOlSXnvtNf7++28mTZrEH3/8wahRo6r7W3JW+moengNtXtMaumlPfvqp2q4rhBA1yrJl8OCDALzAv1kaP4zx473cJx+jD9dCk8nm26HJq0sOrFq1SgGlHoMHD1ZKacsO/Pvf/1axsbHKYrGoXr16qV27drmd4+TJk+quu+5SISEhKiwsTA0dOlRlZWW5tdmyZYu68sorlcViUXXr1lUvvfRSqb4sWLBANW/eXJnNZtWmTRu1ePHiCr2Xql5y4H9xDygFatsdL1TJ+cvy559KtWWrUqCcgYFK5edX27WFEKJG2LRJqZAQpUB9ZrpXgVPNnu3tTvmeww+/qBSo+cFDq/3aFfn81imllBczW41htVoJDw8nMzOzSuY3LYoZyo3HZ7N90Eu0mfOEx89flsJCCAtV7MuPpw6psHIl9OxZLdcWQgi/l5yslexTUthV9xraHfmedp3MbNgAep+dHOMdqc9MJ+4/j/A/023cXLCwWq9dkc9v+WvzE4aiOU26ahyeMxrhsi46fqRoDavly6vt2kII4dcyMuCGGyAlhfxmbUlM+Qo7Zl57TQJTWUxR2vBcYKFvD8/JX52fMDi00KQPqN5bLbp2heVcqz354YdqvbYQQvglmw1uuQW2b4f4eB6st4R0Zzj9+kGPHt7unG+yRGuhKVhlFa/l7JMkNPkJg7Oo0lTNoal379OhSf35J5w8Wa3XF0IIv6IUDBsGq1ejQkP5+M4lfLwqAaMRytgrXhQpDk2hZJGT4+XOnIOEJj9hLKo0Gao5NHXvDjmhddhGW3RKwRlLMwghhCjhmWdg7lyU0cgzLb5g8OsdABg/XtsMXZSteHgulCyys73cmXOQ0OQnXJWmQEu1XtdigeuvLzFEJ/OahBCibB9+CC++CMDYoPd58Y8+BATAjBmuw+JsQiU0CQ8yOr1TaQL417/OmNckN1wKIYS7FStQI0YA2lpM06xDadMGNmyAhx8Gnc7L/fN1EpqEJ5mKQ1Ng9YemG26ANfqrsWHWbqHds6fa+yCEED5rxw7o3x9dYSFzuZvneJ6RI7XA1LattzvnJ4pCk4UCsk/57kxwCU1+wqi8F5oiI+GyHsGnVweXITohhNCkpUHfvpCZyRq6MYwPefllHdOnQ2CgtzvnR4pCE0D+cd9ddkBCk58wFYUmY5B3dnd0G6KT0CSEEJCXBzffDAcPsl/fhJv5htvvCeDxx73dMT9kNGLTBwBQcFJCk7gASp0OTd6oNIEWmn6gDwDOFSuhxAbIQghx0cnM1OYu/P47mYZIrnMuoUmXaP77X5m/VFl5Rq3aVHBKQpO4AA4HmPFupalRIyhsewknqIU+OwvWr/dKP4QQwuuOHIGrroLVq8k1hnKj439k12nO119DQIC3O+e/bGYtNBVKaBIXoqDA+6EJ4F/99Kygl/ZEhuiEEBejnTvhiitg2zYyg+K4ovBnNliu4uuvIT7e253zbwUWLTQ5MyU0iQtgt58OTaZgL4amEvOanMskNAkhLjJr10K3bpCcTEpYczrmrmWrriMffqhtOSUujD1AQpPwAF+pNHXuDFtjiiaDr/9d25BSCCEuBt99B716QXo6u6O60s66hsOGRnz6KQwc6O3O1QyOQC00qSwJTeIClAxN1b1hb0l6PXS+tQFbaYfe6YBZs7zWFyGEqDazZmkb8Obns752Xy45tYIsczRffgl33+3tztUcjmAtNOkkNIkLYS9QWIpCE2bvhSbQhuje4lEA1Jtvyl10QoiaSyltl9377gOHg6Wxg+l2/GsICmbRIm21AeE5qig06XMlNIkLUJBTIph4OTRdcw18E3wPacSgS06GL77wan+EEKJKOJ3aLrtPPAHA5wkTuD5tFkFhJpYtg2uv9XL/aqKiBS4NEprEhXDklVhS3suhyWKB/gMDeJtHtAOvvip70QkhahaHA4YPh9dfB+Ddpq9y9+GXCQ3V8cMPcOWVXu5fDaUL00KTKU9Ck7gA9hzfCU0Ao0fDTB4il0D4809YvdrbXRJCCM+w2+Hee2HWLJTBwMut5/DQ3scICYFly+QuuapkiCgKTTYJTeICFFeanOjAYPByb6B1a+h8bS0+4j7twGuvebdDQgjhCQUFcOed8PnnKKOR/2s7nyd3DCI4GJYuhcREb3ewZjNGhABgKZDQJC5AYa4Wmuw6s8+szz9mDLzBWC3ILV6s7fIthBD+Kj8fbr0VvvoKZTbzZLOveHZLf4KD4fvvteWZRNUyRWmVpgC7hCZxAdxCk4+47jowNm/C19yiHSga+xdCCL+TlgY33giLF+MwB3B3yHdM3XkT4eHa74RXXeXtDl4czLW00BRUKKFJXIDi4Tm7zuLlnpym18Ojj8KrjAdAffIJpKZ6uVdCCFEBSsGcOdCqFaxYgd0cTJLje+ad6kObNrBhA3Tv7u1OXjws0VpoClZZFBZ6uTNnIaHJD7hCk953Kk0AgwfDzvBE1nAFuoICeOstb3dJCCHK5+BBrWQ+ZAikp3MoqiOXFfzKCkcP7rgDfvsNmjXzdicvLoExWmgKJYucHC935iwkNPkBZ74Wmgp9LDSFhMD998NUJmgH3nwTDh3yap+EEOKclIIZM6BNG/jhB5TFwsz6U2h6aj3b9B155RWYN0/7901Ur+I5TaFkkZ3t5c6chYQmP1BcafK10AQwahQs0v2LVfSAvDwYN87bXRJCiLKdOKEt4z1qFOTmkt35anpGbeXh5CcJidAWrRw/3mfut7noFK/TFEI22Vm+uf6fhCY/oGxaaHIYfC80NWgAt9yq4xHexqEzwFdfwQ8/eLtbQgjh7scfoX17beNds5ltw96kzs5V/JTSnObN4fffoXdvb3fyIle0IrgRBzkn873cmbJJaPIDjqLhOYcPVpoAHn8cttOWaUrbk45HHtHWOxFCCG/LyYEJE6BPH0hJQbVqxYcPrqfDR6PJztXTu7c2f6l5c293VJQcE80/7pt30Elo8gMq33crTaCtkPvQQ/A8z3HcEAu7d8Mbb3i7W0KIi1lBgTZ3qUkTeOUVUAr7sBHc0+IPhr/dAaVg5EhYsgQiI73dWQGAXk+uPhiQ0CQugGt4zuiboQng5Zchon444xyvaAcmT4Z//vFup4QQFx+HAz79FFq21OYupaVB48akvvsNndfP5LNvgjCZ4N13Yfp0MJm83WFRUp5RG6IrOCmhSVSSsyg0OX200gTaUPT778On3MOvdNNK4uPHe7tbQoiLyW+/wWWXaXvHHTgAcXHwzjssf2snrSfezLZt2qFVq+DBB73dWVGWfJMWmuynJDSJyioOTT5caQJISoLBg3WMYjoO9DB/Pnz5pbe7JYSo6U6cgOHDtc3hNm2C8HDynp3CR0/tpdunD9HnRjPp6dpUgj/+kC1RfFmBWQtNjgwJTRU2adIkdDqd26Nly5au1/Pz8xk5ciS1atUiJCSE/v37k5aW5naO5ORk+vbtS1BQEDExMTz++OMUnrHU6OrVq+nUqRMWi4WmTZsye/bs6nh75ab8JDSBtptKWlxHXuMx7cCgQdo/YkII4WkOB7z3njaL+8MPAUi7YSjDuu8h8uUnGfZoMGvXajsYPPAArF4Ndet6t8vi3AoCtNDkzJTQVClt2rQhJSXF9fj1119dr40dO5bvvvuOhQsX8tNPP3H06FFuvfVW1+sOh4O+fftSUFDA2rVrmTNnDrNnz+bZZ591tTlw4AB9+/alZ8+ebN68mTFjxjB8+HCWLVtWre/znAr8JzRFRcE778BTvMgykiA3F/71L0hJ8XbXhBA1hdMJX3wB7drBiBGQno6jbQem/utX4pZ8xEff1sZmg7ZttTng//yjZauAAG93XJxPYVFoUlbfDE0oH/bcc8+pDh06lPlaRkaGMplMauHCha5jO3fuVIBat26dUkqpJUuWKL1er1JTU11tZs6cqcLCwpTNZlNKKTVhwgTVpk0bt3MPGDBAJSUlVaivmZmZClCZmZkV+rry+K7Hq0qB2tDqHo+fu6oMHKhUOOnqb11LpUCprl2Vys31dreEEP7M6VRqyRKlLrlE+3cFlIqKUpuHTVP14uyuQ0OHKvXnn1pz4V+2tLlLKVBfdHu92q5Zkc9vn6807dmzh/j4eBo3bszAgQNJTk4GYOPGjdjtdnqXWI2sZcuW1K9fn3Xr1gGwbt062rVrR2xsrKtNUlISVquV7du3u9r0PmNFs6SkJNc5fEJRpUmZfL/SVOyDD+DSXhH0Vd9xShelrRw3bJj2b5oQQlTUP//AtdfCDTdoQ/4hIZwY+Rz3XLGfjh8+yj+pRpo314bgPvoILrlEVvb2R85grdKky/HNSpNPh6auXbsye/Zsli5dysyZMzlw4ABXXXUVWVlZpKamYjabiYiIcPua2NhYUlNTAUhNTXULTMWvF792rjZWq5W8vLyz9s1ms2G1Wt0eVUVnL1oo0o9CU0AAfPMNRHdtSn/1BXaM8Pnn2lIEQghREf/7H3ToACtWQEAAqfeOZ2iPA8S8M4m5i8IxGuHpp2HLFuje3dudFRekaFVwg4+GJqO3O3Au119/vevP7du3p2vXrjRo0IAFCxYQGBjoxZ7BlClTeP7556vnYn5YaQJtcdclS+Dqq3syavt03mMEPPec9j/F2LHe7p4Qwtfl52tbDkyfDkBWi848Ej2POZ80dTX517/g//5Pm94kaoDirVTyfDM0+XSl6UwRERE0b96cvXv3EhcXR0FBARkZGW5t0tLSiIuLAyAuLq7U3XTFz8/XJiws7JzBbOLEiWRmZroehw8fvtC3d1b6wqJKk9m/QhNoE8N/+AGWN3qQSTynHRw3TpstLoQQZXE44PvvtTUCigLT140fo9autcxZ0xSDQVuK6a+/tCKUBKaaQx+uhSZTvoSmC5adnc2+ffuoU6cOnTt3xmQysWLFCtfru3btIjk5mcTERAASExPZtm0bx44dc7VZvnw5YWFhtG7d2tWm5DmK2xSf42wsFgthYWFuj6pSPDyn/DA0AcTHa3tlfhD/HC/xhHZw5EjXLcJCCAFoq3dPmQJNm2pzl7ZuxRoYww2677l1/6s4DWZGjIC9e+Hjj6FNG293WHiaMVILTWabb4Ymn7577rHHHlOrV69WBw4cUGvWrFG9e/dW0dHR6tixY0oppUaMGKHq16+vVq5cqf744w+VmJioEhMTXV9fWFio2rZtq/r06aM2b96sli5dqmrXrq0mTpzoarN//34VFBSkHn/8cbVz5041Y8YMZTAY1NKlSyvU16q8e25Z4xFKgfqt7/MeP3d1OnhQqebNnOp1xigFyqnTKfXxx97ulhDC27ZtU+quu5QyGl13xeVYItR042gVS4oCpW65Ram///Z2R0VV2/X850qBWhfQo9quWZHPb58OTQMGDFB16tRRZrNZ1a1bVw0YMEDt3bvX9XpeXp56+OGHVWRkpAoKClK33HKLSklJcTvHwYMH1fXXX68CAwNVdHS0euyxx5Tdbndrs2rVKtWxY0dlNptV48aN1axZsyrc16oMTT/Uv08LTbdM8fi5q1tamlKXdHSq6TysBSe9XqlJk5QqWgJCCHER2bpVqdtvP718AKj9dRLVMNMcFUCuAqUSE5X69Vdvd1RUlwPTFykFapOxc7VdsyKf3zql5B5wT7BarYSHh5OZmenxobqVde/lmqOfsv7O1+jy+TiPntsbMjPh5puc3PnLw4zgPQCc7dqjnz0LOnXycu+EEFVu+3aYNElboLLIlma3cf/Bp9lg7whAly7w739D376ydMDFJGX+z9S5szu7dc1p7txVLdesyOe3X81pulgVTwTX+emcpjOFh8P3y/Qs/ddM7uRzTlAL/batOC/rgnr6GbDZvN1FIURVSE6GoUOhfXstMOl05N54OwPbbaXjnoVssHekWzdYtkzbe/fGGyUwXWwCamtzmkJUFg6HlztTBglNfkDvKApNATUjNAEEBsJXX+u4Yc6d9IzZwQJuR+90oHvxP9iat4XPPsMn/48RQlTcyZPw2GPaHnGzZ2vboNx6K3/O3krjDQv4bFs7IiPh22/hl1+gTx8JSxerwNohAISSRW6ulztTBglNfsBQFJr0lpoTmkDbRHPQIFi3L4YtTy3gTuMXpBKLJXkvDByIs117+PJL7R9YIYR/SUmB//4XbroJ6tXTdvO22aBnT9RvvzOz95d0HdaWtDRtyYANG7SmEpYubpZordIUSjbZVt/7t9+nF7cUGldoqkGVppJCQuA//4EDw/sz9tEkGi16i8d5hcidO+C227T9EKZPhyuu8HZXhRBnoxRs3QqLFsF332lbJ5VwquElfH3ZFL6w9mHLLTrXHt533KFtexIc7IU+C5+jCwt1/TnnWA7UDT1H6+onockPGJ01OzQVa9QIPv8uhP/97ym6PfQwA1LeYCxvELZpE+rKK9GNGaMt/RsU5O2uCiFAqwL/8IO2wuSiRdr+cCXsDOvCF7Z/scD2L/462BYOni4jmc3arkqPPy7VJVFCUBAO9Bhwknc8C5DQJCrIWMMrTWe6+Wa45poInnnmeZq89QhTeZyhaja88Yb2D/OsWdCtm7e7KcTFy27X9pJ86SXYufP0YVMgK3TX8lVBXxZxIynWeED7PSexg7Z9XPGjXTutyiyEG52OXH0IoU4rtuO+t8ClhCY/UFxpMgReHKEJtO2Hpk2DgQOjueOOWSw8dDv/1T1A3T174KqrYPRo7ddU+VdXiOqTm6tN5J46FQ4dAkCFh7Ovy91M+esmPkvpQT6BNGgAfa/Vlg3o0kVbudsonzainHINoVpoOiGhSVTCxTI8V5YuXbQJov3730CbX/7iDcYxVM2CN9+Er76CGTO0+5KFEJ5XPE/phx+0xy+/uJYEKYiM4adLxvL8sYdYszwcgJgYeO05uP9+MJm82XHhz/JNoWCHgpMSmkQlGNXFV2kqqXZtbe+6UaMiuO+/HzGfO5gT9BCxyQe1221uu00rS8XHe7urQvgvmw1274YtW7SgtHUr/PknHD/u1uxoQCOmFj7Ge+n3kb9S29Q8JESbmzRunBR/xYWzmbR5TIUZ2V7uSWkSmvyAWWm/2RmDLs7QBNqk0ffe0+ZBjB17HY1z/+I5nmccr2P84gsKl/yA44qrMDdJQNegPtSvDy1banfe6WVlDSEoLISDB2HPHi0c7dunLTZ5+LD2OCMcFXMEBLM1qgefpPVhiaMPu/JbADri4qBnT7jmGm0eYu3a1fpuRA1WYNFCkyNDKk2iEkwXeaWpmE4HjzyirTzwwQfBvPrlVD47fjfv8wBdcjdg/HEx/Oj+NbmhMeT3uJ7wgX0xXNdHW45ciIvJTz/BM89oS2wXFp6zaSZhbNe3Z6e5A3uD2rNV14HlJy/BflT7t6dDB3hjCCQlab+TyF1voirYA7TQpKwSmkQlFIemi7nSVFLnztrj7bdh9eqOfDhvHa/+7yciTuwjgWTqk0wDDtGJPwnLOkbQd3PguzkU6owcbZAIva+lzqBrMSVeKrNTRc21cyc88YS2ZlIRpyUAa2wzUoKbsdPelF+SG7C3IIHDaI9TRIFTB/loD7ThtiF3afOULr1UgpKoeoVBRaEpS0KTqCClwIyEprIYjdC7N/TubYAPrsFuv4bUVDh6FI4cgbc2F2Bd8isJWxdzrX0xLdUu6h/8BT74BT54lmxjOEda9iZ27N1EDOwLFou335IQled0QnIyatduMmZ9RfjCD9A7HTh0BuaFPsBzWePZb2uISnYfrq5TR7uXYvJN2mi2zabdJJeXBwUFWnUp1LeWyhE1nLMoNOkkNImKcjhOhyZTsISmczGZICFBewDceqsZXriGwsJr2LbtNeZ8s5/875ZTZ/tyripYQWRhBi3++hKGfUn2Q5Hk3XgHtcfdC4mJMg9K+KZNm2D1akhPh4wMyMyE9HScBw6idu/BUJCPDogsav4NN/Okeold1paANjrdqtXpR69eWlCS6pHwJSpEC036XAlNooIKbIoAqTRdEKNR+2C45JLG8PyDOJ0PsmObg+WfbMT22Zf0TJlLvYIjhHz1Hnz1HgXmYLLiW+Bo2hJz+5YEXdKC/DqNyKrVkCxLNLl5OmJjoW5db78zcVHIyNA2sP7wQ+1utjIUR/wCTOylKbv0rVna/FEc3a7moXbQtq22VlJsrAQk4QeKSptGCU2iogryHAShADCFyPCRJ+j10LaDgbYdusCrXfh97Yt88uxq6q78hFvUl4QWZFPr4J9w8E/XxHIzEAbkEshBGvInTVgc3Axns+aEX9qcuMsbYs2Ck0dsnEwpID3VRqExgNCmsUS3jKZ+IwMNG0LjxhAY6MU3L7wjMxOys7VlMc6WWtLT4e+/T48vHz0K+/ahFi9Gl5cHQKHBzO+R1/FXRj1OFEaQQQSZhHOEumTEtKBjv4bc2M/I9T3hloBqfH9CeFDx/nPGfAlNooLsOQWuP8vwXNXoeoWBrj/2IiWlF+/N/i8nNhzAuPdvQo/8TVz6Tpqq3TTgEPEcJYg8WrOT1uyEHGBz0eODs5x8GTjQc4wYjhHDRkJxBgSjDwvGEhGErm48+ZdeibHnVcS2jKROHa0yVlgIhXaF42ga+uNpBEQGYgoL1PajCAqCgAApGXib0wnbtsHKldpEoNattXJOw4ZgMMCBA/Dtt+TN/xbz7z9jcBaSExJDVovLoMtlhF/ZHnPKIfQbN8CG9ej27i3zMjrgL9rwX+7nU8c9nDpRC4DISLjySu3xwDXazRHyIyFqAkOEFprMPhiadEop5e1O1ARWq5Xw8HAyMzMJCwvz2HmP7sggvk3RDIWCAllmt5o5nZCVpVWHzMqmrWdz8CAFO/dx7Nfd2LbtJuCfPURlJ6P0BhwGM8pkBrMZoz2PgOwT6Dn//2JOdGylPWu5glCyaMEuWrCLcKxltj9ljOFwdEesDTvgaNeRsMta0KwZhAbYtcRlt0N0NDRvLhPcy8PphP37tXWLIiOhVi3t+xcUpL126hR5B9M4uP4YJzfsI+rPFSTsWUFoXum1jZzmABwxcZj+Oeh2vHgT0nNJLrqL7Qh1OUo8R6jLz1zNFnMX2nfQcckl0KmTFpRatZKpd6Jm2vT0Qi558Q7+DL6KTtk/V/n1KvL5LaHJQ6oqNCX/cYz6l8VqT5xO+VXS3xQWaosGpqWhUtOwHs0mdX8uJ5JzSD+cQ0Dybpql/ESDvF1lfrkDPSeIxoKNIHIxY6/Q5ZVeD02bomvdGpo0wVlg59ShbE4eyiYrNRtHoVYKN0WGEFA7lODYEKLizARHmNCZjFpI1+m09+FwaP91OrWVDBMSoF497b/h4b71s5mZqVV7goPd+2W3a8HowAEtJG3bpk2u3rJFGz47g90YgN5hx6AcZV4mm2B+ojsZRNCaHbRiJwFoi9E60PMLV/Gt7mZOJt5E3S510W/dTMTeDSSk/kHzgm0kU58NXMZ6uvAHl5JOFAkJ2iKu7YrmInXooK2JJL8viYvF9teW0mb89ewwd6S1bVOVX68in98yPOfjCnO14TkbZiy+9KEkysdo1O7prlMHHRBe9GhxZru0NNRPP2P7ZT3O8Eho2RJdyxYYWjQl3GQhNxfSciA700He8WwyN+zGvn4TAX9vJvqfzURnHcDmNGLHhB0TDgzEc5QIZ6a2+vPu3YA2YTi66OFyEjhwYW/THhBCQXQ8Ki4eXb14zPXr4DAFkJ+nsOVrD2eejZCsFAIzjmI5cRTDsaNgNKKLjdVmKMfGamEsMFBbAr744XRCfr52D3x+PtjtFETGctRUn735CWxJr09+Rh6tM3+j6cnfqH/kN8JP7gfAqdNjs4SRZwpDORWRuUfQq7KrPXkEcIgGhGElmhOYsWMqzC/xbYripCGGnPB4DiVcydHWvclr15VadcxkZ8OHf8PunQ7ytu/HkpaM6bKO9B1Uiwm3QVxc8VkSix5aRmtQAN2c2tIiTqf21j34O5cQfslcSxueC3TI8FyNVVWVpt1L99P8+iZk60IIcfreD5DwHSdPwubNWuFk0ybY/pfCuiuFxrYdtGYHDTlIHoEUWkKIbRJCgzYhhIZC1tEs8o5lYTuRhT09m/wsOwYKMWHHSCF6nBRixIEBBwYUOmI4RvGSiLU45e23XiF5BHCQhhygETtozSYuYTMd2UULHBgJCICEeopmdbJpUesE9Zuaad6tNh27mKlTp3wFNadThs6EqKzDi7eScGMHjuliiHGmVfn1pNJUgxRXmgqQSeDi3GrV0tbd6dWr+IgOhyOe5OR4du7sTUoK9LhEG+4xGM5+nrw82LtXu5Fr505IS9NGtewlpkuV/K8+P5eQjH8wn0whMP0oodlHiXMexYQdg0GnFYwCdCijmX8cdThgi2dvbjxHVB2MFBJLmuuhVXgKXA8LNhwYyCfA9XBgII5UmpqTaWpKpk5hMjqDnkOxXdkVdTnbgi9nk7ELpiATsQGZxFgyqWWyEmBxYo1sSG6odt+9TqeNKt5SGx6M0YpcsbHalCadTgeEFj0qTgKTEJUXUFv7/y5EZfncLyASmnxccWgq1EtoEhVnMECjRtqjvAIDT8+pKZ8goHnRQxtqys7W5uAEnOW29+I2NhsUFrZ0TZcqKIBTp+DECa1yduKENpUqPBzqhGn/DQ+HZs1KbxDbqujRr1Tf6pT3jQghfEBQrBaagsgjJ6uQ4HDfiSq+0xNRJme+FprsOglNwj/odOffdqO4jWzPIYQ4U3FoAkjZk03TSyO815kz+FDRS5SlME8qTUIIIS4eugAL6SatlPzHO+u93Bt3Epp8nFNCkxBCiIvM0W63AxDyzade7ok7CU0+rnh4TkKTEEKIi0W9CQMB6J7+Nbs35Xi5N6dJaPJxzryihfIkNAkhhLhIhF+XSEpgI0LJZtuL33q7Oy4Smnycq9JkkNAkhBDiIqHTcay3Vm2qtXQuvrKipIQmHxcRpIWmwHAJTUIIIS4ejf+thaYrs5ey8+fS+zx6g4QmH9f2rnbwwgs0mzzY210RQgghqk3oZS3ZG94ZIw72TVng7e4Ask6T72vbVnsIIYQQFxnrTQPh043UXT0XpUZ6fV9wqTQJIYQQwie1eO5OHOjpZFvHX9/u83Z3JDSdacaMGTRs2JCAgAC6du3K+vW+tbCWEEIIcbEIblqHv2K1DTWPvvKZl3sjocnN/PnzGTduHM899xx//vknHTp0ICkpiWPHjnm7a0IIIcRFqeD2ewBo+vunKKd3b6OT0FTC66+/zv3338/QoUNp3bo17777LkFBQXz00Ufe7poQQghxUWr771vIJZAmhbvZNnujV/sioalIQUEBGzdupHfv3q5jer2e3r17s27dulLtbTYbVqvV7SGEEEIIzwqMCWVLg5sBSH/bu9uqSGgqcuLECRwOB7GxsW7HY2NjSU1NLdV+ypQphIeHux4JCQnV1VUhhBDioqIfNJBCDOiyvVugkNBUSRMnTiQzM9P1OHz4sLe7JIQQQtRIlzyRROaOo1y9x7vTZWSdpiLR0dEYDAbS0tLcjqelpREXF1eqvcViwWKxVFf3hBBCiIuWOdhErVYx3u6GVJqKmc1mOnfuzIoVK1zHnE4nK1asIDEx0Ys9E0IIIYQvkEpTCePGjWPw4MFceumldOnShTfffJOcnByGDh3q7a4JIYQQwsskNJUwYMAAjh8/zrPPPktqaiodO3Zk6dKlpSaHCyGEEOLio1NKeXelqBrCarUSHh5OZmYmYWFh3u6OEEIIIcqhIp/fMqdJCCGEEKIcJDQJIYQQQpSDhCYhhBBCiHKQ0CSEEEIIUQ4SmoQQQgghykFCkxBCCCFEOUhoEkIIIYQoBwlNQgghhBDlIKFJCCGEEKIcZBsVDyleWN1qtXq5J0IIIYQor+LP7fJskCKhyUOysrIASEhI8HJPhBBCCFFRWVlZhIeHn7ON7D3nIU6nk6NHjxIaGopOp/Poua1WKwkJCRw+fFj2tati8r2uPvK9rj7yva4+8r2uPp76XiulyMrKIv7/27v3oKjKNw7g3wV2lzW5JYKLrSCgYF5qwGRAGVJJjYu3VAYRcVrFC6mDmTGakXfGsWJGTYQQokERTbQEMUBXBU3LgDEhFMEY5WIWJgsZrPv8/vDn1groLsES+Hxm9o895z3nfPdxhWfe87JrZwcjo6evWuKZpk5iZGSEl156qUuvYW5uzv8JDYRrbThca8PhWhsO19pwOqPWz5pheowXgjPGGGOM6YCbJsYYY4wxHXDT1AOIxWJER0dDLBZ3d5Rej2ttOFxrw+FaGw7X2nC6o9a8EJwxxhhjTAc808QYY4wxpgNumhhjjDHGdMBNE2OMMcaYDrhpYowxxhjTATdN/xG7d++Gg4MDTE1N4eHhgUuXLj11/KFDh+Dq6gpTU1OMHDkSWVlZBkra8+lT64SEBHh7e8PKygpWVlbw9fV95r8N+5u+7+vH0tLSIBAIMH369K4N2IvoW+t79+4hIiICUqkUYrEYQ4cO5Z8jOtK31rGxsXBxcYFEIoFMJkNkZCQePHhgoLQ919mzZxEYGAg7OzsIBAIcPXr0mccoFAq4ublBLBbD2dkZycnJnRuKWLdLS0sjkUhE+/bto6tXr9KiRYvI0tKS6urq2hxfUFBAxsbGtH37diopKaEPPviAhEIhXblyxcDJex59az137lzavXs3FRYWUmlpKS1YsIAsLCzo1q1bBk7e8+hb68cqKytp4MCB5O3tTdOmTTNM2B5O31r/9ddfNHr0aPLz86P8/HyqrKwkhUJBRUVFBk7e8+hb69TUVBKLxZSamkqVlZV08uRJkkqlFBkZaeDkPU9WVhatW7eOjhw5QgAoIyPjqeMrKiqoT58+tGrVKiopKaGdO3eSsbExZWdnd1ombpr+A8aMGUMRERGa5w8fPiQ7Ozvatm1bm+PnzJlD/v7+Wts8PDxo8eLFXZqzN9C31k9SqVRkZmZGX3zxRVdF7DU6UmuVSkVeXl70+eefU1hYGDdNOtK31nv27CFHR0dqbm42VMReQ99aR0RE0IQJE7S2rVq1isaOHdulOXsbXZqmNWvW0PDhw7W2BQUF0eTJkzstB9+e62bNzc24fPkyfH19NduMjIzg6+uLCxcutHnMhQsXtMYDwOTJk9sdzx7pSK2f1NTUhJaWFrz44otdFbNX6GitN27cCBsbG8jlckPE7BU6Uuuvv/4anp6eiIiIgK2tLUaMGIGtW7fi4cOHhordI3Wk1l5eXrh8+bLmFl5FRQWysrLg5+dnkMzPE0P8buQv7O1md+/excOHD2Fra6u13dbWFj///HObx9TW1rY5vra2tsty9gYdqfWT3n//fdjZ2bX6j8m0daTW+fn5SExMRFFRkQES9h4dqXVFRQVOnTqFkJAQZGVloby8HMuWLUNLSwuio6MNEbtH6kit586di7t372LcuHEgIqhUKixZsgRr1641ROTnSnu/G+/fv48///wTEonkX1+DZ5oY01FMTAzS0tKQkZEBU1PT7o7TqzQ0NCA0NBQJCQmwtrbu7ji9nlqtho2NDeLj4+Hu7o6goCCsW7cOcXFx3R2t11EoFNi6dSs+++wz/Pjjjzhy5AgyMzOxadOm7o7GOoBnmrqZtbU1jI2NUVdXp7W9rq4OAwYMaPOYAQMG6DWePdKRWj+2Y8cOxMTEIDc3F6NGjerKmL2CvrW+ceMGbt68icDAQM02tVoNADAxMUFZWRmcnJy6NnQP1ZH3tVQqhVAohLGxsWbbsGHDUFtbi+bmZohEoi7N3FN1pNbr169HaGgoFi5cCAAYOXIkGhsbER4ejnXr1sHIiOcuOkt7vxvNzc07ZZYJ4JmmbicSieDu7o68vDzNNrVajby8PHh6erZ5jKenp9Z4AMjJyWl3PHukI7UGgO3bt2PTpk3Izs7G6NGjDRG1x9O31q6urrhy5QqKioo0j6lTp2L8+PEoKiqCTCYzZPwepSPv67Fjx6K8vFzTmALAtWvXIJVKuWF6io7UuqmpqVVj9LhZJf7q105lkN+NnbaknHVYWloaicViSk5OppKSEgoPDydLS0uqra0lIqLQ0FCKiorSjC8oKCATExPasWMHlZaWUnR0NH/kgI70rXVMTAyJRCI6fPgw1dTUaB4NDQ3d9RJ6DH1r/ST+6znd6VvrqqoqMjMzo3feeYfKysro+PHjZGNjQ5s3b+6ul9Bj6Fvr6OhoMjMzowMHDlBFRQV9++235OTkRHPmzOmul9BjNDQ0UGFhIRUWFhIA+uSTT6iwsJB++eUXIiKKioqi0NBQzfjHHznw3nvvUWlpKe3evZs/cqC32rlzJw0aNIhEIhGNGTOGvvvuO80+Hx8fCgsL0xqfnp5OQ4cOJZFIRMOHD6fMzEwDJ+659Km1vb09AWj1iI6ONnzwHkjf9/U/cdOkH31rff78efLw8CCxWEyOjo60ZcsWUqlUBk7dM+lT65aWFvroo4/IycmJTE1NSSaT0bJly6i+vt7wwXuY06dPt/nz93F9w8LCyMfHp9Uxr776KolEInJ0dKSkpKROzSQg4vlBxhhjjLFn4TVNjDHGGGM64KaJMcYYY0wH3DQxxhhjjOmAmybGGGOMMR1w08QYY4wxpgNumhhjjDHGdMBNE2OMMcaYDrhpYoyx/6ibN29CIBCgqKiou6MwxsBNE2PMgC5cuABjY2P4+/t3d5QuVVdXB6FQiLS0tDb3y+VyuLm5GTgVY+zf4qaJMWYwiYmJWL58Oc6ePYvq6uouvRYRQaVSdek12mNrawt/f3/s27ev1b7Gxkakp6dDLpd3QzLG2L/BTRNjzCCUSiUOHjyIpUuXwt/fH8nJyZp9c+fORVBQkNb4lpYWWFtbIyUlBcCjb5Pftm0bBg8eDIlEgldeeQWHDx/WjFcoFBAIBDhx4gTc3d0hFouRn5+PGzduYNq0abC1tUXfvn3x2muvITc3V+taNTU18Pf3h0QiweDBg7F//344ODggNjZWM+bevXtYuHAh+vfvD3Nzc0yYMAHFxcXtvl65XI68vDxUVVVpbT906BBUKhVCQkKQnZ2NcePGwdLSEv369UNAQABu3LjR7jmTk5NhaWmpte3o0aMQCARa244dOwY3NzeYmprC0dERGzZs6LYGkrHehJsmxphBpKenw9XVFS4uLpg3bx727duHx199GRISgm+++QZKpVIz/uTJk2hqasKMGTMAANu2bUNKSgri4uJw9epVREZGYt68eThz5ozWdaKiohATE4PS0lKMGjUKSqUSfn5+yMvLQ2FhIaZMmYLAwECtZmb+/Pmorq6GQqHAV199hfj4eNy5c0frvLNnz8adO3dw4sQJXL58GW5ubpg4cSJ+//33Nl+vn58fbG1ttZpDAEhKSsLMmTNhaWmJxsZGrFq1Cj/88APy8vJgZGSEGTNmQK1Wd7jO586dw/z587Fy5UqUlJRg7969SE5OxpYtWzp8TsbY/3Xq1/8yxlg7vLy8KDY2logeffO7tbU1nT59Wut5SkqKZnxwcDAFBQUREdGDBw+oT58+dP78ea1zyuVyCg4OJqK/vxH96NGjz8wyfPhw2rlzJxERlZaWEgD6/vvvNfuvX79OAOjTTz8lIqJz586Rubk5PXjwQOs8Tk5OtHfv3navExUVRYMHDya1Wk1EROXl5SQQCCg3N7fN8b/++isBoCtXrhARUWVlJQGgwsJCIiJKSkoiCwsLrWMyMjLonz/KJ06cSFu3btUa8+WXX5JUKm03J2NMNzzTxBjrcmVlZbh06RKCg4MBACYmJggKCkJiYqLm+Zw5c5Camgrg0bqfY8eOISQkBABQXl6OpqYmvPHGG+jbt6/mkZKS0up21ujRo7WeK5VKrF69GsOGDYOlpSX69u2L0tJSzUxTWVkZTExMtBZmOzs7w8rKSvO8uLgYSqUS/fr107p+ZWXlU2+nvf3226isrMTp06cBPJplcnBwwIQJEwAA169fR3BwMBwdHWFubg4HBwcAaHVLTx/FxcXYuHGjVs5FixahpqYGTU1NHT4vYwww6e4AjLHeLzExESqVCnZ2dpptRASxWIxdu3bBwsICISEh8PHxwZ07d5CTkwOJRIIpU6YAgOa2XWZmJgYOHKh1brFYrPX8hRde0Hq+evVq5OTkYMeOHXB2doZEIsGsWbPQ3Nysc36lUgmpVAqFQtFq35NrjP5pyJAh8Pb2RlJSEl5//XWkpKRg0aJFmjVIgYGBsLe3R0JCAuzs7KBWqzFixIh2sxkZGWluaT7W0tLSKuuGDRswc+bMVsebmpo+45Uyxp6GmybGWJdSqVRISUnBxx9/jEmTJmntmz59Og4cOIAlS5bAy8sLMpkMBw8exIkTJzB79mwIhUIAwMsvvwyxWIyqqir4+Pjodf2CggIsWLBAszZKqVTi5s2bmv0uLi5QqVQoLCyEu7s7gEczW/X19Zoxbm5uqK2thYmJiWY2SFdyuRxLly7F1KlTcfv2bSxYsAAA8Ntvv6GsrAwJCQnw9vYGAOTn5z/1XP3790dDQwMaGxs1zeGTn+Hk5uaGsrIyODs765WTMfZs3DQxxrrU8ePHUV9fD7lcDgsLC619b731FhITE7FkyRIAj/6KLi4uDteuXdPc0gIAMzMzrF69GpGRkVCr1Rg3bhz++OMPFBQUwNzcHGFhYe1ef8iQIThy5AgCAwMhEAiwfv16rYXWrq6u8PX1RXh4OPbs2QOhUIh3330XEolEMyPk6+sLT09PTJ8+Hdu3b8fQoUNRXV2NzMxMzJgxo9UtwX+aPXs2VqxYgcWLF2PSpEmQyWQAACsrK/Tr1w/x8fGQSqWoqqpCVFTUU2vp4eGBPn36YO3atVixYgUuXrzYaqH5hx9+iICAAAwaNAizZs2CkZERiouL8dNPP2Hz5s1PPT9j7Bm6e1EVY6x3CwgIID8/vzb3Xbx4kQBQcXExERGVlJQQALK3t9csnn5MrVZTbGwsubi4kFAopP79+9PkyZPpzJkzRPT3QvD6+nqt4yorK2n8+PEkkUhIJpPRrl27yMfHh1auXKkZU11dTW+++SaJxWKyt7en/fv3k42NDcXFxWnG3L9/n5YvX052dnYkFApJJpNRSEgIVVVVPbMG4eHhBIDS09O1tufk5NCwYcNILBbTqFGjSKFQEADKyMjQZMc/FoITPVr47ezsTBKJhAICAig+Pp6e/FGenZ1NXl5eJJFIyNzcnMaMGUPx8fHPzMkYezoB0RM3yBlj7Dl369YtyGQy5ObmYuLEid0dhzH2H8FNE2PsuXfq1CkolUqMHDkSNTU1WLNmDW7fvo1r165p1lUxxhivaWKMPfdaWlqwdu1aVFRUwMzMDF5eXkhNTeWGiTGmhWeaGGOMMcZ0wB9uyRhjjDGmA26aGGOMMcZ0wE0TY4wxxpgOuGlijDHGGNMBN02MMcYYYzrgpokxxhhjTAfcNDHGGGOM6YCbJsYYY4wxHXDTxBhjjDGmg/8BbWtvEs++LoUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tumor average per feature: 253_x 0.596056\n", + "125_y 0.583733\n", + "247_x 0.591512\n", + "3_x 0.586937\n", + "215_y 0.603334\n", + " ... \n", + "39_y 0.594678\n", + "151_y 0.610348\n", + "225_x 0.593444\n", + "85_y 0.593369\n", + "199_x 0.568784\n", + "Length: 208, dtype: float64\n", + "Tumor average across samples: 0 0.939303\n", + "1 0.951060\n", + "2 0.034716\n", + "3 0.973576\n", + "4 0.019429\n", + " ... \n", + "730294 0.881254\n", + "730295 0.015123\n", + "730296 0.026083\n", + "730297 0.919887\n", + "730298 0.019284\n", + "Length: 730299, dtype: float64\n", + "Normal average per feature: 461_x 0.594288\n", + "487_y 0.595312\n", + "325_x 0.592389\n", + "333_x 0.597179\n", + "417_x 0.591353\n", + " ... \n", + "353_x 0.594432\n", + "463_y 0.599920\n", + "373_x 0.587521\n", + "403_y 0.598754\n", + "331_x 0.591103\n", + "Length: 210, dtype: float64\n", + "Normal average across samples: 0 0.938926\n", + "1 0.952476\n", + "2 0.032351\n", + "3 0.974024\n", + "4 0.018999\n", + " ... \n", + "730294 0.881875\n", + "730295 0.014691\n", + "730296 0.025056\n", + "730297 0.921886\n", + "730298 0.018928\n", + "Length: 730299, dtype: float64\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# 计算 tumor 的平均值\n", + "liquid_tumor_avg = k.mean(skipna=True, axis=0)\n", + "\n", + "# 计算 normal 的平均值\n", + "liquid_normal_avg = kk.mean(skipna=True, axis=0)\n", + "\n", + "# 计算 histogram\n", + "freq_tumor, bins_tumor = np.histogram(liquid_tumor_avg, bins=100, range=(0, 1))\n", + "freq_normal, bins_normal = np.histogram(liquid_normal_avg, bins=100, range=(0, 1))\n", + "\n", + "# 绘制 histogram\n", + "\n", + "plt.plot(bins_normal[:-1], freq_normal, linestyle='-', label='Normal', color='b')\n", + "plt.plot(bins_tumor[:-1], freq_tumor, linestyle='-', label='Tumor', color='r')\n", + "\n", + "# 设置标签和标题\n", + "plt.xlabel('Average Value')\n", + "plt.ylabel('Frequency')\n", + "plt.title('Tumor vs Normal Average Value')\n", + "plt.legend()\n", + "\n", + "# 显示图表\n", + "plt.show()\n", + "\n", + "# 打印平均值\n", + "print(\"Tumor average per feature:\", k.mean(skipna=True, axis=1))\n", + "print(\"Tumor average across samples:\", k.mean(skipna=True, axis=0))\n", + "print(\"Normal average per feature:\", kk.mean(skipna=True, axis=1))\n", + "print(\"Normal average across samples:\", kk.mean(skipna=True, axis=0))\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.7" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/process/ics_aba/filter_TSS_hyper_GSE243529.ipynb b/process/ics_aba/filter_TSS_hyper_GSE243529.ipynb new file mode 100644 index 0000000..e359083 --- /dev/null +++ b/process/ics_aba/filter_TSS_hyper_GSE243529.ipynb @@ -0,0 +1,261 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0dbetagenefeature
0cg10222734-0.010651A1CF5'UTR
1cg11139127-0.009722A2MBody
2cg23546356-0.016178A2ML1TSS1500
3cg13001012-0.008898AADACTSS1500
4cg00309402-0.022852AADAT3'UTR
...............
7899cg213172790.009295ZNRD1Body
7900cg21918728-0.008992ZNRF3Body
7901cg106598860.027345ZSCAN18Body
7902cg022863350.007187ZWINTTSS200
7903cg031001960.003925ZYXTSS1500
\n", + "

7904 rows × 4 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 dbeta gene feature\n", + "0 cg10222734 -0.010651 A1CF 5'UTR\n", + "1 cg11139127 -0.009722 A2M Body\n", + "2 cg23546356 -0.016178 A2ML1 TSS1500\n", + "3 cg13001012 -0.008898 AADAC TSS1500\n", + "4 cg00309402 -0.022852 AADAT 3'UTR\n", + "... ... ... ... ...\n", + "7899 cg21317279 0.009295 ZNRD1 Body\n", + "7900 cg21918728 -0.008992 ZNRF3 Body\n", + "7901 cg10659886 0.027345 ZSCAN18 Body\n", + "7902 cg02286335 0.007187 ZWINT TSS200\n", + "7903 cg03100196 0.003925 ZYX TSS1500\n", + "\n", + "[7904 rows x 4 columns]" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "df_gene_single_dbeta = pd.read_csv(\"result/GSE243529_aba/dbeta.csv\")\n", + "df_gene_single_dbeta" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Unnamed: 0 dbeta gene feature\n", + "4 cg00309402 -0.022852 AADAT 3'UTR\n", + "22 cg10118456 0.028641 ABCC1 Body\n", + "35 cg13460556 0.024486 ABHD2 Body\n", + "41 cg15626105 -0.026561 ABI3BP Body\n", + "42 cg02915920 0.021758 ABL1 Body\n", + "... ... ... ... ...\n", + "7860 cg01672042 0.041204 ZNF423 Body\n", + "7872 cg14269096 -0.032189 ZNF532 5'UTR\n", + "7886 cg20671910 0.025048 ZNF687 Body\n", + "7887 cg07000116 0.023883 ZNF689 Body\n", + "7901 cg10659886 0.027345 ZSCAN18 Body\n", + "\n", + "[987 rows x 4 columns] (987, 4)\n", + " Unnamed: 0 dbeta gene feature\n", + "22 cg10118456 0.028641 ABCC1 Body\n", + "35 cg13460556 0.024486 ABHD2 Body\n", + "42 cg02915920 0.021758 ABL1 Body\n", + "44 cg12020464 0.027008 ABO Body\n", + "46 cg07660627 0.035745 ACACA Body\n", + "... ... ... ... ...\n", + "7825 cg10687936 0.030197 ZNF148 5'UTR\n", + "7860 cg01672042 0.041204 ZNF423 Body\n", + "7886 cg20671910 0.025048 ZNF687 Body\n", + "7887 cg07000116 0.023883 ZNF689 Body\n", + "7901 cg10659886 0.027345 ZSCAN18 Body\n", + "\n", + "[642 rows x 4 columns] (642, 4)\n", + " Unnamed: 0 dbeta gene feature\n", + "50 cg10523679 0.021226 ACADM TSS1500\n", + "73 cg20707765 0.024253 ACSL5 TSS1500\n", + "258 cg19536664 0.030384 ALOX12 TSS1500\n", + "298 cg14904662 0.020543 ANK1 TSS1500\n", + "395 cg01699630 0.024147 ARG1 TSS1500\n", + "... ... ... ... ...\n", + "6782 cg16688533 0.040679 STC1 TSS1500\n", + "6843 cg03681335 0.029692 SULT1C2 TSS1500\n", + "6853 cg15100599 0.023953 SUSD4 TSS1500\n", + "7067 cg02569115 0.028042 TIMP2 TSS1500\n", + "7599 cg09276451 0.021343 VASN TSS1500\n", + "\n", + "[92 rows x 4 columns] (92, 4)\n" + ] + } + ], + "source": [ + "df_gene_single_dbeta_threshold = df_gene_single_dbeta[abs((df_gene_single_dbeta['dbeta'])) > 0.02]\n", + "print(df_gene_single_dbeta_threshold,df_gene_single_dbeta_threshold.shape)\n", + "\n", + "\n", + "df_gene_single_dbeta_threshold_hyper = df_gene_single_dbeta_threshold[df_gene_single_dbeta_threshold['dbeta']>0]\n", + "print(df_gene_single_dbeta_threshold_hyper,df_gene_single_dbeta_threshold_hyper.shape)\n", + "\n", + "\n", + "df_gene_single_dbeta_threshold_hyper_TSS = df_gene_single_dbeta_threshold_hyper.loc[(df_gene_single_dbeta_threshold_hyper['feature'] == 'TSS200') | (df_gene_single_dbeta_threshold_hyper['feature'] == 'TSS1500')]\n", + "print(df_gene_single_dbeta_threshold_hyper_TSS,df_gene_single_dbeta_threshold_hyper_TSS.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "df_gene_single_dbeta_threshold_hyper_TSS = df_gene_single_dbeta_threshold_hyper_TSS[[\"Unnamed: 0\",\"dbeta\",\"gene\"]]\n", + "df_gene_single_dbeta_threshold_hyper_TSS.to_csv(\"result/GSE243529_aba/dbeta_0.8_abs_0.02_hyper_TSS.csv\",index=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "df_gene_single_dbeta_threshold_hyper_TSS['gene'].to_csv(\"result/GSE243529_aba/dbeta_0.8_abs_0.02_hyper_TSS_genelist.csv\",index=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.7" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 71d65868679fffa6cee81701e157513aaf24663d Mon Sep 17 00:00:00 2001 From: OuChiaYun Date: Thu, 12 Sep 2024 15:41:36 +0800 Subject: [PATCH 2/4] [add] Boruto --- breast/ml/ics_aba/ml_RFE_BORUTA.ipynb | 6721 +++++++++++++---- .../ml/ics_aba/ml_RFE_BORUTA_find_geoup.ipynb | 3592 --------- 2 files changed, 5417 insertions(+), 4896 deletions(-) delete mode 100644 breast/ml/ics_aba/ml_RFE_BORUTA_find_geoup.ipynb diff --git a/breast/ml/ics_aba/ml_RFE_BORUTA.ipynb b/breast/ml/ics_aba/ml_RFE_BORUTA.ipynb index f863926..12b488e 100644 --- a/breast/ml/ics_aba/ml_RFE_BORUTA.ipynb +++ b/breast/ml/ics_aba/ml_RFE_BORUTA.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -34,148 +34,148 @@ " \n", " \n", " Unnamed: 0\n", - " 461_x\n", - " 487_y\n", - " 325_x\n", - " 333_x\n", - " 417_x\n", - " 355_x\n", - " 373_y\n", - " 329_y\n", - " 503_x\n", + " 0\n", + " 1\n", + " 2\n", + " 3\n", + " 4\n", + " 5\n", + " 6\n", + " 7\n", + " 8\n", " ...\n", - " 61_x\n", - " 171_x\n", - " 179_x\n", - " 131_y\n", - " 51_y\n", - " 39_y\n", - " 151_y\n", - " 225_x\n", - " 85_y\n", - " 199_x\n", + " 408\n", + " 409\n", + " 410\n", + " 411\n", + " 412\n", + " 413\n", + " 414\n", + " 415\n", + " 416\n", + " 417\n", " \n", " \n", " \n", " \n", " 0\n", " cg07881041\n", - " 0.936964\n", - " 0.949428\n", - " 0.931867\n", - " 0.927504\n", - " 0.940876\n", - " 0.935068\n", - " 0.943885\n", - " 0.941341\n", - " 0.931477\n", - " ...\n", - " 0.942243\n", - " 0.945263\n", - " 0.935765\n", - " 0.945791\n", - " 0.944968\n", - " 0.946432\n", - " 0.939040\n", - " 0.947915\n", - " 0.925148\n", - " 0.908973\n", + " 0.926368\n", + " 0.940674\n", + " 0.946855\n", + " 0.939445\n", + " 0.939303\n", + " 0.940384\n", + " 0.956939\n", + " 0.940137\n", + " 0.929561\n", + " ...\n", + " 0.942149\n", + " 0.935299\n", + " 0.952236\n", + " 0.907088\n", + " 0.948924\n", + " 0.953512\n", + " 0.931727\n", + " 0.949121\n", + " 0.932493\n", + " 0.940154\n", " \n", " \n", " 1\n", " cg03513874\n", - " 0.962719\n", - " 0.952201\n", - " 0.934461\n", - " 0.935450\n", - " 0.953576\n", - " 0.942798\n", - " 0.933852\n", - " 0.945366\n", - " 0.940140\n", - " ...\n", - " 0.953731\n", - " 0.954276\n", - " 0.944159\n", - " 0.964771\n", - " 0.951581\n", - " 0.956153\n", - " 0.959771\n", - " 0.968014\n", - " 0.938931\n", - " 0.946057\n", + " 0.950997\n", + " 0.971682\n", + " 0.962746\n", + " 0.942406\n", + " 0.943713\n", + " 0.967288\n", + " 0.961146\n", + " 0.959091\n", + " 0.958049\n", + " ...\n", + " 0.932625\n", + " 0.964292\n", + " 0.952845\n", + " 0.946885\n", + " 0.940200\n", + " 0.940072\n", + " 0.956672\n", + " 0.955850\n", + " 0.947340\n", + " 0.951423\n", " \n", " \n", " 2\n", " cg05451842\n", - " 0.025680\n", - " 0.029857\n", - " 0.021494\n", - " 0.042652\n", - " 0.036531\n", - " 0.026896\n", - " 0.027610\n", - " 0.043561\n", - " 0.051736\n", - " ...\n", - " 0.042091\n", - " 0.039476\n", - " 0.034699\n", - " 0.025350\n", - " 0.024445\n", - " 0.027273\n", - " 0.025966\n", - " 0.024816\n", - " 0.050523\n", - " 0.031266\n", + " 0.059963\n", + " 0.019628\n", + " 0.017954\n", + " 0.025166\n", + " 0.039009\n", + " 0.022807\n", + " 0.043550\n", + " 0.041088\n", + " 0.030474\n", + " ...\n", + " 0.018186\n", + " 0.022440\n", + " 0.048736\n", + " 0.033335\n", + " 0.028952\n", + " 0.039987\n", + " 0.038657\n", + " 0.024731\n", + " 0.036287\n", + " 0.039251\n", " \n", " \n", " 3\n", " cg14797042\n", - " 0.962476\n", - " 0.981526\n", - " 0.970098\n", - " 0.978789\n", - " 0.974692\n", - " 0.972280\n", - " 0.984615\n", - " 0.962927\n", - " 0.980575\n", - " ...\n", - " 0.976688\n", - " 0.972889\n", - " 0.975634\n", - " 0.979691\n", - " 0.987620\n", - " 0.973312\n", - " 0.973261\n", - " 0.976011\n", - " 0.973731\n", - " 0.961352\n", + " 0.951165\n", + " 0.983220\n", + " 0.972501\n", + " 0.971123\n", + " 0.983623\n", + " 0.978537\n", + " 0.969215\n", + " 0.978323\n", + " 0.971569\n", + " ...\n", + " 0.975007\n", + " 0.973183\n", + " 0.972620\n", + " 0.974413\n", + " 0.969948\n", + " 0.979849\n", + " 0.952180\n", + " 0.982432\n", + " 0.975147\n", + " 0.963315\n", " \n", " \n", " 4\n", " cg09838562\n", - " 0.017029\n", - " 0.017377\n", - " 0.022906\n", - " 0.021399\n", - " 0.029693\n", - " 0.014263\n", - " 0.020167\n", - " 0.013235\n", - " 0.014649\n", - " ...\n", - " 0.012646\n", - " 0.016793\n", - " 0.025278\n", - " 0.015261\n", - " 0.003984\n", - " 0.008068\n", - " 0.011514\n", - " 0.012520\n", - " 0.021304\n", - " 0.027372\n", + " 0.038691\n", + " 0.010217\n", + " 0.018484\n", + " 0.023737\n", + " 0.023379\n", + " 0.014493\n", + " 0.013606\n", + " 0.024030\n", + " 0.028147\n", + " ...\n", + " 0.016635\n", + " 0.022670\n", + " 0.022354\n", + " 0.033122\n", + " 0.010799\n", + " 0.018510\n", + " 0.018724\n", + " 0.010245\n", + " 0.016267\n", + " 0.043327\n", " \n", " \n", " ...\n", @@ -202,187 +202,187 @@ " ...\n", " \n", " \n", - " 730294\n", - " cg19812938\n", - " 0.872371\n", - " 0.887197\n", - " 0.894871\n", - " 0.902936\n", - " 0.875369\n", - " 0.895061\n", - " 0.891872\n", - " 0.894070\n", - " 0.864369\n", - " ...\n", - " 0.880774\n", - " 0.890553\n", - " 0.900091\n", - " 0.893645\n", - " 0.878658\n", - " 0.886723\n", - " 0.898297\n", - " 0.876115\n", - " 0.881185\n", - " 0.874934\n", - " \n", - " \n", " 730295\n", " cg06272054\n", - " 0.017587\n", - " 0.011651\n", - " 0.007993\n", - " 0.016188\n", - " 0.014288\n", - " 0.000261\n", - " 0.011462\n", - " 0.012948\n", - " 0.008948\n", - " ...\n", - " 0.016525\n", - " 0.015779\n", - " 0.023584\n", - " 0.014677\n", - " 0.008968\n", - " 0.005719\n", - " 0.008481\n", - " 0.009276\n", - " 0.016865\n", - " 0.016004\n", + " 0.029346\n", + " 0.006511\n", + " 0.014298\n", + " 0.007345\n", + " 0.022802\n", + " 0.013567\n", + " 0.028430\n", + " 0.018687\n", + " 0.026299\n", + " ...\n", + " 0.017863\n", + " 0.013923\n", + " 0.028921\n", + " 0.016757\n", + " 0.013196\n", + " 0.019271\n", + " 0.018279\n", + " 0.017410\n", + " 0.008597\n", + " 0.018308\n", " \n", " \n", " 730296\n", " cg07255356\n", - " 0.020057\n", - " 0.019063\n", - " 0.024812\n", - " 0.025776\n", - " 0.030528\n", - " 0.024580\n", - " 0.019338\n", - " 0.027820\n", - " 0.021167\n", - " ...\n", - " 0.022855\n", - " 0.027397\n", - " 0.033744\n", - " 0.018661\n", - " 0.011457\n", - " 0.011255\n", - " 0.023139\n", - " 0.020177\n", - " 0.014928\n", - " 0.022536\n", + " 0.040948\n", + " 0.021189\n", + " 0.029187\n", + " 0.013176\n", + " 0.029784\n", + " 0.021071\n", + " 0.028229\n", + " 0.029944\n", + " 0.034253\n", + " ...\n", + " 0.022560\n", + " 0.024299\n", + " 0.045046\n", + " 0.026598\n", + " 0.021732\n", + " 0.030806\n", + " 0.028840\n", + " 0.020497\n", + " 0.025104\n", + " 0.029068\n", " \n", " \n", " 730297\n", " cg24220897\n", - " 0.901599\n", - " 0.894674\n", - " 0.934178\n", - " 0.946410\n", - " 0.936924\n", - " 0.950909\n", - " 0.934924\n", - " 0.915440\n", - " 0.928410\n", - " ...\n", - " 0.908163\n", - " 0.923211\n", - " 0.940120\n", - " 0.940749\n", - " 0.945274\n", - " 0.963318\n", - " 0.948381\n", - " 0.951894\n", - " 0.860762\n", - " 0.892109\n", + " 0.909573\n", + " 0.950804\n", + " 0.953917\n", + " 0.930564\n", + " 0.909081\n", + " 0.933142\n", + " 0.955900\n", + " 0.927729\n", + " 0.916943\n", + " ...\n", + " 0.895366\n", + " 0.941694\n", + " 0.916555\n", + " 0.944813\n", + " 0.934123\n", + " 0.885239\n", + " 0.926268\n", + " 0.899603\n", + " 0.934250\n", + " 0.910259\n", " \n", " \n", " 730298\n", " cg12325588\n", - " 0.014632\n", - " 0.015572\n", - " 0.021971\n", - " 0.024834\n", - " 0.017136\n", - " 0.009834\n", - " 0.014974\n", - " 0.018213\n", - " 0.013185\n", - " ...\n", - " 0.012493\n", - " 0.022852\n", - " 0.021591\n", - " 0.011124\n", - " 0.005157\n", - " 0.011635\n", - " 0.012188\n", - " 0.008102\n", - " 0.027524\n", - " 0.019300\n", + " 0.046572\n", + " 0.007867\n", + " 0.024592\n", + " 0.017405\n", + " 0.028294\n", + " 0.013181\n", + " 0.016499\n", + " 0.019857\n", + " 0.014280\n", + " ...\n", + " 0.018293\n", + " 0.030286\n", + " 0.017973\n", + " 0.033730\n", + " 0.015526\n", + " 0.029521\n", + " 0.020975\n", + " 0.013991\n", + " 0.021318\n", + " 0.019140\n", + " \n", + " \n", + " 730299\n", + " label\n", + " 0.000000\n", + " 0.000000\n", + " 0.000000\n", + " 0.000000\n", + " 0.000000\n", + " 0.000000\n", + " 0.000000\n", + " 0.000000\n", + " 0.000000\n", + " ...\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", " \n", " \n", "\n", - "

730299 rows × 419 columns

\n", + "

730300 rows × 419 columns

\n", "" ], "text/plain": [ - " Unnamed: 0 461_x 487_y 325_x 333_x 417_x \\\n", - "0 cg07881041 0.936964 0.949428 0.931867 0.927504 0.940876 \n", - "1 cg03513874 0.962719 0.952201 0.934461 0.935450 0.953576 \n", - "2 cg05451842 0.025680 0.029857 0.021494 0.042652 0.036531 \n", - "3 cg14797042 0.962476 0.981526 0.970098 0.978789 0.974692 \n", - "4 cg09838562 0.017029 0.017377 0.022906 0.021399 0.029693 \n", + " Unnamed: 0 0 1 2 3 4 \\\n", + "0 cg07881041 0.926368 0.940674 0.946855 0.939445 0.939303 \n", + "1 cg03513874 0.950997 0.971682 0.962746 0.942406 0.943713 \n", + "2 cg05451842 0.059963 0.019628 0.017954 0.025166 0.039009 \n", + "3 cg14797042 0.951165 0.983220 0.972501 0.971123 0.983623 \n", + "4 cg09838562 0.038691 0.010217 0.018484 0.023737 0.023379 \n", "... ... ... ... ... ... ... \n", - "730294 cg19812938 0.872371 0.887197 0.894871 0.902936 0.875369 \n", - "730295 cg06272054 0.017587 0.011651 0.007993 0.016188 0.014288 \n", - "730296 cg07255356 0.020057 0.019063 0.024812 0.025776 0.030528 \n", - "730297 cg24220897 0.901599 0.894674 0.934178 0.946410 0.936924 \n", - "730298 cg12325588 0.014632 0.015572 0.021971 0.024834 0.017136 \n", + "730295 cg06272054 0.029346 0.006511 0.014298 0.007345 0.022802 \n", + "730296 cg07255356 0.040948 0.021189 0.029187 0.013176 0.029784 \n", + "730297 cg24220897 0.909573 0.950804 0.953917 0.930564 0.909081 \n", + "730298 cg12325588 0.046572 0.007867 0.024592 0.017405 0.028294 \n", + "730299 label 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "\n", - " 355_x 373_y 329_y 503_x ... 61_x 171_x \\\n", - "0 0.935068 0.943885 0.941341 0.931477 ... 0.942243 0.945263 \n", - "1 0.942798 0.933852 0.945366 0.940140 ... 0.953731 0.954276 \n", - "2 0.026896 0.027610 0.043561 0.051736 ... 0.042091 0.039476 \n", - "3 0.972280 0.984615 0.962927 0.980575 ... 0.976688 0.972889 \n", - "4 0.014263 0.020167 0.013235 0.014649 ... 0.012646 0.016793 \n", + " 5 6 7 8 ... 408 409 \\\n", + "0 0.940384 0.956939 0.940137 0.929561 ... 0.942149 0.935299 \n", + "1 0.967288 0.961146 0.959091 0.958049 ... 0.932625 0.964292 \n", + "2 0.022807 0.043550 0.041088 0.030474 ... 0.018186 0.022440 \n", + "3 0.978537 0.969215 0.978323 0.971569 ... 0.975007 0.973183 \n", + "4 0.014493 0.013606 0.024030 0.028147 ... 0.016635 0.022670 \n", "... ... ... ... ... ... ... ... \n", - "730294 0.895061 0.891872 0.894070 0.864369 ... 0.880774 0.890553 \n", - "730295 0.000261 0.011462 0.012948 0.008948 ... 0.016525 0.015779 \n", - "730296 0.024580 0.019338 0.027820 0.021167 ... 0.022855 0.027397 \n", - "730297 0.950909 0.934924 0.915440 0.928410 ... 0.908163 0.923211 \n", - "730298 0.009834 0.014974 0.018213 0.013185 ... 0.012493 0.022852 \n", + "730295 0.013567 0.028430 0.018687 0.026299 ... 0.017863 0.013923 \n", + "730296 0.021071 0.028229 0.029944 0.034253 ... 0.022560 0.024299 \n", + "730297 0.933142 0.955900 0.927729 0.916943 ... 0.895366 0.941694 \n", + "730298 0.013181 0.016499 0.019857 0.014280 ... 0.018293 0.030286 \n", + "730299 0.000000 0.000000 0.000000 0.000000 ... 1.000000 1.000000 \n", "\n", - " 179_x 131_y 51_y 39_y 151_y 225_x 85_y \\\n", - "0 0.935765 0.945791 0.944968 0.946432 0.939040 0.947915 0.925148 \n", - "1 0.944159 0.964771 0.951581 0.956153 0.959771 0.968014 0.938931 \n", - "2 0.034699 0.025350 0.024445 0.027273 0.025966 0.024816 0.050523 \n", - "3 0.975634 0.979691 0.987620 0.973312 0.973261 0.976011 0.973731 \n", - "4 0.025278 0.015261 0.003984 0.008068 0.011514 0.012520 0.021304 \n", + " 410 411 412 413 414 415 416 \\\n", + "0 0.952236 0.907088 0.948924 0.953512 0.931727 0.949121 0.932493 \n", + "1 0.952845 0.946885 0.940200 0.940072 0.956672 0.955850 0.947340 \n", + "2 0.048736 0.033335 0.028952 0.039987 0.038657 0.024731 0.036287 \n", + "3 0.972620 0.974413 0.969948 0.979849 0.952180 0.982432 0.975147 \n", + "4 0.022354 0.033122 0.010799 0.018510 0.018724 0.010245 0.016267 \n", "... ... ... ... ... ... ... ... \n", - "730294 0.900091 0.893645 0.878658 0.886723 0.898297 0.876115 0.881185 \n", - "730295 0.023584 0.014677 0.008968 0.005719 0.008481 0.009276 0.016865 \n", - "730296 0.033744 0.018661 0.011457 0.011255 0.023139 0.020177 0.014928 \n", - "730297 0.940120 0.940749 0.945274 0.963318 0.948381 0.951894 0.860762 \n", - "730298 0.021591 0.011124 0.005157 0.011635 0.012188 0.008102 0.027524 \n", + "730295 0.028921 0.016757 0.013196 0.019271 0.018279 0.017410 0.008597 \n", + "730296 0.045046 0.026598 0.021732 0.030806 0.028840 0.020497 0.025104 \n", + "730297 0.916555 0.944813 0.934123 0.885239 0.926268 0.899603 0.934250 \n", + "730298 0.017973 0.033730 0.015526 0.029521 0.020975 0.013991 0.021318 \n", + "730299 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 \n", "\n", - " 199_x \n", - "0 0.908973 \n", - "1 0.946057 \n", - "2 0.031266 \n", - "3 0.961352 \n", - "4 0.027372 \n", + " 417 \n", + "0 0.940154 \n", + "1 0.951423 \n", + "2 0.039251 \n", + "3 0.963315 \n", + "4 0.043327 \n", "... ... \n", - "730294 0.874934 \n", - "730295 0.016004 \n", - "730296 0.022536 \n", - "730297 0.892109 \n", - "730298 0.019300 \n", + "730295 0.018308 \n", + "730296 0.029068 \n", + "730297 0.910259 \n", + "730298 0.019140 \n", + "730299 1.000000 \n", "\n", - "[730299 rows x 419 columns]" + "[730300 rows x 419 columns]" ] }, - "execution_count": 3, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" } @@ -391,13 +391,13 @@ "import pandas as pd \n", "import numpy as np\n", "\n", - "df_beta_train = pd.read_csv(\"result/GSE243529_aba/X_train_sorted_0.8.csv\")\n", + "df_beta_train = pd.read_csv(\"result/GSE243529_xzh/all_beta_normalized_train.csv\")\n", "df_beta_train\n" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -421,114 +421,515 @@ " \n", " \n", " \n", - " Unnamed: 0\n", - " dbeta\n", + " ID\n", " gene\n", + " dbeta\n", + " feature\n", " \n", " \n", " \n", " \n", " 0\n", - " cg10523679\n", - " 0.021226\n", - " ACADM\n", + " cg03760483\n", + " ALOX12\n", + " 0.157175\n", + " TSS200\n", " \n", " \n", " 1\n", - " cg20707765\n", - " 0.024253\n", - " ACSL5\n", + " cg00074348\n", + " APLNR\n", + " -0.187434\n", + " TSS1500\n", " \n", " \n", " 2\n", - " cg19536664\n", - " 0.030384\n", - " ALOX12\n", + " cg04290171\n", + " CD46\n", + " -0.201098\n", + " TSS1500\n", " \n", " \n", " 3\n", - " cg14904662\n", - " 0.020543\n", - " ANK1\n", + " cg00044665\n", + " CDH5\n", + " 0.206568\n", + " TSS200\n", " \n", " \n", " 4\n", - " cg01699630\n", - " 0.024147\n", - " ARG1\n", + " cg14666310\n", + " CEACAM5\n", + " -0.210341\n", + " TSS1500\n", " \n", " \n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", + " 5\n", + " cg07157107\n", + " CHRNA6\n", + " -0.242190\n", + " TSS200\n", + " \n", + " \n", + " 6\n", + " cg02295216\n", + " CKLF\n", + " 0.172590\n", + " TSS1500\n", + " \n", + " \n", + " 7\n", + " cg19223467\n", + " CLEC9A\n", + " -0.152339\n", + " TSS200\n", + " \n", + " \n", + " 8\n", + " cg23631930\n", + " CMTM5\n", + " 0.172075\n", + " TSS200\n", + " \n", + " \n", + " 9\n", + " cg12440062\n", + " CRISP2\n", + " 0.200273\n", + " TSS200\n", + " \n", + " \n", + " 10\n", + " cg21290814\n", + " CRTC1\n", + " -0.160943\n", + " TSS1500\n", + " \n", + " \n", + " 11\n", + " cg01136458\n", + " CSMD1\n", + " -0.183525\n", + " TSS1500\n", + " \n", + " \n", + " 12\n", + " cg05724197\n", + " CX3CL1\n", + " 0.198136\n", + " TSS1500\n", + " \n", + " \n", + " 13\n", + " cg03003745\n", + " CXCL17\n", + " -0.238256\n", + " TSS1500\n", + " \n", + " \n", + " 14\n", + " cg00213123\n", + " CYP1A1\n", + " 0.195047\n", + " TSS1500\n", + " \n", + " \n", + " 15\n", + " cg20051772\n", + " DGKA\n", + " -0.186669\n", + " TSS1500\n", + " \n", + " \n", + " 16\n", + " cg13379236\n", + " EGF\n", + " -0.151026\n", + " TSS1500\n", + " \n", + " \n", + " 17\n", + " cg13816423\n", + " FOXP4\n", + " -0.206186\n", + " TSS1500\n", + " \n", + " \n", + " 18\n", + " cg07014349\n", + " GJB5\n", + " 0.162041\n", + " TSS200\n", + " \n", + " \n", + " 19\n", + " cg19772011\n", + " GLP1R\n", + " -0.174030\n", + " TSS1500\n", + " \n", + " \n", + " 20\n", + " cg17413194\n", + " GNA13\n", + " 0.174816\n", + " TSS1500\n", + " \n", + " \n", + " 21\n", + " cg04225088\n", + " HIPK3\n", + " 0.150001\n", + " TSS1500\n", + " \n", + " \n", + " 22\n", + " cg05818394\n", + " HMGB1\n", + " -0.291705\n", + " TSS1500\n", + " \n", + " \n", + " 23\n", + " cg00727675\n", + " HOXA3\n", + " -0.182567\n", + " TSS1500\n", + " \n", + " \n", + " 24\n", + " cg00239353\n", + " IL32\n", + " 0.230341\n", + " TSS1500\n", + " \n", + " \n", + " 25\n", + " cg15059851\n", + " IVL\n", + " -0.208371\n", + " TSS1500\n", + " \n", + " \n", + " 26\n", + " cg11775521\n", + " KCNE3\n", + " 0.263576\n", + " TSS200\n", + " \n", + " \n", + " 27\n", + " cg08375658\n", + " KLK12\n", + " -0.150620\n", + " TSS1500\n", + " \n", + " \n", + " 28\n", + " cg07925549\n", + " KRT75\n", + " -0.170578\n", + " TSS1500\n", + " \n", + " \n", + " 29\n", + " cg24296478\n", + " LCOR\n", + " -0.157586\n", + " TSS1500\n", + " \n", + " \n", + " 30\n", + " cg23792592\n", + " MIR1-1\n", + " -0.180821\n", + " TSS1500\n", + " \n", + " \n", + " 31\n", + " cg19157647\n", + " MIR1180\n", + " 0.157648\n", + " TSS200\n", + " \n", + " \n", + " 32\n", + " cg11201447\n", + " MIR1204\n", + " -0.298594\n", + " TSS200\n", + " \n", + " \n", + " 33\n", + " cg04927004\n", + " MIR124-3\n", + " 0.177844\n", + " TSS1500\n", + " \n", + " \n", + " 34\n", + " cg10734581\n", + " MIR134\n", + " -0.266630\n", + " TSS1500\n", + " \n", + " \n", + " 35\n", + " cg24702147\n", + " MIR141\n", + " -0.157450\n", + " TSS1500\n", + " \n", + " \n", + " 36\n", + " cg16570507\n", + " MIR346\n", + " -0.179525\n", + " TSS200\n", + " \n", + " \n", + " 37\n", + " cg02577745\n", + " MIR493\n", + " -0.163426\n", + " TSS1500\n", + " \n", + " \n", + " 38\n", + " cg22500132\n", + " MUC1\n", + " -0.282771\n", + " TSS200\n", + " \n", + " \n", + " 39\n", + " cg21298408\n", + " NAT1\n", + " -0.159201\n", + " TSS200\n", + " \n", + " \n", + " 40\n", + " cg07552803\n", + " NEFM\n", + " 0.227250\n", + " TSS1500\n", + " \n", + " \n", + " 41\n", + " cg08317412\n", + " PANX3\n", + " -0.169833\n", + " TSS1500\n", " \n", " \n", - " 87\n", - " cg16688533\n", - " 0.040679\n", - " STC1\n", + " 42\n", + " cg20248866\n", + " PCYT2\n", + " 0.154787\n", + " TSS1500\n", " \n", " \n", - " 88\n", - " cg03681335\n", - " 0.029692\n", - " SULT1C2\n", + " 43\n", + " cg07211259\n", + " PDCD1LG2\n", + " 0.152846\n", + " TSS200\n", " \n", " \n", - " 89\n", - " cg15100599\n", - " 0.023953\n", - " SUSD4\n", + " 44\n", + " cg12871376\n", + " PGC\n", + " -0.152930\n", + " TSS1500\n", " \n", " \n", - " 90\n", - " cg02569115\n", - " 0.028042\n", - " TIMP2\n", + " 45\n", + " cg02329916\n", + " PRSS1\n", + " -0.206755\n", + " TSS200\n", " \n", " \n", - " 91\n", - " cg09276451\n", - " 0.021343\n", - " VASN\n", + " 46\n", + " cg22746058\n", + " PTF1A\n", + " 0.189984\n", + " TSS1500\n", + " \n", + " \n", + " 47\n", + " cg05506480\n", + " RAB6B\n", + " -0.195065\n", + " TSS1500\n", + " \n", + " \n", + " 48\n", + " cg26106778\n", + " RING1\n", + " 0.186264\n", + " TSS1500\n", + " \n", + " \n", + " 49\n", + " cg05884032\n", + " SALL3\n", + " 0.151857\n", + " TSS200\n", + " \n", + " \n", + " 50\n", + " cg20596724\n", + " SDR9C7\n", + " -0.198220\n", + " TSS1500\n", + " \n", + " \n", + " 51\n", + " cg16536739\n", + " SFRP5\n", + " -0.152947\n", + " TSS1500\n", + " \n", + " \n", + " 52\n", + " cg04433322\n", + " SLC4A1\n", + " -0.211638\n", + " TSS1500\n", + " \n", + " \n", + " 53\n", + " cg02547394\n", + " SOX1\n", + " 0.228038\n", + " TSS200\n", + " \n", + " \n", + " 54\n", + " cg12610471\n", + " SPAG6\n", + " 0.281363\n", + " TSS200\n", + " \n", + " \n", + " 55\n", + " cg06314202\n", + " SSTR5\n", + " -0.208831\n", + " TSS1500\n", + " \n", + " \n", + " 56\n", + " cg06447795\n", + " TGM2\n", + " -0.193115\n", + " TSS1500\n", + " \n", + " \n", + " 57\n", + " cg14153654\n", + " TNFRSF9\n", + " -0.195903\n", + " TSS200\n", + " \n", + " \n", + " 58\n", + " cg24073122\n", + " TP73\n", + " 0.209996\n", + " TSS1500\n", + " \n", + " \n", + " 59\n", + " cg23571857\n", + " XAF1\n", + " 0.216849\n", + " TSS1500\n", " \n", " \n", "\n", - "

92 rows × 3 columns

\n", "" ], "text/plain": [ - " Unnamed: 0 dbeta gene\n", - "0 cg10523679 0.021226 ACADM\n", - "1 cg20707765 0.024253 ACSL5\n", - "2 cg19536664 0.030384 ALOX12\n", - "3 cg14904662 0.020543 ANK1\n", - "4 cg01699630 0.024147 ARG1\n", - ".. ... ... ...\n", - "87 cg16688533 0.040679 STC1\n", - "88 cg03681335 0.029692 SULT1C2\n", - "89 cg15100599 0.023953 SUSD4\n", - "90 cg02569115 0.028042 TIMP2\n", - "91 cg09276451 0.021343 VASN\n", - "\n", - "[92 rows x 3 columns]" + " ID gene dbeta feature\n", + "0 cg03760483 ALOX12 0.157175 TSS200\n", + "1 cg00074348 APLNR -0.187434 TSS1500\n", + "2 cg04290171 CD46 -0.201098 TSS1500\n", + "3 cg00044665 CDH5 0.206568 TSS200\n", + "4 cg14666310 CEACAM5 -0.210341 TSS1500\n", + "5 cg07157107 CHRNA6 -0.242190 TSS200\n", + "6 cg02295216 CKLF 0.172590 TSS1500\n", + "7 cg19223467 CLEC9A -0.152339 TSS200\n", + "8 cg23631930 CMTM5 0.172075 TSS200\n", + "9 cg12440062 CRISP2 0.200273 TSS200\n", + "10 cg21290814 CRTC1 -0.160943 TSS1500\n", + "11 cg01136458 CSMD1 -0.183525 TSS1500\n", + "12 cg05724197 CX3CL1 0.198136 TSS1500\n", + "13 cg03003745 CXCL17 -0.238256 TSS1500\n", + "14 cg00213123 CYP1A1 0.195047 TSS1500\n", + "15 cg20051772 DGKA -0.186669 TSS1500\n", + "16 cg13379236 EGF -0.151026 TSS1500\n", + "17 cg13816423 FOXP4 -0.206186 TSS1500\n", + "18 cg07014349 GJB5 0.162041 TSS200\n", + "19 cg19772011 GLP1R -0.174030 TSS1500\n", + "20 cg17413194 GNA13 0.174816 TSS1500\n", + "21 cg04225088 HIPK3 0.150001 TSS1500\n", + "22 cg05818394 HMGB1 -0.291705 TSS1500\n", + "23 cg00727675 HOXA3 -0.182567 TSS1500\n", + "24 cg00239353 IL32 0.230341 TSS1500\n", + "25 cg15059851 IVL -0.208371 TSS1500\n", + "26 cg11775521 KCNE3 0.263576 TSS200\n", + "27 cg08375658 KLK12 -0.150620 TSS1500\n", + "28 cg07925549 KRT75 -0.170578 TSS1500\n", + "29 cg24296478 LCOR -0.157586 TSS1500\n", + "30 cg23792592 MIR1-1 -0.180821 TSS1500\n", + "31 cg19157647 MIR1180 0.157648 TSS200\n", + "32 cg11201447 MIR1204 -0.298594 TSS200\n", + "33 cg04927004 MIR124-3 0.177844 TSS1500\n", + "34 cg10734581 MIR134 -0.266630 TSS1500\n", + "35 cg24702147 MIR141 -0.157450 TSS1500\n", + "36 cg16570507 MIR346 -0.179525 TSS200\n", + "37 cg02577745 MIR493 -0.163426 TSS1500\n", + "38 cg22500132 MUC1 -0.282771 TSS200\n", + "39 cg21298408 NAT1 -0.159201 TSS200\n", + "40 cg07552803 NEFM 0.227250 TSS1500\n", + "41 cg08317412 PANX3 -0.169833 TSS1500\n", + "42 cg20248866 PCYT2 0.154787 TSS1500\n", + "43 cg07211259 PDCD1LG2 0.152846 TSS200\n", + "44 cg12871376 PGC -0.152930 TSS1500\n", + "45 cg02329916 PRSS1 -0.206755 TSS200\n", + "46 cg22746058 PTF1A 0.189984 TSS1500\n", + "47 cg05506480 RAB6B -0.195065 TSS1500\n", + "48 cg26106778 RING1 0.186264 TSS1500\n", + "49 cg05884032 SALL3 0.151857 TSS200\n", + "50 cg20596724 SDR9C7 -0.198220 TSS1500\n", + "51 cg16536739 SFRP5 -0.152947 TSS1500\n", + "52 cg04433322 SLC4A1 -0.211638 TSS1500\n", + "53 cg02547394 SOX1 0.228038 TSS200\n", + "54 cg12610471 SPAG6 0.281363 TSS200\n", + "55 cg06314202 SSTR5 -0.208831 TSS1500\n", + "56 cg06447795 TGM2 -0.193115 TSS1500\n", + "57 cg14153654 TNFRSF9 -0.195903 TSS200\n", + "58 cg24073122 TP73 0.209996 TSS1500\n", + "59 cg23571857 XAF1 0.216849 TSS1500" ] }, - "execution_count": 4, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df_dbeta = pd.read_csv(\"result/GSE243529_aba/dbeta_0.8_abs_0.02_hyper_TSS.csv\")\n", + "df_dbeta = pd.read_csv(\"result/GSE243529_xzh/dbeta_GSE243529_TSS_0.15.csv\")\n", "# result_max_per_gene_single_GSE243529_filter001_hyper_TSS\n", "df_dbeta" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -552,414 +953,1737 @@ " \n", " \n", " \n", - " Unnamed: 0\n", - " dbeta\n", + " ID\n", " gene\n", - " 461_x\n", - " 487_y\n", - " 325_x\n", - " 333_x\n", - " 417_x\n", - " 355_x\n", - " 373_y\n", + " dbeta\n", + " feature\n", + " Unnamed: 0\n", + " 0\n", + " 1\n", + " 2\n", + " 3\n", + " 4\n", " ...\n", - " 61_x\n", - " 171_x\n", - " 179_x\n", - " 131_y\n", - " 51_y\n", - " 39_y\n", - " 151_y\n", - " 225_x\n", - " 85_y\n", - " 199_x\n", + " 408\n", + " 409\n", + " 410\n", + " 411\n", + " 412\n", + " 413\n", + " 414\n", + " 415\n", + " 416\n", + " 417\n", " \n", " \n", " \n", " \n", " 0\n", - " cg10523679\n", - " 0.021226\n", - " ACADM\n", - " 0.156283\n", - " 0.331503\n", - " 0.152810\n", - " 0.150414\n", - " 0.109073\n", - " 0.363286\n", - " 0.358934\n", - " ...\n", - " 0.314871\n", - " 0.330853\n", - " 0.151055\n", - " 0.290511\n", - " 0.450517\n", - " 0.411201\n", - " 0.401057\n", - " 0.100925\n", - " 0.349773\n", - " 0.367914\n", + " cg03760483\n", + " ALOX12\n", + " 0.157175\n", + " TSS200\n", + " cg03760483\n", + " 0.236414\n", + " 0.456963\n", + " 0.393205\n", + " 0.319442\n", + " 0.376546\n", + " ...\n", + " 0.433266\n", + " 0.385754\n", + " 0.365361\n", + " 0.571618\n", + " 0.389705\n", + " 0.376265\n", + " 0.200213\n", + " 0.213818\n", + " 0.223605\n", + " 0.390453\n", " \n", " \n", " 1\n", - " cg20707765\n", - " 0.024253\n", - " ACSL5\n", - " 0.576859\n", - " 0.593527\n", - " 0.575743\n", - " 0.607325\n", - " 0.626227\n", - " 0.645283\n", - " 0.620381\n", - " ...\n", - " 0.620904\n", - " 0.653260\n", - " 0.561024\n", - " 0.502570\n", - " 0.622506\n", - " 0.571389\n", - " 0.703008\n", - " 0.620249\n", - " 0.574150\n", - " 0.975968\n", + " cg00074348\n", + " APLNR\n", + " -0.187434\n", + " TSS1500\n", + " cg00074348\n", + " 0.466309\n", + " 0.457003\n", + " 0.442229\n", + " 0.460896\n", + " 0.526294\n", + " ...\n", + " 0.406462\n", + " 0.468974\n", + " 0.505998\n", + " 0.447733\n", + " 0.496243\n", + " 0.516885\n", + " 0.478009\n", + " 0.461991\n", + " 0.505650\n", + " 0.425387\n", " \n", " \n", " 2\n", - " cg19536664\n", - " 0.030384\n", - " ALOX12\n", - " 0.576394\n", - " 0.695993\n", - " 0.458960\n", - " 0.600616\n", - " 0.575685\n", - " 0.627107\n", - " 0.733890\n", - " ...\n", - " 0.630060\n", - " 0.570989\n", - " 0.687292\n", - " 0.598850\n", - " 0.476670\n", - " 0.603563\n", - " 0.759482\n", - " 0.679786\n", - " 0.589431\n", - " 0.893278\n", + " cg04290171\n", + " CD46\n", + " -0.201098\n", + " TSS1500\n", + " cg04290171\n", + " 0.889514\n", + " 0.860040\n", + " 0.825669\n", + " 0.808767\n", + " 0.882251\n", + " ...\n", + " 0.897428\n", + " 0.842283\n", + " 0.886778\n", + " 0.903050\n", + " 0.897832\n", + " 0.819984\n", + " 0.803872\n", + " 0.918829\n", + " 0.854414\n", + " 0.911942\n", " \n", " \n", " 3\n", - " cg14904662\n", - " 0.020543\n", - " ANK1\n", - " 0.222721\n", - " 0.314289\n", - " 0.267926\n", - " 0.293917\n", - " 0.221845\n", - " 0.342598\n", - " 0.292339\n", - " ...\n", - " 0.253650\n", - " 0.254837\n", - " 0.302475\n", - " 0.268841\n", - " 0.326884\n", - " 0.332103\n", - " 0.262208\n", - " 0.312026\n", - " 0.349177\n", - " 0.386330\n", + " cg00044665\n", + " CDH5\n", + " 0.206568\n", + " TSS200\n", + " cg00044665\n", + " 0.266689\n", + " 0.332246\n", + " 0.269771\n", + " 0.315645\n", + " 0.234602\n", + " ...\n", + " 0.274103\n", + " 0.259853\n", + " 0.229335\n", + " 0.328268\n", + " 0.299035\n", + " 0.222106\n", + " 0.224438\n", + " 0.277983\n", + " 0.251191\n", + " 0.253250\n", " \n", " \n", " 4\n", - " cg01699630\n", - " 0.024147\n", - " ARG1\n", - " 0.312340\n", - " 0.348138\n", - " 0.321247\n", - " 0.476959\n", - " 0.323977\n", - " 0.500710\n", - " 0.430033\n", - " ...\n", - " 0.239938\n", - " 0.253430\n", - " 0.456411\n", - " 0.360932\n", - " 0.405114\n", - " 0.453282\n", - " 0.357001\n", - " 0.415318\n", - " 0.461195\n", - " 0.919652\n", + " cg14666310\n", + " CEACAM5\n", + " -0.210341\n", + " TSS1500\n", + " cg14666310\n", + " 0.673555\n", + " 0.695180\n", + " 0.686634\n", + " 0.641230\n", + " 0.743104\n", + " ...\n", + " 0.681935\n", + " 0.613599\n", + " 0.728985\n", + " 0.664602\n", + " 0.685677\n", + " 0.679476\n", + " 0.632856\n", + " 0.651557\n", + " 0.654629\n", + " 0.694013\n", " \n", " \n", - " ...\n", + " 5\n", + " cg07157107\n", + " CHRNA6\n", + " -0.242190\n", + " TSS200\n", + " cg07157107\n", + " 0.267253\n", + " 0.137766\n", + " 0.212442\n", + " 0.168600\n", + " 0.206781\n", + " ...\n", + " 0.149664\n", + " 0.184383\n", + " 0.133741\n", + " 0.172674\n", + " 0.168547\n", + " 0.171719\n", + " 0.162934\n", + " 0.135706\n", + " 0.190779\n", + " 0.191123\n", + " \n", + " \n", + " 6\n", + " cg02295216\n", + " CKLF\n", + " 0.172590\n", + " TSS1500\n", + " cg02295216\n", + " 0.363497\n", + " 0.260611\n", + " 0.309377\n", + " 0.350464\n", + " 0.317099\n", + " ...\n", + " 0.309767\n", + " 0.328551\n", + " 0.201410\n", + " 0.355441\n", + " 0.188960\n", + " 0.351395\n", + " 0.332551\n", + " 0.167575\n", + " 0.084872\n", + " 0.345495\n", + " \n", + " \n", + " 7\n", + " cg19223467\n", + " CLEC9A\n", + " -0.152339\n", + " TSS200\n", + " cg19223467\n", + " 0.553040\n", + " 0.540875\n", + " 0.408219\n", + " 0.639611\n", + " 0.540304\n", " ...\n", + " 0.434638\n", + " 0.389198\n", + " 0.576087\n", + " 0.677964\n", + " 0.564957\n", + " 0.549210\n", + " 0.517783\n", + " 0.663231\n", + " 0.433247\n", + " 0.553600\n", + " \n", + " \n", + " 8\n", + " cg23631930\n", + " CMTM5\n", + " 0.172075\n", + " TSS200\n", + " cg23631930\n", + " 0.769073\n", + " 0.786669\n", + " 0.789469\n", + " 0.712481\n", + " 0.817953\n", " ...\n", + " 0.784860\n", + " 0.789034\n", + " 0.795643\n", + " 0.783826\n", + " 0.758287\n", + " 0.820371\n", + " 0.762424\n", + " 0.798704\n", + " 0.803269\n", + " 0.778339\n", + " \n", + " \n", + " 9\n", + " cg12440062\n", + " CRISP2\n", + " 0.200273\n", + " TSS200\n", + " cg12440062\n", + " 0.486181\n", + " 0.466767\n", + " 0.658400\n", + " 0.518216\n", + " 0.593437\n", + " ...\n", + " 0.445182\n", + " 0.767513\n", + " 0.663110\n", + " 0.652559\n", + " 0.690339\n", + " 0.652818\n", + " 0.559369\n", + " 0.565027\n", + " 0.574367\n", + " 0.526302\n", + " \n", + " \n", + " 10\n", + " cg21290814\n", + " CRTC1\n", + " -0.160943\n", + " TSS1500\n", + " cg21290814\n", + " 0.218103\n", + " 0.124658\n", + " 0.194146\n", + " 0.151656\n", + " 0.246419\n", + " ...\n", + " 0.190325\n", + " 0.253511\n", + " 0.370957\n", + " 0.270400\n", + " 0.195377\n", + " 0.238683\n", + " 0.227245\n", + " 0.193281\n", + " 0.164008\n", + " 0.221216\n", + " \n", + " \n", + " 11\n", + " cg01136458\n", + " CSMD1\n", + " -0.183525\n", + " TSS1500\n", + " cg01136458\n", + " 0.562662\n", + " 0.342647\n", + " 0.405482\n", + " 0.538545\n", + " 0.451746\n", + " ...\n", + " 0.358178\n", + " 0.457632\n", + " 0.343035\n", + " 0.485002\n", + " 0.273328\n", + " 0.528276\n", + " 0.407212\n", + " 0.266982\n", + " 0.438324\n", + " 0.353390\n", + " \n", + " \n", + " 12\n", + " cg05724197\n", + " CX3CL1\n", + " 0.198136\n", + " TSS1500\n", + " cg05724197\n", + " 0.734243\n", + " 0.750670\n", + " 0.715007\n", + " 0.706211\n", + " 0.707622\n", " ...\n", + " 0.741768\n", + " 0.743632\n", + " 0.694187\n", + " 0.701328\n", + " 0.699426\n", + " 0.752338\n", + " 0.671146\n", + " 0.696610\n", + " 0.740219\n", + " 0.734335\n", + " \n", + " \n", + " 13\n", + " cg03003745\n", + " CXCL17\n", + " -0.238256\n", + " TSS1500\n", + " cg03003745\n", + " 0.769774\n", + " 0.754771\n", + " 0.750923\n", + " 0.707897\n", + " 0.803780\n", " ...\n", + " 0.768881\n", + " 0.773799\n", + " 0.768141\n", + " 0.742234\n", + " 0.750054\n", + " 0.762789\n", + " 0.705811\n", + " 0.765823\n", + " 0.761887\n", + " 0.790526\n", + " \n", + " \n", + " 14\n", + " cg00213123\n", + " CYP1A1\n", + " 0.195047\n", + " TSS1500\n", + " cg00213123\n", + " 0.252718\n", + " 0.235994\n", + " 0.283559\n", + " 0.217079\n", + " 0.254952\n", " ...\n", + " 0.201034\n", + " 0.237911\n", + " 0.263236\n", + " 0.295310\n", + " 0.283498\n", + " 0.213430\n", + " 0.231335\n", + " 0.192510\n", + " 0.235878\n", + " 0.233191\n", + " \n", + " \n", + " 15\n", + " cg20051772\n", + " DGKA\n", + " -0.186669\n", + " TSS1500\n", + " cg20051772\n", + " 0.274093\n", + " 0.153840\n", + " 0.242470\n", + " 0.201241\n", + " 0.264579\n", " ...\n", + " 0.258048\n", + " 0.268499\n", + " 0.180419\n", + " 0.263201\n", + " 0.220096\n", + " 0.274449\n", + " 0.238346\n", + " 0.214392\n", + " 0.289757\n", + " 0.282479\n", + " \n", + " \n", + " 16\n", + " cg13379236\n", + " EGF\n", + " -0.151026\n", + " TSS1500\n", + " cg13379236\n", + " 0.573028\n", + " 0.612531\n", + " 0.601079\n", + " 0.545201\n", + " 0.595605\n", " ...\n", + " 0.628913\n", + " 0.603874\n", + " 0.709718\n", + " 0.643444\n", + " 0.648941\n", + " 0.628367\n", + " 0.611217\n", + " 0.625344\n", + " 0.631433\n", + " 0.643077\n", + " \n", + " \n", + " 17\n", + " cg13816423\n", + " FOXP4\n", + " -0.206186\n", + " TSS1500\n", + " cg13816423\n", + " 0.525629\n", + " 0.547039\n", + " 0.526484\n", + " 0.377820\n", + " 0.482987\n", " ...\n", + " 0.491120\n", + " 0.508041\n", + " 0.477693\n", + " 0.493924\n", + " 0.573321\n", + " 0.507138\n", + " 0.560417\n", + " 0.566918\n", + " 0.536212\n", + " 0.405821\n", + " \n", + " \n", + " 18\n", + " cg07014349\n", + " GJB5\n", + " 0.162041\n", + " TSS200\n", + " cg07014349\n", + " 0.721767\n", + " 0.707736\n", + " 0.685455\n", + " 0.586987\n", + " 0.728675\n", " ...\n", + " 0.697530\n", + " 0.681348\n", + " 0.712290\n", + " 0.673994\n", + " 0.687517\n", + " 0.680143\n", + " 0.663641\n", + " 0.665778\n", + " 0.708924\n", + " 0.717612\n", + " \n", + " \n", + " 19\n", + " cg19772011\n", + " GLP1R\n", + " -0.174030\n", + " TSS1500\n", + " cg19772011\n", + " 0.424933\n", + " 0.366848\n", + " 0.371132\n", + " 0.398409\n", + " 0.512713\n", " ...\n", + " 0.326810\n", + " 0.420252\n", + " 0.315516\n", + " 0.373941\n", + " 0.324648\n", + " 0.383260\n", + " 0.361384\n", + " 0.385909\n", + " 0.387834\n", + " 0.438647\n", + " \n", + " \n", + " 20\n", + " cg17413194\n", + " GNA13\n", + " 0.174816\n", + " TSS1500\n", + " cg17413194\n", + " 0.892900\n", + " 0.924701\n", + " 0.900737\n", + " 0.927879\n", + " 0.894044\n", " ...\n", + " 0.905600\n", + " 0.902015\n", + " 0.895452\n", + " 0.909865\n", + " 0.907532\n", + " 0.900753\n", + " 0.875808\n", + " 0.935679\n", + " 0.903922\n", + " 0.919369\n", + " \n", + " \n", + " 21\n", + " cg04225088\n", + " HIPK3\n", + " 0.150001\n", + " TSS1500\n", + " cg04225088\n", + " 0.312370\n", + " 0.497848\n", + " 0.256887\n", + " 0.443426\n", + " 0.256834\n", " ...\n", + " 0.353510\n", + " 0.245583\n", + " 0.189022\n", + " 0.406742\n", + " 0.338978\n", + " 0.208786\n", + " 0.266501\n", + " 0.353085\n", + " 0.305456\n", + " 0.253948\n", + " \n", + " \n", + " 22\n", + " cg05818394\n", + " HMGB1\n", + " -0.291705\n", + " TSS1500\n", + " cg05818394\n", + " 0.268786\n", + " 0.219602\n", + " 0.207522\n", + " 0.205676\n", + " 0.219931\n", " ...\n", + " 0.261757\n", + " 0.236433\n", + " 0.145173\n", + " 0.288544\n", + " 0.218725\n", + " 0.222591\n", + " 0.233592\n", + " 0.244560\n", + " 0.250098\n", + " 0.201397\n", + " \n", + " \n", + " 23\n", + " cg00727675\n", + " HOXA3\n", + " -0.182567\n", + " TSS1500\n", + " cg00727675\n", + " 0.846111\n", + " 0.851785\n", + " 0.807337\n", + " 0.772323\n", + " 0.896772\n", " ...\n", + " 0.767197\n", + " 0.831586\n", + " 0.815648\n", + " 0.796103\n", + " 0.800868\n", + " 0.874837\n", + " 0.794741\n", + " 0.862334\n", + " 0.858179\n", + " 0.872256\n", + " \n", + " \n", + " 24\n", + " cg00239353\n", + " IL32\n", + " 0.230341\n", + " TSS1500\n", + " cg00239353\n", + " 0.801055\n", + " 0.707905\n", + " 0.728506\n", + " 0.685146\n", + " 0.777805\n", " ...\n", + " 0.761856\n", + " 0.766555\n", + " 0.808789\n", + " 0.725277\n", + " 0.739066\n", + " 0.823395\n", + " 0.731399\n", + " 0.783274\n", + " 0.808959\n", + " 0.809296\n", + " \n", + " \n", + " 25\n", + " cg15059851\n", + " IVL\n", + " -0.208371\n", + " TSS1500\n", + " cg15059851\n", + " 0.746068\n", + " 0.703093\n", + " 0.742771\n", + " 0.674082\n", + " 0.790157\n", " ...\n", + " 0.713262\n", + " 0.742211\n", + " 0.776202\n", + " 0.724440\n", + " 0.703877\n", + " 0.810116\n", + " 0.721771\n", + " 0.745249\n", + " 0.779341\n", + " 0.793993\n", + " \n", + " \n", + " 26\n", + " cg11775521\n", + " KCNE3\n", + " 0.263576\n", + " TSS200\n", + " cg11775521\n", + " 0.224705\n", + " 0.321265\n", + " 0.292456\n", + " 0.304315\n", + " 0.221854\n", " ...\n", + " 0.262763\n", + " 0.262728\n", + " 0.279741\n", + " 0.347049\n", + " 0.318857\n", + " 0.191190\n", + " 0.254092\n", + " 0.322475\n", + " 0.230785\n", + " 0.207241\n", + " \n", + " \n", + " 27\n", + " cg08375658\n", + " KLK12\n", + " -0.150620\n", + " TSS1500\n", + " cg08375658\n", + " 0.373531\n", + " 0.369187\n", + " 0.405792\n", + " 0.229373\n", + " 0.320706\n", " ...\n", + " 0.369314\n", + " 0.374514\n", + " 0.362033\n", + " 0.405099\n", + " 0.339099\n", + " 0.385131\n", + " 0.336779\n", + " 0.342804\n", + " 0.356646\n", + " 0.276763\n", + " \n", + " \n", + " 28\n", + " cg07925549\n", + " KRT75\n", + " -0.170578\n", + " TSS1500\n", + " cg07925549\n", + " 0.719333\n", + " 0.755092\n", + " 0.719713\n", + " 0.661375\n", + " 0.686504\n", " ...\n", + " 0.703808\n", + " 0.761950\n", + " 0.660728\n", + " 0.665314\n", + " 0.662328\n", + " 0.721944\n", + " 0.635651\n", + " 0.739437\n", + " 0.680937\n", + " 0.678479\n", + " \n", + " \n", + " 29\n", + " cg24296478\n", + " LCOR\n", + " -0.157586\n", + " TSS1500\n", + " cg24296478\n", + " 0.123775\n", + " 0.113582\n", + " 0.098122\n", + " 0.061366\n", + " 0.202207\n", " ...\n", + " 0.142852\n", + " 0.173247\n", + " 0.070762\n", + " 0.083220\n", + " 0.103510\n", + " 0.111210\n", + " 0.082034\n", + " 0.157397\n", + " 0.177708\n", + " 0.151386\n", + " \n", + " \n", + " 30\n", + " cg23792592\n", + " MIR1-1\n", + " -0.180821\n", + " TSS1500\n", + " cg23792592\n", + " 0.820852\n", + " 0.818481\n", + " 0.816022\n", + " 0.779456\n", + " 0.827824\n", " ...\n", + " 0.845347\n", + " 0.816827\n", + " 0.803982\n", + " 0.789567\n", + " 0.816800\n", + " 0.851628\n", + " 0.799465\n", + " 0.834424\n", + " 0.845007\n", + " 0.821329\n", " \n", " \n", - " 87\n", - " cg16688533\n", - " 0.040679\n", - " STC1\n", - " 0.730250\n", - " 0.697744\n", - " 0.657762\n", - " 0.676420\n", - " 0.750190\n", - " 0.613876\n", - " 0.399457\n", + " 31\n", + " cg19157647\n", + " MIR1180\n", + " 0.157648\n", + " TSS200\n", + " cg19157647\n", + " 0.848589\n", + " 0.877015\n", + " 0.859423\n", + " 0.795065\n", + " 0.855516\n", " ...\n", - " 0.702947\n", - " 0.671833\n", - " 0.705485\n", - " 0.351661\n", - " 0.299951\n", - " 0.698642\n", - " 0.431952\n", - " 0.714840\n", - " 0.648563\n", - " 0.330089\n", + " 0.850693\n", + " 0.844363\n", + " 0.806228\n", + " 0.841611\n", + " 0.808398\n", + " 0.828929\n", + " 0.822029\n", + " 0.835106\n", + " 0.845336\n", + " 0.820117\n", " \n", " \n", - " 88\n", - " cg03681335\n", - " 0.029692\n", - " SULT1C2\n", - " 0.337109\n", - " 0.368181\n", - " 0.317215\n", - " 0.414796\n", - " 0.361786\n", - " 0.465284\n", - " 0.385154\n", + " 32\n", + " cg11201447\n", + " MIR1204\n", + " -0.298594\n", + " TSS200\n", + " cg11201447\n", + " 0.563153\n", + " 0.390281\n", + " 0.503120\n", + " 0.383873\n", + " 0.501025\n", " ...\n", - " 0.288429\n", - " 0.409178\n", - " 0.435137\n", - " 0.377688\n", - " 0.409050\n", - " 0.399443\n", - " 0.457829\n", - " 0.398400\n", - " 0.407844\n", - " 0.888858\n", + " 0.436112\n", + " 0.495300\n", + " 0.504980\n", + " 0.411687\n", + " 0.348005\n", + " 0.310327\n", + " 0.495870\n", + " 0.441954\n", + " 0.575405\n", + " 0.536525\n", " \n", " \n", - " 89\n", - " cg15100599\n", - " 0.023953\n", - " SUSD4\n", - " 0.083441\n", - " 0.161517\n", - " 0.118518\n", - " 0.185565\n", - " 0.130743\n", - " 0.227758\n", - " 0.188190\n", + " 33\n", + " cg04927004\n", + " MIR124-3\n", + " 0.177844\n", + " TSS1500\n", + " cg04927004\n", + " 0.269138\n", + " 0.325553\n", + " 0.395209\n", + " 0.331040\n", + " 0.234604\n", " ...\n", - " 0.162086\n", - " 0.216792\n", - " 0.297504\n", - " 0.219960\n", - " 0.101582\n", - " 0.072738\n", - " 0.089968\n", - " 0.213388\n", - " 0.201115\n", - " 0.132777\n", + " 0.335093\n", + " 0.304882\n", + " 0.398268\n", + " 0.321550\n", + " 0.344642\n", + " 0.260215\n", + " 0.318819\n", + " 0.286698\n", + " 0.262091\n", + " 0.357024\n", " \n", " \n", - " 90\n", - " cg02569115\n", - " 0.028042\n", - " TIMP2\n", - " 0.374021\n", - " 0.327582\n", - " 0.254726\n", - " 0.411566\n", - " 0.284019\n", - " 0.378253\n", - " 0.376335\n", - " ...\n", - " 0.288921\n", - " 0.316586\n", - " 0.445974\n", - " 0.326495\n", - " 0.297287\n", - " 0.415420\n", - " 0.428804\n", - " 0.297715\n", - " 0.410523\n", - " 0.548249\n", - " \n", - " \n", - " 91\n", - " cg09276451\n", - " 0.021343\n", - " VASN\n", - " 0.623229\n", - " 0.671907\n", - " 0.689685\n", - " 0.619634\n", - " 0.601067\n", - " 0.700396\n", - " 0.669830\n", - " ...\n", - " 0.666785\n", - " 0.655702\n", - " 0.655511\n", - " 0.677406\n", - " 0.662660\n", - " 0.710397\n", - " 0.712588\n", - " 0.677861\n", - " 0.706402\n", - " 0.771385\n", + " 34\n", + " cg10734581\n", + " MIR134\n", + " -0.266630\n", + " TSS1500\n", + " cg10734581\n", + " 0.605681\n", + " 0.586926\n", + " 0.606444\n", + " 0.550279\n", + " 0.658604\n", + " ...\n", + " 0.593520\n", + " 0.583302\n", + " 0.611405\n", + " 0.569500\n", + " 0.575573\n", + " 0.645497\n", + " 0.591308\n", + " 0.576784\n", + " 0.660405\n", + " 0.639335\n", + " \n", + " \n", + " 35\n", + " cg24702147\n", + " MIR141\n", + " -0.157450\n", + " TSS1500\n", + " cg24702147\n", + " 0.833630\n", + " 0.878846\n", + " 0.819428\n", + " 0.824717\n", + " 0.859967\n", + " ...\n", + " 0.811076\n", + " 0.827837\n", + " 0.886588\n", + " 0.902918\n", + " 0.890800\n", + " 0.847578\n", + " 0.816638\n", + " 0.870090\n", + " 0.854882\n", + " 0.887010\n", + " \n", + " \n", + " 36\n", + " cg16570507\n", + " MIR346\n", + " -0.179525\n", + " TSS200\n", + " cg16570507\n", + " 0.442559\n", + " 0.388921\n", + " 0.391081\n", + " 0.265650\n", + " 0.431357\n", + " ...\n", + " 0.371349\n", + " 0.297244\n", + " 0.282506\n", + " 0.365149\n", + " 0.355487\n", + " 0.381577\n", + " 0.310171\n", + " 0.354487\n", + " 0.418710\n", + " 0.302428\n", + " \n", + " \n", + " 37\n", + " cg02577745\n", + " MIR493\n", + " -0.163426\n", + " TSS1500\n", + " cg02577745\n", + " 0.855403\n", + " 0.823589\n", + " 0.862462\n", + " 0.836489\n", + " 0.877253\n", + " ...\n", + " 0.864000\n", + " 0.808004\n", + " 0.848807\n", + " 0.807441\n", + " 0.836581\n", + " 0.891960\n", + " 0.825203\n", + " 0.837047\n", + " 0.865457\n", + " 0.870827\n", + " \n", + " \n", + " 38\n", + " cg22500132\n", + " MUC1\n", + " -0.282771\n", + " TSS200\n", + " cg22500132\n", + " 0.113111\n", + " 0.100479\n", + " 0.107500\n", + " 0.095274\n", + " 0.090260\n", + " ...\n", + " 0.067399\n", + " 0.094780\n", + " 0.128484\n", + " 0.109636\n", + " 0.113056\n", + " 0.081551\n", + " 0.124542\n", + " 0.088530\n", + " 0.095734\n", + " 0.120762\n", + " \n", + " \n", + " 39\n", + " cg21298408\n", + " NAT1\n", + " -0.159201\n", + " TSS200\n", + " cg21298408\n", + " 0.710126\n", + " 0.791803\n", + " 0.719930\n", + " 0.742611\n", + " 0.739981\n", + " ...\n", + " 0.753892\n", + " 0.734089\n", + " 0.652814\n", + " 0.703415\n", + " 0.683536\n", + " 0.736089\n", + " 0.716511\n", + " 0.667518\n", + " 0.738462\n", + " 0.717654\n", + " \n", + " \n", + " 40\n", + " cg07552803\n", + " NEFM\n", + " 0.227250\n", + " TSS1500\n", + " cg07552803\n", + " 0.099552\n", + " 0.112437\n", + " 0.132645\n", + " 0.133998\n", + " 0.064870\n", + " ...\n", + " 0.108710\n", + " 0.114184\n", + " 0.148561\n", + " 0.140304\n", + " 0.124437\n", + " 0.070857\n", + " 0.086668\n", + " 0.090281\n", + " 0.102663\n", + " 0.130862\n", + " \n", + " \n", + " 41\n", + " cg08317412\n", + " PANX3\n", + " -0.169833\n", + " TSS1500\n", + " cg08317412\n", + " 0.798718\n", + " 0.795126\n", + " 0.795669\n", + " 0.760310\n", + " 0.799150\n", + " ...\n", + " 0.820026\n", + " 0.767582\n", + " 0.801853\n", + " 0.779158\n", + " 0.823689\n", + " 0.820692\n", + " 0.746107\n", + " 0.772055\n", + " 0.805236\n", + " 0.810853\n", + " \n", + " \n", + " 42\n", + " cg20248866\n", + " PCYT2\n", + " 0.154787\n", + " TSS1500\n", + " cg20248866\n", + " 0.379558\n", + " 0.515408\n", + " 0.424047\n", + " 0.411715\n", + " 0.379275\n", + " ...\n", + " 0.387834\n", + " 0.392653\n", + " 0.415538\n", + " 0.474268\n", + " 0.401104\n", + " 0.440038\n", + " 0.394245\n", + " 0.408708\n", + " 0.420681\n", + " 0.442299\n", + " \n", + " \n", + " 43\n", + " cg07211259\n", + " PDCD1LG2\n", + " 0.152846\n", + " TSS200\n", + " cg07211259\n", + " 0.182180\n", + " 0.102735\n", + " 0.158707\n", + " 0.176757\n", + " 0.212701\n", + " ...\n", + " 0.217170\n", + " 0.122523\n", + " 0.145827\n", + " 0.121878\n", + " 0.161302\n", + " 0.132285\n", + " 0.096186\n", + " 0.201539\n", + " 0.198195\n", + " 0.167421\n", + " \n", + " \n", + " 44\n", + " cg12871376\n", + " PGC\n", + " -0.152930\n", + " TSS1500\n", + " cg12871376\n", + " 0.634038\n", + " 0.690147\n", + " 0.610273\n", + " 0.642777\n", + " 0.664123\n", + " ...\n", + " 0.621354\n", + " 0.591425\n", + " 0.587441\n", + " 0.616403\n", + " 0.620384\n", + " 0.637948\n", + " 0.629167\n", + " 0.640783\n", + " 0.648596\n", + " 0.611541\n", + " \n", + " \n", + " 45\n", + " cg02329916\n", + " PRSS1\n", + " -0.206755\n", + " TSS200\n", + " cg02329916\n", + " 0.697635\n", + " 0.804495\n", + " 0.774227\n", + " 0.735544\n", + " 0.766629\n", + " ...\n", + " 0.770766\n", + " 0.763897\n", + " 0.751401\n", + " 0.726040\n", + " 0.715777\n", + " 0.766721\n", + " 0.720330\n", + " 0.705289\n", + " 0.712917\n", + " 0.718007\n", + " \n", + " \n", + " 46\n", + " cg22746058\n", + " PTF1A\n", + " 0.189984\n", + " TSS1500\n", + " cg22746058\n", + " 0.091921\n", + " 0.112488\n", + " 0.117563\n", + " 0.143644\n", + " 0.066142\n", + " ...\n", + " 0.105599\n", + " 0.120432\n", + " 0.160880\n", + " 0.148633\n", + " 0.109012\n", + " 0.082206\n", + " 0.119163\n", + " 0.092386\n", + " 0.098278\n", + " 0.134826\n", + " \n", + " \n", + " 47\n", + " cg05506480\n", + " RAB6B\n", + " -0.195065\n", + " TSS1500\n", + " cg05506480\n", + " 0.178189\n", + " 0.157084\n", + " 0.094172\n", + " 0.140586\n", + " 0.110955\n", + " ...\n", + " 0.131170\n", + " 0.092109\n", + " 0.091508\n", + " 0.197731\n", + " 0.130661\n", + " 0.134397\n", + " 0.164433\n", + " 0.137992\n", + " 0.151490\n", + " 0.111528\n", + " \n", + " \n", + " 48\n", + " cg26106778\n", + " RING1\n", + " 0.186264\n", + " TSS1500\n", + " cg26106778\n", + " 0.169706\n", + " 0.206504\n", + " 0.211555\n", + " 0.233968\n", + " 0.139397\n", + " ...\n", + " 0.188477\n", + " 0.189869\n", + " 0.187904\n", + " 0.237459\n", + " 0.231120\n", + " 0.146278\n", + " 0.177644\n", + " 0.214431\n", + " 0.148552\n", + " 0.203391\n", + " \n", + " \n", + " 49\n", + " cg05884032\n", + " SALL3\n", + " 0.151857\n", + " TSS200\n", + " cg05884032\n", + " 0.170969\n", + " 0.175475\n", + " 0.161222\n", + " 0.214139\n", + " 0.145597\n", + " ...\n", + " 0.152065\n", + " 0.148380\n", + " 0.330124\n", + " 0.210860\n", + " 0.208232\n", + " 0.154013\n", + " 0.217560\n", + " 0.167469\n", + " 0.114794\n", + " 0.214311\n", + " \n", + " \n", + " 50\n", + " cg20596724\n", + " SDR9C7\n", + " -0.198220\n", + " TSS1500\n", + " cg20596724\n", + " 0.852856\n", + " 0.831449\n", + " 0.827896\n", + " 0.786247\n", + " 0.860701\n", + " ...\n", + " 0.873213\n", + " 0.836710\n", + " 0.790930\n", + " 0.809666\n", + " 0.855393\n", + " 0.854654\n", + " 0.815397\n", + " 0.848365\n", + " 0.855520\n", + " 0.900632\n", + " \n", + " \n", + " 51\n", + " cg16536739\n", + " SFRP5\n", + " -0.152947\n", + " TSS1500\n", + " cg16536739\n", + " 0.701835\n", + " 0.644866\n", + " 0.695675\n", + " 0.631480\n", + " 0.690910\n", + " ...\n", + " 0.669946\n", + " 0.638430\n", + " 0.700145\n", + " 0.649333\n", + " 0.657203\n", + " 0.748811\n", + " 0.702383\n", + " 0.675559\n", + " 0.747703\n", + " 0.709482\n", + " \n", + " \n", + " 52\n", + " cg04433322\n", + " SLC4A1\n", + " -0.211638\n", + " TSS1500\n", + " cg04433322\n", + " 0.693354\n", + " 0.620378\n", + " 0.640691\n", + " 0.538186\n", + " 0.690076\n", + " ...\n", + " 0.655099\n", + " 0.595588\n", + " 0.636928\n", + " 0.594470\n", + " 0.605271\n", + " 0.694352\n", + " 0.625864\n", + " 0.584421\n", + " 0.673791\n", + " 0.628553\n", + " \n", + " \n", + " 53\n", + " cg02547394\n", + " SOX1\n", + " 0.228038\n", + " TSS200\n", + " cg02547394\n", + " 0.216667\n", + " 0.343825\n", + " 0.321606\n", + " 0.272403\n", + " 0.195273\n", + " ...\n", + " 0.239604\n", + " 0.287996\n", + " 0.350911\n", + " 0.334620\n", + " 0.288577\n", + " 0.200789\n", + " 0.275149\n", + " 0.233916\n", + " 0.192863\n", + " 0.304376\n", + " \n", + " \n", + " 54\n", + " cg12610471\n", + " SPAG6\n", + " 0.281363\n", + " TSS200\n", + " cg12610471\n", + " 0.241770\n", + " 0.257214\n", + " 0.282535\n", + " 0.297399\n", + " 0.247937\n", + " ...\n", + " 0.214455\n", + " 0.254438\n", + " 0.280705\n", + " 0.316664\n", + " 0.265764\n", + " 0.248576\n", + " 0.278403\n", + " 0.269248\n", + " 0.244609\n", + " 0.286878\n", + " \n", + " \n", + " 55\n", + " cg06314202\n", + " SSTR5\n", + " -0.208831\n", + " TSS1500\n", + " cg06314202\n", + " 0.764468\n", + " 0.799973\n", + " 0.729717\n", + " 0.740498\n", + " 0.763586\n", + " ...\n", + " 0.747278\n", + " 0.753389\n", + " 0.785326\n", + " 0.734076\n", + " 0.695954\n", + " 0.801029\n", + " 0.754678\n", + " 0.776418\n", + " 0.751647\n", + " 0.727862\n", + " \n", + " \n", + " 56\n", + " cg06447795\n", + " TGM2\n", + " -0.193115\n", + " TSS1500\n", + " cg06447795\n", + " 0.044252\n", + " 0.029781\n", + " 0.069850\n", + " 0.139260\n", + " 0.094534\n", + " ...\n", + " 0.067412\n", + " 0.064750\n", + " 0.082407\n", + " 0.074641\n", + " 0.041037\n", + " 0.082432\n", + " 0.125600\n", + " 0.037847\n", + " 0.044367\n", + " 0.092974\n", + " \n", + " \n", + " 57\n", + " cg14153654\n", + " TNFRSF9\n", + " -0.195903\n", + " TSS200\n", + " cg14153654\n", + " 0.507465\n", + " 0.342007\n", + " 0.329841\n", + " 0.337737\n", + " 0.417720\n", + " ...\n", + " 0.413682\n", + " 0.368481\n", + " 0.387365\n", + " 0.363083\n", + " 0.382316\n", + " 0.447347\n", + " 0.433817\n", + " 0.306990\n", + " 0.424064\n", + " 0.346655\n", + " \n", + " \n", + " 58\n", + " cg24073122\n", + " TP73\n", + " 0.209996\n", + " TSS1500\n", + " cg24073122\n", + " 0.234215\n", + " 0.245132\n", + " 0.254275\n", + " 0.257438\n", + " 0.192703\n", + " ...\n", + " 0.216009\n", + " 0.252076\n", + " 0.261415\n", + " 0.269041\n", + " 0.262740\n", + " 0.206733\n", + " 0.193760\n", + " 0.209036\n", + " 0.219223\n", + " 0.228966\n", + " \n", + " \n", + " 59\n", + " cg23571857\n", + " XAF1\n", + " 0.216849\n", + " TSS1500\n", + " cg23571857\n", + " 0.524199\n", + " 0.598047\n", + " 0.543003\n", + " 0.606595\n", + " 0.519143\n", + " ...\n", + " 0.549308\n", + " 0.519532\n", + " 0.449382\n", + " 0.638999\n", + " 0.582213\n", + " 0.532573\n", + " 0.501536\n", + " 0.559082\n", + " 0.570046\n", + " 0.600431\n", " \n", " \n", "\n", - "

92 rows × 421 columns

\n", + "

60 rows × 423 columns

\n", "" ], "text/plain": [ - " Unnamed: 0 dbeta gene 461_x 487_y 325_x 333_x \\\n", - "0 cg10523679 0.021226 ACADM 0.156283 0.331503 0.152810 0.150414 \n", - "1 cg20707765 0.024253 ACSL5 0.576859 0.593527 0.575743 0.607325 \n", - "2 cg19536664 0.030384 ALOX12 0.576394 0.695993 0.458960 0.600616 \n", - "3 cg14904662 0.020543 ANK1 0.222721 0.314289 0.267926 0.293917 \n", - "4 cg01699630 0.024147 ARG1 0.312340 0.348138 0.321247 0.476959 \n", - ".. ... ... ... ... ... ... ... \n", - "87 cg16688533 0.040679 STC1 0.730250 0.697744 0.657762 0.676420 \n", - "88 cg03681335 0.029692 SULT1C2 0.337109 0.368181 0.317215 0.414796 \n", - "89 cg15100599 0.023953 SUSD4 0.083441 0.161517 0.118518 0.185565 \n", - "90 cg02569115 0.028042 TIMP2 0.374021 0.327582 0.254726 0.411566 \n", - "91 cg09276451 0.021343 VASN 0.623229 0.671907 0.689685 0.619634 \n", + " ID gene dbeta feature Unnamed: 0 0 1 \\\n", + "0 cg03760483 ALOX12 0.157175 TSS200 cg03760483 0.236414 0.456963 \n", + "1 cg00074348 APLNR -0.187434 TSS1500 cg00074348 0.466309 0.457003 \n", + "2 cg04290171 CD46 -0.201098 TSS1500 cg04290171 0.889514 0.860040 \n", + "3 cg00044665 CDH5 0.206568 TSS200 cg00044665 0.266689 0.332246 \n", + "4 cg14666310 CEACAM5 -0.210341 TSS1500 cg14666310 0.673555 0.695180 \n", + "5 cg07157107 CHRNA6 -0.242190 TSS200 cg07157107 0.267253 0.137766 \n", + "6 cg02295216 CKLF 0.172590 TSS1500 cg02295216 0.363497 0.260611 \n", + "7 cg19223467 CLEC9A -0.152339 TSS200 cg19223467 0.553040 0.540875 \n", + "8 cg23631930 CMTM5 0.172075 TSS200 cg23631930 0.769073 0.786669 \n", + "9 cg12440062 CRISP2 0.200273 TSS200 cg12440062 0.486181 0.466767 \n", + "10 cg21290814 CRTC1 -0.160943 TSS1500 cg21290814 0.218103 0.124658 \n", + "11 cg01136458 CSMD1 -0.183525 TSS1500 cg01136458 0.562662 0.342647 \n", + "12 cg05724197 CX3CL1 0.198136 TSS1500 cg05724197 0.734243 0.750670 \n", + "13 cg03003745 CXCL17 -0.238256 TSS1500 cg03003745 0.769774 0.754771 \n", + "14 cg00213123 CYP1A1 0.195047 TSS1500 cg00213123 0.252718 0.235994 \n", + "15 cg20051772 DGKA -0.186669 TSS1500 cg20051772 0.274093 0.153840 \n", + "16 cg13379236 EGF -0.151026 TSS1500 cg13379236 0.573028 0.612531 \n", + "17 cg13816423 FOXP4 -0.206186 TSS1500 cg13816423 0.525629 0.547039 \n", + "18 cg07014349 GJB5 0.162041 TSS200 cg07014349 0.721767 0.707736 \n", + "19 cg19772011 GLP1R -0.174030 TSS1500 cg19772011 0.424933 0.366848 \n", + "20 cg17413194 GNA13 0.174816 TSS1500 cg17413194 0.892900 0.924701 \n", + "21 cg04225088 HIPK3 0.150001 TSS1500 cg04225088 0.312370 0.497848 \n", + "22 cg05818394 HMGB1 -0.291705 TSS1500 cg05818394 0.268786 0.219602 \n", + "23 cg00727675 HOXA3 -0.182567 TSS1500 cg00727675 0.846111 0.851785 \n", + "24 cg00239353 IL32 0.230341 TSS1500 cg00239353 0.801055 0.707905 \n", + "25 cg15059851 IVL -0.208371 TSS1500 cg15059851 0.746068 0.703093 \n", + "26 cg11775521 KCNE3 0.263576 TSS200 cg11775521 0.224705 0.321265 \n", + "27 cg08375658 KLK12 -0.150620 TSS1500 cg08375658 0.373531 0.369187 \n", + "28 cg07925549 KRT75 -0.170578 TSS1500 cg07925549 0.719333 0.755092 \n", + "29 cg24296478 LCOR -0.157586 TSS1500 cg24296478 0.123775 0.113582 \n", + "30 cg23792592 MIR1-1 -0.180821 TSS1500 cg23792592 0.820852 0.818481 \n", + "31 cg19157647 MIR1180 0.157648 TSS200 cg19157647 0.848589 0.877015 \n", + "32 cg11201447 MIR1204 -0.298594 TSS200 cg11201447 0.563153 0.390281 \n", + "33 cg04927004 MIR124-3 0.177844 TSS1500 cg04927004 0.269138 0.325553 \n", + "34 cg10734581 MIR134 -0.266630 TSS1500 cg10734581 0.605681 0.586926 \n", + "35 cg24702147 MIR141 -0.157450 TSS1500 cg24702147 0.833630 0.878846 \n", + "36 cg16570507 MIR346 -0.179525 TSS200 cg16570507 0.442559 0.388921 \n", + "37 cg02577745 MIR493 -0.163426 TSS1500 cg02577745 0.855403 0.823589 \n", + "38 cg22500132 MUC1 -0.282771 TSS200 cg22500132 0.113111 0.100479 \n", + "39 cg21298408 NAT1 -0.159201 TSS200 cg21298408 0.710126 0.791803 \n", + "40 cg07552803 NEFM 0.227250 TSS1500 cg07552803 0.099552 0.112437 \n", + "41 cg08317412 PANX3 -0.169833 TSS1500 cg08317412 0.798718 0.795126 \n", + "42 cg20248866 PCYT2 0.154787 TSS1500 cg20248866 0.379558 0.515408 \n", + "43 cg07211259 PDCD1LG2 0.152846 TSS200 cg07211259 0.182180 0.102735 \n", + "44 cg12871376 PGC -0.152930 TSS1500 cg12871376 0.634038 0.690147 \n", + "45 cg02329916 PRSS1 -0.206755 TSS200 cg02329916 0.697635 0.804495 \n", + "46 cg22746058 PTF1A 0.189984 TSS1500 cg22746058 0.091921 0.112488 \n", + "47 cg05506480 RAB6B -0.195065 TSS1500 cg05506480 0.178189 0.157084 \n", + "48 cg26106778 RING1 0.186264 TSS1500 cg26106778 0.169706 0.206504 \n", + "49 cg05884032 SALL3 0.151857 TSS200 cg05884032 0.170969 0.175475 \n", + "50 cg20596724 SDR9C7 -0.198220 TSS1500 cg20596724 0.852856 0.831449 \n", + "51 cg16536739 SFRP5 -0.152947 TSS1500 cg16536739 0.701835 0.644866 \n", + "52 cg04433322 SLC4A1 -0.211638 TSS1500 cg04433322 0.693354 0.620378 \n", + "53 cg02547394 SOX1 0.228038 TSS200 cg02547394 0.216667 0.343825 \n", + "54 cg12610471 SPAG6 0.281363 TSS200 cg12610471 0.241770 0.257214 \n", + "55 cg06314202 SSTR5 -0.208831 TSS1500 cg06314202 0.764468 0.799973 \n", + "56 cg06447795 TGM2 -0.193115 TSS1500 cg06447795 0.044252 0.029781 \n", + "57 cg14153654 TNFRSF9 -0.195903 TSS200 cg14153654 0.507465 0.342007 \n", + "58 cg24073122 TP73 0.209996 TSS1500 cg24073122 0.234215 0.245132 \n", + "59 cg23571857 XAF1 0.216849 TSS1500 cg23571857 0.524199 0.598047 \n", "\n", - " 417_x 355_x 373_y ... 61_x 171_x 179_x 131_y \\\n", - "0 0.109073 0.363286 0.358934 ... 0.314871 0.330853 0.151055 0.290511 \n", - "1 0.626227 0.645283 0.620381 ... 0.620904 0.653260 0.561024 0.502570 \n", - "2 0.575685 0.627107 0.733890 ... 0.630060 0.570989 0.687292 0.598850 \n", - "3 0.221845 0.342598 0.292339 ... 0.253650 0.254837 0.302475 0.268841 \n", - "4 0.323977 0.500710 0.430033 ... 0.239938 0.253430 0.456411 0.360932 \n", - ".. ... ... ... ... ... ... ... ... \n", - "87 0.750190 0.613876 0.399457 ... 0.702947 0.671833 0.705485 0.351661 \n", - "88 0.361786 0.465284 0.385154 ... 0.288429 0.409178 0.435137 0.377688 \n", - "89 0.130743 0.227758 0.188190 ... 0.162086 0.216792 0.297504 0.219960 \n", - "90 0.284019 0.378253 0.376335 ... 0.288921 0.316586 0.445974 0.326495 \n", - "91 0.601067 0.700396 0.669830 ... 0.666785 0.655702 0.655511 0.677406 \n", + " 2 3 4 ... 408 409 410 411 \\\n", + "0 0.393205 0.319442 0.376546 ... 0.433266 0.385754 0.365361 0.571618 \n", + "1 0.442229 0.460896 0.526294 ... 0.406462 0.468974 0.505998 0.447733 \n", + "2 0.825669 0.808767 0.882251 ... 0.897428 0.842283 0.886778 0.903050 \n", + "3 0.269771 0.315645 0.234602 ... 0.274103 0.259853 0.229335 0.328268 \n", + "4 0.686634 0.641230 0.743104 ... 0.681935 0.613599 0.728985 0.664602 \n", + "5 0.212442 0.168600 0.206781 ... 0.149664 0.184383 0.133741 0.172674 \n", + "6 0.309377 0.350464 0.317099 ... 0.309767 0.328551 0.201410 0.355441 \n", + "7 0.408219 0.639611 0.540304 ... 0.434638 0.389198 0.576087 0.677964 \n", + "8 0.789469 0.712481 0.817953 ... 0.784860 0.789034 0.795643 0.783826 \n", + "9 0.658400 0.518216 0.593437 ... 0.445182 0.767513 0.663110 0.652559 \n", + "10 0.194146 0.151656 0.246419 ... 0.190325 0.253511 0.370957 0.270400 \n", + "11 0.405482 0.538545 0.451746 ... 0.358178 0.457632 0.343035 0.485002 \n", + "12 0.715007 0.706211 0.707622 ... 0.741768 0.743632 0.694187 0.701328 \n", + "13 0.750923 0.707897 0.803780 ... 0.768881 0.773799 0.768141 0.742234 \n", + "14 0.283559 0.217079 0.254952 ... 0.201034 0.237911 0.263236 0.295310 \n", + "15 0.242470 0.201241 0.264579 ... 0.258048 0.268499 0.180419 0.263201 \n", + "16 0.601079 0.545201 0.595605 ... 0.628913 0.603874 0.709718 0.643444 \n", + "17 0.526484 0.377820 0.482987 ... 0.491120 0.508041 0.477693 0.493924 \n", + "18 0.685455 0.586987 0.728675 ... 0.697530 0.681348 0.712290 0.673994 \n", + "19 0.371132 0.398409 0.512713 ... 0.326810 0.420252 0.315516 0.373941 \n", + "20 0.900737 0.927879 0.894044 ... 0.905600 0.902015 0.895452 0.909865 \n", + "21 0.256887 0.443426 0.256834 ... 0.353510 0.245583 0.189022 0.406742 \n", + "22 0.207522 0.205676 0.219931 ... 0.261757 0.236433 0.145173 0.288544 \n", + "23 0.807337 0.772323 0.896772 ... 0.767197 0.831586 0.815648 0.796103 \n", + "24 0.728506 0.685146 0.777805 ... 0.761856 0.766555 0.808789 0.725277 \n", + "25 0.742771 0.674082 0.790157 ... 0.713262 0.742211 0.776202 0.724440 \n", + "26 0.292456 0.304315 0.221854 ... 0.262763 0.262728 0.279741 0.347049 \n", + "27 0.405792 0.229373 0.320706 ... 0.369314 0.374514 0.362033 0.405099 \n", + "28 0.719713 0.661375 0.686504 ... 0.703808 0.761950 0.660728 0.665314 \n", + "29 0.098122 0.061366 0.202207 ... 0.142852 0.173247 0.070762 0.083220 \n", + "30 0.816022 0.779456 0.827824 ... 0.845347 0.816827 0.803982 0.789567 \n", + "31 0.859423 0.795065 0.855516 ... 0.850693 0.844363 0.806228 0.841611 \n", + "32 0.503120 0.383873 0.501025 ... 0.436112 0.495300 0.504980 0.411687 \n", + "33 0.395209 0.331040 0.234604 ... 0.335093 0.304882 0.398268 0.321550 \n", + "34 0.606444 0.550279 0.658604 ... 0.593520 0.583302 0.611405 0.569500 \n", + "35 0.819428 0.824717 0.859967 ... 0.811076 0.827837 0.886588 0.902918 \n", + "36 0.391081 0.265650 0.431357 ... 0.371349 0.297244 0.282506 0.365149 \n", + "37 0.862462 0.836489 0.877253 ... 0.864000 0.808004 0.848807 0.807441 \n", + "38 0.107500 0.095274 0.090260 ... 0.067399 0.094780 0.128484 0.109636 \n", + "39 0.719930 0.742611 0.739981 ... 0.753892 0.734089 0.652814 0.703415 \n", + "40 0.132645 0.133998 0.064870 ... 0.108710 0.114184 0.148561 0.140304 \n", + "41 0.795669 0.760310 0.799150 ... 0.820026 0.767582 0.801853 0.779158 \n", + "42 0.424047 0.411715 0.379275 ... 0.387834 0.392653 0.415538 0.474268 \n", + "43 0.158707 0.176757 0.212701 ... 0.217170 0.122523 0.145827 0.121878 \n", + "44 0.610273 0.642777 0.664123 ... 0.621354 0.591425 0.587441 0.616403 \n", + "45 0.774227 0.735544 0.766629 ... 0.770766 0.763897 0.751401 0.726040 \n", + "46 0.117563 0.143644 0.066142 ... 0.105599 0.120432 0.160880 0.148633 \n", + "47 0.094172 0.140586 0.110955 ... 0.131170 0.092109 0.091508 0.197731 \n", + "48 0.211555 0.233968 0.139397 ... 0.188477 0.189869 0.187904 0.237459 \n", + "49 0.161222 0.214139 0.145597 ... 0.152065 0.148380 0.330124 0.210860 \n", + "50 0.827896 0.786247 0.860701 ... 0.873213 0.836710 0.790930 0.809666 \n", + "51 0.695675 0.631480 0.690910 ... 0.669946 0.638430 0.700145 0.649333 \n", + "52 0.640691 0.538186 0.690076 ... 0.655099 0.595588 0.636928 0.594470 \n", + "53 0.321606 0.272403 0.195273 ... 0.239604 0.287996 0.350911 0.334620 \n", + "54 0.282535 0.297399 0.247937 ... 0.214455 0.254438 0.280705 0.316664 \n", + "55 0.729717 0.740498 0.763586 ... 0.747278 0.753389 0.785326 0.734076 \n", + "56 0.069850 0.139260 0.094534 ... 0.067412 0.064750 0.082407 0.074641 \n", + "57 0.329841 0.337737 0.417720 ... 0.413682 0.368481 0.387365 0.363083 \n", + "58 0.254275 0.257438 0.192703 ... 0.216009 0.252076 0.261415 0.269041 \n", + "59 0.543003 0.606595 0.519143 ... 0.549308 0.519532 0.449382 0.638999 \n", "\n", - " 51_y 39_y 151_y 225_x 85_y 199_x \n", - "0 0.450517 0.411201 0.401057 0.100925 0.349773 0.367914 \n", - "1 0.622506 0.571389 0.703008 0.620249 0.574150 0.975968 \n", - "2 0.476670 0.603563 0.759482 0.679786 0.589431 0.893278 \n", - "3 0.326884 0.332103 0.262208 0.312026 0.349177 0.386330 \n", - "4 0.405114 0.453282 0.357001 0.415318 0.461195 0.919652 \n", - ".. ... ... ... ... ... ... \n", - "87 0.299951 0.698642 0.431952 0.714840 0.648563 0.330089 \n", - "88 0.409050 0.399443 0.457829 0.398400 0.407844 0.888858 \n", - "89 0.101582 0.072738 0.089968 0.213388 0.201115 0.132777 \n", - "90 0.297287 0.415420 0.428804 0.297715 0.410523 0.548249 \n", - "91 0.662660 0.710397 0.712588 0.677861 0.706402 0.771385 \n", + " 412 413 414 415 416 417 \n", + "0 0.389705 0.376265 0.200213 0.213818 0.223605 0.390453 \n", + "1 0.496243 0.516885 0.478009 0.461991 0.505650 0.425387 \n", + "2 0.897832 0.819984 0.803872 0.918829 0.854414 0.911942 \n", + "3 0.299035 0.222106 0.224438 0.277983 0.251191 0.253250 \n", + "4 0.685677 0.679476 0.632856 0.651557 0.654629 0.694013 \n", + "5 0.168547 0.171719 0.162934 0.135706 0.190779 0.191123 \n", + "6 0.188960 0.351395 0.332551 0.167575 0.084872 0.345495 \n", + "7 0.564957 0.549210 0.517783 0.663231 0.433247 0.553600 \n", + "8 0.758287 0.820371 0.762424 0.798704 0.803269 0.778339 \n", + "9 0.690339 0.652818 0.559369 0.565027 0.574367 0.526302 \n", + "10 0.195377 0.238683 0.227245 0.193281 0.164008 0.221216 \n", + "11 0.273328 0.528276 0.407212 0.266982 0.438324 0.353390 \n", + "12 0.699426 0.752338 0.671146 0.696610 0.740219 0.734335 \n", + "13 0.750054 0.762789 0.705811 0.765823 0.761887 0.790526 \n", + "14 0.283498 0.213430 0.231335 0.192510 0.235878 0.233191 \n", + "15 0.220096 0.274449 0.238346 0.214392 0.289757 0.282479 \n", + "16 0.648941 0.628367 0.611217 0.625344 0.631433 0.643077 \n", + "17 0.573321 0.507138 0.560417 0.566918 0.536212 0.405821 \n", + "18 0.687517 0.680143 0.663641 0.665778 0.708924 0.717612 \n", + "19 0.324648 0.383260 0.361384 0.385909 0.387834 0.438647 \n", + "20 0.907532 0.900753 0.875808 0.935679 0.903922 0.919369 \n", + "21 0.338978 0.208786 0.266501 0.353085 0.305456 0.253948 \n", + "22 0.218725 0.222591 0.233592 0.244560 0.250098 0.201397 \n", + "23 0.800868 0.874837 0.794741 0.862334 0.858179 0.872256 \n", + "24 0.739066 0.823395 0.731399 0.783274 0.808959 0.809296 \n", + "25 0.703877 0.810116 0.721771 0.745249 0.779341 0.793993 \n", + "26 0.318857 0.191190 0.254092 0.322475 0.230785 0.207241 \n", + "27 0.339099 0.385131 0.336779 0.342804 0.356646 0.276763 \n", + "28 0.662328 0.721944 0.635651 0.739437 0.680937 0.678479 \n", + "29 0.103510 0.111210 0.082034 0.157397 0.177708 0.151386 \n", + "30 0.816800 0.851628 0.799465 0.834424 0.845007 0.821329 \n", + "31 0.808398 0.828929 0.822029 0.835106 0.845336 0.820117 \n", + "32 0.348005 0.310327 0.495870 0.441954 0.575405 0.536525 \n", + "33 0.344642 0.260215 0.318819 0.286698 0.262091 0.357024 \n", + "34 0.575573 0.645497 0.591308 0.576784 0.660405 0.639335 \n", + "35 0.890800 0.847578 0.816638 0.870090 0.854882 0.887010 \n", + "36 0.355487 0.381577 0.310171 0.354487 0.418710 0.302428 \n", + "37 0.836581 0.891960 0.825203 0.837047 0.865457 0.870827 \n", + "38 0.113056 0.081551 0.124542 0.088530 0.095734 0.120762 \n", + "39 0.683536 0.736089 0.716511 0.667518 0.738462 0.717654 \n", + "40 0.124437 0.070857 0.086668 0.090281 0.102663 0.130862 \n", + "41 0.823689 0.820692 0.746107 0.772055 0.805236 0.810853 \n", + "42 0.401104 0.440038 0.394245 0.408708 0.420681 0.442299 \n", + "43 0.161302 0.132285 0.096186 0.201539 0.198195 0.167421 \n", + "44 0.620384 0.637948 0.629167 0.640783 0.648596 0.611541 \n", + "45 0.715777 0.766721 0.720330 0.705289 0.712917 0.718007 \n", + "46 0.109012 0.082206 0.119163 0.092386 0.098278 0.134826 \n", + "47 0.130661 0.134397 0.164433 0.137992 0.151490 0.111528 \n", + "48 0.231120 0.146278 0.177644 0.214431 0.148552 0.203391 \n", + "49 0.208232 0.154013 0.217560 0.167469 0.114794 0.214311 \n", + "50 0.855393 0.854654 0.815397 0.848365 0.855520 0.900632 \n", + "51 0.657203 0.748811 0.702383 0.675559 0.747703 0.709482 \n", + "52 0.605271 0.694352 0.625864 0.584421 0.673791 0.628553 \n", + "53 0.288577 0.200789 0.275149 0.233916 0.192863 0.304376 \n", + "54 0.265764 0.248576 0.278403 0.269248 0.244609 0.286878 \n", + "55 0.695954 0.801029 0.754678 0.776418 0.751647 0.727862 \n", + "56 0.041037 0.082432 0.125600 0.037847 0.044367 0.092974 \n", + "57 0.382316 0.447347 0.433817 0.306990 0.424064 0.346655 \n", + "58 0.262740 0.206733 0.193760 0.209036 0.219223 0.228966 \n", + "59 0.582213 0.532573 0.501536 0.559082 0.570046 0.600431 \n", "\n", - "[92 rows x 421 columns]" + "[60 rows x 423 columns]" ] }, - "execution_count": 6, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df_mix_train = pd.merge( left= df_dbeta,right=df_beta_train,left_on= 'Unnamed: 0',right_on='Unnamed: 0')\n", + "df_mix_train = pd.merge( left= df_dbeta,right=df_beta_train,left_on= 'ID',right_on='Unnamed: 0')\n", "df_mix_train" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Unnamed: 0 cg10523679 cg20707765 cg19536664 cg14904662 cg01699630 \\\n", - "461_x 0.156283 0.576859 0.576394 0.222721 0.312340 \n", - "487_y 0.331503 0.593527 0.695993 0.314289 0.348138 \n", - "325_x 0.152810 0.575743 0.458960 0.267926 0.321247 \n", - "333_x 0.150414 0.607325 0.600616 0.293917 0.476959 \n", - "417_x 0.109073 0.626227 0.575685 0.221845 0.323977 \n", - "... ... ... ... ... ... \n", - "39_y 0.411201 0.571389 0.603563 0.332103 0.453282 \n", - "151_y 0.401057 0.703008 0.759482 0.262208 0.357001 \n", - "225_x 0.100925 0.620249 0.679786 0.312026 0.415318 \n", - "85_y 0.349773 0.574150 0.589431 0.349177 0.461195 \n", - "199_x 0.367914 0.975968 0.893278 0.386330 0.919652 \n", + "Unnamed: 0 cg03760483 cg00074348 cg04290171 cg00044665 cg14666310 \\\n", + "0 0.236414 0.466309 0.889514 0.266689 0.673555 \n", + "1 0.456963 0.457003 0.860040 0.332246 0.695180 \n", + "2 0.393205 0.442229 0.825669 0.269771 0.686634 \n", + "3 0.319442 0.460896 0.808767 0.315645 0.641230 \n", + "4 0.376546 0.526294 0.882251 0.234602 0.743104 \n", + ".. ... ... ... ... ... \n", + "413 0.376265 0.516885 0.819984 0.222106 0.679476 \n", + "414 0.200213 0.478009 0.803872 0.224438 0.632856 \n", + "415 0.213818 0.461991 0.918829 0.277983 0.651557 \n", + "416 0.223605 0.505650 0.854414 0.251191 0.654629 \n", + "417 0.390453 0.425387 0.911942 0.253250 0.694013 \n", "\n", - "Unnamed: 0 cg10377921 cg18060330 cg20674480 cg24982541 cg24764861 ... \\\n", - "461_x 0.393742 0.815689 0.914724 0.230742 0.627185 ... \n", - "487_y 0.407045 0.561691 0.949041 0.357971 0.672861 ... \n", - "325_x 0.394219 0.842087 0.936707 0.231486 0.618265 ... \n", - "333_x 0.450114 0.840694 0.916709 0.335807 0.685013 ... \n", - "417_x 0.380197 0.892236 0.873232 0.345626 0.625547 ... \n", - "... ... ... ... ... ... ... \n", - "39_y 0.456506 0.891535 0.928281 0.392639 0.639525 ... \n", - "151_y 0.474079 0.922412 0.918779 0.510913 0.756685 ... \n", - "225_x 0.433571 0.938184 0.932145 0.176984 0.646655 ... \n", - "85_y 0.458418 0.882092 0.945029 0.335210 0.680202 ... \n", - "199_x 0.930808 0.891062 0.931684 0.841409 0.686480 ... \n", + "Unnamed: 0 cg07157107 cg02295216 cg19223467 cg23631930 cg12440062 ... \\\n", + "0 0.267253 0.363497 0.553040 0.769073 0.486181 ... \n", + "1 0.137766 0.260611 0.540875 0.786669 0.466767 ... \n", + "2 0.212442 0.309377 0.408219 0.789469 0.658400 ... \n", + "3 0.168600 0.350464 0.639611 0.712481 0.518216 ... \n", + "4 0.206781 0.317099 0.540304 0.817953 0.593437 ... \n", + ".. ... ... ... ... ... ... \n", + "413 0.171719 0.351395 0.549210 0.820371 0.652818 ... \n", + "414 0.162934 0.332551 0.517783 0.762424 0.559369 ... \n", + "415 0.135706 0.167575 0.663231 0.798704 0.565027 ... \n", + "416 0.190779 0.084872 0.433247 0.803269 0.574367 ... \n", + "417 0.191123 0.345495 0.553600 0.778339 0.526302 ... \n", "\n", - "Unnamed: 0 cg09781944 cg23731272 cg01281718 cg02547394 cg07464716 \\\n", - "461_x 0.085909 0.609298 0.686658 0.170133 0.504422 \n", - "487_y 0.186770 0.604878 0.735083 0.297245 0.504753 \n", - "325_x 0.170018 0.543464 0.715229 0.254074 0.522355 \n", - "333_x 0.213401 0.650464 0.684382 0.266076 0.893958 \n", - "417_x 0.127510 0.802013 0.725083 0.210871 0.803803 \n", - "... ... ... ... ... ... \n", - "39_y 0.157961 0.888372 0.726466 0.259769 0.853017 \n", - "151_y 0.167884 0.665218 0.861973 0.211013 0.917704 \n", - "225_x 0.174373 0.577241 0.671105 0.279248 0.860024 \n", - "85_y 0.246304 0.522871 0.742267 0.310625 0.563277 \n", - "199_x 0.213305 0.638750 0.957773 0.366142 0.944030 \n", + "Unnamed: 0 cg20596724 cg16536739 cg04433322 cg02547394 cg12610471 \\\n", + "0 0.852856 0.701835 0.693354 0.216667 0.241770 \n", + "1 0.831449 0.644866 0.620378 0.343825 0.257214 \n", + "2 0.827896 0.695675 0.640691 0.321606 0.282535 \n", + "3 0.786247 0.631480 0.538186 0.272403 0.297399 \n", + "4 0.860701 0.690910 0.690076 0.195273 0.247937 \n", + ".. ... ... ... ... ... \n", + "413 0.854654 0.748811 0.694352 0.200789 0.248576 \n", + "414 0.815397 0.702383 0.625864 0.275149 0.278403 \n", + "415 0.848365 0.675559 0.584421 0.233916 0.269248 \n", + "416 0.855520 0.747703 0.673791 0.192863 0.244609 \n", + "417 0.900632 0.709482 0.628553 0.304376 0.286878 \n", "\n", - "Unnamed: 0 cg16688533 cg03681335 cg15100599 cg02569115 cg09276451 \n", - "461_x 0.730250 0.337109 0.083441 0.374021 0.623229 \n", - "487_y 0.697744 0.368181 0.161517 0.327582 0.671907 \n", - "325_x 0.657762 0.317215 0.118518 0.254726 0.689685 \n", - "333_x 0.676420 0.414796 0.185565 0.411566 0.619634 \n", - "417_x 0.750190 0.361786 0.130743 0.284019 0.601067 \n", - "... ... ... ... ... ... \n", - "39_y 0.698642 0.399443 0.072738 0.415420 0.710397 \n", - "151_y 0.431952 0.457829 0.089968 0.428804 0.712588 \n", - "225_x 0.714840 0.398400 0.213388 0.297715 0.677861 \n", - "85_y 0.648563 0.407844 0.201115 0.410523 0.706402 \n", - "199_x 0.330089 0.888858 0.132777 0.548249 0.771385 \n", + "Unnamed: 0 cg06314202 cg06447795 cg14153654 cg24073122 cg23571857 \n", + "0 0.764468 0.044252 0.507465 0.234215 0.524199 \n", + "1 0.799973 0.029781 0.342007 0.245132 0.598047 \n", + "2 0.729717 0.069850 0.329841 0.254275 0.543003 \n", + "3 0.740498 0.139260 0.337737 0.257438 0.606595 \n", + "4 0.763586 0.094534 0.417720 0.192703 0.519143 \n", + ".. ... ... ... ... ... \n", + "413 0.801029 0.082432 0.447347 0.206733 0.532573 \n", + "414 0.754678 0.125600 0.433817 0.193760 0.501536 \n", + "415 0.776418 0.037847 0.306990 0.209036 0.559082 \n", + "416 0.751647 0.044367 0.424064 0.219223 0.570046 \n", + "417 0.727862 0.092974 0.346655 0.228966 0.600431 \n", "\n", - "[418 rows x 92 columns]\n" + "[418 rows x 60 columns]\n" ] } ], @@ -968,10 +2692,10 @@ "from sklearn.model_selection import train_test_split\n", "\n", "\n", - "X_train = df_mix_train.drop(columns=[\"Unnamed: 0\",\"dbeta\",\"gene\"])\n", + "X_train = df_mix_train.drop(columns=[\"Unnamed: 0\",\"dbeta\",\"gene\",\"feature\",\"ID\"])\n", "X_train = X_train.T\n", "\n", - "X_train_normal_count = 210\n", + "X_train_normal_count = 218\n", "\n", "if (X_train_normal_count):\n", " y_train = [(0 if i < (X_train_normal_count) else 1) for i in range(len(X_train))]\n", @@ -985,20 +2709,22 @@ "X_train = X_train.T\n", "\n", "X_train\n", - "print(X_train)\n" + "print(X_train)\n", + "\n", + "# print(len(X_train))" ] }, { "cell_type": "code", - "execution_count": 88, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Train accuracy (Random Forest): 0.7482\n", - "Test accuracy (Random Forest): 0.7010\n" + "Train accuracy (Random Forest): 0.7267\n", + "Test accuracy (Random Forest): 0.6482\n" ] } ], @@ -1010,9 +2736,10 @@ "random_forest = RandomForestClassifier(random_state=42)\n", "\n", "# 手動調整隨機森林模型參數\n", - "random_forest.set_params(n_estimators=155, max_depth=2, min_samples_split=2, min_samples_leaf=35)\n", + "random_forest.set_params(n_estimators=50, max_depth=4, min_samples_split=2, min_samples_leaf=40)\n", "# 180/2/2/35\n", "# 150/2/2/35\n", + "# \n", "# 使用交叉驗證,並同時返回訓練集和測試集的準確率\n", "cv_results = cross_validate(random_forest, X_train, y_train, cv=5, scoring='accuracy', return_train_score=True)\n", "\n", @@ -1023,20 +2750,20 @@ }, { "cell_type": "code", - "execution_count": 89, + "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Requirement already satisfied: boruta in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (0.3)Note: you may need to restart the kernel to use updated packages.\n", - "\n", + "Requirement already satisfied: boruta in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (0.3)\n", "Requirement already satisfied: numpy>=1.10.4 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from boruta) (1.23.5)\n", "Requirement already satisfied: scikit-learn>=0.17.1 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from boruta) (1.3.2)\n", "Requirement already satisfied: scipy>=0.17.0 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from boruta) (1.10.1)\n", "Requirement already satisfied: joblib>=1.1.1 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-learn>=0.17.1->boruta) (1.3.2)\n", - "Requirement already satisfied: threadpoolctl>=2.0.0 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-learn>=0.17.1->boruta) (3.2.0)\n" + "Requirement already satisfied: threadpoolctl>=2.0.0 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-learn>=0.17.1->boruta) (3.2.0)\n", + "Note: you may need to restart the kernel to use updated packages.\n" ] }, { @@ -1054,7 +2781,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "Requirement already satisfied: scikit-optimize in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (0.10.2)\n", + "Requirement already satisfied: scikit-optimize in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (0.10.2)Note: you may need to restart the kernel to use updated packages.\n", + "\n", "Requirement already satisfied: joblib>=0.11 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-optimize) (1.3.2)\n", "Requirement already satisfied: pyaml>=16.9 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-optimize) (24.7.0)\n", "Requirement already satisfied: numpy>=1.20.3 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-optimize) (1.23.5)\n", @@ -1063,8 +2791,7 @@ "Requirement already satisfied: packaging>=21.3 in c:\\users\\user\\appdata\\roaming\\python\\python310\\site-packages (from scikit-optimize) (21.3)\n", "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in c:\\users\\user\\appdata\\roaming\\python\\python310\\site-packages (from packaging>=21.3->scikit-optimize) (3.0.9)\n", "Requirement already satisfied: PyYAML in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from pyaml>=16.9->scikit-optimize) (6.0)\n", - "Requirement already satisfied: threadpoolctl>=2.0.0 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-learn>=1.0.0->scikit-optimize) (3.2.0)\n", - "Note: you may need to restart the kernel to use updated packages.\n" + "Requirement already satisfied: threadpoolctl>=2.0.0 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-learn>=1.0.0->scikit-optimize) (3.2.0)\n" ] }, { @@ -1086,16 +2813,15 @@ }, { "cell_type": "code", - "execution_count": 90, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "最佳參數組合: [1.55788216e+02 3.05287910e+00 4.79438674e+00 2.01111499e+01\n", - " 4.41602468e-02]\n", - "最佳目標值 (最小化的F1損失): -0.7340059976185509\n" + "最佳參數組合: [113.49612715 3.87267187 2.33139531 31.18069819 0.74531665]\n", + "最佳目標值 (最小化的F1損失): -0.6401367447029548\n" ] } ], @@ -1130,10 +2856,10 @@ "\n", "# 定義參數空間的範圍\n", "param_bounds = [\n", - " (145, 185), # n_estimators 的範圍,避免過多的樹\n", - " (2, 4), # max_depth 的範圍,進一步限制樹的最大深度\n", - " (2, 7), # min_samples_split 的範圍\n", - " (20, 40), # min_samples_leaf 的範圍\n", + " (100,200), # n_estimators 的範圍,避免過多的樹\n", + " (1, 7), # max_depth 的範圍,進一步限制樹的最大深度\n", + " (2, 5), # min_samples_split 的範圍\n", + " (35, 45), # min_samples_leaf 的範圍\n", " (0, 1) # bootstrap (0 表示 False,1 表示 True)\n", "]\n", "\n", @@ -1141,7 +2867,7 @@ "result = dual_annealing(\n", " objective, # 目標函數\n", " param_bounds, # 參數空間\n", - " maxiter=30, # 模擬退火的最大迭代次數\n", + " maxiter=40, # 模擬退火的最大迭代次數\n", " seed=42\n", ")\n", "\n", @@ -1152,22 +2878,22 @@ }, { "cell_type": "code", - "execution_count": 91, + "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ - "
RandomForestClassifier(max_depth=3, min_samples_leaf=20, min_samples_split=4,\n",
-       "                       n_estimators=155, n_jobs=-1, random_state=42)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + "
RandomForestClassifier(max_depth=3, min_samples_leaf=31, n_estimators=113,\n",
+       "                       n_jobs=-1, random_state=42)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ], "text/plain": [ - "RandomForestClassifier(max_depth=3, min_samples_leaf=20, min_samples_split=4,\n", - " n_estimators=155, n_jobs=-1, random_state=42)" + "RandomForestClassifier(max_depth=3, min_samples_leaf=31, n_estimators=113,\n", + " n_jobs=-1, random_state=42)" ] }, - "execution_count": 91, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -1188,15 +2914,15 @@ }, { "cell_type": "code", - "execution_count": 92, + "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "5-fold CV accuracy scores with best hyperparameters: [0.74157303 0.74157303 0.68 0.72527473 0.7816092 ]\n", - "f1: 0.7340059976185509\n" + "5-fold CV accuracy scores with best hyperparameters: [0.66666667 0.66666667 0.63013699 0.64197531 0.5952381 ]\n", + "f1: 0.6401367447029548\n" ] } ], @@ -1215,22 +2941,22 @@ }, { "cell_type": "code", - "execution_count": 94, + "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Average train accuracy: 0.8114085937817261\n", - "Average test accuracy: 0.7340059976185509\n" + "Average train accuracy: 0.7553972651711502\n", + "Average test accuracy: 0.6624784853700516\n" ] } ], "source": [ "from sklearn.model_selection import cross_validate\n", "# 使用 cross_validate 來同時獲取訓練和測試的準確率\n", - "cv_results = cross_validate(best_rf, X_train, y_train, cv=5, scoring='f1', return_train_score=True)\n", + "cv_results = cross_validate(best_rf, X_train, y_train, cv=5, scoring='accuracy', return_train_score=True)\n", "\n", "# 取得訓練準確率和測試準確率\n", "train_accuracy = cv_results['train_score']\n", @@ -1243,448 +2969,44 @@ }, { "cell_type": "code", - "execution_count": 95, + "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Iteration: \t1 / 100\n", - "Confirmed: \t0\n", - "Tentative: \t92\n", - "Rejected: \t0\n", - "Iteration: \t2 / 100\n", - "Confirmed: \t0\n", - "Tentative: \t92\n", - "Rejected: \t0\n", - "Iteration: \t3 / 100\n", - "Confirmed: \t0\n", - "Tentative: \t92\n", - "Rejected: \t0\n", - "Iteration: \t4 / 100\n", - "Confirmed: \t0\n", - "Tentative: \t92\n", - "Rejected: \t0\n", - "Iteration: \t5 / 100\n", - "Confirmed: \t0\n", - "Tentative: \t92\n", - "Rejected: \t0\n", - "Iteration: \t6 / 100\n", - "Confirmed: \t0\n", - "Tentative: \t92\n", - "Rejected: \t0\n", - "Iteration: \t7 / 100\n", - "Confirmed: \t0\n", - "Tentative: \t92\n", - "Rejected: \t0\n", - "Iteration: \t8 / 100\n", - "Confirmed: \t17\n", - "Tentative: \t41\n", - "Rejected: \t34\n", - "Iteration: \t9 / 100\n", - "Confirmed: \t17\n", - "Tentative: \t41\n", - "Rejected: \t34\n", - "Iteration: \t10 / 100\n", - "Confirmed: \t17\n", - "Tentative: \t41\n", - "Rejected: \t34\n", - "Iteration: \t11 / 100\n", - "Confirmed: \t17\n", - "Tentative: \t41\n", - "Rejected: \t34\n", - "Iteration: \t12 / 100\n", - "Confirmed: \t21\n", - "Tentative: \t28\n", - "Rejected: \t43\n", - "Iteration: \t13 / 100\n", - "Confirmed: \t21\n", - "Tentative: \t28\n", - "Rejected: \t43\n", - "Iteration: \t14 / 100\n", - "Confirmed: \t21\n", - "Tentative: \t28\n", - "Rejected: \t43\n", - "Iteration: \t15 / 100\n", - "Confirmed: \t21\n", - "Tentative: \t28\n", - "Rejected: \t43\n", - "Iteration: \t16 / 100\n", - "Confirmed: \t21\n", - "Tentative: \t28\n", - "Rejected: \t43\n", - "Iteration: \t17 / 100\n", - "Confirmed: \t21\n", - "Tentative: \t28\n", - "Rejected: \t43\n", - "Iteration: \t18 / 100\n", - "Confirmed: \t21\n", - "Tentative: \t27\n", - "Rejected: \t44\n", - "Iteration: \t19 / 100\n", - "Confirmed: \t21\n", - "Tentative: \t27\n", - "Rejected: \t44\n", - "Iteration: \t20 / 100\n", - "Confirmed: \t21\n", - "Tentative: \t27\n", - "Rejected: \t44\n", - "Iteration: \t21 / 100\n", - "Confirmed: \t21\n", - "Tentative: \t26\n", - "Rejected: \t45\n", - "Iteration: \t22 / 100\n", - "Confirmed: \t22\n", - "Tentative: \t21\n", - "Rejected: \t49\n", - "Iteration: \t23 / 100\n", - "Confirmed: \t22\n", - "Tentative: \t21\n", - "Rejected: \t49\n", - "Iteration: \t24 / 100\n", - "Confirmed: \t22\n", - "Tentative: \t21\n", - "Rejected: \t49\n", - "Iteration: \t25 / 100\n", - "Confirmed: \t22\n", - "Tentative: \t21\n", - "Rejected: \t49\n", - "Iteration: \t26 / 100\n", - "Confirmed: \t22\n", - "Tentative: \t19\n", - "Rejected: \t51\n", - "Iteration: \t27 / 100\n", - "Confirmed: \t22\n", - "Tentative: \t19\n", - "Rejected: \t51\n", - "Iteration: \t28 / 100\n", - "Confirmed: \t22\n", - "Tentative: \t19\n", - "Rejected: \t51\n", - "Iteration: \t29 / 100\n", - "Confirmed: \t22\n", - "Tentative: \t17\n", - "Rejected: \t53\n", - "Iteration: \t30 / 100\n", - "Confirmed: \t22\n", - "Tentative: \t17\n", - "Rejected: \t53\n", - "Iteration: \t31 / 100\n", - "Confirmed: \t22\n", - "Tentative: \t17\n", - "Rejected: \t53\n", - "Iteration: \t32 / 100\n", - "Confirmed: \t22\n", - "Tentative: \t17\n", - "Rejected: \t53\n", - "Iteration: \t33 / 100\n", - "Confirmed: \t22\n", - "Tentative: \t17\n", - "Rejected: \t53\n", - "Iteration: \t34 / 100\n", - "Confirmed: \t23\n", - "Tentative: \t16\n", - "Rejected: \t53\n", - "Iteration: \t35 / 100\n", - "Confirmed: \t23\n", - "Tentative: \t15\n", - "Rejected: \t54\n", - "Iteration: \t36 / 100\n", - "Confirmed: \t23\n", - "Tentative: \t15\n", - "Rejected: \t54\n", - "Iteration: \t37 / 100\n", - "Confirmed: \t23\n", - "Tentative: \t15\n", - "Rejected: \t54\n", - "Iteration: \t38 / 100\n", - "Confirmed: \t23\n", - "Tentative: \t15\n", - "Rejected: \t54\n", - "Iteration: \t39 / 100\n", - "Confirmed: \t23\n", - "Tentative: \t15\n", - "Rejected: \t54\n", - "Iteration: \t40 / 100\n", - "Confirmed: \t23\n", - "Tentative: \t15\n", - "Rejected: \t54\n", - "Iteration: \t41 / 100\n", - "Confirmed: \t23\n", - "Tentative: \t15\n", - "Rejected: \t54\n", - "Iteration: \t42 / 100\n", - "Confirmed: \t23\n", - "Tentative: \t15\n", - "Rejected: \t54\n", - "Iteration: \t43 / 100\n", - "Confirmed: \t24\n", - "Tentative: \t14\n", - "Rejected: \t54\n", - "Iteration: \t44 / 100\n", - "Confirmed: \t24\n", - "Tentative: \t14\n", - "Rejected: \t54\n", - "Iteration: \t45 / 100\n", - "Confirmed: \t24\n", - "Tentative: \t14\n", - "Rejected: \t54\n", - "Iteration: \t46 / 100\n", - "Confirmed: \t24\n", - "Tentative: \t14\n", - "Rejected: \t54\n", - "Iteration: \t47 / 100\n", - "Confirmed: \t24\n", - "Tentative: \t14\n", - "Rejected: \t54\n", - "Iteration: \t48 / 100\n", - "Confirmed: \t24\n", - "Tentative: \t14\n", - "Rejected: \t54\n", - "Iteration: \t49 / 100\n", - "Confirmed: \t24\n", - "Tentative: \t14\n", - "Rejected: \t54\n", - "Iteration: \t50 / 100\n", - "Confirmed: \t24\n", - "Tentative: \t14\n", - "Rejected: \t54\n", - "Iteration: \t51 / 100\n", - "Confirmed: \t24\n", - "Tentative: \t13\n", - "Rejected: \t55\n", - "Iteration: \t52 / 100\n", - "Confirmed: \t24\n", - "Tentative: \t13\n", - "Rejected: \t55\n", - "Iteration: \t53 / 100\n", - "Confirmed: \t24\n", - "Tentative: \t13\n", - "Rejected: \t55\n", - "Iteration: \t54 / 100\n", - "Confirmed: \t25\n", - "Tentative: \t12\n", - "Rejected: \t55\n", - "Iteration: \t55 / 100\n", - "Confirmed: \t25\n", - "Tentative: \t12\n", - "Rejected: \t55\n", - "Iteration: \t56 / 100\n", - "Confirmed: \t25\n", - "Tentative: \t12\n", - "Rejected: \t55\n", - "Iteration: \t57 / 100\n", - "Confirmed: \t25\n", - "Tentative: \t12\n", - "Rejected: \t55\n", - "Iteration: \t58 / 100\n", - "Confirmed: \t25\n", - "Tentative: \t12\n", - "Rejected: \t55\n", - "Iteration: \t59 / 100\n", - "Confirmed: \t25\n", - "Tentative: \t12\n", - "Rejected: \t55\n", - "Iteration: \t60 / 100\n", - "Confirmed: \t25\n", - "Tentative: \t12\n", - "Rejected: \t55\n", - "Iteration: \t61 / 100\n", - "Confirmed: \t25\n", - "Tentative: \t12\n", - "Rejected: \t55\n", - "Iteration: \t62 / 100\n", - "Confirmed: \t25\n", - "Tentative: \t12\n", - "Rejected: \t55\n", - "Iteration: \t63 / 100\n", - "Confirmed: \t25\n", - "Tentative: \t12\n", - "Rejected: \t55\n", - "Iteration: \t64 / 100\n", - "Confirmed: \t25\n", - "Tentative: \t12\n", - "Rejected: \t55\n", - "Iteration: \t65 / 100\n", - "Confirmed: \t25\n", - "Tentative: \t12\n", - "Rejected: \t55\n", - "Iteration: \t66 / 100\n", - "Confirmed: \t25\n", - "Tentative: \t12\n", - "Rejected: \t55\n", - "Iteration: \t67 / 100\n", - "Confirmed: \t25\n", - "Tentative: \t12\n", - "Rejected: \t55\n", - "Iteration: \t68 / 100\n", - "Confirmed: \t25\n", - "Tentative: \t12\n", - "Rejected: \t55\n", - "Iteration: \t69 / 100\n", - "Confirmed: \t25\n", - "Tentative: \t12\n", - "Rejected: \t55\n", - "Iteration: \t70 / 100\n", - "Confirmed: \t25\n", - "Tentative: \t12\n", - "Rejected: \t55\n", - "Iteration: \t71 / 100\n", - "Confirmed: \t25\n", - "Tentative: \t12\n", - "Rejected: \t55\n", - "Iteration: \t72 / 100\n", - "Confirmed: \t25\n", - "Tentative: \t12\n", - "Rejected: \t55\n", - "Iteration: \t73 / 100\n", - "Confirmed: \t25\n", - "Tentative: \t12\n", - "Rejected: \t55\n", - "Iteration: \t74 / 100\n", - "Confirmed: \t25\n", - "Tentative: \t12\n", - "Rejected: \t55\n", - "Iteration: \t75 / 100\n", - "Confirmed: \t26\n", - "Tentative: \t11\n", - "Rejected: \t55\n", - "Iteration: \t76 / 100\n", - "Confirmed: \t26\n", - "Tentative: \t11\n", - "Rejected: \t55\n", - "Iteration: \t77 / 100\n", - "Confirmed: \t26\n", - "Tentative: \t11\n", - "Rejected: \t55\n", - "Iteration: \t78 / 100\n", - "Confirmed: \t26\n", - "Tentative: \t11\n", - "Rejected: \t55\n", - "Iteration: \t79 / 100\n", - "Confirmed: \t26\n", - "Tentative: \t11\n", - "Rejected: \t55\n", - "Iteration: \t80 / 100\n", - "Confirmed: \t26\n", - "Tentative: \t11\n", - "Rejected: \t55\n", - "Iteration: \t81 / 100\n", - "Confirmed: \t26\n", - "Tentative: \t11\n", - "Rejected: \t55\n", - "Iteration: \t82 / 100\n", - "Confirmed: \t26\n", - "Tentative: \t11\n", - "Rejected: \t55\n", - "Iteration: \t83 / 100\n", - "Confirmed: \t26\n", - "Tentative: \t11\n", - "Rejected: \t55\n", - "Iteration: \t84 / 100\n", - "Confirmed: \t26\n", - "Tentative: \t11\n", - "Rejected: \t55\n", - "Iteration: \t85 / 100\n", - "Confirmed: \t26\n", - "Tentative: \t11\n", - "Rejected: \t55\n", - "Iteration: \t86 / 100\n", - "Confirmed: \t26\n", - "Tentative: \t11\n", - "Rejected: \t55\n", - "Iteration: \t87 / 100\n", - "Confirmed: \t26\n", - "Tentative: \t11\n", - "Rejected: \t55\n", - "Iteration: \t88 / 100\n", - "Confirmed: \t27\n", - "Tentative: \t10\n", - "Rejected: \t55\n", - "Iteration: \t89 / 100\n", - "Confirmed: \t27\n", - "Tentative: \t10\n", - "Rejected: \t55\n", - "Iteration: \t90 / 100\n", - "Confirmed: \t27\n", - "Tentative: \t10\n", - "Rejected: \t55\n", - "Iteration: \t91 / 100\n", - "Confirmed: \t27\n", - "Tentative: \t10\n", - "Rejected: \t55\n", - "Iteration: \t92 / 100\n", - "Confirmed: \t27\n", - "Tentative: \t10\n", - "Rejected: \t55\n", - "Iteration: \t93 / 100\n", - "Confirmed: \t27\n", - "Tentative: \t10\n", - "Rejected: \t55\n", - "Iteration: \t94 / 100\n", - "Confirmed: \t27\n", - "Tentative: \t10\n", - "Rejected: \t55\n", - "Iteration: \t95 / 100\n", - "Confirmed: \t27\n", - "Tentative: \t10\n", - "Rejected: \t55\n", - "Iteration: \t96 / 100\n", - "Confirmed: \t27\n", - "Tentative: \t10\n", - "Rejected: \t55\n", - "Iteration: \t97 / 100\n", - "Confirmed: \t27\n", - "Tentative: \t10\n", - "Rejected: \t55\n", - "Iteration: \t98 / 100\n", - "Confirmed: \t27\n", - "Tentative: \t10\n", - "Rejected: \t55\n", - "Iteration: \t99 / 100\n", - "Confirmed: \t27\n", - "Tentative: \t10\n", - "Rejected: \t55\n", - "\n", - "\n", - "BorutaPy finished running.\n", - "\n", - "Iteration: \t100 / 100\n", - "Confirmed: \t27\n", - "Tentative: \t6\n", - "Rejected: \t55\n", "Selected Features DataFrame:\n", - "Unnamed: 0 cg20674480 cg17901584 cg25707994 cg19935065 cg12323347 \\\n", - "461_x 0.914724 0.327077 0.035647 0.325659 0.154194 \n", - "487_y 0.949041 0.393983 0.086751 0.495523 0.176463 \n", - "325_x 0.936707 0.299819 0.060838 0.403879 0.211228 \n", - "333_x 0.916709 0.544419 0.111465 0.473527 0.211545 \n", - "417_x 0.873232 0.354998 0.060698 0.415195 0.181257 \n", + "Unnamed: 0 cg00074348 cg14666310 cg23631930 cg05724197 cg03003745 \\\n", + "0 0.466309 0.673555 0.769073 0.734243 0.769774 \n", + "1 0.457003 0.695180 0.786669 0.750670 0.754771 \n", + "2 0.442229 0.686634 0.789469 0.715007 0.750923 \n", + "3 0.460896 0.641230 0.712481 0.706211 0.707897 \n", + "4 0.526294 0.743104 0.817953 0.707622 0.803780 \n", "\n", - "Unnamed: 0 cg13379236 cg24153763 cg27298252 cg02676175 cg09771049 ... \\\n", - "461_x 0.589579 0.196649 0.313633 0.381772 0.047482 ... \n", - "487_y 0.607273 0.168124 0.362876 0.442249 0.081584 ... \n", - "325_x 0.560331 0.229495 0.423385 0.540532 0.069079 ... \n", - "333_x 0.644661 0.174285 0.371073 0.575454 0.147341 ... \n", - "417_x 0.602843 0.209520 0.403555 0.438190 0.057319 ... \n", + "Unnamed: 0 cg00213123 cg20051772 cg13379236 cg05818394 cg00727675 ... \\\n", + "0 0.252718 0.274093 0.573028 0.268786 0.846111 ... \n", + "1 0.235994 0.153840 0.612531 0.219602 0.851785 ... \n", + "2 0.283559 0.242470 0.601079 0.207522 0.807337 ... \n", + "3 0.217079 0.201241 0.545201 0.205676 0.772323 ... \n", + "4 0.254952 0.264579 0.595605 0.219931 0.896772 ... \n", "\n", - "Unnamed: 0 cg11162385 cg02944871 cg09555736 cg00603498 cg09781944 \\\n", - "461_x 0.046113 0.411984 0.298216 0.040772 0.085909 \n", - "487_y 0.081694 0.549299 0.417497 0.165181 0.186770 \n", - "325_x 0.054661 0.407214 0.346972 0.062054 0.170018 \n", - "333_x 0.154179 0.375487 0.430103 0.153731 0.213401 \n", - "417_x 0.062713 0.435923 0.401915 0.077566 0.127510 \n", + "Unnamed: 0 cg02329916 cg22746058 cg05506480 cg05884032 cg20596724 \\\n", + "0 0.697635 0.091921 0.178189 0.170969 0.852856 \n", + "1 0.804495 0.112488 0.157084 0.175475 0.831449 \n", + "2 0.774227 0.117563 0.094172 0.161222 0.827896 \n", + "3 0.735544 0.143644 0.140586 0.214139 0.786247 \n", + "4 0.766629 0.066142 0.110955 0.145597 0.860701 \n", "\n", - "Unnamed: 0 cg01281718 cg02547394 cg03681335 cg15100599 cg09276451 \n", - "461_x 0.686658 0.170133 0.337109 0.083441 0.623229 \n", - "487_y 0.735083 0.297245 0.368181 0.161517 0.671907 \n", - "325_x 0.715229 0.254074 0.317215 0.118518 0.689685 \n", - "333_x 0.684382 0.266076 0.414796 0.185565 0.619634 \n", - "417_x 0.725083 0.210871 0.361786 0.130743 0.601067 \n", + "Unnamed: 0 cg04433322 cg02547394 cg12610471 cg14153654 cg24073122 \n", + "0 0.693354 0.216667 0.241770 0.507465 0.234215 \n", + "1 0.620378 0.343825 0.257214 0.342007 0.245132 \n", + "2 0.640691 0.321606 0.282535 0.329841 0.254275 \n", + "3 0.538186 0.272403 0.297399 0.337737 0.257438 \n", + "4 0.690076 0.195273 0.247937 0.417720 0.192703 \n", "\n", - "[5 rows x 27 columns]\n", - "Selected Features: ['cg20674480', 'cg17901584', 'cg25707994', 'cg19935065', 'cg12323347', 'cg13379236', 'cg24153763', 'cg27298252', 'cg02676175', 'cg09771049', 'cg14900246', 'cg11207300', 'cg13883633', 'cg04927004', 'cg02355304', 'cg09082617', 'cg24911721', 'cg11162385', 'cg02944871', 'cg09555736', 'cg00603498', 'cg09781944', 'cg01281718', 'cg02547394', 'cg03681335', 'cg15100599', 'cg09276451']\n" + "[5 rows x 33 columns]\n", + "Selected Features: ['cg00074348', 'cg14666310', 'cg23631930', 'cg05724197', 'cg03003745', 'cg00213123', 'cg20051772', 'cg13379236', 'cg05818394', 'cg00727675', 'cg15059851', 'cg08375658', 'cg07925549', 'cg24296478', 'cg23792592', 'cg19157647', 'cg11201447', 'cg04927004', 'cg16570507', 'cg22500132', 'cg21298408', 'cg07552803', 'cg20248866', 'cg02329916', 'cg22746058', 'cg05506480', 'cg05884032', 'cg20596724', 'cg04433322', 'cg02547394', 'cg12610471', 'cg14153654', 'cg24073122']\n" ] } ], @@ -1698,7 +3020,7 @@ "rf = best_rf\n", "\n", "# 初始化 Boruta\n", - "boruta = BorutaPy(rf, n_estimators='auto', verbose=2, random_state=42)\n", + "boruta = BorutaPy(rf, n_estimators='auto', verbose=0, random_state=42)\n", "\n", "# 執行特徵選擇\n", "# X_train.to_csv(\"t.csv\")\n", @@ -1728,7 +3050,7 @@ }, { "cell_type": "code", - "execution_count": 96, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -1737,33 +3059,39 @@ "text": [ "Sorted Selected Features with Rankings:\n", " boruta_feature\n", - "0 cg20674480\n", - "1 cg17901584\n", - "2 cg25707994\n", - "3 cg19935065\n", - "4 cg12323347\n", - "5 cg13379236\n", - "6 cg24153763\n", - "7 cg27298252\n", - "8 cg02676175\n", - "9 cg09771049\n", - "10 cg14900246\n", - "11 cg11207300\n", - "12 cg13883633\n", - "13 cg04927004\n", - "14 cg02355304\n", - "15 cg09082617\n", - "16 cg24911721\n", - "17 cg11162385\n", - "18 cg02944871\n", - "19 cg09555736\n", - "20 cg00603498\n", - "21 cg09781944\n", - "22 cg01281718\n", - "23 cg02547394\n", - "24 cg03681335\n", - "25 cg15100599\n", - "26 cg09276451\n" + "0 cg00074348\n", + "1 cg14666310\n", + "2 cg23631930\n", + "3 cg05724197\n", + "4 cg03003745\n", + "5 cg00213123\n", + "6 cg20051772\n", + "7 cg13379236\n", + "8 cg05818394\n", + "9 cg00727675\n", + "10 cg15059851\n", + "11 cg08375658\n", + "12 cg07925549\n", + "13 cg24296478\n", + "14 cg23792592\n", + "15 cg19157647\n", + "16 cg11201447\n", + "17 cg04927004\n", + "18 cg16570507\n", + "19 cg22500132\n", + "20 cg21298408\n", + "21 cg07552803\n", + "22 cg20248866\n", + "23 cg02329916\n", + "24 cg22746058\n", + "25 cg05506480\n", + "26 cg05884032\n", + "27 cg20596724\n", + "28 cg04433322\n", + "29 cg02547394\n", + "30 cg12610471\n", + "31 cg14153654\n", + "32 cg24073122\n" ] } ], @@ -1775,14 +3103,14 @@ }, { "cell_type": "code", - "execution_count": 97, + "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "RFECV Selected Features: ['cg25707994', 'cg19935065', 'cg13379236', 'cg02676175', 'cg11207300', 'cg02355304', 'cg24911721', 'cg00603498', 'cg02547394', 'cg15100599']\n" + "RFECV Selected Features: ['cg00074348', 'cg14666310', 'cg23631930', 'cg12440062', 'cg05724197', 'cg03003745', 'cg00213123', 'cg20051772', 'cg13379236', 'cg13816423', 'cg19772011', 'cg05818394', 'cg00727675', 'cg15059851', 'cg08375658', 'cg07925549', 'cg24296478', 'cg23792592', 'cg19157647', 'cg11201447', 'cg04927004', 'cg16570507', 'cg22500132', 'cg21298408', 'cg07552803', 'cg20248866', 'cg02329916', 'cg22746058', 'cg05506480', 'cg05884032', 'cg20596724', 'cg04433322', 'cg02547394', 'cg12610471', 'cg06314202', 'cg14153654']\n" ] } ], @@ -1814,25 +3142,51 @@ }, { "cell_type": "code", - "execution_count": 98, + "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - " rfecv_feature\n", - "0 cg25707994\n", - "1 cg19935065\n", - "2 cg13379236\n", - "3 cg02676175\n", - "4 cg11207300\n", - "5 cg02355304\n", - "6 cg24911721\n", - "7 cg00603498\n", - "8 cg02547394\n", - "9 cg15100599\n", - "10\n" + " rfecv_feature\n", + "0 cg00074348\n", + "1 cg14666310\n", + "2 cg23631930\n", + "3 cg12440062\n", + "4 cg05724197\n", + "5 cg03003745\n", + "6 cg00213123\n", + "7 cg20051772\n", + "8 cg13379236\n", + "9 cg13816423\n", + "10 cg19772011\n", + "11 cg05818394\n", + "12 cg00727675\n", + "13 cg15059851\n", + "14 cg08375658\n", + "15 cg07925549\n", + "16 cg24296478\n", + "17 cg23792592\n", + "18 cg19157647\n", + "19 cg11201447\n", + "20 cg04927004\n", + "21 cg16570507\n", + "22 cg22500132\n", + "23 cg21298408\n", + "24 cg07552803\n", + "25 cg20248866\n", + "26 cg02329916\n", + "27 cg22746058\n", + "28 cg05506480\n", + "29 cg05884032\n", + "30 cg20596724\n", + "31 cg04433322\n", + "32 cg02547394\n", + "33 cg12610471\n", + "34 cg06314202\n", + "35 cg14153654\n", + "36\n" ] } ], @@ -1843,7 +3197,7 @@ }, { "cell_type": "code", - "execution_count": 99, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -1851,44 +3205,80 @@ "output_type": "stream", "text": [ " boruta_feature rfecv_feature\n", - "0 cg20674480 NaN\n", - "1 cg17901584 NaN\n", - "2 cg25707994 cg25707994\n", - "3 cg19935065 cg19935065\n", - "4 cg12323347 NaN\n", - "5 cg13379236 cg13379236\n", - "6 cg24153763 NaN\n", - "7 cg27298252 NaN\n", - "8 cg02676175 cg02676175\n", - "9 cg09771049 NaN\n", - "10 cg14900246 NaN\n", - "11 cg11207300 cg11207300\n", - "12 cg13883633 NaN\n", - "13 cg04927004 NaN\n", - "14 cg02355304 cg02355304\n", - "15 cg09082617 NaN\n", - "16 cg24911721 cg24911721\n", - "17 cg11162385 NaN\n", - "18 cg02944871 NaN\n", - "19 cg09555736 NaN\n", - "20 cg00603498 cg00603498\n", - "21 cg09781944 NaN\n", - "22 cg01281718 NaN\n", - "23 cg02547394 cg02547394\n", - "24 cg03681335 NaN\n", - "25 cg15100599 cg15100599\n", - "26 cg09276451 NaN\n", - " feature\n", - "0 cg25707994\n", - "1 cg19935065\n", - "2 cg13379236\n", - "3 cg02676175\n", - "4 cg11207300\n", - "5 cg02355304\n", - "6 cg24911721\n", - "7 cg00603498\n", - "8 cg02547394\n", - "9 cg15100599\n" + "0 cg00074348 cg00074348\n", + "1 cg14666310 cg14666310\n", + "2 cg23631930 cg23631930\n", + "3 cg05724197 cg05724197\n", + "4 cg03003745 cg03003745\n", + "5 cg00213123 cg00213123\n", + "6 cg20051772 cg20051772\n", + "7 cg13379236 cg13379236\n", + "8 cg05818394 cg05818394\n", + "9 cg00727675 cg00727675\n", + "10 cg15059851 cg15059851\n", + "11 cg08375658 cg08375658\n", + "12 cg07925549 cg07925549\n", + "13 cg24296478 cg24296478\n", + "14 cg23792592 cg23792592\n", + "15 cg19157647 cg19157647\n", + "16 cg11201447 cg11201447\n", + "17 cg04927004 cg04927004\n", + "18 cg16570507 cg16570507\n", + "19 cg22500132 cg22500132\n", + "20 cg21298408 cg21298408\n", + "21 cg07552803 cg07552803\n", + "22 cg20248866 cg20248866\n", + "23 cg02329916 cg02329916\n", + "24 cg22746058 cg22746058\n", + "25 cg05506480 cg05506480\n", + "26 cg05884032 cg05884032\n", + "27 cg20596724 cg20596724\n", + "28 cg04433322 cg04433322\n", + "29 cg02547394 cg02547394\n", + "30 cg12610471 cg12610471\n", + "31 cg14153654 cg14153654\n", + "32 cg24073122 NaN\n", + "33 NaN cg12440062\n", + "34 NaN cg13816423\n", + "35 NaN cg19772011\n", + "36 NaN cg06314202\n", + " feature\n", + "0 cg00074348\n", + "1 cg14666310\n", + "2 cg23631930\n", + "3 cg05724197\n", + "4 cg03003745\n", + "5 cg00213123\n", + "6 cg20051772\n", + "7 cg13379236\n", + "8 cg05818394\n", + "9 cg00727675\n", + "10 cg15059851\n", + "11 cg08375658\n", + "12 cg07925549\n", + "13 cg24296478\n", + "14 cg23792592\n", + "15 cg19157647\n", + "16 cg11201447\n", + "17 cg04927004\n", + "18 cg16570507\n", + "19 cg22500132\n", + "20 cg21298408\n", + "21 cg07552803\n", + "22 cg20248866\n", + "23 cg02329916\n", + "24 cg22746058\n", + "25 cg05506480\n", + "26 cg05884032\n", + "27 cg20596724\n", + "28 cg04433322\n", + "29 cg02547394\n", + "30 cg12610471\n", + "31 cg14153654\n", + "32 NaN\n", + "33 NaN\n", + "34 NaN\n", + "35 NaN\n" ] } ], @@ -1905,30 +3295,7 @@ }, { "cell_type": "code", - "execution_count": 105, - "metadata": {}, - "outputs": [], - "source": [ - "# import xgboost as xgb\n", - "# from sklearn.metrics import classification_report\n", - "\n", - "# X_test_try = X_dev[inner[\"feature\"]]\n", - "# X_train_try = X_train[inner[\"feature\"]]\n", - "\n", - "\n", - "# clf = xgb.XGBClassifier(objective='binary:logistic', use_label_encoder=False, eval_metric='logloss')\n", - "# clf.fit(X_train_try, y_train)\n", - "\n", - "# # 預測\n", - "# y_pred = clf.predict(X_test_try)\n", - "\n", - "# # 打印分類報告\n", - "# print(classification_report(y_dev, y_pred))\n" - ] - }, - { - "cell_type": "code", - "execution_count": 101, + "execution_count": 25, "metadata": {}, "outputs": [ { @@ -1959,125 +3326,489 @@ " \n", " \n", " 0\n", - " ACADM\n", - " 3\n", + " ALOX12\n", + " 4\n", " \n", " \n", " 1\n", - " ACSL5\n", - " 3\n", + " APLNR\n", + " 2\n", " \n", " \n", " 2\n", - " ALOX12\n", - " 3\n", + " CD46\n", + " 2\n", " \n", " \n", " 3\n", - " ANK1\n", - " 3\n", + " CDH5\n", + " 2\n", " \n", " \n", " 4\n", - " ARG1\n", + " CEACAM5\n", + " 2\n", + " \n", + " \n", + " 5\n", + " CHRNA6\n", + " 2\n", + " \n", + " \n", + " 6\n", + " CKLF\n", + " 2\n", + " \n", + " \n", + " 7\n", + " CLEC9A\n", + " 2\n", + " \n", + " \n", + " 8\n", + " CMTM5\n", + " 2\n", + " \n", + " \n", + " 9\n", + " CRISP2\n", + " 2\n", + " \n", + " \n", + " 10\n", + " CRTC1\n", + " 4\n", + " \n", + " \n", + " 11\n", + " CSMD1\n", + " 2\n", + " \n", + " \n", + " 12\n", + " CX3CL1\n", + " 2\n", + " \n", + " \n", + " 13\n", + " CXCL17\n", + " 2\n", + " \n", + " \n", + " 14\n", + " CYP1A1\n", + " 4\n", + " \n", + " \n", + " 15\n", + " DGKA\n", + " 4\n", + " \n", + " \n", + " 16\n", + " EGF\n", + " 2\n", + " \n", + " \n", + " 17\n", + " FOXP4\n", " 3\n", " \n", " \n", - " ...\n", - " ...\n", - " ...\n", + " 18\n", + " GJB5\n", + " 2\n", + " \n", + " \n", + " 19\n", + " GLP1R\n", + " 2\n", " \n", " \n", - " 84\n", - " STC1\n", + " 20\n", + " GNA13\n", + " 2\n", + " \n", + " \n", + " 21\n", + " HIPK3\n", + " 4\n", + " \n", + " \n", + " 22\n", + " HMGB1\n", + " 2\n", + " \n", + " \n", + " 23\n", + " HOXA3\n", " 3\n", " \n", " \n", - " 85\n", - " SULT1C2\n", + " 24\n", + " IL32\n", + " 2\n", + " \n", + " \n", + " 25\n", + " IVL\n", + " 4\n", + " \n", + " \n", + " 26\n", + " KCNE3\n", + " 2\n", + " \n", + " \n", + " 27\n", + " KLK12\n", + " 4\n", + " \n", + " \n", + " 28\n", + " KRT75\n", + " 4\n", + " \n", + " \n", + " 29\n", + " LCOR\n", " 3\n", " \n", " \n", - " 86\n", - " SUSD4\n", + " 30\n", + " MIR1-1\n", + " 1\n", + " \n", + " \n", + " 31\n", + " MIR1180\n", + " 1\n", + " \n", + " \n", + " 32\n", + " MIR124-3\n", + " 1\n", + " \n", + " \n", + " 33\n", + " MIR134\n", + " 1\n", + " \n", + " \n", + " 34\n", + " MIR141\n", + " 1\n", + " \n", + " \n", + " 35\n", + " MIR346\n", + " 1\n", + " \n", + " \n", + " 36\n", + " MIR493\n", + " 1\n", + " \n", + " \n", + " 37\n", + " MUC1\n", " 3\n", " \n", " \n", - " 87\n", - " TIMP2\n", + " 38\n", + " NAT1\n", + " 4\n", + " \n", + " \n", + " 39\n", + " NEFM\n", + " 4\n", + " \n", + " \n", + " 40\n", + " PANX3\n", + " 2\n", + " \n", + " \n", + " 41\n", + " PCYT2\n", + " 4\n", + " \n", + " \n", + " 42\n", + " PDCD1LG2\n", + " 2\n", + " \n", + " \n", + " 43\n", + " PGC\n", + " 4\n", + " \n", + " \n", + " 44\n", + " PRSS1\n", + " 4\n", + " \n", + " \n", + " 45\n", + " PTF1A\n", " 3\n", " \n", " \n", - " 88\n", - " VASN\n", + " 46\n", + " RAB6B\n", + " 4\n", + " \n", + " \n", + " 47\n", + " RING1\n", + " 4\n", + " \n", + " \n", + " 48\n", + " SALL3\n", " 3\n", " \n", + " \n", + " 49\n", + " SDR9C7\n", + " 4\n", + " \n", + " \n", + " 50\n", + " SFRP5\n", + " 2\n", + " \n", + " \n", + " 51\n", + " SLC4A1\n", + " 2\n", + " \n", + " \n", + " 52\n", + " SOX1\n", + " 3\n", + " \n", + " \n", + " 53\n", + " SPAG6\n", + " 4\n", + " \n", + " \n", + " 54\n", + " SSTR5\n", + " 2\n", + " \n", + " \n", + " 55\n", + " TGM2\n", + " 4\n", + " \n", + " \n", + " 56\n", + " TNFRSF9\n", + " 2\n", + " \n", + " \n", + " 57\n", + " TP73\n", + " 3\n", + " \n", + " \n", + " 58\n", + " XAF1\n", + " 4\n", + " \n", " \n", "\n", - "

89 rows × 2 columns

\n", "" ], "text/plain": [ - " gene cluster\n", - "0 ACADM 3\n", - "1 ACSL5 3\n", - "2 ALOX12 3\n", - "3 ANK1 3\n", - "4 ARG1 3\n", - ".. ... ...\n", - "84 STC1 3\n", - "85 SULT1C2 3\n", - "86 SUSD4 3\n", - "87 TIMP2 3\n", - "88 VASN 3\n", - "\n", - "[89 rows x 2 columns]" + " gene cluster\n", + "0 ALOX12 4\n", + "1 APLNR 2\n", + "2 CD46 2\n", + "3 CDH5 2\n", + "4 CEACAM5 2\n", + "5 CHRNA6 2\n", + "6 CKLF 2\n", + "7 CLEC9A 2\n", + "8 CMTM5 2\n", + "9 CRISP2 2\n", + "10 CRTC1 4\n", + "11 CSMD1 2\n", + "12 CX3CL1 2\n", + "13 CXCL17 2\n", + "14 CYP1A1 4\n", + "15 DGKA 4\n", + "16 EGF 2\n", + "17 FOXP4 3\n", + "18 GJB5 2\n", + "19 GLP1R 2\n", + "20 GNA13 2\n", + "21 HIPK3 4\n", + "22 HMGB1 2\n", + "23 HOXA3 3\n", + "24 IL32 2\n", + "25 IVL 4\n", + "26 KCNE3 2\n", + "27 KLK12 4\n", + "28 KRT75 4\n", + "29 LCOR 3\n", + "30 MIR1-1 1\n", + "31 MIR1180 1\n", + "32 MIR124-3 1\n", + "33 MIR134 1\n", + "34 MIR141 1\n", + "35 MIR346 1\n", + "36 MIR493 1\n", + "37 MUC1 3\n", + "38 NAT1 4\n", + "39 NEFM 4\n", + "40 PANX3 2\n", + "41 PCYT2 4\n", + "42 PDCD1LG2 2\n", + "43 PGC 4\n", + "44 PRSS1 4\n", + "45 PTF1A 3\n", + "46 RAB6B 4\n", + "47 RING1 4\n", + "48 SALL3 3\n", + "49 SDR9C7 4\n", + "50 SFRP5 2\n", + "51 SLC4A1 2\n", + "52 SOX1 3\n", + "53 SPAG6 4\n", + "54 SSTR5 2\n", + "55 TGM2 4\n", + "56 TNFRSF9 2\n", + "57 TP73 3\n", + "58 XAF1 4" ] }, - "execution_count": 101, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df_cluster = pd.read_csv(\"result/GSE243529_aba/easy_avarage_clustering.csv\")\n", + "df_cluster = pd.read_csv(\"result/GSE243529_xzh/dbeta_GSE243529_TSS_0.15_consensus.csv\")\n", "df_cluster\n" ] }, { "cell_type": "code", - "execution_count": 114, + "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - " gene cluster Unnamed: 0 dbeta\n", - "0 ACADM 3 cg10523679 0.021226\n", - "1 ACSL5 3 cg20707765 0.024253\n", - "2 ALOX12 3 cg19536664 0.030384\n", - "3 ANK1 3 cg14904662 0.020543\n", - "4 ARG1 3 cg01699630 0.024147\n", - ".. ... ... ... ...\n", - "84 STC1 3 cg16688533 0.040679\n", - "85 SULT1C2 3 cg03681335 0.029692\n", - "86 SUSD4 3 cg15100599 0.023953\n", - "87 TIMP2 3 cg02569115 0.028042\n", - "88 VASN 3 cg09276451 0.021343\n", - "\n", - "[89 rows x 4 columns]\n", - " gene cluster Unnamed: 0 dbeta\n", - "0 DNAJB6 3 cg25707994 0.024072\n", - "1 DNTT 1 cg19935065 0.040585\n", - "2 EGF 3 cg13379236 0.033302\n", - "3 KCTD11 3 cg02676175 0.068574\n", - "4 METAP2 3 cg11207300 0.021659\n", - "5 MIR589 2 cg02355304 0.029251\n", - "6 MIRLET7A3 2 cg24911721 0.037691\n", - "7 RPAIN 3 cg00603498 0.020144\n", - "8 SOX1 1 cg02547394 0.027837\n", - "9 SUSD4 3 cg15100599 0.023953\n" + " gene cluster ID dbeta feature\n", + "0 ALOX12 4 cg03760483 0.157175 TSS200\n", + "1 APLNR 2 cg00074348 -0.187434 TSS1500\n", + "2 CD46 2 cg04290171 -0.201098 TSS1500\n", + "3 CDH5 2 cg00044665 0.206568 TSS200\n", + "4 CEACAM5 2 cg14666310 -0.210341 TSS1500\n", + "5 CHRNA6 2 cg07157107 -0.242190 TSS200\n", + "6 CKLF 2 cg02295216 0.172590 TSS1500\n", + "7 CLEC9A 2 cg19223467 -0.152339 TSS200\n", + "8 CMTM5 2 cg23631930 0.172075 TSS200\n", + "9 CRISP2 2 cg12440062 0.200273 TSS200\n", + "10 CRTC1 4 cg21290814 -0.160943 TSS1500\n", + "11 CSMD1 2 cg01136458 -0.183525 TSS1500\n", + "12 CX3CL1 2 cg05724197 0.198136 TSS1500\n", + "13 CXCL17 2 cg03003745 -0.238256 TSS1500\n", + "14 CYP1A1 4 cg00213123 0.195047 TSS1500\n", + "15 DGKA 4 cg20051772 -0.186669 TSS1500\n", + "16 EGF 2 cg13379236 -0.151026 TSS1500\n", + "17 FOXP4 3 cg13816423 -0.206186 TSS1500\n", + "18 GJB5 2 cg07014349 0.162041 TSS200\n", + "19 GLP1R 2 cg19772011 -0.174030 TSS1500\n", + "20 GNA13 2 cg17413194 0.174816 TSS1500\n", + "21 HIPK3 4 cg04225088 0.150001 TSS1500\n", + "22 HMGB1 2 cg05818394 -0.291705 TSS1500\n", + "23 HOXA3 3 cg00727675 -0.182567 TSS1500\n", + "24 IL32 2 cg00239353 0.230341 TSS1500\n", + "25 IVL 4 cg15059851 -0.208371 TSS1500\n", + "26 KCNE3 2 cg11775521 0.263576 TSS200\n", + "27 KLK12 4 cg08375658 -0.150620 TSS1500\n", + "28 KRT75 4 cg07925549 -0.170578 TSS1500\n", + "29 LCOR 3 cg24296478 -0.157586 TSS1500\n", + "30 MIR1-1 1 cg23792592 -0.180821 TSS1500\n", + "31 MIR1180 1 cg19157647 0.157648 TSS200\n", + "32 MIR124-3 1 cg04927004 0.177844 TSS1500\n", + "33 MIR134 1 cg10734581 -0.266630 TSS1500\n", + "34 MIR141 1 cg24702147 -0.157450 TSS1500\n", + "35 MIR346 1 cg16570507 -0.179525 TSS200\n", + "36 MIR493 1 cg02577745 -0.163426 TSS1500\n", + "37 MUC1 3 cg22500132 -0.282771 TSS200\n", + "38 NAT1 4 cg21298408 -0.159201 TSS200\n", + "39 NEFM 4 cg07552803 0.227250 TSS1500\n", + "40 PANX3 2 cg08317412 -0.169833 TSS1500\n", + "41 PCYT2 4 cg20248866 0.154787 TSS1500\n", + "42 PDCD1LG2 2 cg07211259 0.152846 TSS200\n", + "43 PGC 4 cg12871376 -0.152930 TSS1500\n", + "44 PRSS1 4 cg02329916 -0.206755 TSS200\n", + "45 PTF1A 3 cg22746058 0.189984 TSS1500\n", + "46 RAB6B 4 cg05506480 -0.195065 TSS1500\n", + "47 RING1 4 cg26106778 0.186264 TSS1500\n", + "48 SALL3 3 cg05884032 0.151857 TSS200\n", + "49 SDR9C7 4 cg20596724 -0.198220 TSS1500\n", + "50 SFRP5 2 cg16536739 -0.152947 TSS1500\n", + "51 SLC4A1 2 cg04433322 -0.211638 TSS1500\n", + "52 SOX1 3 cg02547394 0.228038 TSS200\n", + "53 SPAG6 4 cg12610471 0.281363 TSS200\n", + "54 SSTR5 2 cg06314202 -0.208831 TSS1500\n", + "55 TGM2 4 cg06447795 -0.193115 TSS1500\n", + "56 TNFRSF9 2 cg14153654 -0.195903 TSS200\n", + "57 TP73 3 cg24073122 0.209996 TSS1500\n", + "58 XAF1 4 cg23571857 0.216849 TSS1500\n", + " gene cluster ID dbeta feature_x\n", + "0 APLNR 2 cg00074348 -0.187434 TSS1500\n", + "1 CEACAM5 2 cg14666310 -0.210341 TSS1500\n", + "2 CMTM5 2 cg23631930 0.172075 TSS200\n", + "3 CX3CL1 2 cg05724197 0.198136 TSS1500\n", + "4 CXCL17 2 cg03003745 -0.238256 TSS1500\n", + "5 CYP1A1 4 cg00213123 0.195047 TSS1500\n", + "6 DGKA 4 cg20051772 -0.186669 TSS1500\n", + "7 EGF 2 cg13379236 -0.151026 TSS1500\n", + "8 HMGB1 2 cg05818394 -0.291705 TSS1500\n", + "9 HOXA3 3 cg00727675 -0.182567 TSS1500\n", + "10 IVL 4 cg15059851 -0.208371 TSS1500\n", + "11 KLK12 4 cg08375658 -0.150620 TSS1500\n", + "12 KRT75 4 cg07925549 -0.170578 TSS1500\n", + "13 LCOR 3 cg24296478 -0.157586 TSS1500\n", + "14 MIR1-1 1 cg23792592 -0.180821 TSS1500\n", + "15 MIR1180 1 cg19157647 0.157648 TSS200\n", + "16 MIR124-3 1 cg04927004 0.177844 TSS1500\n", + "17 MIR346 1 cg16570507 -0.179525 TSS200\n", + "18 MUC1 3 cg22500132 -0.282771 TSS200\n", + "19 NAT1 4 cg21298408 -0.159201 TSS200\n", + "20 NEFM 4 cg07552803 0.227250 TSS1500\n", + "21 PCYT2 4 cg20248866 0.154787 TSS1500\n", + "22 PRSS1 4 cg02329916 -0.206755 TSS200\n", + "23 PTF1A 3 cg22746058 0.189984 TSS1500\n", + "24 RAB6B 4 cg05506480 -0.195065 TSS1500\n", + "25 SALL3 3 cg05884032 0.151857 TSS200\n", + "26 SDR9C7 4 cg20596724 -0.198220 TSS1500\n", + "27 SLC4A1 2 cg04433322 -0.211638 TSS1500\n", + "28 SOX1 3 cg02547394 0.228038 TSS200\n", + "29 SPAG6 4 cg12610471 0.281363 TSS200\n", + "30 TNFRSF9 2 cg14153654 -0.195903 TSS200\n", + " gene cluster ID dbeta feature_x\n", + "2 CMTM5 2 cg23631930 0.172075 TSS200\n", + "3 CX3CL1 2 cg05724197 0.198136 TSS1500\n", + "5 CYP1A1 4 cg00213123 0.195047 TSS1500\n", + "15 MIR1180 1 cg19157647 0.157648 TSS200\n", + "16 MIR124-3 1 cg04927004 0.177844 TSS1500\n", + "20 NEFM 4 cg07552803 0.227250 TSS1500\n", + "21 PCYT2 4 cg20248866 0.154787 TSS1500\n", + "23 PTF1A 3 cg22746058 0.189984 TSS1500\n", + "25 SALL3 3 cg05884032 0.151857 TSS200\n", + "28 SOX1 3 cg02547394 0.228038 TSS200\n", + "29 SPAG6 4 cg12610471 0.281363 TSS200\n" ] } ], @@ -2087,23 +3818,2404 @@ "print(df_cluster_dbeta)\n", "\n", "\n", - "df_cluster_select = pd.merge(left= df_cluster_dbeta,right=inner,left_on ='Unnamed: 0',right_on='feature' )\n", - "df_cluster_select=df_cluster_select.drop(columns=['feature'])\n", + "df_cluster_select = pd.merge(left= df_cluster_dbeta,right=inner,left_on ='ID',right_on='feature' )\n", + "df_cluster_select=df_cluster_select.drop(columns=['feature_y'])\n", "print(df_cluster_select)\n", - "df_cluster_select.to_csv('result/GSE243529_aba/boruta_average_clustering_result_aba.csv',index=False)\n", - "# df_cluster_select.to_csv('result/xzh_GSE243529/boruta_average_clustering_result_xzh.csv',index=False)" + "df_cluster_select.to_csv('result/GSE243529_xzh/boruta_consensus_clustering_result_xzh_reuse.csv',index=False)\n", + "# df_cluster_select.to_csv('result/xzh_GSE243529/boruta_average_clustering_result_xzh.csv',index=False)\n", + "\n", + "filtered_df = df_cluster_select[df_cluster_select[\"dbeta\"] > 0]\n", + "# 印出篩選後的 DataFrame\n", + "print(filtered_df)" ] }, { "cell_type": "code", - "execution_count": 118, + "execution_count": 186, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "cg19935065,cg02355304,cg25707994,cg19935065,cg02355304,cg13379236,cg19935065,cg02355304,cg02676175,cg19935065,cg02355304,cg11207300,cg19935065,cg02355304,cg00603498,cg19935065,cg02355304,cg15100599,cg19935065,cg24911721,cg25707994,cg19935065,cg24911721,cg13379236,cg19935065,cg24911721,cg02676175,cg19935065,cg24911721,cg11207300,cg19935065,cg24911721,cg00603498,cg19935065,cg24911721,cg15100599,cg02547394,cg02355304,cg25707994,cg02547394,cg02355304,cg13379236,cg02547394,cg02355304,cg02676175,cg02547394,cg02355304,cg11207300,cg02547394,cg02355304,cg00603498,cg02547394,cg02355304,cg15100599,cg02547394,cg24911721,cg25707994,cg02547394,cg24911721,cg13379236,cg02547394,cg24911721,cg02676175,cg02547394,cg24911721,cg11207300,cg02547394,cg24911721,cg00603498,cg02547394,cg24911721,cg15100599," + "['cg23792592', 'cg00074348', 'cg00727675', 'cg00213123']\n", + "4\n", + "cg23792592,cg00074348,cg00727675,cg00213123\n", + "cg23792592,cg00074348,cg00727675,cg20051772\n", + "cg23792592,cg00074348,cg00727675,cg15059851\n", + "cg23792592,cg00074348,cg00727675,cg08375658\n", + "cg23792592,cg00074348,cg00727675,cg07925549\n", + "cg23792592,cg00074348,cg00727675,cg21298408\n", + "cg23792592,cg00074348,cg00727675,cg07552803\n", + "cg23792592,cg00074348,cg00727675,cg20248866\n", + "cg23792592,cg00074348,cg00727675,cg02329916\n", + "cg23792592,cg00074348,cg00727675,cg20596724\n", + "cg23792592,cg00074348,cg00727675,cg12610471\n", + "cg23792592,cg00074348,cg22500132,cg00213123\n", + "cg23792592,cg00074348,cg22500132,cg20051772\n", + "cg23792592,cg00074348,cg22500132,cg15059851\n", + "cg23792592,cg00074348,cg22500132,cg08375658\n", + "cg23792592,cg00074348,cg22500132,cg07925549\n", + "cg23792592,cg00074348,cg22500132,cg21298408\n", + "cg23792592,cg00074348,cg22500132,cg07552803\n", + "cg23792592,cg00074348,cg22500132,cg20248866\n", + "cg23792592,cg00074348,cg22500132,cg02329916\n", + "cg23792592,cg00074348,cg22500132,cg20596724\n", + "cg23792592,cg00074348,cg22500132,cg12610471\n", + "cg23792592,cg00074348,cg22746058,cg00213123\n", + "cg23792592,cg00074348,cg22746058,cg20051772\n", + "cg23792592,cg00074348,cg22746058,cg15059851\n", + "cg23792592,cg00074348,cg22746058,cg08375658\n", + "cg23792592,cg00074348,cg22746058,cg07925549\n", + "cg23792592,cg00074348,cg22746058,cg21298408\n", + "cg23792592,cg00074348,cg22746058,cg07552803\n", + "cg23792592,cg00074348,cg22746058,cg20248866\n", + "cg23792592,cg00074348,cg22746058,cg02329916\n", + "cg23792592,cg00074348,cg22746058,cg20596724\n", + "cg23792592,cg00074348,cg22746058,cg12610471\n", + "cg23792592,cg00074348,cg05884032,cg00213123\n", + "cg23792592,cg00074348,cg05884032,cg20051772\n", + "cg23792592,cg00074348,cg05884032,cg15059851\n", + "cg23792592,cg00074348,cg05884032,cg08375658\n", + "cg23792592,cg00074348,cg05884032,cg07925549\n", + "cg23792592,cg00074348,cg05884032,cg21298408\n", + "cg23792592,cg00074348,cg05884032,cg07552803\n", + "cg23792592,cg00074348,cg05884032,cg20248866\n", + "cg23792592,cg00074348,cg05884032,cg02329916\n", + "cg23792592,cg00074348,cg05884032,cg20596724\n", + "cg23792592,cg00074348,cg05884032,cg12610471\n", + "cg23792592,cg00074348,cg02547394,cg00213123\n", + "cg23792592,cg00074348,cg02547394,cg20051772\n", + "cg23792592,cg00074348,cg02547394,cg15059851\n", + "cg23792592,cg00074348,cg02547394,cg08375658\n", + "cg23792592,cg00074348,cg02547394,cg07925549\n", + "cg23792592,cg00074348,cg02547394,cg21298408\n", + "cg23792592,cg00074348,cg02547394,cg07552803\n", + "cg23792592,cg00074348,cg02547394,cg20248866\n", + "cg23792592,cg00074348,cg02547394,cg02329916\n", + "cg23792592,cg00074348,cg02547394,cg20596724\n", + "cg23792592,cg00074348,cg02547394,cg12610471\n", + "cg23792592,cg00074348,cg24073122,cg00213123\n", + "cg23792592,cg00074348,cg24073122,cg20051772\n", + "cg23792592,cg00074348,cg24073122,cg15059851\n", + "cg23792592,cg00074348,cg24073122,cg08375658\n", + "cg23792592,cg00074348,cg24073122,cg07925549\n", + "cg23792592,cg00074348,cg24073122,cg21298408\n", + "cg23792592,cg00074348,cg24073122,cg07552803\n", + "cg23792592,cg00074348,cg24073122,cg20248866\n", + "cg23792592,cg00074348,cg24073122,cg02329916\n", + "cg23792592,cg00074348,cg24073122,cg20596724\n", + "cg23792592,cg00074348,cg24073122,cg12610471\n", + "cg23792592,cg14666310,cg00727675,cg00213123\n", + "cg23792592,cg14666310,cg00727675,cg20051772\n", + "cg23792592,cg14666310,cg00727675,cg15059851\n", + "cg23792592,cg14666310,cg00727675,cg08375658\n", + "cg23792592,cg14666310,cg00727675,cg07925549\n", + "cg23792592,cg14666310,cg00727675,cg21298408\n", + "cg23792592,cg14666310,cg00727675,cg07552803\n", + "cg23792592,cg14666310,cg00727675,cg20248866\n", + "cg23792592,cg14666310,cg00727675,cg02329916\n", + "cg23792592,cg14666310,cg00727675,cg20596724\n", + "cg23792592,cg14666310,cg00727675,cg12610471\n", + "cg23792592,cg14666310,cg22500132,cg00213123\n", + "cg23792592,cg14666310,cg22500132,cg20051772\n", + "cg23792592,cg14666310,cg22500132,cg15059851\n", + "cg23792592,cg14666310,cg22500132,cg08375658\n", + "cg23792592,cg14666310,cg22500132,cg07925549\n", + "cg23792592,cg14666310,cg22500132,cg21298408\n", + "cg23792592,cg14666310,cg22500132,cg07552803\n", + "cg23792592,cg14666310,cg22500132,cg20248866\n", + "cg23792592,cg14666310,cg22500132,cg02329916\n", + "cg23792592,cg14666310,cg22500132,cg20596724\n", + "cg23792592,cg14666310,cg22500132,cg12610471\n", + "cg23792592,cg14666310,cg22746058,cg00213123\n", + "cg23792592,cg14666310,cg22746058,cg20051772\n", + "cg23792592,cg14666310,cg22746058,cg15059851\n", + "cg23792592,cg14666310,cg22746058,cg08375658\n", + "cg23792592,cg14666310,cg22746058,cg07925549\n", + "cg23792592,cg14666310,cg22746058,cg21298408\n", + "cg23792592,cg14666310,cg22746058,cg07552803\n", + "cg23792592,cg14666310,cg22746058,cg20248866\n", + "cg23792592,cg14666310,cg22746058,cg02329916\n", + "cg23792592,cg14666310,cg22746058,cg20596724\n", + "cg23792592,cg14666310,cg22746058,cg12610471\n", + "cg23792592,cg14666310,cg05884032,cg00213123\n", + "cg23792592,cg14666310,cg05884032,cg20051772\n", + "cg23792592,cg14666310,cg05884032,cg15059851\n", + "cg23792592,cg14666310,cg05884032,cg08375658\n", + "cg23792592,cg14666310,cg05884032,cg07925549\n", + "cg23792592,cg14666310,cg05884032,cg21298408\n", + "cg23792592,cg14666310,cg05884032,cg07552803\n", + "cg23792592,cg14666310,cg05884032,cg20248866\n", + "cg23792592,cg14666310,cg05884032,cg02329916\n", + "cg23792592,cg14666310,cg05884032,cg20596724\n", + "cg23792592,cg14666310,cg05884032,cg12610471\n", + "cg23792592,cg14666310,cg02547394,cg00213123\n", + "cg23792592,cg14666310,cg02547394,cg20051772\n", + "cg23792592,cg14666310,cg02547394,cg15059851\n", + "cg23792592,cg14666310,cg02547394,cg08375658\n", + "cg23792592,cg14666310,cg02547394,cg07925549\n", + "cg23792592,cg14666310,cg02547394,cg21298408\n", + "cg23792592,cg14666310,cg02547394,cg07552803\n", + "cg23792592,cg14666310,cg02547394,cg20248866\n", + "cg23792592,cg14666310,cg02547394,cg02329916\n", + "cg23792592,cg14666310,cg02547394,cg20596724\n", + "cg23792592,cg14666310,cg02547394,cg12610471\n", + "cg23792592,cg14666310,cg24073122,cg00213123\n", + "cg23792592,cg14666310,cg24073122,cg20051772\n", + "cg23792592,cg14666310,cg24073122,cg15059851\n", + "cg23792592,cg14666310,cg24073122,cg08375658\n", + "cg23792592,cg14666310,cg24073122,cg07925549\n", + "cg23792592,cg14666310,cg24073122,cg21298408\n", + "cg23792592,cg14666310,cg24073122,cg07552803\n", + "cg23792592,cg14666310,cg24073122,cg20248866\n", + "cg23792592,cg14666310,cg24073122,cg02329916\n", + "cg23792592,cg14666310,cg24073122,cg20596724\n", + "cg23792592,cg14666310,cg24073122,cg12610471\n", + "cg23792592,cg23631930,cg00727675,cg00213123\n", + "cg23792592,cg23631930,cg00727675,cg20051772\n", + "cg23792592,cg23631930,cg00727675,cg15059851\n", + "cg23792592,cg23631930,cg00727675,cg08375658\n", + "cg23792592,cg23631930,cg00727675,cg07925549\n", + "cg23792592,cg23631930,cg00727675,cg21298408\n", + "cg23792592,cg23631930,cg00727675,cg07552803\n", + "cg23792592,cg23631930,cg00727675,cg20248866\n", + "cg23792592,cg23631930,cg00727675,cg02329916\n", + "cg23792592,cg23631930,cg00727675,cg20596724\n", + "cg23792592,cg23631930,cg00727675,cg12610471\n", + "cg23792592,cg23631930,cg22500132,cg00213123\n", + "cg23792592,cg23631930,cg22500132,cg20051772\n", + "cg23792592,cg23631930,cg22500132,cg15059851\n", + "cg23792592,cg23631930,cg22500132,cg08375658\n", + "cg23792592,cg23631930,cg22500132,cg07925549\n", + "cg23792592,cg23631930,cg22500132,cg21298408\n", + "cg23792592,cg23631930,cg22500132,cg07552803\n", + "cg23792592,cg23631930,cg22500132,cg20248866\n", + "cg23792592,cg23631930,cg22500132,cg02329916\n", + "cg23792592,cg23631930,cg22500132,cg20596724\n", + "cg23792592,cg23631930,cg22500132,cg12610471\n", + "cg23792592,cg23631930,cg22746058,cg00213123\n", + "cg23792592,cg23631930,cg22746058,cg20051772\n", + "cg23792592,cg23631930,cg22746058,cg15059851\n", + "cg23792592,cg23631930,cg22746058,cg08375658\n", + "cg23792592,cg23631930,cg22746058,cg07925549\n", + "cg23792592,cg23631930,cg22746058,cg21298408\n", + "cg23792592,cg23631930,cg22746058,cg07552803\n", + "cg23792592,cg23631930,cg22746058,cg20248866\n", + "cg23792592,cg23631930,cg22746058,cg02329916\n", + "cg23792592,cg23631930,cg22746058,cg20596724\n", + "cg23792592,cg23631930,cg22746058,cg12610471\n", + "cg23792592,cg23631930,cg05884032,cg00213123\n", + "cg23792592,cg23631930,cg05884032,cg20051772\n", + "cg23792592,cg23631930,cg05884032,cg15059851\n", + "cg23792592,cg23631930,cg05884032,cg08375658\n", + "cg23792592,cg23631930,cg05884032,cg07925549\n", + "cg23792592,cg23631930,cg05884032,cg21298408\n", + "cg23792592,cg23631930,cg05884032,cg07552803\n", + "cg23792592,cg23631930,cg05884032,cg20248866\n", + "cg23792592,cg23631930,cg05884032,cg02329916\n", + "cg23792592,cg23631930,cg05884032,cg20596724\n", + "cg23792592,cg23631930,cg05884032,cg12610471\n", + "cg23792592,cg23631930,cg02547394,cg00213123\n", + "cg23792592,cg23631930,cg02547394,cg20051772\n", + "cg23792592,cg23631930,cg02547394,cg15059851\n", + "cg23792592,cg23631930,cg02547394,cg08375658\n", + "cg23792592,cg23631930,cg02547394,cg07925549\n", + "cg23792592,cg23631930,cg02547394,cg21298408\n", + "cg23792592,cg23631930,cg02547394,cg07552803\n", + "cg23792592,cg23631930,cg02547394,cg20248866\n", + "cg23792592,cg23631930,cg02547394,cg02329916\n", + "cg23792592,cg23631930,cg02547394,cg20596724\n", + "cg23792592,cg23631930,cg02547394,cg12610471\n", + "cg23792592,cg23631930,cg24073122,cg00213123\n", + "cg23792592,cg23631930,cg24073122,cg20051772\n", + "cg23792592,cg23631930,cg24073122,cg15059851\n", + "cg23792592,cg23631930,cg24073122,cg08375658\n", + "cg23792592,cg23631930,cg24073122,cg07925549\n", + "cg23792592,cg23631930,cg24073122,cg21298408\n", + "cg23792592,cg23631930,cg24073122,cg07552803\n", + "cg23792592,cg23631930,cg24073122,cg20248866\n", + "cg23792592,cg23631930,cg24073122,cg02329916\n", + "cg23792592,cg23631930,cg24073122,cg20596724\n", + "cg23792592,cg23631930,cg24073122,cg12610471\n", + "cg23792592,cg05724197,cg00727675,cg00213123\n", + "cg23792592,cg05724197,cg00727675,cg20051772\n", + "cg23792592,cg05724197,cg00727675,cg15059851\n", + "cg23792592,cg05724197,cg00727675,cg08375658\n", + "cg23792592,cg05724197,cg00727675,cg07925549\n", + "cg23792592,cg05724197,cg00727675,cg21298408\n", + "cg23792592,cg05724197,cg00727675,cg07552803\n", + "cg23792592,cg05724197,cg00727675,cg20248866\n", + "cg23792592,cg05724197,cg00727675,cg02329916\n", + "cg23792592,cg05724197,cg00727675,cg20596724\n", + "cg23792592,cg05724197,cg00727675,cg12610471\n", + "cg23792592,cg05724197,cg22500132,cg00213123\n", + "cg23792592,cg05724197,cg22500132,cg20051772\n", + "cg23792592,cg05724197,cg22500132,cg15059851\n", + "cg23792592,cg05724197,cg22500132,cg08375658\n", + "cg23792592,cg05724197,cg22500132,cg07925549\n", + "cg23792592,cg05724197,cg22500132,cg21298408\n", + "cg23792592,cg05724197,cg22500132,cg07552803\n", + "cg23792592,cg05724197,cg22500132,cg20248866\n", + "cg23792592,cg05724197,cg22500132,cg02329916\n", + "cg23792592,cg05724197,cg22500132,cg20596724\n", + "cg23792592,cg05724197,cg22500132,cg12610471\n", + "cg23792592,cg05724197,cg22746058,cg00213123\n", + "cg23792592,cg05724197,cg22746058,cg20051772\n", + "cg23792592,cg05724197,cg22746058,cg15059851\n", + "cg23792592,cg05724197,cg22746058,cg08375658\n", + "cg23792592,cg05724197,cg22746058,cg07925549\n", + "cg23792592,cg05724197,cg22746058,cg21298408\n", + "cg23792592,cg05724197,cg22746058,cg07552803\n", + "cg23792592,cg05724197,cg22746058,cg20248866\n", + "cg23792592,cg05724197,cg22746058,cg02329916\n", + "cg23792592,cg05724197,cg22746058,cg20596724\n", + "cg23792592,cg05724197,cg22746058,cg12610471\n", + "cg23792592,cg05724197,cg05884032,cg00213123\n", + "cg23792592,cg05724197,cg05884032,cg20051772\n", + "cg23792592,cg05724197,cg05884032,cg15059851\n", + "cg23792592,cg05724197,cg05884032,cg08375658\n", + "cg23792592,cg05724197,cg05884032,cg07925549\n", + "cg23792592,cg05724197,cg05884032,cg21298408\n", + "cg23792592,cg05724197,cg05884032,cg07552803\n", + "cg23792592,cg05724197,cg05884032,cg20248866\n", + "cg23792592,cg05724197,cg05884032,cg02329916\n", + "cg23792592,cg05724197,cg05884032,cg20596724\n", + "cg23792592,cg05724197,cg05884032,cg12610471\n", + "cg23792592,cg05724197,cg02547394,cg00213123\n", + "cg23792592,cg05724197,cg02547394,cg20051772\n", + "cg23792592,cg05724197,cg02547394,cg15059851\n", + "cg23792592,cg05724197,cg02547394,cg08375658\n", + "cg23792592,cg05724197,cg02547394,cg07925549\n", + "cg23792592,cg05724197,cg02547394,cg21298408\n", + "cg23792592,cg05724197,cg02547394,cg07552803\n", + "cg23792592,cg05724197,cg02547394,cg20248866\n", + "cg23792592,cg05724197,cg02547394,cg02329916\n", + "cg23792592,cg05724197,cg02547394,cg20596724\n", + "cg23792592,cg05724197,cg02547394,cg12610471\n", + "cg23792592,cg05724197,cg24073122,cg00213123\n", + "cg23792592,cg05724197,cg24073122,cg20051772\n", + "cg23792592,cg05724197,cg24073122,cg15059851\n", + "cg23792592,cg05724197,cg24073122,cg08375658\n", + "cg23792592,cg05724197,cg24073122,cg07925549\n", + "cg23792592,cg05724197,cg24073122,cg21298408\n", + "cg23792592,cg05724197,cg24073122,cg07552803\n", + "cg23792592,cg05724197,cg24073122,cg20248866\n", + "cg23792592,cg05724197,cg24073122,cg02329916\n", + "cg23792592,cg05724197,cg24073122,cg20596724\n", + "cg23792592,cg05724197,cg24073122,cg12610471\n", + "cg23792592,cg03003745,cg00727675,cg00213123\n", + "cg23792592,cg03003745,cg00727675,cg20051772\n", + "cg23792592,cg03003745,cg00727675,cg15059851\n", + "cg23792592,cg03003745,cg00727675,cg08375658\n", + "cg23792592,cg03003745,cg00727675,cg07925549\n", + "cg23792592,cg03003745,cg00727675,cg21298408\n", + "cg23792592,cg03003745,cg00727675,cg07552803\n", + "cg23792592,cg03003745,cg00727675,cg20248866\n", + "cg23792592,cg03003745,cg00727675,cg02329916\n", + "cg23792592,cg03003745,cg00727675,cg20596724\n", + "cg23792592,cg03003745,cg00727675,cg12610471\n", + "cg23792592,cg03003745,cg22500132,cg00213123\n", + "cg23792592,cg03003745,cg22500132,cg20051772\n", + "cg23792592,cg03003745,cg22500132,cg15059851\n", + "cg23792592,cg03003745,cg22500132,cg08375658\n", + "cg23792592,cg03003745,cg22500132,cg07925549\n", + "cg23792592,cg03003745,cg22500132,cg21298408\n", + "cg23792592,cg03003745,cg22500132,cg07552803\n", + "cg23792592,cg03003745,cg22500132,cg20248866\n", + "cg23792592,cg03003745,cg22500132,cg02329916\n", + "cg23792592,cg03003745,cg22500132,cg20596724\n", + "cg23792592,cg03003745,cg22500132,cg12610471\n", + "cg23792592,cg03003745,cg22746058,cg00213123\n", + "cg23792592,cg03003745,cg22746058,cg20051772\n", + "cg23792592,cg03003745,cg22746058,cg15059851\n", + "cg23792592,cg03003745,cg22746058,cg08375658\n", + "cg23792592,cg03003745,cg22746058,cg07925549\n", + "cg23792592,cg03003745,cg22746058,cg21298408\n", + "cg23792592,cg03003745,cg22746058,cg07552803\n", + "cg23792592,cg03003745,cg22746058,cg20248866\n", + "cg23792592,cg03003745,cg22746058,cg02329916\n", + "cg23792592,cg03003745,cg22746058,cg20596724\n", + "cg23792592,cg03003745,cg22746058,cg12610471\n", + "cg23792592,cg03003745,cg05884032,cg00213123\n", + "cg23792592,cg03003745,cg05884032,cg20051772\n", + "cg23792592,cg03003745,cg05884032,cg15059851\n", + "cg23792592,cg03003745,cg05884032,cg08375658\n", + "cg23792592,cg03003745,cg05884032,cg07925549\n", + "cg23792592,cg03003745,cg05884032,cg21298408\n", + "cg23792592,cg03003745,cg05884032,cg07552803\n", + "cg23792592,cg03003745,cg05884032,cg20248866\n", + "cg23792592,cg03003745,cg05884032,cg02329916\n", + "cg23792592,cg03003745,cg05884032,cg20596724\n", + "cg23792592,cg03003745,cg05884032,cg12610471\n", + "cg23792592,cg03003745,cg02547394,cg00213123\n", + "cg23792592,cg03003745,cg02547394,cg20051772\n", + "cg23792592,cg03003745,cg02547394,cg15059851\n", + "cg23792592,cg03003745,cg02547394,cg08375658\n", + "cg23792592,cg03003745,cg02547394,cg07925549\n", + "cg23792592,cg03003745,cg02547394,cg21298408\n", + "cg23792592,cg03003745,cg02547394,cg07552803\n", + "cg23792592,cg03003745,cg02547394,cg20248866\n", + "cg23792592,cg03003745,cg02547394,cg02329916\n", + "cg23792592,cg03003745,cg02547394,cg20596724\n", + "cg23792592,cg03003745,cg02547394,cg12610471\n", + "cg23792592,cg03003745,cg24073122,cg00213123\n", + "cg23792592,cg03003745,cg24073122,cg20051772\n", + "cg23792592,cg03003745,cg24073122,cg15059851\n", + "cg23792592,cg03003745,cg24073122,cg08375658\n", + "cg23792592,cg03003745,cg24073122,cg07925549\n", + "cg23792592,cg03003745,cg24073122,cg21298408\n", + "cg23792592,cg03003745,cg24073122,cg07552803\n", + "cg23792592,cg03003745,cg24073122,cg20248866\n", + "cg23792592,cg03003745,cg24073122,cg02329916\n", + "cg23792592,cg03003745,cg24073122,cg20596724\n", + "cg23792592,cg03003745,cg24073122,cg12610471\n", + "cg23792592,cg13379236,cg00727675,cg00213123\n", + "cg23792592,cg13379236,cg00727675,cg20051772\n", + "cg23792592,cg13379236,cg00727675,cg15059851\n", + "cg23792592,cg13379236,cg00727675,cg08375658\n", + "cg23792592,cg13379236,cg00727675,cg07925549\n", + "cg23792592,cg13379236,cg00727675,cg21298408\n", + "cg23792592,cg13379236,cg00727675,cg07552803\n", + "cg23792592,cg13379236,cg00727675,cg20248866\n", + "cg23792592,cg13379236,cg00727675,cg02329916\n", + "cg23792592,cg13379236,cg00727675,cg20596724\n", + "cg23792592,cg13379236,cg00727675,cg12610471\n", + "cg23792592,cg13379236,cg22500132,cg00213123\n", + "cg23792592,cg13379236,cg22500132,cg20051772\n", + "cg23792592,cg13379236,cg22500132,cg15059851\n", + "cg23792592,cg13379236,cg22500132,cg08375658\n", + "cg23792592,cg13379236,cg22500132,cg07925549\n", + "cg23792592,cg13379236,cg22500132,cg21298408\n", + "cg23792592,cg13379236,cg22500132,cg07552803\n", + "cg23792592,cg13379236,cg22500132,cg20248866\n", + "cg23792592,cg13379236,cg22500132,cg02329916\n", + "cg23792592,cg13379236,cg22500132,cg20596724\n", + "cg23792592,cg13379236,cg22500132,cg12610471\n", + "cg23792592,cg13379236,cg22746058,cg00213123\n", + "cg23792592,cg13379236,cg22746058,cg20051772\n", + "cg23792592,cg13379236,cg22746058,cg15059851\n", + "cg23792592,cg13379236,cg22746058,cg08375658\n", + "cg23792592,cg13379236,cg22746058,cg07925549\n", + "cg23792592,cg13379236,cg22746058,cg21298408\n", + "cg23792592,cg13379236,cg22746058,cg07552803\n", + "cg23792592,cg13379236,cg22746058,cg20248866\n", + "cg23792592,cg13379236,cg22746058,cg02329916\n", + "cg23792592,cg13379236,cg22746058,cg20596724\n", + "cg23792592,cg13379236,cg22746058,cg12610471\n", + "cg23792592,cg13379236,cg05884032,cg00213123\n", + "cg23792592,cg13379236,cg05884032,cg20051772\n", + "cg23792592,cg13379236,cg05884032,cg15059851\n", + "cg23792592,cg13379236,cg05884032,cg08375658\n", + "cg23792592,cg13379236,cg05884032,cg07925549\n", + "cg23792592,cg13379236,cg05884032,cg21298408\n", + "cg23792592,cg13379236,cg05884032,cg07552803\n", + "cg23792592,cg13379236,cg05884032,cg20248866\n", + "cg23792592,cg13379236,cg05884032,cg02329916\n", + "cg23792592,cg13379236,cg05884032,cg20596724\n", + "cg23792592,cg13379236,cg05884032,cg12610471\n", + "cg23792592,cg13379236,cg02547394,cg00213123\n", + "cg23792592,cg13379236,cg02547394,cg20051772\n", + "cg23792592,cg13379236,cg02547394,cg15059851\n", + "cg23792592,cg13379236,cg02547394,cg08375658\n", + "cg23792592,cg13379236,cg02547394,cg07925549\n", + "cg23792592,cg13379236,cg02547394,cg21298408\n", + "cg23792592,cg13379236,cg02547394,cg07552803\n", + "cg23792592,cg13379236,cg02547394,cg20248866\n", + "cg23792592,cg13379236,cg02547394,cg02329916\n", + "cg23792592,cg13379236,cg02547394,cg20596724\n", + "cg23792592,cg13379236,cg02547394,cg12610471\n", + "cg23792592,cg13379236,cg24073122,cg00213123\n", + "cg23792592,cg13379236,cg24073122,cg20051772\n", + "cg23792592,cg13379236,cg24073122,cg15059851\n", + "cg23792592,cg13379236,cg24073122,cg08375658\n", + "cg23792592,cg13379236,cg24073122,cg07925549\n", + "cg23792592,cg13379236,cg24073122,cg21298408\n", + "cg23792592,cg13379236,cg24073122,cg07552803\n", + "cg23792592,cg13379236,cg24073122,cg20248866\n", + "cg23792592,cg13379236,cg24073122,cg02329916\n", + "cg23792592,cg13379236,cg24073122,cg20596724\n", + "cg23792592,cg13379236,cg24073122,cg12610471\n", + "cg23792592,cg05818394,cg00727675,cg00213123\n", + "cg23792592,cg05818394,cg00727675,cg20051772\n", + "cg23792592,cg05818394,cg00727675,cg15059851\n", + "cg23792592,cg05818394,cg00727675,cg08375658\n", + "cg23792592,cg05818394,cg00727675,cg07925549\n", + "cg23792592,cg05818394,cg00727675,cg21298408\n", + "cg23792592,cg05818394,cg00727675,cg07552803\n", + "cg23792592,cg05818394,cg00727675,cg20248866\n", + "cg23792592,cg05818394,cg00727675,cg02329916\n", + "cg23792592,cg05818394,cg00727675,cg20596724\n", + "cg23792592,cg05818394,cg00727675,cg12610471\n", + "cg23792592,cg05818394,cg22500132,cg00213123\n", + "cg23792592,cg05818394,cg22500132,cg20051772\n", + "cg23792592,cg05818394,cg22500132,cg15059851\n", + "cg23792592,cg05818394,cg22500132,cg08375658\n", + "cg23792592,cg05818394,cg22500132,cg07925549\n", + "cg23792592,cg05818394,cg22500132,cg21298408\n", + "cg23792592,cg05818394,cg22500132,cg07552803\n", + "cg23792592,cg05818394,cg22500132,cg20248866\n", + "cg23792592,cg05818394,cg22500132,cg02329916\n", + "cg23792592,cg05818394,cg22500132,cg20596724\n", + "cg23792592,cg05818394,cg22500132,cg12610471\n", + "cg23792592,cg05818394,cg22746058,cg00213123\n", + "cg23792592,cg05818394,cg22746058,cg20051772\n", + "cg23792592,cg05818394,cg22746058,cg15059851\n", + "cg23792592,cg05818394,cg22746058,cg08375658\n", + "cg23792592,cg05818394,cg22746058,cg07925549\n", + "cg23792592,cg05818394,cg22746058,cg21298408\n", + "cg23792592,cg05818394,cg22746058,cg07552803\n", + "cg23792592,cg05818394,cg22746058,cg20248866\n", + "cg23792592,cg05818394,cg22746058,cg02329916\n", + "cg23792592,cg05818394,cg22746058,cg20596724\n", + "cg23792592,cg05818394,cg22746058,cg12610471\n", + "cg23792592,cg05818394,cg05884032,cg00213123\n", + "cg23792592,cg05818394,cg05884032,cg20051772\n", + "cg23792592,cg05818394,cg05884032,cg15059851\n", + "cg23792592,cg05818394,cg05884032,cg08375658\n", + "cg23792592,cg05818394,cg05884032,cg07925549\n", + "cg23792592,cg05818394,cg05884032,cg21298408\n", + "cg23792592,cg05818394,cg05884032,cg07552803\n", + "cg23792592,cg05818394,cg05884032,cg20248866\n", + "cg23792592,cg05818394,cg05884032,cg02329916\n", + "cg23792592,cg05818394,cg05884032,cg20596724\n", + "cg23792592,cg05818394,cg05884032,cg12610471\n", + "cg23792592,cg05818394,cg02547394,cg00213123\n", + "cg23792592,cg05818394,cg02547394,cg20051772\n", + "cg23792592,cg05818394,cg02547394,cg15059851\n", + "cg23792592,cg05818394,cg02547394,cg08375658\n", + "cg23792592,cg05818394,cg02547394,cg07925549\n", + "cg23792592,cg05818394,cg02547394,cg21298408\n", + "cg23792592,cg05818394,cg02547394,cg07552803\n", + "cg23792592,cg05818394,cg02547394,cg20248866\n", + "cg23792592,cg05818394,cg02547394,cg02329916\n", + "cg23792592,cg05818394,cg02547394,cg20596724\n", + "cg23792592,cg05818394,cg02547394,cg12610471\n", + "cg23792592,cg05818394,cg24073122,cg00213123\n", + "cg23792592,cg05818394,cg24073122,cg20051772\n", + "cg23792592,cg05818394,cg24073122,cg15059851\n", + "cg23792592,cg05818394,cg24073122,cg08375658\n", + "cg23792592,cg05818394,cg24073122,cg07925549\n", + "cg23792592,cg05818394,cg24073122,cg21298408\n", + "cg23792592,cg05818394,cg24073122,cg07552803\n", + "cg23792592,cg05818394,cg24073122,cg20248866\n", + "cg23792592,cg05818394,cg24073122,cg02329916\n", + "cg23792592,cg05818394,cg24073122,cg20596724\n", + "cg23792592,cg05818394,cg24073122,cg12610471\n", + "cg23792592,cg04433322,cg00727675,cg00213123\n", + "cg23792592,cg04433322,cg00727675,cg20051772\n", + "cg23792592,cg04433322,cg00727675,cg15059851\n", + "cg23792592,cg04433322,cg00727675,cg08375658\n", + "cg23792592,cg04433322,cg00727675,cg07925549\n", + "cg23792592,cg04433322,cg00727675,cg21298408\n", + "cg23792592,cg04433322,cg00727675,cg07552803\n", + "cg23792592,cg04433322,cg00727675,cg20248866\n", + "cg23792592,cg04433322,cg00727675,cg02329916\n", + "cg23792592,cg04433322,cg00727675,cg20596724\n", + "cg23792592,cg04433322,cg00727675,cg12610471\n", + "cg23792592,cg04433322,cg22500132,cg00213123\n", + "cg23792592,cg04433322,cg22500132,cg20051772\n", + "cg23792592,cg04433322,cg22500132,cg15059851\n", + "cg23792592,cg04433322,cg22500132,cg08375658\n", + "cg23792592,cg04433322,cg22500132,cg07925549\n", + "cg23792592,cg04433322,cg22500132,cg21298408\n", + "cg23792592,cg04433322,cg22500132,cg07552803\n", + "cg23792592,cg04433322,cg22500132,cg20248866\n", + "cg23792592,cg04433322,cg22500132,cg02329916\n", + "cg23792592,cg04433322,cg22500132,cg20596724\n", + "cg23792592,cg04433322,cg22500132,cg12610471\n", + "cg23792592,cg04433322,cg22746058,cg00213123\n", + "cg23792592,cg04433322,cg22746058,cg20051772\n", + "cg23792592,cg04433322,cg22746058,cg15059851\n", + "cg23792592,cg04433322,cg22746058,cg08375658\n", + "cg23792592,cg04433322,cg22746058,cg07925549\n", + "cg23792592,cg04433322,cg22746058,cg21298408\n", + "cg23792592,cg04433322,cg22746058,cg07552803\n", + "cg23792592,cg04433322,cg22746058,cg20248866\n", + "cg23792592,cg04433322,cg22746058,cg02329916\n", + "cg23792592,cg04433322,cg22746058,cg20596724\n", + "cg23792592,cg04433322,cg22746058,cg12610471\n", + "cg23792592,cg04433322,cg05884032,cg00213123\n", + "cg23792592,cg04433322,cg05884032,cg20051772\n", + "cg23792592,cg04433322,cg05884032,cg15059851\n", + "cg23792592,cg04433322,cg05884032,cg08375658\n", + "cg23792592,cg04433322,cg05884032,cg07925549\n", + "cg23792592,cg04433322,cg05884032,cg21298408\n", + "cg23792592,cg04433322,cg05884032,cg07552803\n", + "cg23792592,cg04433322,cg05884032,cg20248866\n", + "cg23792592,cg04433322,cg05884032,cg02329916\n", + "cg23792592,cg04433322,cg05884032,cg20596724\n", + "cg23792592,cg04433322,cg05884032,cg12610471\n", + "cg23792592,cg04433322,cg02547394,cg00213123\n", + "cg23792592,cg04433322,cg02547394,cg20051772\n", + "cg23792592,cg04433322,cg02547394,cg15059851\n", + "cg23792592,cg04433322,cg02547394,cg08375658\n", + "cg23792592,cg04433322,cg02547394,cg07925549\n", + "cg23792592,cg04433322,cg02547394,cg21298408\n", + "cg23792592,cg04433322,cg02547394,cg07552803\n", + "cg23792592,cg04433322,cg02547394,cg20248866\n", + "cg23792592,cg04433322,cg02547394,cg02329916\n", + "cg23792592,cg04433322,cg02547394,cg20596724\n", + "cg23792592,cg04433322,cg02547394,cg12610471\n", + "cg23792592,cg04433322,cg24073122,cg00213123\n", + "cg23792592,cg04433322,cg24073122,cg20051772\n", + "cg23792592,cg04433322,cg24073122,cg15059851\n", + "cg23792592,cg04433322,cg24073122,cg08375658\n", + "cg23792592,cg04433322,cg24073122,cg07925549\n", + "cg23792592,cg04433322,cg24073122,cg21298408\n", + "cg23792592,cg04433322,cg24073122,cg07552803\n", + "cg23792592,cg04433322,cg24073122,cg20248866\n", + "cg23792592,cg04433322,cg24073122,cg02329916\n", + "cg23792592,cg04433322,cg24073122,cg20596724\n", + "cg23792592,cg04433322,cg24073122,cg12610471\n", + "cg23792592,cg14153654,cg00727675,cg00213123\n", + "cg23792592,cg14153654,cg00727675,cg20051772\n", + "cg23792592,cg14153654,cg00727675,cg15059851\n", + "cg23792592,cg14153654,cg00727675,cg08375658\n", + "cg23792592,cg14153654,cg00727675,cg07925549\n", + "cg23792592,cg14153654,cg00727675,cg21298408\n", + "cg23792592,cg14153654,cg00727675,cg07552803\n", + "cg23792592,cg14153654,cg00727675,cg20248866\n", + "cg23792592,cg14153654,cg00727675,cg02329916\n", + "cg23792592,cg14153654,cg00727675,cg20596724\n", + "cg23792592,cg14153654,cg00727675,cg12610471\n", + "cg23792592,cg14153654,cg22500132,cg00213123\n", + "cg23792592,cg14153654,cg22500132,cg20051772\n", + "cg23792592,cg14153654,cg22500132,cg15059851\n", + "cg23792592,cg14153654,cg22500132,cg08375658\n", + "cg23792592,cg14153654,cg22500132,cg07925549\n", + "cg23792592,cg14153654,cg22500132,cg21298408\n", + "cg23792592,cg14153654,cg22500132,cg07552803\n", + "cg23792592,cg14153654,cg22500132,cg20248866\n", + "cg23792592,cg14153654,cg22500132,cg02329916\n", + "cg23792592,cg14153654,cg22500132,cg20596724\n", + "cg23792592,cg14153654,cg22500132,cg12610471\n", + "cg23792592,cg14153654,cg22746058,cg00213123\n", + "cg23792592,cg14153654,cg22746058,cg20051772\n", + "cg23792592,cg14153654,cg22746058,cg15059851\n", + "cg23792592,cg14153654,cg22746058,cg08375658\n", + "cg23792592,cg14153654,cg22746058,cg07925549\n", + "cg23792592,cg14153654,cg22746058,cg21298408\n", + "cg23792592,cg14153654,cg22746058,cg07552803\n", + "cg23792592,cg14153654,cg22746058,cg20248866\n", + "cg23792592,cg14153654,cg22746058,cg02329916\n", + "cg23792592,cg14153654,cg22746058,cg20596724\n", + "cg23792592,cg14153654,cg22746058,cg12610471\n", + "cg23792592,cg14153654,cg05884032,cg00213123\n", + "cg23792592,cg14153654,cg05884032,cg20051772\n", + "cg23792592,cg14153654,cg05884032,cg15059851\n", + "cg23792592,cg14153654,cg05884032,cg08375658\n", + "cg23792592,cg14153654,cg05884032,cg07925549\n", + "cg23792592,cg14153654,cg05884032,cg21298408\n", + "cg23792592,cg14153654,cg05884032,cg07552803\n", + "cg23792592,cg14153654,cg05884032,cg20248866\n", + "cg23792592,cg14153654,cg05884032,cg02329916\n", + "cg23792592,cg14153654,cg05884032,cg20596724\n", + "cg23792592,cg14153654,cg05884032,cg12610471\n", + "cg23792592,cg14153654,cg02547394,cg00213123\n", + "cg23792592,cg14153654,cg02547394,cg20051772\n", + "cg23792592,cg14153654,cg02547394,cg15059851\n", + "cg23792592,cg14153654,cg02547394,cg08375658\n", + "cg23792592,cg14153654,cg02547394,cg07925549\n", + "cg23792592,cg14153654,cg02547394,cg21298408\n", + "cg23792592,cg14153654,cg02547394,cg07552803\n", + "cg23792592,cg14153654,cg02547394,cg20248866\n", + "cg23792592,cg14153654,cg02547394,cg02329916\n", + "cg23792592,cg14153654,cg02547394,cg20596724\n", + "cg23792592,cg14153654,cg02547394,cg12610471\n", + "cg23792592,cg14153654,cg24073122,cg00213123\n", + "cg23792592,cg14153654,cg24073122,cg20051772\n", + "cg23792592,cg14153654,cg24073122,cg15059851\n", + "cg23792592,cg14153654,cg24073122,cg08375658\n", + "cg23792592,cg14153654,cg24073122,cg07925549\n", + "cg23792592,cg14153654,cg24073122,cg21298408\n", + "cg23792592,cg14153654,cg24073122,cg07552803\n", + "cg23792592,cg14153654,cg24073122,cg20248866\n", + "cg23792592,cg14153654,cg24073122,cg02329916\n", + "cg23792592,cg14153654,cg24073122,cg20596724\n", + "cg23792592,cg14153654,cg24073122,cg12610471\n", + "cg19157647,cg00074348,cg00727675,cg00213123\n", + "cg19157647,cg00074348,cg00727675,cg20051772\n", + "cg19157647,cg00074348,cg00727675,cg15059851\n", + "cg19157647,cg00074348,cg00727675,cg08375658\n", + "cg19157647,cg00074348,cg00727675,cg07925549\n", + "cg19157647,cg00074348,cg00727675,cg21298408\n", + "cg19157647,cg00074348,cg00727675,cg07552803\n", + "cg19157647,cg00074348,cg00727675,cg20248866\n", + "cg19157647,cg00074348,cg00727675,cg02329916\n", + "cg19157647,cg00074348,cg00727675,cg20596724\n", + "cg19157647,cg00074348,cg00727675,cg12610471\n", + "cg19157647,cg00074348,cg22500132,cg00213123\n", + "cg19157647,cg00074348,cg22500132,cg20051772\n", + "cg19157647,cg00074348,cg22500132,cg15059851\n", + "cg19157647,cg00074348,cg22500132,cg08375658\n", + "cg19157647,cg00074348,cg22500132,cg07925549\n", + "cg19157647,cg00074348,cg22500132,cg21298408\n", + "cg19157647,cg00074348,cg22500132,cg07552803\n", + "cg19157647,cg00074348,cg22500132,cg20248866\n", + "cg19157647,cg00074348,cg22500132,cg02329916\n", + "cg19157647,cg00074348,cg22500132,cg20596724\n", + "cg19157647,cg00074348,cg22500132,cg12610471\n", + "cg19157647,cg00074348,cg22746058,cg00213123\n", + "cg19157647,cg00074348,cg22746058,cg20051772\n", + "cg19157647,cg00074348,cg22746058,cg15059851\n", + "cg19157647,cg00074348,cg22746058,cg08375658\n", + "cg19157647,cg00074348,cg22746058,cg07925549\n", + "cg19157647,cg00074348,cg22746058,cg21298408\n", + "cg19157647,cg00074348,cg22746058,cg07552803\n", + "cg19157647,cg00074348,cg22746058,cg20248866\n", + "cg19157647,cg00074348,cg22746058,cg02329916\n", + "cg19157647,cg00074348,cg22746058,cg20596724\n", + "cg19157647,cg00074348,cg22746058,cg12610471\n", + "cg19157647,cg00074348,cg05884032,cg00213123\n", + "cg19157647,cg00074348,cg05884032,cg20051772\n", + "cg19157647,cg00074348,cg05884032,cg15059851\n", + "cg19157647,cg00074348,cg05884032,cg08375658\n", + "cg19157647,cg00074348,cg05884032,cg07925549\n", + "cg19157647,cg00074348,cg05884032,cg21298408\n", + "cg19157647,cg00074348,cg05884032,cg07552803\n", + "cg19157647,cg00074348,cg05884032,cg20248866\n", + "cg19157647,cg00074348,cg05884032,cg02329916\n", + "cg19157647,cg00074348,cg05884032,cg20596724\n", + "cg19157647,cg00074348,cg05884032,cg12610471\n", + "cg19157647,cg00074348,cg02547394,cg00213123\n", + "cg19157647,cg00074348,cg02547394,cg20051772\n", + "cg19157647,cg00074348,cg02547394,cg15059851\n", + "cg19157647,cg00074348,cg02547394,cg08375658\n", + "cg19157647,cg00074348,cg02547394,cg07925549\n", + "cg19157647,cg00074348,cg02547394,cg21298408\n", + "cg19157647,cg00074348,cg02547394,cg07552803\n", + "cg19157647,cg00074348,cg02547394,cg20248866\n", + "cg19157647,cg00074348,cg02547394,cg02329916\n", + "cg19157647,cg00074348,cg02547394,cg20596724\n", + "cg19157647,cg00074348,cg02547394,cg12610471\n", + "cg19157647,cg00074348,cg24073122,cg00213123\n", + "cg19157647,cg00074348,cg24073122,cg20051772\n", + "cg19157647,cg00074348,cg24073122,cg15059851\n", + "cg19157647,cg00074348,cg24073122,cg08375658\n", + "cg19157647,cg00074348,cg24073122,cg07925549\n", + "cg19157647,cg00074348,cg24073122,cg21298408\n", + "cg19157647,cg00074348,cg24073122,cg07552803\n", + "cg19157647,cg00074348,cg24073122,cg20248866\n", + "cg19157647,cg00074348,cg24073122,cg02329916\n", + "cg19157647,cg00074348,cg24073122,cg20596724\n", + "cg19157647,cg00074348,cg24073122,cg12610471\n", + "cg19157647,cg14666310,cg00727675,cg00213123\n", + "cg19157647,cg14666310,cg00727675,cg20051772\n", + "cg19157647,cg14666310,cg00727675,cg15059851\n", + "cg19157647,cg14666310,cg00727675,cg08375658\n", + "cg19157647,cg14666310,cg00727675,cg07925549\n", + "cg19157647,cg14666310,cg00727675,cg21298408\n", + "cg19157647,cg14666310,cg00727675,cg07552803\n", + "cg19157647,cg14666310,cg00727675,cg20248866\n", + "cg19157647,cg14666310,cg00727675,cg02329916\n", + "cg19157647,cg14666310,cg00727675,cg20596724\n", + "cg19157647,cg14666310,cg00727675,cg12610471\n", + "cg19157647,cg14666310,cg22500132,cg00213123\n", + "cg19157647,cg14666310,cg22500132,cg20051772\n", + "cg19157647,cg14666310,cg22500132,cg15059851\n", + "cg19157647,cg14666310,cg22500132,cg08375658\n", + "cg19157647,cg14666310,cg22500132,cg07925549\n", + "cg19157647,cg14666310,cg22500132,cg21298408\n", + "cg19157647,cg14666310,cg22500132,cg07552803\n", + "cg19157647,cg14666310,cg22500132,cg20248866\n", + "cg19157647,cg14666310,cg22500132,cg02329916\n", + "cg19157647,cg14666310,cg22500132,cg20596724\n", + "cg19157647,cg14666310,cg22500132,cg12610471\n", + "cg19157647,cg14666310,cg22746058,cg00213123\n", + "cg19157647,cg14666310,cg22746058,cg20051772\n", + "cg19157647,cg14666310,cg22746058,cg15059851\n", + "cg19157647,cg14666310,cg22746058,cg08375658\n", + "cg19157647,cg14666310,cg22746058,cg07925549\n", + "cg19157647,cg14666310,cg22746058,cg21298408\n", + "cg19157647,cg14666310,cg22746058,cg07552803\n", + "cg19157647,cg14666310,cg22746058,cg20248866\n", + "cg19157647,cg14666310,cg22746058,cg02329916\n", + "cg19157647,cg14666310,cg22746058,cg20596724\n", + "cg19157647,cg14666310,cg22746058,cg12610471\n", + "cg19157647,cg14666310,cg05884032,cg00213123\n", + "cg19157647,cg14666310,cg05884032,cg20051772\n", + "cg19157647,cg14666310,cg05884032,cg15059851\n", + "cg19157647,cg14666310,cg05884032,cg08375658\n", + "cg19157647,cg14666310,cg05884032,cg07925549\n", + "cg19157647,cg14666310,cg05884032,cg21298408\n", + "cg19157647,cg14666310,cg05884032,cg07552803\n", + "cg19157647,cg14666310,cg05884032,cg20248866\n", + "cg19157647,cg14666310,cg05884032,cg02329916\n", + "cg19157647,cg14666310,cg05884032,cg20596724\n", + "cg19157647,cg14666310,cg05884032,cg12610471\n", + "cg19157647,cg14666310,cg02547394,cg00213123\n", + "cg19157647,cg14666310,cg02547394,cg20051772\n", + "cg19157647,cg14666310,cg02547394,cg15059851\n", + "cg19157647,cg14666310,cg02547394,cg08375658\n", + "cg19157647,cg14666310,cg02547394,cg07925549\n", + "cg19157647,cg14666310,cg02547394,cg21298408\n", + "cg19157647,cg14666310,cg02547394,cg07552803\n", + "cg19157647,cg14666310,cg02547394,cg20248866\n", + "cg19157647,cg14666310,cg02547394,cg02329916\n", + "cg19157647,cg14666310,cg02547394,cg20596724\n", + "cg19157647,cg14666310,cg02547394,cg12610471\n", + "cg19157647,cg14666310,cg24073122,cg00213123\n", + "cg19157647,cg14666310,cg24073122,cg20051772\n", + "cg19157647,cg14666310,cg24073122,cg15059851\n", + "cg19157647,cg14666310,cg24073122,cg08375658\n", + "cg19157647,cg14666310,cg24073122,cg07925549\n", + "cg19157647,cg14666310,cg24073122,cg21298408\n", + "cg19157647,cg14666310,cg24073122,cg07552803\n", + "cg19157647,cg14666310,cg24073122,cg20248866\n", + "cg19157647,cg14666310,cg24073122,cg02329916\n", + "cg19157647,cg14666310,cg24073122,cg20596724\n", + "cg19157647,cg14666310,cg24073122,cg12610471\n", + "cg19157647,cg23631930,cg00727675,cg00213123\n", + "cg19157647,cg23631930,cg00727675,cg20051772\n", + "cg19157647,cg23631930,cg00727675,cg15059851\n", + "cg19157647,cg23631930,cg00727675,cg08375658\n", + "cg19157647,cg23631930,cg00727675,cg07925549\n", + "cg19157647,cg23631930,cg00727675,cg21298408\n", + "cg19157647,cg23631930,cg00727675,cg07552803\n", + "cg19157647,cg23631930,cg00727675,cg20248866\n", + "cg19157647,cg23631930,cg00727675,cg02329916\n", + "cg19157647,cg23631930,cg00727675,cg20596724\n", + "cg19157647,cg23631930,cg00727675,cg12610471\n", + "cg19157647,cg23631930,cg22500132,cg00213123\n", + "cg19157647,cg23631930,cg22500132,cg20051772\n", + "cg19157647,cg23631930,cg22500132,cg15059851\n", + "cg19157647,cg23631930,cg22500132,cg08375658\n", + "cg19157647,cg23631930,cg22500132,cg07925549\n", + "cg19157647,cg23631930,cg22500132,cg21298408\n", + "cg19157647,cg23631930,cg22500132,cg07552803\n", + "cg19157647,cg23631930,cg22500132,cg20248866\n", + "cg19157647,cg23631930,cg22500132,cg02329916\n", + "cg19157647,cg23631930,cg22500132,cg20596724\n", + "cg19157647,cg23631930,cg22500132,cg12610471\n", + "cg19157647,cg23631930,cg22746058,cg00213123\n", + "cg19157647,cg23631930,cg22746058,cg20051772\n", + "cg19157647,cg23631930,cg22746058,cg15059851\n", + "cg19157647,cg23631930,cg22746058,cg08375658\n", + "cg19157647,cg23631930,cg22746058,cg07925549\n", + "cg19157647,cg23631930,cg22746058,cg21298408\n", + "cg19157647,cg23631930,cg22746058,cg07552803\n", + "cg19157647,cg23631930,cg22746058,cg20248866\n", + "cg19157647,cg23631930,cg22746058,cg02329916\n", + "cg19157647,cg23631930,cg22746058,cg20596724\n", + "cg19157647,cg23631930,cg22746058,cg12610471\n", + "cg19157647,cg23631930,cg05884032,cg00213123\n", + "cg19157647,cg23631930,cg05884032,cg20051772\n", + "cg19157647,cg23631930,cg05884032,cg15059851\n", + "cg19157647,cg23631930,cg05884032,cg08375658\n", + "cg19157647,cg23631930,cg05884032,cg07925549\n", + "cg19157647,cg23631930,cg05884032,cg21298408\n", + "cg19157647,cg23631930,cg05884032,cg07552803\n", + "cg19157647,cg23631930,cg05884032,cg20248866\n", + "cg19157647,cg23631930,cg05884032,cg02329916\n", + "cg19157647,cg23631930,cg05884032,cg20596724\n", + "cg19157647,cg23631930,cg05884032,cg12610471\n", + "cg19157647,cg23631930,cg02547394,cg00213123\n", + "cg19157647,cg23631930,cg02547394,cg20051772\n", + "cg19157647,cg23631930,cg02547394,cg15059851\n", + "cg19157647,cg23631930,cg02547394,cg08375658\n", + "cg19157647,cg23631930,cg02547394,cg07925549\n", + "cg19157647,cg23631930,cg02547394,cg21298408\n", + "cg19157647,cg23631930,cg02547394,cg07552803\n", + "cg19157647,cg23631930,cg02547394,cg20248866\n", + "cg19157647,cg23631930,cg02547394,cg02329916\n", + "cg19157647,cg23631930,cg02547394,cg20596724\n", + "cg19157647,cg23631930,cg02547394,cg12610471\n", + "cg19157647,cg23631930,cg24073122,cg00213123\n", + "cg19157647,cg23631930,cg24073122,cg20051772\n", + "cg19157647,cg23631930,cg24073122,cg15059851\n", + "cg19157647,cg23631930,cg24073122,cg08375658\n", + "cg19157647,cg23631930,cg24073122,cg07925549\n", + "cg19157647,cg23631930,cg24073122,cg21298408\n", + "cg19157647,cg23631930,cg24073122,cg07552803\n", + "cg19157647,cg23631930,cg24073122,cg20248866\n", + "cg19157647,cg23631930,cg24073122,cg02329916\n", + "cg19157647,cg23631930,cg24073122,cg20596724\n", + "cg19157647,cg23631930,cg24073122,cg12610471\n", + "cg19157647,cg05724197,cg00727675,cg00213123\n", + "cg19157647,cg05724197,cg00727675,cg20051772\n", + "cg19157647,cg05724197,cg00727675,cg15059851\n", + "cg19157647,cg05724197,cg00727675,cg08375658\n", + "cg19157647,cg05724197,cg00727675,cg07925549\n", + "cg19157647,cg05724197,cg00727675,cg21298408\n", + "cg19157647,cg05724197,cg00727675,cg07552803\n", + "cg19157647,cg05724197,cg00727675,cg20248866\n", + "cg19157647,cg05724197,cg00727675,cg02329916\n", + "cg19157647,cg05724197,cg00727675,cg20596724\n", + "cg19157647,cg05724197,cg00727675,cg12610471\n", + "cg19157647,cg05724197,cg22500132,cg00213123\n", + "cg19157647,cg05724197,cg22500132,cg20051772\n", + "cg19157647,cg05724197,cg22500132,cg15059851\n", + "cg19157647,cg05724197,cg22500132,cg08375658\n", + "cg19157647,cg05724197,cg22500132,cg07925549\n", + "cg19157647,cg05724197,cg22500132,cg21298408\n", + "cg19157647,cg05724197,cg22500132,cg07552803\n", + "cg19157647,cg05724197,cg22500132,cg20248866\n", + "cg19157647,cg05724197,cg22500132,cg02329916\n", + "cg19157647,cg05724197,cg22500132,cg20596724\n", + "cg19157647,cg05724197,cg22500132,cg12610471\n", + "cg19157647,cg05724197,cg22746058,cg00213123\n", + "cg19157647,cg05724197,cg22746058,cg20051772\n", + "cg19157647,cg05724197,cg22746058,cg15059851\n", + "cg19157647,cg05724197,cg22746058,cg08375658\n", + "cg19157647,cg05724197,cg22746058,cg07925549\n", + "cg19157647,cg05724197,cg22746058,cg21298408\n", + "cg19157647,cg05724197,cg22746058,cg07552803\n", + "cg19157647,cg05724197,cg22746058,cg20248866\n", + "cg19157647,cg05724197,cg22746058,cg02329916\n", + "cg19157647,cg05724197,cg22746058,cg20596724\n", + "cg19157647,cg05724197,cg22746058,cg12610471\n", + "cg19157647,cg05724197,cg05884032,cg00213123\n", + "cg19157647,cg05724197,cg05884032,cg20051772\n", + "cg19157647,cg05724197,cg05884032,cg15059851\n", + "cg19157647,cg05724197,cg05884032,cg08375658\n", + "cg19157647,cg05724197,cg05884032,cg07925549\n", + "cg19157647,cg05724197,cg05884032,cg21298408\n", + "cg19157647,cg05724197,cg05884032,cg07552803\n", + "cg19157647,cg05724197,cg05884032,cg20248866\n", + "cg19157647,cg05724197,cg05884032,cg02329916\n", + "cg19157647,cg05724197,cg05884032,cg20596724\n", + "cg19157647,cg05724197,cg05884032,cg12610471\n", + "cg19157647,cg05724197,cg02547394,cg00213123\n", + "cg19157647,cg05724197,cg02547394,cg20051772\n", + "cg19157647,cg05724197,cg02547394,cg15059851\n", + "cg19157647,cg05724197,cg02547394,cg08375658\n", + "cg19157647,cg05724197,cg02547394,cg07925549\n", + "cg19157647,cg05724197,cg02547394,cg21298408\n", + "cg19157647,cg05724197,cg02547394,cg07552803\n", + "cg19157647,cg05724197,cg02547394,cg20248866\n", + "cg19157647,cg05724197,cg02547394,cg02329916\n", + "cg19157647,cg05724197,cg02547394,cg20596724\n", + "cg19157647,cg05724197,cg02547394,cg12610471\n", + "cg19157647,cg05724197,cg24073122,cg00213123\n", + "cg19157647,cg05724197,cg24073122,cg20051772\n", + "cg19157647,cg05724197,cg24073122,cg15059851\n", + "cg19157647,cg05724197,cg24073122,cg08375658\n", + "cg19157647,cg05724197,cg24073122,cg07925549\n", + "cg19157647,cg05724197,cg24073122,cg21298408\n", + "cg19157647,cg05724197,cg24073122,cg07552803\n", + "cg19157647,cg05724197,cg24073122,cg20248866\n", + "cg19157647,cg05724197,cg24073122,cg02329916\n", + "cg19157647,cg05724197,cg24073122,cg20596724\n", + "cg19157647,cg05724197,cg24073122,cg12610471\n", + "cg19157647,cg03003745,cg00727675,cg00213123\n", + "cg19157647,cg03003745,cg00727675,cg20051772\n", + "cg19157647,cg03003745,cg00727675,cg15059851\n", + "cg19157647,cg03003745,cg00727675,cg08375658\n", + "cg19157647,cg03003745,cg00727675,cg07925549\n", + "cg19157647,cg03003745,cg00727675,cg21298408\n", + "cg19157647,cg03003745,cg00727675,cg07552803\n", + "cg19157647,cg03003745,cg00727675,cg20248866\n", + "cg19157647,cg03003745,cg00727675,cg02329916\n", + "cg19157647,cg03003745,cg00727675,cg20596724\n", + "cg19157647,cg03003745,cg00727675,cg12610471\n", + "cg19157647,cg03003745,cg22500132,cg00213123\n", + "cg19157647,cg03003745,cg22500132,cg20051772\n", + "cg19157647,cg03003745,cg22500132,cg15059851\n", + "cg19157647,cg03003745,cg22500132,cg08375658\n", + "cg19157647,cg03003745,cg22500132,cg07925549\n", + "cg19157647,cg03003745,cg22500132,cg21298408\n", + "cg19157647,cg03003745,cg22500132,cg07552803\n", + "cg19157647,cg03003745,cg22500132,cg20248866\n", + "cg19157647,cg03003745,cg22500132,cg02329916\n", + "cg19157647,cg03003745,cg22500132,cg20596724\n", + "cg19157647,cg03003745,cg22500132,cg12610471\n", + "cg19157647,cg03003745,cg22746058,cg00213123\n", + "cg19157647,cg03003745,cg22746058,cg20051772\n", + "cg19157647,cg03003745,cg22746058,cg15059851\n", + "cg19157647,cg03003745,cg22746058,cg08375658\n", + "cg19157647,cg03003745,cg22746058,cg07925549\n", + "cg19157647,cg03003745,cg22746058,cg21298408\n", + "cg19157647,cg03003745,cg22746058,cg07552803\n", + "cg19157647,cg03003745,cg22746058,cg20248866\n", + "cg19157647,cg03003745,cg22746058,cg02329916\n", + "cg19157647,cg03003745,cg22746058,cg20596724\n", + "cg19157647,cg03003745,cg22746058,cg12610471\n", + "cg19157647,cg03003745,cg05884032,cg00213123\n", + "cg19157647,cg03003745,cg05884032,cg20051772\n", + "cg19157647,cg03003745,cg05884032,cg15059851\n", + "cg19157647,cg03003745,cg05884032,cg08375658\n", + "cg19157647,cg03003745,cg05884032,cg07925549\n", + "cg19157647,cg03003745,cg05884032,cg21298408\n", + "cg19157647,cg03003745,cg05884032,cg07552803\n", + "cg19157647,cg03003745,cg05884032,cg20248866\n", + "cg19157647,cg03003745,cg05884032,cg02329916\n", + "cg19157647,cg03003745,cg05884032,cg20596724\n", + "cg19157647,cg03003745,cg05884032,cg12610471\n", + "cg19157647,cg03003745,cg02547394,cg00213123\n", + "cg19157647,cg03003745,cg02547394,cg20051772\n", + "cg19157647,cg03003745,cg02547394,cg15059851\n", + "cg19157647,cg03003745,cg02547394,cg08375658\n", + "cg19157647,cg03003745,cg02547394,cg07925549\n", + "cg19157647,cg03003745,cg02547394,cg21298408\n", + "cg19157647,cg03003745,cg02547394,cg07552803\n", + "cg19157647,cg03003745,cg02547394,cg20248866\n", + "cg19157647,cg03003745,cg02547394,cg02329916\n", + "cg19157647,cg03003745,cg02547394,cg20596724\n", + "cg19157647,cg03003745,cg02547394,cg12610471\n", + "cg19157647,cg03003745,cg24073122,cg00213123\n", + "cg19157647,cg03003745,cg24073122,cg20051772\n", + "cg19157647,cg03003745,cg24073122,cg15059851\n", + "cg19157647,cg03003745,cg24073122,cg08375658\n", + "cg19157647,cg03003745,cg24073122,cg07925549\n", + "cg19157647,cg03003745,cg24073122,cg21298408\n", + "cg19157647,cg03003745,cg24073122,cg07552803\n", + "cg19157647,cg03003745,cg24073122,cg20248866\n", + "cg19157647,cg03003745,cg24073122,cg02329916\n", + "cg19157647,cg03003745,cg24073122,cg20596724\n", + "cg19157647,cg03003745,cg24073122,cg12610471\n", + "cg19157647,cg13379236,cg00727675,cg00213123\n", + "cg19157647,cg13379236,cg00727675,cg20051772\n", + "cg19157647,cg13379236,cg00727675,cg15059851\n", + "cg19157647,cg13379236,cg00727675,cg08375658\n", + "cg19157647,cg13379236,cg00727675,cg07925549\n", + "cg19157647,cg13379236,cg00727675,cg21298408\n", + "cg19157647,cg13379236,cg00727675,cg07552803\n", + "cg19157647,cg13379236,cg00727675,cg20248866\n", + "cg19157647,cg13379236,cg00727675,cg02329916\n", + "cg19157647,cg13379236,cg00727675,cg20596724\n", + "cg19157647,cg13379236,cg00727675,cg12610471\n", + "cg19157647,cg13379236,cg22500132,cg00213123\n", + "cg19157647,cg13379236,cg22500132,cg20051772\n", + "cg19157647,cg13379236,cg22500132,cg15059851\n", + "cg19157647,cg13379236,cg22500132,cg08375658\n", + "cg19157647,cg13379236,cg22500132,cg07925549\n", + "cg19157647,cg13379236,cg22500132,cg21298408\n", + "cg19157647,cg13379236,cg22500132,cg07552803\n", + "cg19157647,cg13379236,cg22500132,cg20248866\n", + "cg19157647,cg13379236,cg22500132,cg02329916\n", + "cg19157647,cg13379236,cg22500132,cg20596724\n", + "cg19157647,cg13379236,cg22500132,cg12610471\n", + "cg19157647,cg13379236,cg22746058,cg00213123\n", + "cg19157647,cg13379236,cg22746058,cg20051772\n", + "cg19157647,cg13379236,cg22746058,cg15059851\n", + "cg19157647,cg13379236,cg22746058,cg08375658\n", + "cg19157647,cg13379236,cg22746058,cg07925549\n", + "cg19157647,cg13379236,cg22746058,cg21298408\n", + "cg19157647,cg13379236,cg22746058,cg07552803\n", + "cg19157647,cg13379236,cg22746058,cg20248866\n", + "cg19157647,cg13379236,cg22746058,cg02329916\n", + "cg19157647,cg13379236,cg22746058,cg20596724\n", + "cg19157647,cg13379236,cg22746058,cg12610471\n", + "cg19157647,cg13379236,cg05884032,cg00213123\n", + "cg19157647,cg13379236,cg05884032,cg20051772\n", + "cg19157647,cg13379236,cg05884032,cg15059851\n", + "cg19157647,cg13379236,cg05884032,cg08375658\n", + "cg19157647,cg13379236,cg05884032,cg07925549\n", + "cg19157647,cg13379236,cg05884032,cg21298408\n", + "cg19157647,cg13379236,cg05884032,cg07552803\n", + "cg19157647,cg13379236,cg05884032,cg20248866\n", + "cg19157647,cg13379236,cg05884032,cg02329916\n", + "cg19157647,cg13379236,cg05884032,cg20596724\n", + "cg19157647,cg13379236,cg05884032,cg12610471\n", + "cg19157647,cg13379236,cg02547394,cg00213123\n", + "cg19157647,cg13379236,cg02547394,cg20051772\n", + "cg19157647,cg13379236,cg02547394,cg15059851\n", + "cg19157647,cg13379236,cg02547394,cg08375658\n", + "cg19157647,cg13379236,cg02547394,cg07925549\n", + "cg19157647,cg13379236,cg02547394,cg21298408\n", + "cg19157647,cg13379236,cg02547394,cg07552803\n", + "cg19157647,cg13379236,cg02547394,cg20248866\n", + "cg19157647,cg13379236,cg02547394,cg02329916\n", + "cg19157647,cg13379236,cg02547394,cg20596724\n", + "cg19157647,cg13379236,cg02547394,cg12610471\n", + "cg19157647,cg13379236,cg24073122,cg00213123\n", + "cg19157647,cg13379236,cg24073122,cg20051772\n", + "cg19157647,cg13379236,cg24073122,cg15059851\n", + "cg19157647,cg13379236,cg24073122,cg08375658\n", + "cg19157647,cg13379236,cg24073122,cg07925549\n", + "cg19157647,cg13379236,cg24073122,cg21298408\n", + "cg19157647,cg13379236,cg24073122,cg07552803\n", + "cg19157647,cg13379236,cg24073122,cg20248866\n", + "cg19157647,cg13379236,cg24073122,cg02329916\n", + "cg19157647,cg13379236,cg24073122,cg20596724\n", + "cg19157647,cg13379236,cg24073122,cg12610471\n", + "cg19157647,cg05818394,cg00727675,cg00213123\n", + "cg19157647,cg05818394,cg00727675,cg20051772\n", + "cg19157647,cg05818394,cg00727675,cg15059851\n", + "cg19157647,cg05818394,cg00727675,cg08375658\n", + "cg19157647,cg05818394,cg00727675,cg07925549\n", + "cg19157647,cg05818394,cg00727675,cg21298408\n", + "cg19157647,cg05818394,cg00727675,cg07552803\n", + "cg19157647,cg05818394,cg00727675,cg20248866\n", + "cg19157647,cg05818394,cg00727675,cg02329916\n", + "cg19157647,cg05818394,cg00727675,cg20596724\n", + "cg19157647,cg05818394,cg00727675,cg12610471\n", + "cg19157647,cg05818394,cg22500132,cg00213123\n", + "cg19157647,cg05818394,cg22500132,cg20051772\n", + "cg19157647,cg05818394,cg22500132,cg15059851\n", + "cg19157647,cg05818394,cg22500132,cg08375658\n", + "cg19157647,cg05818394,cg22500132,cg07925549\n", + "cg19157647,cg05818394,cg22500132,cg21298408\n", + "cg19157647,cg05818394,cg22500132,cg07552803\n", + "cg19157647,cg05818394,cg22500132,cg20248866\n", + "cg19157647,cg05818394,cg22500132,cg02329916\n", + "cg19157647,cg05818394,cg22500132,cg20596724\n", + "cg19157647,cg05818394,cg22500132,cg12610471\n", + "cg19157647,cg05818394,cg22746058,cg00213123\n", + "cg19157647,cg05818394,cg22746058,cg20051772\n", + "cg19157647,cg05818394,cg22746058,cg15059851\n", + "cg19157647,cg05818394,cg22746058,cg08375658\n", + "cg19157647,cg05818394,cg22746058,cg07925549\n", + "cg19157647,cg05818394,cg22746058,cg21298408\n", + "cg19157647,cg05818394,cg22746058,cg07552803\n", + "cg19157647,cg05818394,cg22746058,cg20248866\n", + "cg19157647,cg05818394,cg22746058,cg02329916\n", + "cg19157647,cg05818394,cg22746058,cg20596724\n", + "cg19157647,cg05818394,cg22746058,cg12610471\n", + "cg19157647,cg05818394,cg05884032,cg00213123\n", + "cg19157647,cg05818394,cg05884032,cg20051772\n", + "cg19157647,cg05818394,cg05884032,cg15059851\n", + "cg19157647,cg05818394,cg05884032,cg08375658\n", + "cg19157647,cg05818394,cg05884032,cg07925549\n", + "cg19157647,cg05818394,cg05884032,cg21298408\n", + "cg19157647,cg05818394,cg05884032,cg07552803\n", + "cg19157647,cg05818394,cg05884032,cg20248866\n", + "cg19157647,cg05818394,cg05884032,cg02329916\n", + "cg19157647,cg05818394,cg05884032,cg20596724\n", + "cg19157647,cg05818394,cg05884032,cg12610471\n", + "cg19157647,cg05818394,cg02547394,cg00213123\n", + "cg19157647,cg05818394,cg02547394,cg20051772\n", + "cg19157647,cg05818394,cg02547394,cg15059851\n", + "cg19157647,cg05818394,cg02547394,cg08375658\n", + "cg19157647,cg05818394,cg02547394,cg07925549\n", + "cg19157647,cg05818394,cg02547394,cg21298408\n", + "cg19157647,cg05818394,cg02547394,cg07552803\n", + "cg19157647,cg05818394,cg02547394,cg20248866\n", + "cg19157647,cg05818394,cg02547394,cg02329916\n", + "cg19157647,cg05818394,cg02547394,cg20596724\n", + "cg19157647,cg05818394,cg02547394,cg12610471\n", + "cg19157647,cg05818394,cg24073122,cg00213123\n", + "cg19157647,cg05818394,cg24073122,cg20051772\n", + "cg19157647,cg05818394,cg24073122,cg15059851\n", + "cg19157647,cg05818394,cg24073122,cg08375658\n", + "cg19157647,cg05818394,cg24073122,cg07925549\n", + "cg19157647,cg05818394,cg24073122,cg21298408\n", + "cg19157647,cg05818394,cg24073122,cg07552803\n", + "cg19157647,cg05818394,cg24073122,cg20248866\n", + "cg19157647,cg05818394,cg24073122,cg02329916\n", + "cg19157647,cg05818394,cg24073122,cg20596724\n", + "cg19157647,cg05818394,cg24073122,cg12610471\n", + "cg19157647,cg04433322,cg00727675,cg00213123\n", + "cg19157647,cg04433322,cg00727675,cg20051772\n", + "cg19157647,cg04433322,cg00727675,cg15059851\n", + "cg19157647,cg04433322,cg00727675,cg08375658\n", + "cg19157647,cg04433322,cg00727675,cg07925549\n", + "cg19157647,cg04433322,cg00727675,cg21298408\n", + "cg19157647,cg04433322,cg00727675,cg07552803\n", + "cg19157647,cg04433322,cg00727675,cg20248866\n", + "cg19157647,cg04433322,cg00727675,cg02329916\n", + "cg19157647,cg04433322,cg00727675,cg20596724\n", + "cg19157647,cg04433322,cg00727675,cg12610471\n", + "cg19157647,cg04433322,cg22500132,cg00213123\n", + "cg19157647,cg04433322,cg22500132,cg20051772\n", + "cg19157647,cg04433322,cg22500132,cg15059851\n", + "cg19157647,cg04433322,cg22500132,cg08375658\n", + "cg19157647,cg04433322,cg22500132,cg07925549\n", + "cg19157647,cg04433322,cg22500132,cg21298408\n", + "cg19157647,cg04433322,cg22500132,cg07552803\n", + "cg19157647,cg04433322,cg22500132,cg20248866\n", + "cg19157647,cg04433322,cg22500132,cg02329916\n", + "cg19157647,cg04433322,cg22500132,cg20596724\n", + "cg19157647,cg04433322,cg22500132,cg12610471\n", + "cg19157647,cg04433322,cg22746058,cg00213123\n", + "cg19157647,cg04433322,cg22746058,cg20051772\n", + "cg19157647,cg04433322,cg22746058,cg15059851\n", + "cg19157647,cg04433322,cg22746058,cg08375658\n", + "cg19157647,cg04433322,cg22746058,cg07925549\n", + "cg19157647,cg04433322,cg22746058,cg21298408\n", + "cg19157647,cg04433322,cg22746058,cg07552803\n", + "cg19157647,cg04433322,cg22746058,cg20248866\n", + "cg19157647,cg04433322,cg22746058,cg02329916\n", + "cg19157647,cg04433322,cg22746058,cg20596724\n", + "cg19157647,cg04433322,cg22746058,cg12610471\n", + "cg19157647,cg04433322,cg05884032,cg00213123\n", + "cg19157647,cg04433322,cg05884032,cg20051772\n", + "cg19157647,cg04433322,cg05884032,cg15059851\n", + "cg19157647,cg04433322,cg05884032,cg08375658\n", + "cg19157647,cg04433322,cg05884032,cg07925549\n", + "cg19157647,cg04433322,cg05884032,cg21298408\n", + "cg19157647,cg04433322,cg05884032,cg07552803\n", + "cg19157647,cg04433322,cg05884032,cg20248866\n", + "cg19157647,cg04433322,cg05884032,cg02329916\n", + "cg19157647,cg04433322,cg05884032,cg20596724\n", + "cg19157647,cg04433322,cg05884032,cg12610471\n", + "cg19157647,cg04433322,cg02547394,cg00213123\n", + "cg19157647,cg04433322,cg02547394,cg20051772\n", + "cg19157647,cg04433322,cg02547394,cg15059851\n", + "cg19157647,cg04433322,cg02547394,cg08375658\n", + "cg19157647,cg04433322,cg02547394,cg07925549\n", + "cg19157647,cg04433322,cg02547394,cg21298408\n", + "cg19157647,cg04433322,cg02547394,cg07552803\n", + "cg19157647,cg04433322,cg02547394,cg20248866\n", + "cg19157647,cg04433322,cg02547394,cg02329916\n", + "cg19157647,cg04433322,cg02547394,cg20596724\n", + "cg19157647,cg04433322,cg02547394,cg12610471\n", + "cg19157647,cg04433322,cg24073122,cg00213123\n", + "cg19157647,cg04433322,cg24073122,cg20051772\n", + "cg19157647,cg04433322,cg24073122,cg15059851\n", + "cg19157647,cg04433322,cg24073122,cg08375658\n", + "cg19157647,cg04433322,cg24073122,cg07925549\n", + "cg19157647,cg04433322,cg24073122,cg21298408\n", + "cg19157647,cg04433322,cg24073122,cg07552803\n", + "cg19157647,cg04433322,cg24073122,cg20248866\n", + "cg19157647,cg04433322,cg24073122,cg02329916\n", + "cg19157647,cg04433322,cg24073122,cg20596724\n", + "cg19157647,cg04433322,cg24073122,cg12610471\n", + "cg19157647,cg14153654,cg00727675,cg00213123\n", + "cg19157647,cg14153654,cg00727675,cg20051772\n", + "cg19157647,cg14153654,cg00727675,cg15059851\n", + "cg19157647,cg14153654,cg00727675,cg08375658\n", + "cg19157647,cg14153654,cg00727675,cg07925549\n", + "cg19157647,cg14153654,cg00727675,cg21298408\n", + "cg19157647,cg14153654,cg00727675,cg07552803\n", + "cg19157647,cg14153654,cg00727675,cg20248866\n", + "cg19157647,cg14153654,cg00727675,cg02329916\n", + "cg19157647,cg14153654,cg00727675,cg20596724\n", + "cg19157647,cg14153654,cg00727675,cg12610471\n", + "cg19157647,cg14153654,cg22500132,cg00213123\n", + "cg19157647,cg14153654,cg22500132,cg20051772\n", + "cg19157647,cg14153654,cg22500132,cg15059851\n", + "cg19157647,cg14153654,cg22500132,cg08375658\n", + "cg19157647,cg14153654,cg22500132,cg07925549\n", + "cg19157647,cg14153654,cg22500132,cg21298408\n", + "cg19157647,cg14153654,cg22500132,cg07552803\n", + "cg19157647,cg14153654,cg22500132,cg20248866\n", + "cg19157647,cg14153654,cg22500132,cg02329916\n", + "cg19157647,cg14153654,cg22500132,cg20596724\n", + "cg19157647,cg14153654,cg22500132,cg12610471\n", + "cg19157647,cg14153654,cg22746058,cg00213123\n", + "cg19157647,cg14153654,cg22746058,cg20051772\n", + "cg19157647,cg14153654,cg22746058,cg15059851\n", + "cg19157647,cg14153654,cg22746058,cg08375658\n", + "cg19157647,cg14153654,cg22746058,cg07925549\n", + "cg19157647,cg14153654,cg22746058,cg21298408\n", + "cg19157647,cg14153654,cg22746058,cg07552803\n", + "cg19157647,cg14153654,cg22746058,cg20248866\n", + "cg19157647,cg14153654,cg22746058,cg02329916\n", + "cg19157647,cg14153654,cg22746058,cg20596724\n", + "cg19157647,cg14153654,cg22746058,cg12610471\n", + "cg19157647,cg14153654,cg05884032,cg00213123\n", + "cg19157647,cg14153654,cg05884032,cg20051772\n", + "cg19157647,cg14153654,cg05884032,cg15059851\n", + "cg19157647,cg14153654,cg05884032,cg08375658\n", + "cg19157647,cg14153654,cg05884032,cg07925549\n", + "cg19157647,cg14153654,cg05884032,cg21298408\n", + "cg19157647,cg14153654,cg05884032,cg07552803\n", + "cg19157647,cg14153654,cg05884032,cg20248866\n", + "cg19157647,cg14153654,cg05884032,cg02329916\n", + "cg19157647,cg14153654,cg05884032,cg20596724\n", + "cg19157647,cg14153654,cg05884032,cg12610471\n", + "cg19157647,cg14153654,cg02547394,cg00213123\n", + "cg19157647,cg14153654,cg02547394,cg20051772\n", + "cg19157647,cg14153654,cg02547394,cg15059851\n", + "cg19157647,cg14153654,cg02547394,cg08375658\n", + "cg19157647,cg14153654,cg02547394,cg07925549\n", + "cg19157647,cg14153654,cg02547394,cg21298408\n", + "cg19157647,cg14153654,cg02547394,cg07552803\n", + "cg19157647,cg14153654,cg02547394,cg20248866\n", + "cg19157647,cg14153654,cg02547394,cg02329916\n", + "cg19157647,cg14153654,cg02547394,cg20596724\n", + "cg19157647,cg14153654,cg02547394,cg12610471\n", + "cg19157647,cg14153654,cg24073122,cg00213123\n", + "cg19157647,cg14153654,cg24073122,cg20051772\n", + "cg19157647,cg14153654,cg24073122,cg15059851\n", + "cg19157647,cg14153654,cg24073122,cg08375658\n", + "cg19157647,cg14153654,cg24073122,cg07925549\n", + "cg19157647,cg14153654,cg24073122,cg21298408\n", + "cg19157647,cg14153654,cg24073122,cg07552803\n", + "cg19157647,cg14153654,cg24073122,cg20248866\n", + "cg19157647,cg14153654,cg24073122,cg02329916\n", + "cg19157647,cg14153654,cg24073122,cg20596724\n", + "cg19157647,cg14153654,cg24073122,cg12610471\n", + "cg04927004,cg00074348,cg00727675,cg00213123\n", + "cg04927004,cg00074348,cg00727675,cg20051772\n", + "cg04927004,cg00074348,cg00727675,cg15059851\n", + "cg04927004,cg00074348,cg00727675,cg08375658\n", + "cg04927004,cg00074348,cg00727675,cg07925549\n", + "cg04927004,cg00074348,cg00727675,cg21298408\n", + "cg04927004,cg00074348,cg00727675,cg07552803\n", + "cg04927004,cg00074348,cg00727675,cg20248866\n", + "cg04927004,cg00074348,cg00727675,cg02329916\n", + "cg04927004,cg00074348,cg00727675,cg20596724\n", + "cg04927004,cg00074348,cg00727675,cg12610471\n", + "cg04927004,cg00074348,cg22500132,cg00213123\n", + "cg04927004,cg00074348,cg22500132,cg20051772\n", + "cg04927004,cg00074348,cg22500132,cg15059851\n", + "cg04927004,cg00074348,cg22500132,cg08375658\n", + "cg04927004,cg00074348,cg22500132,cg07925549\n", + "cg04927004,cg00074348,cg22500132,cg21298408\n", + "cg04927004,cg00074348,cg22500132,cg07552803\n", + "cg04927004,cg00074348,cg22500132,cg20248866\n", + "cg04927004,cg00074348,cg22500132,cg02329916\n", + "cg04927004,cg00074348,cg22500132,cg20596724\n", + "cg04927004,cg00074348,cg22500132,cg12610471\n", + "cg04927004,cg00074348,cg22746058,cg00213123\n", + "cg04927004,cg00074348,cg22746058,cg20051772\n", + "cg04927004,cg00074348,cg22746058,cg15059851\n", + "cg04927004,cg00074348,cg22746058,cg08375658\n", + "cg04927004,cg00074348,cg22746058,cg07925549\n", + "cg04927004,cg00074348,cg22746058,cg21298408\n", + "cg04927004,cg00074348,cg22746058,cg07552803\n", + "cg04927004,cg00074348,cg22746058,cg20248866\n", + "cg04927004,cg00074348,cg22746058,cg02329916\n", + "cg04927004,cg00074348,cg22746058,cg20596724\n", + "cg04927004,cg00074348,cg22746058,cg12610471\n", + "cg04927004,cg00074348,cg05884032,cg00213123\n", + "cg04927004,cg00074348,cg05884032,cg20051772\n", + "cg04927004,cg00074348,cg05884032,cg15059851\n", + "cg04927004,cg00074348,cg05884032,cg08375658\n", + "cg04927004,cg00074348,cg05884032,cg07925549\n", + "cg04927004,cg00074348,cg05884032,cg21298408\n", + "cg04927004,cg00074348,cg05884032,cg07552803\n", + "cg04927004,cg00074348,cg05884032,cg20248866\n", + "cg04927004,cg00074348,cg05884032,cg02329916\n", + "cg04927004,cg00074348,cg05884032,cg20596724\n", + "cg04927004,cg00074348,cg05884032,cg12610471\n", + "cg04927004,cg00074348,cg02547394,cg00213123\n", + "cg04927004,cg00074348,cg02547394,cg20051772\n", + "cg04927004,cg00074348,cg02547394,cg15059851\n", + "cg04927004,cg00074348,cg02547394,cg08375658\n", + "cg04927004,cg00074348,cg02547394,cg07925549\n", + "cg04927004,cg00074348,cg02547394,cg21298408\n", + "cg04927004,cg00074348,cg02547394,cg07552803\n", + "cg04927004,cg00074348,cg02547394,cg20248866\n", + "cg04927004,cg00074348,cg02547394,cg02329916\n", + "cg04927004,cg00074348,cg02547394,cg20596724\n", + "cg04927004,cg00074348,cg02547394,cg12610471\n", + "cg04927004,cg00074348,cg24073122,cg00213123\n", + "cg04927004,cg00074348,cg24073122,cg20051772\n", + "cg04927004,cg00074348,cg24073122,cg15059851\n", + "cg04927004,cg00074348,cg24073122,cg08375658\n", + "cg04927004,cg00074348,cg24073122,cg07925549\n", + "cg04927004,cg00074348,cg24073122,cg21298408\n", + "cg04927004,cg00074348,cg24073122,cg07552803\n", + "cg04927004,cg00074348,cg24073122,cg20248866\n", + "cg04927004,cg00074348,cg24073122,cg02329916\n", + "cg04927004,cg00074348,cg24073122,cg20596724\n", + "cg04927004,cg00074348,cg24073122,cg12610471\n", + "cg04927004,cg14666310,cg00727675,cg00213123\n", + "cg04927004,cg14666310,cg00727675,cg20051772\n", + "cg04927004,cg14666310,cg00727675,cg15059851\n", + "cg04927004,cg14666310,cg00727675,cg08375658\n", + "cg04927004,cg14666310,cg00727675,cg07925549\n", + "cg04927004,cg14666310,cg00727675,cg21298408\n", + "cg04927004,cg14666310,cg00727675,cg07552803\n", + "cg04927004,cg14666310,cg00727675,cg20248866\n", + "cg04927004,cg14666310,cg00727675,cg02329916\n", + "cg04927004,cg14666310,cg00727675,cg20596724\n", + "cg04927004,cg14666310,cg00727675,cg12610471\n", + "cg04927004,cg14666310,cg22500132,cg00213123\n", + "cg04927004,cg14666310,cg22500132,cg20051772\n", + "cg04927004,cg14666310,cg22500132,cg15059851\n", + "cg04927004,cg14666310,cg22500132,cg08375658\n", + "cg04927004,cg14666310,cg22500132,cg07925549\n", + "cg04927004,cg14666310,cg22500132,cg21298408\n", + "cg04927004,cg14666310,cg22500132,cg07552803\n", + "cg04927004,cg14666310,cg22500132,cg20248866\n", + "cg04927004,cg14666310,cg22500132,cg02329916\n", + "cg04927004,cg14666310,cg22500132,cg20596724\n", + "cg04927004,cg14666310,cg22500132,cg12610471\n", + "cg04927004,cg14666310,cg22746058,cg00213123\n", + "cg04927004,cg14666310,cg22746058,cg20051772\n", + "cg04927004,cg14666310,cg22746058,cg15059851\n", + "cg04927004,cg14666310,cg22746058,cg08375658\n", + "cg04927004,cg14666310,cg22746058,cg07925549\n", + "cg04927004,cg14666310,cg22746058,cg21298408\n", + "cg04927004,cg14666310,cg22746058,cg07552803\n", + "cg04927004,cg14666310,cg22746058,cg20248866\n", + "cg04927004,cg14666310,cg22746058,cg02329916\n", + "cg04927004,cg14666310,cg22746058,cg20596724\n", + "cg04927004,cg14666310,cg22746058,cg12610471\n", + "cg04927004,cg14666310,cg05884032,cg00213123\n", + "cg04927004,cg14666310,cg05884032,cg20051772\n", + "cg04927004,cg14666310,cg05884032,cg15059851\n", + "cg04927004,cg14666310,cg05884032,cg08375658\n", + "cg04927004,cg14666310,cg05884032,cg07925549\n", + "cg04927004,cg14666310,cg05884032,cg21298408\n", + "cg04927004,cg14666310,cg05884032,cg07552803\n", + "cg04927004,cg14666310,cg05884032,cg20248866\n", + "cg04927004,cg14666310,cg05884032,cg02329916\n", + "cg04927004,cg14666310,cg05884032,cg20596724\n", + "cg04927004,cg14666310,cg05884032,cg12610471\n", + "cg04927004,cg14666310,cg02547394,cg00213123\n", + "cg04927004,cg14666310,cg02547394,cg20051772\n", + "cg04927004,cg14666310,cg02547394,cg15059851\n", + "cg04927004,cg14666310,cg02547394,cg08375658\n", + "cg04927004,cg14666310,cg02547394,cg07925549\n", + "cg04927004,cg14666310,cg02547394,cg21298408\n", + "cg04927004,cg14666310,cg02547394,cg07552803\n", + "cg04927004,cg14666310,cg02547394,cg20248866\n", + "cg04927004,cg14666310,cg02547394,cg02329916\n", + "cg04927004,cg14666310,cg02547394,cg20596724\n", + "cg04927004,cg14666310,cg02547394,cg12610471\n", + "cg04927004,cg14666310,cg24073122,cg00213123\n", + "cg04927004,cg14666310,cg24073122,cg20051772\n", + "cg04927004,cg14666310,cg24073122,cg15059851\n", + "cg04927004,cg14666310,cg24073122,cg08375658\n", + "cg04927004,cg14666310,cg24073122,cg07925549\n", + "cg04927004,cg14666310,cg24073122,cg21298408\n", + "cg04927004,cg14666310,cg24073122,cg07552803\n", + "cg04927004,cg14666310,cg24073122,cg20248866\n", + "cg04927004,cg14666310,cg24073122,cg02329916\n", + "cg04927004,cg14666310,cg24073122,cg20596724\n", + "cg04927004,cg14666310,cg24073122,cg12610471\n", + "cg04927004,cg23631930,cg00727675,cg00213123\n", + "cg04927004,cg23631930,cg00727675,cg20051772\n", + "cg04927004,cg23631930,cg00727675,cg15059851\n", + "cg04927004,cg23631930,cg00727675,cg08375658\n", + "cg04927004,cg23631930,cg00727675,cg07925549\n", + "cg04927004,cg23631930,cg00727675,cg21298408\n", + "cg04927004,cg23631930,cg00727675,cg07552803\n", + "cg04927004,cg23631930,cg00727675,cg20248866\n", + "cg04927004,cg23631930,cg00727675,cg02329916\n", + "cg04927004,cg23631930,cg00727675,cg20596724\n", + "cg04927004,cg23631930,cg00727675,cg12610471\n", + "cg04927004,cg23631930,cg22500132,cg00213123\n", + "cg04927004,cg23631930,cg22500132,cg20051772\n", + "cg04927004,cg23631930,cg22500132,cg15059851\n", + "cg04927004,cg23631930,cg22500132,cg08375658\n", + "cg04927004,cg23631930,cg22500132,cg07925549\n", + "cg04927004,cg23631930,cg22500132,cg21298408\n", + "cg04927004,cg23631930,cg22500132,cg07552803\n", + "cg04927004,cg23631930,cg22500132,cg20248866\n", + "cg04927004,cg23631930,cg22500132,cg02329916\n", + "cg04927004,cg23631930,cg22500132,cg20596724\n", + "cg04927004,cg23631930,cg22500132,cg12610471\n", + "cg04927004,cg23631930,cg22746058,cg00213123\n", + "cg04927004,cg23631930,cg22746058,cg20051772\n", + "cg04927004,cg23631930,cg22746058,cg15059851\n", + "cg04927004,cg23631930,cg22746058,cg08375658\n", + "cg04927004,cg23631930,cg22746058,cg07925549\n", + "cg04927004,cg23631930,cg22746058,cg21298408\n", + "cg04927004,cg23631930,cg22746058,cg07552803\n", + "cg04927004,cg23631930,cg22746058,cg20248866\n", + "cg04927004,cg23631930,cg22746058,cg02329916\n", + "cg04927004,cg23631930,cg22746058,cg20596724\n", + "cg04927004,cg23631930,cg22746058,cg12610471\n", + "cg04927004,cg23631930,cg05884032,cg00213123\n", + "cg04927004,cg23631930,cg05884032,cg20051772\n", + "cg04927004,cg23631930,cg05884032,cg15059851\n", + "cg04927004,cg23631930,cg05884032,cg08375658\n", + "cg04927004,cg23631930,cg05884032,cg07925549\n", + "cg04927004,cg23631930,cg05884032,cg21298408\n", + "cg04927004,cg23631930,cg05884032,cg07552803\n", + "cg04927004,cg23631930,cg05884032,cg20248866\n", + "cg04927004,cg23631930,cg05884032,cg02329916\n", + "cg04927004,cg23631930,cg05884032,cg20596724\n", + "cg04927004,cg23631930,cg05884032,cg12610471\n", + "cg04927004,cg23631930,cg02547394,cg00213123\n", + "cg04927004,cg23631930,cg02547394,cg20051772\n", + "cg04927004,cg23631930,cg02547394,cg15059851\n", + "cg04927004,cg23631930,cg02547394,cg08375658\n", + "cg04927004,cg23631930,cg02547394,cg07925549\n", + "cg04927004,cg23631930,cg02547394,cg21298408\n", + "cg04927004,cg23631930,cg02547394,cg07552803\n", + "cg04927004,cg23631930,cg02547394,cg20248866\n", + "cg04927004,cg23631930,cg02547394,cg02329916\n", + "cg04927004,cg23631930,cg02547394,cg20596724\n", + "cg04927004,cg23631930,cg02547394,cg12610471\n", + "cg04927004,cg23631930,cg24073122,cg00213123\n", + "cg04927004,cg23631930,cg24073122,cg20051772\n", + "cg04927004,cg23631930,cg24073122,cg15059851\n", + "cg04927004,cg23631930,cg24073122,cg08375658\n", + "cg04927004,cg23631930,cg24073122,cg07925549\n", + "cg04927004,cg23631930,cg24073122,cg21298408\n", + "cg04927004,cg23631930,cg24073122,cg07552803\n", + "cg04927004,cg23631930,cg24073122,cg20248866\n", + "cg04927004,cg23631930,cg24073122,cg02329916\n", + "cg04927004,cg23631930,cg24073122,cg20596724\n", + "cg04927004,cg23631930,cg24073122,cg12610471\n", + "cg04927004,cg05724197,cg00727675,cg00213123\n", + "cg04927004,cg05724197,cg00727675,cg20051772\n", + "cg04927004,cg05724197,cg00727675,cg15059851\n", + "cg04927004,cg05724197,cg00727675,cg08375658\n", + "cg04927004,cg05724197,cg00727675,cg07925549\n", + "cg04927004,cg05724197,cg00727675,cg21298408\n", + "cg04927004,cg05724197,cg00727675,cg07552803\n", + "cg04927004,cg05724197,cg00727675,cg20248866\n", + "cg04927004,cg05724197,cg00727675,cg02329916\n", + "cg04927004,cg05724197,cg00727675,cg20596724\n", + "cg04927004,cg05724197,cg00727675,cg12610471\n", + "cg04927004,cg05724197,cg22500132,cg00213123\n", + "cg04927004,cg05724197,cg22500132,cg20051772\n", + "cg04927004,cg05724197,cg22500132,cg15059851\n", + "cg04927004,cg05724197,cg22500132,cg08375658\n", + "cg04927004,cg05724197,cg22500132,cg07925549\n", + "cg04927004,cg05724197,cg22500132,cg21298408\n", + "cg04927004,cg05724197,cg22500132,cg07552803\n", + "cg04927004,cg05724197,cg22500132,cg20248866\n", + "cg04927004,cg05724197,cg22500132,cg02329916\n", + "cg04927004,cg05724197,cg22500132,cg20596724\n", + "cg04927004,cg05724197,cg22500132,cg12610471\n", + "cg04927004,cg05724197,cg22746058,cg00213123\n", + "cg04927004,cg05724197,cg22746058,cg20051772\n", + "cg04927004,cg05724197,cg22746058,cg15059851\n", + "cg04927004,cg05724197,cg22746058,cg08375658\n", + "cg04927004,cg05724197,cg22746058,cg07925549\n", + "cg04927004,cg05724197,cg22746058,cg21298408\n", + "cg04927004,cg05724197,cg22746058,cg07552803\n", + "cg04927004,cg05724197,cg22746058,cg20248866\n", + "cg04927004,cg05724197,cg22746058,cg02329916\n", + "cg04927004,cg05724197,cg22746058,cg20596724\n", + "cg04927004,cg05724197,cg22746058,cg12610471\n", + "cg04927004,cg05724197,cg05884032,cg00213123\n", + "cg04927004,cg05724197,cg05884032,cg20051772\n", + "cg04927004,cg05724197,cg05884032,cg15059851\n", + "cg04927004,cg05724197,cg05884032,cg08375658\n", + "cg04927004,cg05724197,cg05884032,cg07925549\n", + "cg04927004,cg05724197,cg05884032,cg21298408\n", + "cg04927004,cg05724197,cg05884032,cg07552803\n", + "cg04927004,cg05724197,cg05884032,cg20248866\n", + "cg04927004,cg05724197,cg05884032,cg02329916\n", + "cg04927004,cg05724197,cg05884032,cg20596724\n", + "cg04927004,cg05724197,cg05884032,cg12610471\n", + "cg04927004,cg05724197,cg02547394,cg00213123\n", + "cg04927004,cg05724197,cg02547394,cg20051772\n", + "cg04927004,cg05724197,cg02547394,cg15059851\n", + "cg04927004,cg05724197,cg02547394,cg08375658\n", + "cg04927004,cg05724197,cg02547394,cg07925549\n", + "cg04927004,cg05724197,cg02547394,cg21298408\n", + "cg04927004,cg05724197,cg02547394,cg07552803\n", + "cg04927004,cg05724197,cg02547394,cg20248866\n", + "cg04927004,cg05724197,cg02547394,cg02329916\n", + "cg04927004,cg05724197,cg02547394,cg20596724\n", + "cg04927004,cg05724197,cg02547394,cg12610471\n", + "cg04927004,cg05724197,cg24073122,cg00213123\n", + "cg04927004,cg05724197,cg24073122,cg20051772\n", + "cg04927004,cg05724197,cg24073122,cg15059851\n", + "cg04927004,cg05724197,cg24073122,cg08375658\n", + "cg04927004,cg05724197,cg24073122,cg07925549\n", + "cg04927004,cg05724197,cg24073122,cg21298408\n", + "cg04927004,cg05724197,cg24073122,cg07552803\n", + "cg04927004,cg05724197,cg24073122,cg20248866\n", + "cg04927004,cg05724197,cg24073122,cg02329916\n", + "cg04927004,cg05724197,cg24073122,cg20596724\n", + "cg04927004,cg05724197,cg24073122,cg12610471\n", + "cg04927004,cg03003745,cg00727675,cg00213123\n", + "cg04927004,cg03003745,cg00727675,cg20051772\n", + "cg04927004,cg03003745,cg00727675,cg15059851\n", + "cg04927004,cg03003745,cg00727675,cg08375658\n", + "cg04927004,cg03003745,cg00727675,cg07925549\n", + "cg04927004,cg03003745,cg00727675,cg21298408\n", + "cg04927004,cg03003745,cg00727675,cg07552803\n", + "cg04927004,cg03003745,cg00727675,cg20248866\n", + "cg04927004,cg03003745,cg00727675,cg02329916\n", + "cg04927004,cg03003745,cg00727675,cg20596724\n", + "cg04927004,cg03003745,cg00727675,cg12610471\n", + "cg04927004,cg03003745,cg22500132,cg00213123\n", + "cg04927004,cg03003745,cg22500132,cg20051772\n", + "cg04927004,cg03003745,cg22500132,cg15059851\n", + "cg04927004,cg03003745,cg22500132,cg08375658\n", + "cg04927004,cg03003745,cg22500132,cg07925549\n", + "cg04927004,cg03003745,cg22500132,cg21298408\n", + "cg04927004,cg03003745,cg22500132,cg07552803\n", + "cg04927004,cg03003745,cg22500132,cg20248866\n", + "cg04927004,cg03003745,cg22500132,cg02329916\n", + "cg04927004,cg03003745,cg22500132,cg20596724\n", + "cg04927004,cg03003745,cg22500132,cg12610471\n", + "cg04927004,cg03003745,cg22746058,cg00213123\n", + "cg04927004,cg03003745,cg22746058,cg20051772\n", + "cg04927004,cg03003745,cg22746058,cg15059851\n", + "cg04927004,cg03003745,cg22746058,cg08375658\n", + "cg04927004,cg03003745,cg22746058,cg07925549\n", + "cg04927004,cg03003745,cg22746058,cg21298408\n", + "cg04927004,cg03003745,cg22746058,cg07552803\n", + "cg04927004,cg03003745,cg22746058,cg20248866\n", + "cg04927004,cg03003745,cg22746058,cg02329916\n", + "cg04927004,cg03003745,cg22746058,cg20596724\n", + "cg04927004,cg03003745,cg22746058,cg12610471\n", + "cg04927004,cg03003745,cg05884032,cg00213123\n", + "cg04927004,cg03003745,cg05884032,cg20051772\n", + "cg04927004,cg03003745,cg05884032,cg15059851\n", + "cg04927004,cg03003745,cg05884032,cg08375658\n", + "cg04927004,cg03003745,cg05884032,cg07925549\n", + "cg04927004,cg03003745,cg05884032,cg21298408\n", + "cg04927004,cg03003745,cg05884032,cg07552803\n", + "cg04927004,cg03003745,cg05884032,cg20248866\n", + "cg04927004,cg03003745,cg05884032,cg02329916\n", + "cg04927004,cg03003745,cg05884032,cg20596724\n", + "cg04927004,cg03003745,cg05884032,cg12610471\n", + "cg04927004,cg03003745,cg02547394,cg00213123\n", + "cg04927004,cg03003745,cg02547394,cg20051772\n", + "cg04927004,cg03003745,cg02547394,cg15059851\n", + "cg04927004,cg03003745,cg02547394,cg08375658\n", + "cg04927004,cg03003745,cg02547394,cg07925549\n", + "cg04927004,cg03003745,cg02547394,cg21298408\n", + "cg04927004,cg03003745,cg02547394,cg07552803\n", + "cg04927004,cg03003745,cg02547394,cg20248866\n", + "cg04927004,cg03003745,cg02547394,cg02329916\n", + "cg04927004,cg03003745,cg02547394,cg20596724\n", + "cg04927004,cg03003745,cg02547394,cg12610471\n", + "cg04927004,cg03003745,cg24073122,cg00213123\n", + "cg04927004,cg03003745,cg24073122,cg20051772\n", + "cg04927004,cg03003745,cg24073122,cg15059851\n", + "cg04927004,cg03003745,cg24073122,cg08375658\n", + "cg04927004,cg03003745,cg24073122,cg07925549\n", + "cg04927004,cg03003745,cg24073122,cg21298408\n", + "cg04927004,cg03003745,cg24073122,cg07552803\n", + "cg04927004,cg03003745,cg24073122,cg20248866\n", + "cg04927004,cg03003745,cg24073122,cg02329916\n", + "cg04927004,cg03003745,cg24073122,cg20596724\n", + "cg04927004,cg03003745,cg24073122,cg12610471\n", + "cg04927004,cg13379236,cg00727675,cg00213123\n", + "cg04927004,cg13379236,cg00727675,cg20051772\n", + "cg04927004,cg13379236,cg00727675,cg15059851\n", + "cg04927004,cg13379236,cg00727675,cg08375658\n", + "cg04927004,cg13379236,cg00727675,cg07925549\n", + "cg04927004,cg13379236,cg00727675,cg21298408\n", + "cg04927004,cg13379236,cg00727675,cg07552803\n", + "cg04927004,cg13379236,cg00727675,cg20248866\n", + "cg04927004,cg13379236,cg00727675,cg02329916\n", + "cg04927004,cg13379236,cg00727675,cg20596724\n", + "cg04927004,cg13379236,cg00727675,cg12610471\n", + "cg04927004,cg13379236,cg22500132,cg00213123\n", + "cg04927004,cg13379236,cg22500132,cg20051772\n", + "cg04927004,cg13379236,cg22500132,cg15059851\n", + "cg04927004,cg13379236,cg22500132,cg08375658\n", + "cg04927004,cg13379236,cg22500132,cg07925549\n", + "cg04927004,cg13379236,cg22500132,cg21298408\n", + "cg04927004,cg13379236,cg22500132,cg07552803\n", + "cg04927004,cg13379236,cg22500132,cg20248866\n", + "cg04927004,cg13379236,cg22500132,cg02329916\n", + "cg04927004,cg13379236,cg22500132,cg20596724\n", + "cg04927004,cg13379236,cg22500132,cg12610471\n", + "cg04927004,cg13379236,cg22746058,cg00213123\n", + "cg04927004,cg13379236,cg22746058,cg20051772\n", + "cg04927004,cg13379236,cg22746058,cg15059851\n", + "cg04927004,cg13379236,cg22746058,cg08375658\n", + "cg04927004,cg13379236,cg22746058,cg07925549\n", + "cg04927004,cg13379236,cg22746058,cg21298408\n", + "cg04927004,cg13379236,cg22746058,cg07552803\n", + "cg04927004,cg13379236,cg22746058,cg20248866\n", + "cg04927004,cg13379236,cg22746058,cg02329916\n", + "cg04927004,cg13379236,cg22746058,cg20596724\n", + "cg04927004,cg13379236,cg22746058,cg12610471\n", + "cg04927004,cg13379236,cg05884032,cg00213123\n", + "cg04927004,cg13379236,cg05884032,cg20051772\n", + "cg04927004,cg13379236,cg05884032,cg15059851\n", + "cg04927004,cg13379236,cg05884032,cg08375658\n", + "cg04927004,cg13379236,cg05884032,cg07925549\n", + "cg04927004,cg13379236,cg05884032,cg21298408\n", + "cg04927004,cg13379236,cg05884032,cg07552803\n", + "cg04927004,cg13379236,cg05884032,cg20248866\n", + "cg04927004,cg13379236,cg05884032,cg02329916\n", + "cg04927004,cg13379236,cg05884032,cg20596724\n", + "cg04927004,cg13379236,cg05884032,cg12610471\n", + "cg04927004,cg13379236,cg02547394,cg00213123\n", + "cg04927004,cg13379236,cg02547394,cg20051772\n", + "cg04927004,cg13379236,cg02547394,cg15059851\n", + "cg04927004,cg13379236,cg02547394,cg08375658\n", + "cg04927004,cg13379236,cg02547394,cg07925549\n", + "cg04927004,cg13379236,cg02547394,cg21298408\n", + "cg04927004,cg13379236,cg02547394,cg07552803\n", + "cg04927004,cg13379236,cg02547394,cg20248866\n", + "cg04927004,cg13379236,cg02547394,cg02329916\n", + "cg04927004,cg13379236,cg02547394,cg20596724\n", + "cg04927004,cg13379236,cg02547394,cg12610471\n", + "cg04927004,cg13379236,cg24073122,cg00213123\n", + "cg04927004,cg13379236,cg24073122,cg20051772\n", + "cg04927004,cg13379236,cg24073122,cg15059851\n", + "cg04927004,cg13379236,cg24073122,cg08375658\n", + "cg04927004,cg13379236,cg24073122,cg07925549\n", + "cg04927004,cg13379236,cg24073122,cg21298408\n", + "cg04927004,cg13379236,cg24073122,cg07552803\n", + "cg04927004,cg13379236,cg24073122,cg20248866\n", + "cg04927004,cg13379236,cg24073122,cg02329916\n", + "cg04927004,cg13379236,cg24073122,cg20596724\n", + "cg04927004,cg13379236,cg24073122,cg12610471\n", + "cg04927004,cg05818394,cg00727675,cg00213123\n", + "cg04927004,cg05818394,cg00727675,cg20051772\n", + "cg04927004,cg05818394,cg00727675,cg15059851\n", + "cg04927004,cg05818394,cg00727675,cg08375658\n", + "cg04927004,cg05818394,cg00727675,cg07925549\n", + "cg04927004,cg05818394,cg00727675,cg21298408\n", + "cg04927004,cg05818394,cg00727675,cg07552803\n", + "cg04927004,cg05818394,cg00727675,cg20248866\n", + "cg04927004,cg05818394,cg00727675,cg02329916\n", + "cg04927004,cg05818394,cg00727675,cg20596724\n", + "cg04927004,cg05818394,cg00727675,cg12610471\n", + "cg04927004,cg05818394,cg22500132,cg00213123\n", + "cg04927004,cg05818394,cg22500132,cg20051772\n", + "cg04927004,cg05818394,cg22500132,cg15059851\n", + "cg04927004,cg05818394,cg22500132,cg08375658\n", + "cg04927004,cg05818394,cg22500132,cg07925549\n", + "cg04927004,cg05818394,cg22500132,cg21298408\n", + "cg04927004,cg05818394,cg22500132,cg07552803\n", + "cg04927004,cg05818394,cg22500132,cg20248866\n", + "cg04927004,cg05818394,cg22500132,cg02329916\n", + "cg04927004,cg05818394,cg22500132,cg20596724\n", + "cg04927004,cg05818394,cg22500132,cg12610471\n", + "cg04927004,cg05818394,cg22746058,cg00213123\n", + "cg04927004,cg05818394,cg22746058,cg20051772\n", + "cg04927004,cg05818394,cg22746058,cg15059851\n", + "cg04927004,cg05818394,cg22746058,cg08375658\n", + "cg04927004,cg05818394,cg22746058,cg07925549\n", + "cg04927004,cg05818394,cg22746058,cg21298408\n", + "cg04927004,cg05818394,cg22746058,cg07552803\n", + "cg04927004,cg05818394,cg22746058,cg20248866\n", + "cg04927004,cg05818394,cg22746058,cg02329916\n", + "cg04927004,cg05818394,cg22746058,cg20596724\n", + "cg04927004,cg05818394,cg22746058,cg12610471\n", + "cg04927004,cg05818394,cg05884032,cg00213123\n", + "cg04927004,cg05818394,cg05884032,cg20051772\n", + "cg04927004,cg05818394,cg05884032,cg15059851\n", + "cg04927004,cg05818394,cg05884032,cg08375658\n", + "cg04927004,cg05818394,cg05884032,cg07925549\n", + "cg04927004,cg05818394,cg05884032,cg21298408\n", + "cg04927004,cg05818394,cg05884032,cg07552803\n", + "cg04927004,cg05818394,cg05884032,cg20248866\n", + "cg04927004,cg05818394,cg05884032,cg02329916\n", + "cg04927004,cg05818394,cg05884032,cg20596724\n", + "cg04927004,cg05818394,cg05884032,cg12610471\n", + "cg04927004,cg05818394,cg02547394,cg00213123\n", + "cg04927004,cg05818394,cg02547394,cg20051772\n", + "cg04927004,cg05818394,cg02547394,cg15059851\n", + "cg04927004,cg05818394,cg02547394,cg08375658\n", + "cg04927004,cg05818394,cg02547394,cg07925549\n", + "cg04927004,cg05818394,cg02547394,cg21298408\n", + "cg04927004,cg05818394,cg02547394,cg07552803\n", + "cg04927004,cg05818394,cg02547394,cg20248866\n", + "cg04927004,cg05818394,cg02547394,cg02329916\n", + "cg04927004,cg05818394,cg02547394,cg20596724\n", + "cg04927004,cg05818394,cg02547394,cg12610471\n", + "cg04927004,cg05818394,cg24073122,cg00213123\n", + "cg04927004,cg05818394,cg24073122,cg20051772\n", + "cg04927004,cg05818394,cg24073122,cg15059851\n", + "cg04927004,cg05818394,cg24073122,cg08375658\n", + "cg04927004,cg05818394,cg24073122,cg07925549\n", + "cg04927004,cg05818394,cg24073122,cg21298408\n", + "cg04927004,cg05818394,cg24073122,cg07552803\n", + "cg04927004,cg05818394,cg24073122,cg20248866\n", + "cg04927004,cg05818394,cg24073122,cg02329916\n", + "cg04927004,cg05818394,cg24073122,cg20596724\n", + "cg04927004,cg05818394,cg24073122,cg12610471\n", + "cg04927004,cg04433322,cg00727675,cg00213123\n", + "cg04927004,cg04433322,cg00727675,cg20051772\n", + "cg04927004,cg04433322,cg00727675,cg15059851\n", + "cg04927004,cg04433322,cg00727675,cg08375658\n", + "cg04927004,cg04433322,cg00727675,cg07925549\n", + "cg04927004,cg04433322,cg00727675,cg21298408\n", + "cg04927004,cg04433322,cg00727675,cg07552803\n", + "cg04927004,cg04433322,cg00727675,cg20248866\n", + "cg04927004,cg04433322,cg00727675,cg02329916\n", + "cg04927004,cg04433322,cg00727675,cg20596724\n", + "cg04927004,cg04433322,cg00727675,cg12610471\n", + "cg04927004,cg04433322,cg22500132,cg00213123\n", + "cg04927004,cg04433322,cg22500132,cg20051772\n", + "cg04927004,cg04433322,cg22500132,cg15059851\n", + "cg04927004,cg04433322,cg22500132,cg08375658\n", + "cg04927004,cg04433322,cg22500132,cg07925549\n", + "cg04927004,cg04433322,cg22500132,cg21298408\n", + "cg04927004,cg04433322,cg22500132,cg07552803\n", + "cg04927004,cg04433322,cg22500132,cg20248866\n", + "cg04927004,cg04433322,cg22500132,cg02329916\n", + "cg04927004,cg04433322,cg22500132,cg20596724\n", + "cg04927004,cg04433322,cg22500132,cg12610471\n", + "cg04927004,cg04433322,cg22746058,cg00213123\n", + "cg04927004,cg04433322,cg22746058,cg20051772\n", + "cg04927004,cg04433322,cg22746058,cg15059851\n", + "cg04927004,cg04433322,cg22746058,cg08375658\n", + "cg04927004,cg04433322,cg22746058,cg07925549\n", + "cg04927004,cg04433322,cg22746058,cg21298408\n", + "cg04927004,cg04433322,cg22746058,cg07552803\n", + "cg04927004,cg04433322,cg22746058,cg20248866\n", + "cg04927004,cg04433322,cg22746058,cg02329916\n", + "cg04927004,cg04433322,cg22746058,cg20596724\n", + "cg04927004,cg04433322,cg22746058,cg12610471\n", + "cg04927004,cg04433322,cg05884032,cg00213123\n", + "cg04927004,cg04433322,cg05884032,cg20051772\n", + "cg04927004,cg04433322,cg05884032,cg15059851\n", + "cg04927004,cg04433322,cg05884032,cg08375658\n", + "cg04927004,cg04433322,cg05884032,cg07925549\n", + "cg04927004,cg04433322,cg05884032,cg21298408\n", + "cg04927004,cg04433322,cg05884032,cg07552803\n", + "cg04927004,cg04433322,cg05884032,cg20248866\n", + "cg04927004,cg04433322,cg05884032,cg02329916\n", + "cg04927004,cg04433322,cg05884032,cg20596724\n", + "cg04927004,cg04433322,cg05884032,cg12610471\n", + "cg04927004,cg04433322,cg02547394,cg00213123\n", + "cg04927004,cg04433322,cg02547394,cg20051772\n", + "cg04927004,cg04433322,cg02547394,cg15059851\n", + "cg04927004,cg04433322,cg02547394,cg08375658\n", + "cg04927004,cg04433322,cg02547394,cg07925549\n", + "cg04927004,cg04433322,cg02547394,cg21298408\n", + "cg04927004,cg04433322,cg02547394,cg07552803\n", + "cg04927004,cg04433322,cg02547394,cg20248866\n", + "cg04927004,cg04433322,cg02547394,cg02329916\n", + "cg04927004,cg04433322,cg02547394,cg20596724\n", + "cg04927004,cg04433322,cg02547394,cg12610471\n", + "cg04927004,cg04433322,cg24073122,cg00213123\n", + "cg04927004,cg04433322,cg24073122,cg20051772\n", + "cg04927004,cg04433322,cg24073122,cg15059851\n", + "cg04927004,cg04433322,cg24073122,cg08375658\n", + "cg04927004,cg04433322,cg24073122,cg07925549\n", + "cg04927004,cg04433322,cg24073122,cg21298408\n", + "cg04927004,cg04433322,cg24073122,cg07552803\n", + "cg04927004,cg04433322,cg24073122,cg20248866\n", + "cg04927004,cg04433322,cg24073122,cg02329916\n", + "cg04927004,cg04433322,cg24073122,cg20596724\n", + "cg04927004,cg04433322,cg24073122,cg12610471\n", + "cg04927004,cg14153654,cg00727675,cg00213123\n", + "cg04927004,cg14153654,cg00727675,cg20051772\n", + "cg04927004,cg14153654,cg00727675,cg15059851\n", + "cg04927004,cg14153654,cg00727675,cg08375658\n", + "cg04927004,cg14153654,cg00727675,cg07925549\n", + "cg04927004,cg14153654,cg00727675,cg21298408\n", + "cg04927004,cg14153654,cg00727675,cg07552803\n", + "cg04927004,cg14153654,cg00727675,cg20248866\n", + "cg04927004,cg14153654,cg00727675,cg02329916\n", + "cg04927004,cg14153654,cg00727675,cg20596724\n", + "cg04927004,cg14153654,cg00727675,cg12610471\n", + "cg04927004,cg14153654,cg22500132,cg00213123\n", + "cg04927004,cg14153654,cg22500132,cg20051772\n", + "cg04927004,cg14153654,cg22500132,cg15059851\n", + "cg04927004,cg14153654,cg22500132,cg08375658\n", + "cg04927004,cg14153654,cg22500132,cg07925549\n", + "cg04927004,cg14153654,cg22500132,cg21298408\n", + "cg04927004,cg14153654,cg22500132,cg07552803\n", + "cg04927004,cg14153654,cg22500132,cg20248866\n", + "cg04927004,cg14153654,cg22500132,cg02329916\n", + "cg04927004,cg14153654,cg22500132,cg20596724\n", + "cg04927004,cg14153654,cg22500132,cg12610471\n", + "cg04927004,cg14153654,cg22746058,cg00213123\n", + "cg04927004,cg14153654,cg22746058,cg20051772\n", + "cg04927004,cg14153654,cg22746058,cg15059851\n", + "cg04927004,cg14153654,cg22746058,cg08375658\n", + "cg04927004,cg14153654,cg22746058,cg07925549\n", + "cg04927004,cg14153654,cg22746058,cg21298408\n", + "cg04927004,cg14153654,cg22746058,cg07552803\n", + "cg04927004,cg14153654,cg22746058,cg20248866\n", + "cg04927004,cg14153654,cg22746058,cg02329916\n", + "cg04927004,cg14153654,cg22746058,cg20596724\n", + "cg04927004,cg14153654,cg22746058,cg12610471\n", + "cg04927004,cg14153654,cg05884032,cg00213123\n", + "cg04927004,cg14153654,cg05884032,cg20051772\n", + "cg04927004,cg14153654,cg05884032,cg15059851\n", + "cg04927004,cg14153654,cg05884032,cg08375658\n", + "cg04927004,cg14153654,cg05884032,cg07925549\n", + "cg04927004,cg14153654,cg05884032,cg21298408\n", + "cg04927004,cg14153654,cg05884032,cg07552803\n", + "cg04927004,cg14153654,cg05884032,cg20248866\n", + "cg04927004,cg14153654,cg05884032,cg02329916\n", + "cg04927004,cg14153654,cg05884032,cg20596724\n", + "cg04927004,cg14153654,cg05884032,cg12610471\n", + "cg04927004,cg14153654,cg02547394,cg00213123\n", + "cg04927004,cg14153654,cg02547394,cg20051772\n", + "cg04927004,cg14153654,cg02547394,cg15059851\n", + "cg04927004,cg14153654,cg02547394,cg08375658\n", + "cg04927004,cg14153654,cg02547394,cg07925549\n", + "cg04927004,cg14153654,cg02547394,cg21298408\n", + "cg04927004,cg14153654,cg02547394,cg07552803\n", + "cg04927004,cg14153654,cg02547394,cg20248866\n", + "cg04927004,cg14153654,cg02547394,cg02329916\n", + "cg04927004,cg14153654,cg02547394,cg20596724\n", + "cg04927004,cg14153654,cg02547394,cg12610471\n", + "cg04927004,cg14153654,cg24073122,cg00213123\n", + "cg04927004,cg14153654,cg24073122,cg20051772\n", + "cg04927004,cg14153654,cg24073122,cg15059851\n", + "cg04927004,cg14153654,cg24073122,cg08375658\n", + "cg04927004,cg14153654,cg24073122,cg07925549\n", + "cg04927004,cg14153654,cg24073122,cg21298408\n", + "cg04927004,cg14153654,cg24073122,cg07552803\n", + "cg04927004,cg14153654,cg24073122,cg20248866\n", + "cg04927004,cg14153654,cg24073122,cg02329916\n", + "cg04927004,cg14153654,cg24073122,cg20596724\n", + "cg04927004,cg14153654,cg24073122,cg12610471\n", + "cg16570507,cg00074348,cg00727675,cg00213123\n", + "cg16570507,cg00074348,cg00727675,cg20051772\n", + "cg16570507,cg00074348,cg00727675,cg15059851\n", + "cg16570507,cg00074348,cg00727675,cg08375658\n", + "cg16570507,cg00074348,cg00727675,cg07925549\n", + "cg16570507,cg00074348,cg00727675,cg21298408\n", + "cg16570507,cg00074348,cg00727675,cg07552803\n", + "cg16570507,cg00074348,cg00727675,cg20248866\n", + "cg16570507,cg00074348,cg00727675,cg02329916\n", + "cg16570507,cg00074348,cg00727675,cg20596724\n", + "cg16570507,cg00074348,cg00727675,cg12610471\n", + "cg16570507,cg00074348,cg22500132,cg00213123\n", + "cg16570507,cg00074348,cg22500132,cg20051772\n", + "cg16570507,cg00074348,cg22500132,cg15059851\n", + "cg16570507,cg00074348,cg22500132,cg08375658\n", + "cg16570507,cg00074348,cg22500132,cg07925549\n", + "cg16570507,cg00074348,cg22500132,cg21298408\n", + "cg16570507,cg00074348,cg22500132,cg07552803\n", + "cg16570507,cg00074348,cg22500132,cg20248866\n", + "cg16570507,cg00074348,cg22500132,cg02329916\n", + "cg16570507,cg00074348,cg22500132,cg20596724\n", + "cg16570507,cg00074348,cg22500132,cg12610471\n", + "cg16570507,cg00074348,cg22746058,cg00213123\n", + "cg16570507,cg00074348,cg22746058,cg20051772\n", + "cg16570507,cg00074348,cg22746058,cg15059851\n", + "cg16570507,cg00074348,cg22746058,cg08375658\n", + "cg16570507,cg00074348,cg22746058,cg07925549\n", + "cg16570507,cg00074348,cg22746058,cg21298408\n", + "cg16570507,cg00074348,cg22746058,cg07552803\n", + "cg16570507,cg00074348,cg22746058,cg20248866\n", + "cg16570507,cg00074348,cg22746058,cg02329916\n", + "cg16570507,cg00074348,cg22746058,cg20596724\n", + "cg16570507,cg00074348,cg22746058,cg12610471\n", + "cg16570507,cg00074348,cg05884032,cg00213123\n", + "cg16570507,cg00074348,cg05884032,cg20051772\n", + "cg16570507,cg00074348,cg05884032,cg15059851\n", + "cg16570507,cg00074348,cg05884032,cg08375658\n", + "cg16570507,cg00074348,cg05884032,cg07925549\n", + "cg16570507,cg00074348,cg05884032,cg21298408\n", + "cg16570507,cg00074348,cg05884032,cg07552803\n", + "cg16570507,cg00074348,cg05884032,cg20248866\n", + "cg16570507,cg00074348,cg05884032,cg02329916\n", + "cg16570507,cg00074348,cg05884032,cg20596724\n", + "cg16570507,cg00074348,cg05884032,cg12610471\n", + "cg16570507,cg00074348,cg02547394,cg00213123\n", + "cg16570507,cg00074348,cg02547394,cg20051772\n", + "cg16570507,cg00074348,cg02547394,cg15059851\n", + "cg16570507,cg00074348,cg02547394,cg08375658\n", + "cg16570507,cg00074348,cg02547394,cg07925549\n", + "cg16570507,cg00074348,cg02547394,cg21298408\n", + "cg16570507,cg00074348,cg02547394,cg07552803\n", + "cg16570507,cg00074348,cg02547394,cg20248866\n", + "cg16570507,cg00074348,cg02547394,cg02329916\n", + "cg16570507,cg00074348,cg02547394,cg20596724\n", + "cg16570507,cg00074348,cg02547394,cg12610471\n", + "cg16570507,cg00074348,cg24073122,cg00213123\n", + "cg16570507,cg00074348,cg24073122,cg20051772\n", + "cg16570507,cg00074348,cg24073122,cg15059851\n", + "cg16570507,cg00074348,cg24073122,cg08375658\n", + "cg16570507,cg00074348,cg24073122,cg07925549\n", + "cg16570507,cg00074348,cg24073122,cg21298408\n", + "cg16570507,cg00074348,cg24073122,cg07552803\n", + "cg16570507,cg00074348,cg24073122,cg20248866\n", + "cg16570507,cg00074348,cg24073122,cg02329916\n", + "cg16570507,cg00074348,cg24073122,cg20596724\n", + "cg16570507,cg00074348,cg24073122,cg12610471\n", + "cg16570507,cg14666310,cg00727675,cg00213123\n", + "cg16570507,cg14666310,cg00727675,cg20051772\n", + "cg16570507,cg14666310,cg00727675,cg15059851\n", + "cg16570507,cg14666310,cg00727675,cg08375658\n", + "cg16570507,cg14666310,cg00727675,cg07925549\n", + "cg16570507,cg14666310,cg00727675,cg21298408\n", + "cg16570507,cg14666310,cg00727675,cg07552803\n", + "cg16570507,cg14666310,cg00727675,cg20248866\n", + "cg16570507,cg14666310,cg00727675,cg02329916\n", + "cg16570507,cg14666310,cg00727675,cg20596724\n", + "cg16570507,cg14666310,cg00727675,cg12610471\n", + "cg16570507,cg14666310,cg22500132,cg00213123\n", + "cg16570507,cg14666310,cg22500132,cg20051772\n", + "cg16570507,cg14666310,cg22500132,cg15059851\n", + "cg16570507,cg14666310,cg22500132,cg08375658\n", + "cg16570507,cg14666310,cg22500132,cg07925549\n", + "cg16570507,cg14666310,cg22500132,cg21298408\n", + "cg16570507,cg14666310,cg22500132,cg07552803\n", + "cg16570507,cg14666310,cg22500132,cg20248866\n", + "cg16570507,cg14666310,cg22500132,cg02329916\n", + "cg16570507,cg14666310,cg22500132,cg20596724\n", + "cg16570507,cg14666310,cg22500132,cg12610471\n", + "cg16570507,cg14666310,cg22746058,cg00213123\n", + "cg16570507,cg14666310,cg22746058,cg20051772\n", + "cg16570507,cg14666310,cg22746058,cg15059851\n", + "cg16570507,cg14666310,cg22746058,cg08375658\n", + "cg16570507,cg14666310,cg22746058,cg07925549\n", + "cg16570507,cg14666310,cg22746058,cg21298408\n", + "cg16570507,cg14666310,cg22746058,cg07552803\n", + "cg16570507,cg14666310,cg22746058,cg20248866\n", + "cg16570507,cg14666310,cg22746058,cg02329916\n", + "cg16570507,cg14666310,cg22746058,cg20596724\n", + "cg16570507,cg14666310,cg22746058,cg12610471\n", + "cg16570507,cg14666310,cg05884032,cg00213123\n", + "cg16570507,cg14666310,cg05884032,cg20051772\n", + "cg16570507,cg14666310,cg05884032,cg15059851\n", + "cg16570507,cg14666310,cg05884032,cg08375658\n", + "cg16570507,cg14666310,cg05884032,cg07925549\n", + "cg16570507,cg14666310,cg05884032,cg21298408\n", + "cg16570507,cg14666310,cg05884032,cg07552803\n", + "cg16570507,cg14666310,cg05884032,cg20248866\n", + "cg16570507,cg14666310,cg05884032,cg02329916\n", + "cg16570507,cg14666310,cg05884032,cg20596724\n", + "cg16570507,cg14666310,cg05884032,cg12610471\n", + "cg16570507,cg14666310,cg02547394,cg00213123\n", + "cg16570507,cg14666310,cg02547394,cg20051772\n", + "cg16570507,cg14666310,cg02547394,cg15059851\n", + "cg16570507,cg14666310,cg02547394,cg08375658\n", + "cg16570507,cg14666310,cg02547394,cg07925549\n", + "cg16570507,cg14666310,cg02547394,cg21298408\n", + "cg16570507,cg14666310,cg02547394,cg07552803\n", + "cg16570507,cg14666310,cg02547394,cg20248866\n", + "cg16570507,cg14666310,cg02547394,cg02329916\n", + "cg16570507,cg14666310,cg02547394,cg20596724\n", + "cg16570507,cg14666310,cg02547394,cg12610471\n", + "cg16570507,cg14666310,cg24073122,cg00213123\n", + "cg16570507,cg14666310,cg24073122,cg20051772\n", + "cg16570507,cg14666310,cg24073122,cg15059851\n", + "cg16570507,cg14666310,cg24073122,cg08375658\n", + "cg16570507,cg14666310,cg24073122,cg07925549\n", + "cg16570507,cg14666310,cg24073122,cg21298408\n", + "cg16570507,cg14666310,cg24073122,cg07552803\n", + "cg16570507,cg14666310,cg24073122,cg20248866\n", + "cg16570507,cg14666310,cg24073122,cg02329916\n", + "cg16570507,cg14666310,cg24073122,cg20596724\n", + "cg16570507,cg14666310,cg24073122,cg12610471\n", + "cg16570507,cg23631930,cg00727675,cg00213123\n", + "cg16570507,cg23631930,cg00727675,cg20051772\n", + "cg16570507,cg23631930,cg00727675,cg15059851\n", + "cg16570507,cg23631930,cg00727675,cg08375658\n", + "cg16570507,cg23631930,cg00727675,cg07925549\n", + "cg16570507,cg23631930,cg00727675,cg21298408\n", + "cg16570507,cg23631930,cg00727675,cg07552803\n", + "cg16570507,cg23631930,cg00727675,cg20248866\n", + "cg16570507,cg23631930,cg00727675,cg02329916\n", + "cg16570507,cg23631930,cg00727675,cg20596724\n", + "cg16570507,cg23631930,cg00727675,cg12610471\n", + "cg16570507,cg23631930,cg22500132,cg00213123\n", + "cg16570507,cg23631930,cg22500132,cg20051772\n", + "cg16570507,cg23631930,cg22500132,cg15059851\n", + "cg16570507,cg23631930,cg22500132,cg08375658\n", + "cg16570507,cg23631930,cg22500132,cg07925549\n", + "cg16570507,cg23631930,cg22500132,cg21298408\n", + "cg16570507,cg23631930,cg22500132,cg07552803\n", + "cg16570507,cg23631930,cg22500132,cg20248866\n", + "cg16570507,cg23631930,cg22500132,cg02329916\n", + "cg16570507,cg23631930,cg22500132,cg20596724\n", + "cg16570507,cg23631930,cg22500132,cg12610471\n", + "cg16570507,cg23631930,cg22746058,cg00213123\n", + "cg16570507,cg23631930,cg22746058,cg20051772\n", + "cg16570507,cg23631930,cg22746058,cg15059851\n", + "cg16570507,cg23631930,cg22746058,cg08375658\n", + "cg16570507,cg23631930,cg22746058,cg07925549\n", + "cg16570507,cg23631930,cg22746058,cg21298408\n", + "cg16570507,cg23631930,cg22746058,cg07552803\n", + "cg16570507,cg23631930,cg22746058,cg20248866\n", + "cg16570507,cg23631930,cg22746058,cg02329916\n", + "cg16570507,cg23631930,cg22746058,cg20596724\n", + "cg16570507,cg23631930,cg22746058,cg12610471\n", + "cg16570507,cg23631930,cg05884032,cg00213123\n", + "cg16570507,cg23631930,cg05884032,cg20051772\n", + "cg16570507,cg23631930,cg05884032,cg15059851\n", + "cg16570507,cg23631930,cg05884032,cg08375658\n", + "cg16570507,cg23631930,cg05884032,cg07925549\n", + "cg16570507,cg23631930,cg05884032,cg21298408\n", + "cg16570507,cg23631930,cg05884032,cg07552803\n", + "cg16570507,cg23631930,cg05884032,cg20248866\n", + "cg16570507,cg23631930,cg05884032,cg02329916\n", + "cg16570507,cg23631930,cg05884032,cg20596724\n", + "cg16570507,cg23631930,cg05884032,cg12610471\n", + "cg16570507,cg23631930,cg02547394,cg00213123\n", + "cg16570507,cg23631930,cg02547394,cg20051772\n", + "cg16570507,cg23631930,cg02547394,cg15059851\n", + "cg16570507,cg23631930,cg02547394,cg08375658\n", + "cg16570507,cg23631930,cg02547394,cg07925549\n", + "cg16570507,cg23631930,cg02547394,cg21298408\n", + "cg16570507,cg23631930,cg02547394,cg07552803\n", + "cg16570507,cg23631930,cg02547394,cg20248866\n", + "cg16570507,cg23631930,cg02547394,cg02329916\n", + "cg16570507,cg23631930,cg02547394,cg20596724\n", + "cg16570507,cg23631930,cg02547394,cg12610471\n", + "cg16570507,cg23631930,cg24073122,cg00213123\n", + "cg16570507,cg23631930,cg24073122,cg20051772\n", + "cg16570507,cg23631930,cg24073122,cg15059851\n", + "cg16570507,cg23631930,cg24073122,cg08375658\n", + "cg16570507,cg23631930,cg24073122,cg07925549\n", + "cg16570507,cg23631930,cg24073122,cg21298408\n", + "cg16570507,cg23631930,cg24073122,cg07552803\n", + "cg16570507,cg23631930,cg24073122,cg20248866\n", + "cg16570507,cg23631930,cg24073122,cg02329916\n", + "cg16570507,cg23631930,cg24073122,cg20596724\n", + "cg16570507,cg23631930,cg24073122,cg12610471\n", + "cg16570507,cg05724197,cg00727675,cg00213123\n", + "cg16570507,cg05724197,cg00727675,cg20051772\n", + "cg16570507,cg05724197,cg00727675,cg15059851\n", + "cg16570507,cg05724197,cg00727675,cg08375658\n", + "cg16570507,cg05724197,cg00727675,cg07925549\n", + "cg16570507,cg05724197,cg00727675,cg21298408\n", + "cg16570507,cg05724197,cg00727675,cg07552803\n", + "cg16570507,cg05724197,cg00727675,cg20248866\n", + "cg16570507,cg05724197,cg00727675,cg02329916\n", + "cg16570507,cg05724197,cg00727675,cg20596724\n", + "cg16570507,cg05724197,cg00727675,cg12610471\n", + "cg16570507,cg05724197,cg22500132,cg00213123\n", + "cg16570507,cg05724197,cg22500132,cg20051772\n", + "cg16570507,cg05724197,cg22500132,cg15059851\n", + "cg16570507,cg05724197,cg22500132,cg08375658\n", + "cg16570507,cg05724197,cg22500132,cg07925549\n", + "cg16570507,cg05724197,cg22500132,cg21298408\n", + "cg16570507,cg05724197,cg22500132,cg07552803\n", + "cg16570507,cg05724197,cg22500132,cg20248866\n", + "cg16570507,cg05724197,cg22500132,cg02329916\n", + "cg16570507,cg05724197,cg22500132,cg20596724\n", + "cg16570507,cg05724197,cg22500132,cg12610471\n", + "cg16570507,cg05724197,cg22746058,cg00213123\n", + "cg16570507,cg05724197,cg22746058,cg20051772\n", + "cg16570507,cg05724197,cg22746058,cg15059851\n", + "cg16570507,cg05724197,cg22746058,cg08375658\n", + "cg16570507,cg05724197,cg22746058,cg07925549\n", + "cg16570507,cg05724197,cg22746058,cg21298408\n", + "cg16570507,cg05724197,cg22746058,cg07552803\n", + "cg16570507,cg05724197,cg22746058,cg20248866\n", + "cg16570507,cg05724197,cg22746058,cg02329916\n", + "cg16570507,cg05724197,cg22746058,cg20596724\n", + "cg16570507,cg05724197,cg22746058,cg12610471\n", + "cg16570507,cg05724197,cg05884032,cg00213123\n", + "cg16570507,cg05724197,cg05884032,cg20051772\n", + "cg16570507,cg05724197,cg05884032,cg15059851\n", + "cg16570507,cg05724197,cg05884032,cg08375658\n", + "cg16570507,cg05724197,cg05884032,cg07925549\n", + "cg16570507,cg05724197,cg05884032,cg21298408\n", + "cg16570507,cg05724197,cg05884032,cg07552803\n", + "cg16570507,cg05724197,cg05884032,cg20248866\n", + "cg16570507,cg05724197,cg05884032,cg02329916\n", + "cg16570507,cg05724197,cg05884032,cg20596724\n", + "cg16570507,cg05724197,cg05884032,cg12610471\n", + "cg16570507,cg05724197,cg02547394,cg00213123\n", + "cg16570507,cg05724197,cg02547394,cg20051772\n", + "cg16570507,cg05724197,cg02547394,cg15059851\n", + "cg16570507,cg05724197,cg02547394,cg08375658\n", + "cg16570507,cg05724197,cg02547394,cg07925549\n", + "cg16570507,cg05724197,cg02547394,cg21298408\n", + "cg16570507,cg05724197,cg02547394,cg07552803\n", + "cg16570507,cg05724197,cg02547394,cg20248866\n", + "cg16570507,cg05724197,cg02547394,cg02329916\n", + "cg16570507,cg05724197,cg02547394,cg20596724\n", + "cg16570507,cg05724197,cg02547394,cg12610471\n", + "cg16570507,cg05724197,cg24073122,cg00213123\n", + "cg16570507,cg05724197,cg24073122,cg20051772\n", + "cg16570507,cg05724197,cg24073122,cg15059851\n", + "cg16570507,cg05724197,cg24073122,cg08375658\n", + "cg16570507,cg05724197,cg24073122,cg07925549\n", + "cg16570507,cg05724197,cg24073122,cg21298408\n", + "cg16570507,cg05724197,cg24073122,cg07552803\n", + "cg16570507,cg05724197,cg24073122,cg20248866\n", + "cg16570507,cg05724197,cg24073122,cg02329916\n", + "cg16570507,cg05724197,cg24073122,cg20596724\n", + "cg16570507,cg05724197,cg24073122,cg12610471\n", + "cg16570507,cg03003745,cg00727675,cg00213123\n", + "cg16570507,cg03003745,cg00727675,cg20051772\n", + "cg16570507,cg03003745,cg00727675,cg15059851\n", + "cg16570507,cg03003745,cg00727675,cg08375658\n", + "cg16570507,cg03003745,cg00727675,cg07925549\n", + "cg16570507,cg03003745,cg00727675,cg21298408\n", + "cg16570507,cg03003745,cg00727675,cg07552803\n", + "cg16570507,cg03003745,cg00727675,cg20248866\n", + "cg16570507,cg03003745,cg00727675,cg02329916\n", + "cg16570507,cg03003745,cg00727675,cg20596724\n", + "cg16570507,cg03003745,cg00727675,cg12610471\n", + "cg16570507,cg03003745,cg22500132,cg00213123\n", + "cg16570507,cg03003745,cg22500132,cg20051772\n", + "cg16570507,cg03003745,cg22500132,cg15059851\n", + "cg16570507,cg03003745,cg22500132,cg08375658\n", + "cg16570507,cg03003745,cg22500132,cg07925549\n", + "cg16570507,cg03003745,cg22500132,cg21298408\n", + "cg16570507,cg03003745,cg22500132,cg07552803\n", + "cg16570507,cg03003745,cg22500132,cg20248866\n", + "cg16570507,cg03003745,cg22500132,cg02329916\n", + "cg16570507,cg03003745,cg22500132,cg20596724\n", + "cg16570507,cg03003745,cg22500132,cg12610471\n", + "cg16570507,cg03003745,cg22746058,cg00213123\n", + "cg16570507,cg03003745,cg22746058,cg20051772\n", + "cg16570507,cg03003745,cg22746058,cg15059851\n", + "cg16570507,cg03003745,cg22746058,cg08375658\n", + "cg16570507,cg03003745,cg22746058,cg07925549\n", + "cg16570507,cg03003745,cg22746058,cg21298408\n", + "cg16570507,cg03003745,cg22746058,cg07552803\n", + "cg16570507,cg03003745,cg22746058,cg20248866\n", + "cg16570507,cg03003745,cg22746058,cg02329916\n", + "cg16570507,cg03003745,cg22746058,cg20596724\n", + "cg16570507,cg03003745,cg22746058,cg12610471\n", + "cg16570507,cg03003745,cg05884032,cg00213123\n", + "cg16570507,cg03003745,cg05884032,cg20051772\n", + "cg16570507,cg03003745,cg05884032,cg15059851\n", + "cg16570507,cg03003745,cg05884032,cg08375658\n", + "cg16570507,cg03003745,cg05884032,cg07925549\n", + "cg16570507,cg03003745,cg05884032,cg21298408\n", + "cg16570507,cg03003745,cg05884032,cg07552803\n", + "cg16570507,cg03003745,cg05884032,cg20248866\n", + "cg16570507,cg03003745,cg05884032,cg02329916\n", + "cg16570507,cg03003745,cg05884032,cg20596724\n", + "cg16570507,cg03003745,cg05884032,cg12610471\n", + "cg16570507,cg03003745,cg02547394,cg00213123\n", + "cg16570507,cg03003745,cg02547394,cg20051772\n", + "cg16570507,cg03003745,cg02547394,cg15059851\n", + "cg16570507,cg03003745,cg02547394,cg08375658\n", + "cg16570507,cg03003745,cg02547394,cg07925549\n", + "cg16570507,cg03003745,cg02547394,cg21298408\n", + "cg16570507,cg03003745,cg02547394,cg07552803\n", + "cg16570507,cg03003745,cg02547394,cg20248866\n", + "cg16570507,cg03003745,cg02547394,cg02329916\n", + "cg16570507,cg03003745,cg02547394,cg20596724\n", + "cg16570507,cg03003745,cg02547394,cg12610471\n", + "cg16570507,cg03003745,cg24073122,cg00213123\n", + "cg16570507,cg03003745,cg24073122,cg20051772\n", + "cg16570507,cg03003745,cg24073122,cg15059851\n", + "cg16570507,cg03003745,cg24073122,cg08375658\n", + "cg16570507,cg03003745,cg24073122,cg07925549\n", + "cg16570507,cg03003745,cg24073122,cg21298408\n", + "cg16570507,cg03003745,cg24073122,cg07552803\n", + "cg16570507,cg03003745,cg24073122,cg20248866\n", + "cg16570507,cg03003745,cg24073122,cg02329916\n", + "cg16570507,cg03003745,cg24073122,cg20596724\n", + "cg16570507,cg03003745,cg24073122,cg12610471\n", + "cg16570507,cg13379236,cg00727675,cg00213123\n", + "cg16570507,cg13379236,cg00727675,cg20051772\n", + "cg16570507,cg13379236,cg00727675,cg15059851\n", + "cg16570507,cg13379236,cg00727675,cg08375658\n", + "cg16570507,cg13379236,cg00727675,cg07925549\n", + "cg16570507,cg13379236,cg00727675,cg21298408\n", + "cg16570507,cg13379236,cg00727675,cg07552803\n", + "cg16570507,cg13379236,cg00727675,cg20248866\n", + "cg16570507,cg13379236,cg00727675,cg02329916\n", + "cg16570507,cg13379236,cg00727675,cg20596724\n", + "cg16570507,cg13379236,cg00727675,cg12610471\n", + "cg16570507,cg13379236,cg22500132,cg00213123\n", + "cg16570507,cg13379236,cg22500132,cg20051772\n", + "cg16570507,cg13379236,cg22500132,cg15059851\n", + "cg16570507,cg13379236,cg22500132,cg08375658\n", + "cg16570507,cg13379236,cg22500132,cg07925549\n", + "cg16570507,cg13379236,cg22500132,cg21298408\n", + "cg16570507,cg13379236,cg22500132,cg07552803\n", + "cg16570507,cg13379236,cg22500132,cg20248866\n", + "cg16570507,cg13379236,cg22500132,cg02329916\n", + "cg16570507,cg13379236,cg22500132,cg20596724\n", + "cg16570507,cg13379236,cg22500132,cg12610471\n", + "cg16570507,cg13379236,cg22746058,cg00213123\n", + "cg16570507,cg13379236,cg22746058,cg20051772\n", + "cg16570507,cg13379236,cg22746058,cg15059851\n", + "cg16570507,cg13379236,cg22746058,cg08375658\n", + "cg16570507,cg13379236,cg22746058,cg07925549\n", + "cg16570507,cg13379236,cg22746058,cg21298408\n", + "cg16570507,cg13379236,cg22746058,cg07552803\n", + "cg16570507,cg13379236,cg22746058,cg20248866\n", + "cg16570507,cg13379236,cg22746058,cg02329916\n", + "cg16570507,cg13379236,cg22746058,cg20596724\n", + "cg16570507,cg13379236,cg22746058,cg12610471\n", + "cg16570507,cg13379236,cg05884032,cg00213123\n", + "cg16570507,cg13379236,cg05884032,cg20051772\n", + "cg16570507,cg13379236,cg05884032,cg15059851\n", + "cg16570507,cg13379236,cg05884032,cg08375658\n", + "cg16570507,cg13379236,cg05884032,cg07925549\n", + "cg16570507,cg13379236,cg05884032,cg21298408\n", + "cg16570507,cg13379236,cg05884032,cg07552803\n", + "cg16570507,cg13379236,cg05884032,cg20248866\n", + "cg16570507,cg13379236,cg05884032,cg02329916\n", + "cg16570507,cg13379236,cg05884032,cg20596724\n", + "cg16570507,cg13379236,cg05884032,cg12610471\n", + "cg16570507,cg13379236,cg02547394,cg00213123\n", + "cg16570507,cg13379236,cg02547394,cg20051772\n", + "cg16570507,cg13379236,cg02547394,cg15059851\n", + "cg16570507,cg13379236,cg02547394,cg08375658\n", + "cg16570507,cg13379236,cg02547394,cg07925549\n", + "cg16570507,cg13379236,cg02547394,cg21298408\n", + "cg16570507,cg13379236,cg02547394,cg07552803\n", + "cg16570507,cg13379236,cg02547394,cg20248866\n", + "cg16570507,cg13379236,cg02547394,cg02329916\n", + "cg16570507,cg13379236,cg02547394,cg20596724\n", + "cg16570507,cg13379236,cg02547394,cg12610471\n", + "cg16570507,cg13379236,cg24073122,cg00213123\n", + "cg16570507,cg13379236,cg24073122,cg20051772\n", + "cg16570507,cg13379236,cg24073122,cg15059851\n", + "cg16570507,cg13379236,cg24073122,cg08375658\n", + "cg16570507,cg13379236,cg24073122,cg07925549\n", + "cg16570507,cg13379236,cg24073122,cg21298408\n", + "cg16570507,cg13379236,cg24073122,cg07552803\n", + "cg16570507,cg13379236,cg24073122,cg20248866\n", + "cg16570507,cg13379236,cg24073122,cg02329916\n", + "cg16570507,cg13379236,cg24073122,cg20596724\n", + "cg16570507,cg13379236,cg24073122,cg12610471\n", + "cg16570507,cg05818394,cg00727675,cg00213123\n", + "cg16570507,cg05818394,cg00727675,cg20051772\n", + "cg16570507,cg05818394,cg00727675,cg15059851\n", + "cg16570507,cg05818394,cg00727675,cg08375658\n", + "cg16570507,cg05818394,cg00727675,cg07925549\n", + "cg16570507,cg05818394,cg00727675,cg21298408\n", + "cg16570507,cg05818394,cg00727675,cg07552803\n", + "cg16570507,cg05818394,cg00727675,cg20248866\n", + "cg16570507,cg05818394,cg00727675,cg02329916\n", + "cg16570507,cg05818394,cg00727675,cg20596724\n", + "cg16570507,cg05818394,cg00727675,cg12610471\n", + "cg16570507,cg05818394,cg22500132,cg00213123\n", + "cg16570507,cg05818394,cg22500132,cg20051772\n", + "cg16570507,cg05818394,cg22500132,cg15059851\n", + "cg16570507,cg05818394,cg22500132,cg08375658\n", + "cg16570507,cg05818394,cg22500132,cg07925549\n", + "cg16570507,cg05818394,cg22500132,cg21298408\n", + "cg16570507,cg05818394,cg22500132,cg07552803\n", + "cg16570507,cg05818394,cg22500132,cg20248866\n", + "cg16570507,cg05818394,cg22500132,cg02329916\n", + "cg16570507,cg05818394,cg22500132,cg20596724\n", + "cg16570507,cg05818394,cg22500132,cg12610471\n", + "cg16570507,cg05818394,cg22746058,cg00213123\n", + "cg16570507,cg05818394,cg22746058,cg20051772\n", + "cg16570507,cg05818394,cg22746058,cg15059851\n", + "cg16570507,cg05818394,cg22746058,cg08375658\n", + "cg16570507,cg05818394,cg22746058,cg07925549\n", + "cg16570507,cg05818394,cg22746058,cg21298408\n", + "cg16570507,cg05818394,cg22746058,cg07552803\n", + "cg16570507,cg05818394,cg22746058,cg20248866\n", + "cg16570507,cg05818394,cg22746058,cg02329916\n", + "cg16570507,cg05818394,cg22746058,cg20596724\n", + "cg16570507,cg05818394,cg22746058,cg12610471\n", + "cg16570507,cg05818394,cg05884032,cg00213123\n", + "cg16570507,cg05818394,cg05884032,cg20051772\n", + "cg16570507,cg05818394,cg05884032,cg15059851\n", + "cg16570507,cg05818394,cg05884032,cg08375658\n", + "cg16570507,cg05818394,cg05884032,cg07925549\n", + "cg16570507,cg05818394,cg05884032,cg21298408\n", + "cg16570507,cg05818394,cg05884032,cg07552803\n", + "cg16570507,cg05818394,cg05884032,cg20248866\n", + "cg16570507,cg05818394,cg05884032,cg02329916\n", + "cg16570507,cg05818394,cg05884032,cg20596724\n", + "cg16570507,cg05818394,cg05884032,cg12610471\n", + "cg16570507,cg05818394,cg02547394,cg00213123\n", + "cg16570507,cg05818394,cg02547394,cg20051772\n", + "cg16570507,cg05818394,cg02547394,cg15059851\n", + "cg16570507,cg05818394,cg02547394,cg08375658\n", + "cg16570507,cg05818394,cg02547394,cg07925549\n", + "cg16570507,cg05818394,cg02547394,cg21298408\n", + "cg16570507,cg05818394,cg02547394,cg07552803\n", + "cg16570507,cg05818394,cg02547394,cg20248866\n", + "cg16570507,cg05818394,cg02547394,cg02329916\n", + "cg16570507,cg05818394,cg02547394,cg20596724\n", + "cg16570507,cg05818394,cg02547394,cg12610471\n", + "cg16570507,cg05818394,cg24073122,cg00213123\n", + "cg16570507,cg05818394,cg24073122,cg20051772\n", + "cg16570507,cg05818394,cg24073122,cg15059851\n", + "cg16570507,cg05818394,cg24073122,cg08375658\n", + "cg16570507,cg05818394,cg24073122,cg07925549\n", + "cg16570507,cg05818394,cg24073122,cg21298408\n", + "cg16570507,cg05818394,cg24073122,cg07552803\n", + "cg16570507,cg05818394,cg24073122,cg20248866\n", + "cg16570507,cg05818394,cg24073122,cg02329916\n", + "cg16570507,cg05818394,cg24073122,cg20596724\n", + "cg16570507,cg05818394,cg24073122,cg12610471\n", + "cg16570507,cg04433322,cg00727675,cg00213123\n", + "cg16570507,cg04433322,cg00727675,cg20051772\n", + "cg16570507,cg04433322,cg00727675,cg15059851\n", + "cg16570507,cg04433322,cg00727675,cg08375658\n", + "cg16570507,cg04433322,cg00727675,cg07925549\n", + "cg16570507,cg04433322,cg00727675,cg21298408\n", + "cg16570507,cg04433322,cg00727675,cg07552803\n", + "cg16570507,cg04433322,cg00727675,cg20248866\n", + "cg16570507,cg04433322,cg00727675,cg02329916\n", + "cg16570507,cg04433322,cg00727675,cg20596724\n", + "cg16570507,cg04433322,cg00727675,cg12610471\n", + "cg16570507,cg04433322,cg22500132,cg00213123\n", + "cg16570507,cg04433322,cg22500132,cg20051772\n", + "cg16570507,cg04433322,cg22500132,cg15059851\n", + "cg16570507,cg04433322,cg22500132,cg08375658\n", + "cg16570507,cg04433322,cg22500132,cg07925549\n", + "cg16570507,cg04433322,cg22500132,cg21298408\n", + "cg16570507,cg04433322,cg22500132,cg07552803\n", + "cg16570507,cg04433322,cg22500132,cg20248866\n", + "cg16570507,cg04433322,cg22500132,cg02329916\n", + "cg16570507,cg04433322,cg22500132,cg20596724\n", + "cg16570507,cg04433322,cg22500132,cg12610471\n", + "cg16570507,cg04433322,cg22746058,cg00213123\n", + "cg16570507,cg04433322,cg22746058,cg20051772\n", + "cg16570507,cg04433322,cg22746058,cg15059851\n", + "cg16570507,cg04433322,cg22746058,cg08375658\n", + "cg16570507,cg04433322,cg22746058,cg07925549\n", + "cg16570507,cg04433322,cg22746058,cg21298408\n", + "cg16570507,cg04433322,cg22746058,cg07552803\n", + "cg16570507,cg04433322,cg22746058,cg20248866\n", + "cg16570507,cg04433322,cg22746058,cg02329916\n", + "cg16570507,cg04433322,cg22746058,cg20596724\n", + "cg16570507,cg04433322,cg22746058,cg12610471\n", + "cg16570507,cg04433322,cg05884032,cg00213123\n", + "cg16570507,cg04433322,cg05884032,cg20051772\n", + "cg16570507,cg04433322,cg05884032,cg15059851\n", + "cg16570507,cg04433322,cg05884032,cg08375658\n", + "cg16570507,cg04433322,cg05884032,cg07925549\n", + "cg16570507,cg04433322,cg05884032,cg21298408\n", + "cg16570507,cg04433322,cg05884032,cg07552803\n", + "cg16570507,cg04433322,cg05884032,cg20248866\n", + "cg16570507,cg04433322,cg05884032,cg02329916\n", + "cg16570507,cg04433322,cg05884032,cg20596724\n", + "cg16570507,cg04433322,cg05884032,cg12610471\n", + "cg16570507,cg04433322,cg02547394,cg00213123\n", + "cg16570507,cg04433322,cg02547394,cg20051772\n", + "cg16570507,cg04433322,cg02547394,cg15059851\n", + "cg16570507,cg04433322,cg02547394,cg08375658\n", + "cg16570507,cg04433322,cg02547394,cg07925549\n", + "cg16570507,cg04433322,cg02547394,cg21298408\n", + "cg16570507,cg04433322,cg02547394,cg07552803\n", + "cg16570507,cg04433322,cg02547394,cg20248866\n", + "cg16570507,cg04433322,cg02547394,cg02329916\n", + "cg16570507,cg04433322,cg02547394,cg20596724\n", + "cg16570507,cg04433322,cg02547394,cg12610471\n", + "cg16570507,cg04433322,cg24073122,cg00213123\n", + "cg16570507,cg04433322,cg24073122,cg20051772\n", + "cg16570507,cg04433322,cg24073122,cg15059851\n", + "cg16570507,cg04433322,cg24073122,cg08375658\n", + "cg16570507,cg04433322,cg24073122,cg07925549\n", + "cg16570507,cg04433322,cg24073122,cg21298408\n", + "cg16570507,cg04433322,cg24073122,cg07552803\n", + "cg16570507,cg04433322,cg24073122,cg20248866\n", + "cg16570507,cg04433322,cg24073122,cg02329916\n", + "cg16570507,cg04433322,cg24073122,cg20596724\n", + "cg16570507,cg04433322,cg24073122,cg12610471\n", + "cg16570507,cg14153654,cg00727675,cg00213123\n", + "cg16570507,cg14153654,cg00727675,cg20051772\n", + "cg16570507,cg14153654,cg00727675,cg15059851\n", + "cg16570507,cg14153654,cg00727675,cg08375658\n", + "cg16570507,cg14153654,cg00727675,cg07925549\n", + "cg16570507,cg14153654,cg00727675,cg21298408\n", + "cg16570507,cg14153654,cg00727675,cg07552803\n", + "cg16570507,cg14153654,cg00727675,cg20248866\n", + "cg16570507,cg14153654,cg00727675,cg02329916\n", + "cg16570507,cg14153654,cg00727675,cg20596724\n", + "cg16570507,cg14153654,cg00727675,cg12610471\n", + "cg16570507,cg14153654,cg22500132,cg00213123\n", + "cg16570507,cg14153654,cg22500132,cg20051772\n", + "cg16570507,cg14153654,cg22500132,cg15059851\n", + "cg16570507,cg14153654,cg22500132,cg08375658\n", + "cg16570507,cg14153654,cg22500132,cg07925549\n", + "cg16570507,cg14153654,cg22500132,cg21298408\n", + "cg16570507,cg14153654,cg22500132,cg07552803\n", + "cg16570507,cg14153654,cg22500132,cg20248866\n", + "cg16570507,cg14153654,cg22500132,cg02329916\n", + "cg16570507,cg14153654,cg22500132,cg20596724\n", + "cg16570507,cg14153654,cg22500132,cg12610471\n", + "cg16570507,cg14153654,cg22746058,cg00213123\n", + "cg16570507,cg14153654,cg22746058,cg20051772\n", + "cg16570507,cg14153654,cg22746058,cg15059851\n", + "cg16570507,cg14153654,cg22746058,cg08375658\n", + "cg16570507,cg14153654,cg22746058,cg07925549\n", + "cg16570507,cg14153654,cg22746058,cg21298408\n", + "cg16570507,cg14153654,cg22746058,cg07552803\n", + "cg16570507,cg14153654,cg22746058,cg20248866\n", + "cg16570507,cg14153654,cg22746058,cg02329916\n", + "cg16570507,cg14153654,cg22746058,cg20596724\n", + "cg16570507,cg14153654,cg22746058,cg12610471\n", + "cg16570507,cg14153654,cg05884032,cg00213123\n", + "cg16570507,cg14153654,cg05884032,cg20051772\n", + "cg16570507,cg14153654,cg05884032,cg15059851\n", + "cg16570507,cg14153654,cg05884032,cg08375658\n", + "cg16570507,cg14153654,cg05884032,cg07925549\n", + "cg16570507,cg14153654,cg05884032,cg21298408\n", + "cg16570507,cg14153654,cg05884032,cg07552803\n", + "cg16570507,cg14153654,cg05884032,cg20248866\n", + "cg16570507,cg14153654,cg05884032,cg02329916\n", + "cg16570507,cg14153654,cg05884032,cg20596724\n", + "cg16570507,cg14153654,cg05884032,cg12610471\n", + "cg16570507,cg14153654,cg02547394,cg00213123\n", + "cg16570507,cg14153654,cg02547394,cg20051772\n", + "cg16570507,cg14153654,cg02547394,cg15059851\n", + "cg16570507,cg14153654,cg02547394,cg08375658\n", + "cg16570507,cg14153654,cg02547394,cg07925549\n", + "cg16570507,cg14153654,cg02547394,cg21298408\n", + "cg16570507,cg14153654,cg02547394,cg07552803\n", + "cg16570507,cg14153654,cg02547394,cg20248866\n", + "cg16570507,cg14153654,cg02547394,cg02329916\n", + "cg16570507,cg14153654,cg02547394,cg20596724\n", + "cg16570507,cg14153654,cg02547394,cg12610471\n", + "cg16570507,cg14153654,cg24073122,cg00213123\n", + "cg16570507,cg14153654,cg24073122,cg20051772\n", + "cg16570507,cg14153654,cg24073122,cg15059851\n", + "cg16570507,cg14153654,cg24073122,cg08375658\n", + "cg16570507,cg14153654,cg24073122,cg07925549\n", + "cg16570507,cg14153654,cg24073122,cg21298408\n", + "cg16570507,cg14153654,cg24073122,cg07552803\n", + "cg16570507,cg14153654,cg24073122,cg20248866\n", + "cg16570507,cg14153654,cg24073122,cg02329916\n", + "cg16570507,cg14153654,cg24073122,cg20596724\n", + "cg16570507,cg14153654,cg24073122,cg12610471\n" ] } ], @@ -2120,13 +6232,14 @@ "result = []\n", "for combo in combinations:\n", " result.append([row[2] for row in combo]) # row[0] 對應的是 Gene 列\n", - "# print(result[0])\n", + "print(result[0])\n", + "print(len(result[0]))\n", "# 打印結果\n", "for combo in result:\n", "\n", " a = 0\n", " for i in combo:\n", - " if(a == 2):\n", + " if(a == (len(result[0])-1)):\n", " print(i,end='\\n')\n", " a = 0\n", " continue\n", diff --git a/breast/ml/ics_aba/ml_RFE_BORUTA_find_geoup.ipynb b/breast/ml/ics_aba/ml_RFE_BORUTA_find_geoup.ipynb deleted file mode 100644 index 04289ba..0000000 --- a/breast/ml/ics_aba/ml_RFE_BORUTA_find_geoup.ipynb +++ /dev/null @@ -1,3592 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Unnamed: 0461_x487_y325_x333_x417_x355_x373_y329_y503_x...61_x171_x179_x131_y51_y39_y151_y225_x85_y199_x
0cg078810410.9369640.9494280.9318670.9275040.9408760.9350680.9438850.9413410.931477...0.9422430.9452630.9357650.9457910.9449680.9464320.9390400.9479150.9251480.908973
1cg035138740.9627190.9522010.9344610.9354500.9535760.9427980.9338520.9453660.940140...0.9537310.9542760.9441590.9647710.9515810.9561530.9597710.9680140.9389310.946057
2cg054518420.0256800.0298570.0214940.0426520.0365310.0268960.0276100.0435610.051736...0.0420910.0394760.0346990.0253500.0244450.0272730.0259660.0248160.0505230.031266
3cg147970420.9624760.9815260.9700980.9787890.9746920.9722800.9846150.9629270.980575...0.9766880.9728890.9756340.9796910.9876200.9733120.9732610.9760110.9737310.961352
4cg098385620.0170290.0173770.0229060.0213990.0296930.0142630.0201670.0132350.014649...0.0126460.0167930.0252780.0152610.0039840.0080680.0115140.0125200.0213040.027372
..................................................................
730294cg198129380.8723710.8871970.8948710.9029360.8753690.8950610.8918720.8940700.864369...0.8807740.8905530.9000910.8936450.8786580.8867230.8982970.8761150.8811850.874934
730295cg062720540.0175870.0116510.0079930.0161880.0142880.0002610.0114620.0129480.008948...0.0165250.0157790.0235840.0146770.0089680.0057190.0084810.0092760.0168650.016004
730296cg072553560.0200570.0190630.0248120.0257760.0305280.0245800.0193380.0278200.021167...0.0228550.0273970.0337440.0186610.0114570.0112550.0231390.0201770.0149280.022536
730297cg242208970.9015990.8946740.9341780.9464100.9369240.9509090.9349240.9154400.928410...0.9081630.9232110.9401200.9407490.9452740.9633180.9483810.9518940.8607620.892109
730298cg123255880.0146320.0155720.0219710.0248340.0171360.0098340.0149740.0182130.013185...0.0124930.0228520.0215910.0111240.0051570.0116350.0121880.0081020.0275240.019300
\n", - "

730299 rows × 419 columns

\n", - "
" - ], - "text/plain": [ - " Unnamed: 0 461_x 487_y 325_x 333_x 417_x \\\n", - "0 cg07881041 0.936964 0.949428 0.931867 0.927504 0.940876 \n", - "1 cg03513874 0.962719 0.952201 0.934461 0.935450 0.953576 \n", - "2 cg05451842 0.025680 0.029857 0.021494 0.042652 0.036531 \n", - "3 cg14797042 0.962476 0.981526 0.970098 0.978789 0.974692 \n", - "4 cg09838562 0.017029 0.017377 0.022906 0.021399 0.029693 \n", - "... ... ... ... ... ... ... \n", - "730294 cg19812938 0.872371 0.887197 0.894871 0.902936 0.875369 \n", - "730295 cg06272054 0.017587 0.011651 0.007993 0.016188 0.014288 \n", - "730296 cg07255356 0.020057 0.019063 0.024812 0.025776 0.030528 \n", - "730297 cg24220897 0.901599 0.894674 0.934178 0.946410 0.936924 \n", - "730298 cg12325588 0.014632 0.015572 0.021971 0.024834 0.017136 \n", - "\n", - " 355_x 373_y 329_y 503_x ... 61_x 171_x \\\n", - "0 0.935068 0.943885 0.941341 0.931477 ... 0.942243 0.945263 \n", - "1 0.942798 0.933852 0.945366 0.940140 ... 0.953731 0.954276 \n", - "2 0.026896 0.027610 0.043561 0.051736 ... 0.042091 0.039476 \n", - "3 0.972280 0.984615 0.962927 0.980575 ... 0.976688 0.972889 \n", - "4 0.014263 0.020167 0.013235 0.014649 ... 0.012646 0.016793 \n", - "... ... ... ... ... ... ... ... \n", - "730294 0.895061 0.891872 0.894070 0.864369 ... 0.880774 0.890553 \n", - "730295 0.000261 0.011462 0.012948 0.008948 ... 0.016525 0.015779 \n", - "730296 0.024580 0.019338 0.027820 0.021167 ... 0.022855 0.027397 \n", - "730297 0.950909 0.934924 0.915440 0.928410 ... 0.908163 0.923211 \n", - "730298 0.009834 0.014974 0.018213 0.013185 ... 0.012493 0.022852 \n", - "\n", - " 179_x 131_y 51_y 39_y 151_y 225_x 85_y \\\n", - "0 0.935765 0.945791 0.944968 0.946432 0.939040 0.947915 0.925148 \n", - "1 0.944159 0.964771 0.951581 0.956153 0.959771 0.968014 0.938931 \n", - "2 0.034699 0.025350 0.024445 0.027273 0.025966 0.024816 0.050523 \n", - "3 0.975634 0.979691 0.987620 0.973312 0.973261 0.976011 0.973731 \n", - "4 0.025278 0.015261 0.003984 0.008068 0.011514 0.012520 0.021304 \n", - "... ... ... ... ... ... ... ... \n", - "730294 0.900091 0.893645 0.878658 0.886723 0.898297 0.876115 0.881185 \n", - "730295 0.023584 0.014677 0.008968 0.005719 0.008481 0.009276 0.016865 \n", - "730296 0.033744 0.018661 0.011457 0.011255 0.023139 0.020177 0.014928 \n", - "730297 0.940120 0.940749 0.945274 0.963318 0.948381 0.951894 0.860762 \n", - "730298 0.021591 0.011124 0.005157 0.011635 0.012188 0.008102 0.027524 \n", - "\n", - " 199_x \n", - "0 0.908973 \n", - "1 0.946057 \n", - "2 0.031266 \n", - "3 0.961352 \n", - "4 0.027372 \n", - "... ... \n", - "730294 0.874934 \n", - "730295 0.016004 \n", - "730296 0.022536 \n", - "730297 0.892109 \n", - "730298 0.019300 \n", - "\n", - "[730299 rows x 419 columns]" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import pandas as pd \n", - "import numpy as np\n", - "\n", - "df_beta_train = pd.read_csv(\"result/GSE243529_aba/X_train_sorted_0.8.csv\")\n", - "df_beta_train\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Unnamed: 0461_x487_y325_x333_x417_x355_x373_y329_y503_x...61_x171_x179_x131_y51_y39_y151_y225_x85_y199_x
0cg078810410.9369640.9494280.9318670.9275040.9408760.9350680.9438850.9413410.931477...0.9422430.9452630.9357650.9457910.9449680.9464320.9390400.9479150.9251480.908973
1cg035138740.9627190.9522010.9344610.9354500.9535760.9427980.9338520.9453660.940140...0.9537310.9542760.9441590.9647710.9515810.9561530.9597710.9680140.9389310.946057
2cg054518420.0256800.0298570.0214940.0426520.0365310.0268960.0276100.0435610.051736...0.0420910.0394760.0346990.0253500.0244450.0272730.0259660.0248160.0505230.031266
3cg147970420.9624760.9815260.9700980.9787890.9746920.9722800.9846150.9629270.980575...0.9766880.9728890.9756340.9796910.9876200.9733120.9732610.9760110.9737310.961352
4cg098385620.0170290.0173770.0229060.0213990.0296930.0142630.0201670.0132350.014649...0.0126460.0167930.0252780.0152610.0039840.0080680.0115140.0125200.0213040.027372
..................................................................
730294cg198129380.8723710.8871970.8948710.9029360.8753690.8950610.8918720.8940700.864369...0.8807740.8905530.9000910.8936450.8786580.8867230.8982970.8761150.8811850.874934
730295cg062720540.0175870.0116510.0079930.0161880.0142880.0002610.0114620.0129480.008948...0.0165250.0157790.0235840.0146770.0089680.0057190.0084810.0092760.0168650.016004
730296cg072553560.0200570.0190630.0248120.0257760.0305280.0245800.0193380.0278200.021167...0.0228550.0273970.0337440.0186610.0114570.0112550.0231390.0201770.0149280.022536
730297cg242208970.9015990.8946740.9341780.9464100.9369240.9509090.9349240.9154400.928410...0.9081630.9232110.9401200.9407490.9452740.9633180.9483810.9518940.8607620.892109
730298cg123255880.0146320.0155720.0219710.0248340.0171360.0098340.0149740.0182130.013185...0.0124930.0228520.0215910.0111240.0051570.0116350.0121880.0081020.0275240.019300
\n", - "

730299 rows × 419 columns

\n", - "
" - ], - "text/plain": [ - " Unnamed: 0 461_x 487_y 325_x 333_x 417_x \\\n", - "0 cg07881041 0.936964 0.949428 0.931867 0.927504 0.940876 \n", - "1 cg03513874 0.962719 0.952201 0.934461 0.935450 0.953576 \n", - "2 cg05451842 0.025680 0.029857 0.021494 0.042652 0.036531 \n", - "3 cg14797042 0.962476 0.981526 0.970098 0.978789 0.974692 \n", - "4 cg09838562 0.017029 0.017377 0.022906 0.021399 0.029693 \n", - "... ... ... ... ... ... ... \n", - "730294 cg19812938 0.872371 0.887197 0.894871 0.902936 0.875369 \n", - "730295 cg06272054 0.017587 0.011651 0.007993 0.016188 0.014288 \n", - "730296 cg07255356 0.020057 0.019063 0.024812 0.025776 0.030528 \n", - "730297 cg24220897 0.901599 0.894674 0.934178 0.946410 0.936924 \n", - "730298 cg12325588 0.014632 0.015572 0.021971 0.024834 0.017136 \n", - "\n", - " 355_x 373_y 329_y 503_x ... 61_x 171_x \\\n", - "0 0.935068 0.943885 0.941341 0.931477 ... 0.942243 0.945263 \n", - "1 0.942798 0.933852 0.945366 0.940140 ... 0.953731 0.954276 \n", - "2 0.026896 0.027610 0.043561 0.051736 ... 0.042091 0.039476 \n", - "3 0.972280 0.984615 0.962927 0.980575 ... 0.976688 0.972889 \n", - "4 0.014263 0.020167 0.013235 0.014649 ... 0.012646 0.016793 \n", - "... ... ... ... ... ... ... ... \n", - "730294 0.895061 0.891872 0.894070 0.864369 ... 0.880774 0.890553 \n", - "730295 0.000261 0.011462 0.012948 0.008948 ... 0.016525 0.015779 \n", - "730296 0.024580 0.019338 0.027820 0.021167 ... 0.022855 0.027397 \n", - "730297 0.950909 0.934924 0.915440 0.928410 ... 0.908163 0.923211 \n", - "730298 0.009834 0.014974 0.018213 0.013185 ... 0.012493 0.022852 \n", - "\n", - " 179_x 131_y 51_y 39_y 151_y 225_x 85_y \\\n", - "0 0.935765 0.945791 0.944968 0.946432 0.939040 0.947915 0.925148 \n", - "1 0.944159 0.964771 0.951581 0.956153 0.959771 0.968014 0.938931 \n", - "2 0.034699 0.025350 0.024445 0.027273 0.025966 0.024816 0.050523 \n", - "3 0.975634 0.979691 0.987620 0.973312 0.973261 0.976011 0.973731 \n", - "4 0.025278 0.015261 0.003984 0.008068 0.011514 0.012520 0.021304 \n", - "... ... ... ... ... ... ... ... \n", - "730294 0.900091 0.893645 0.878658 0.886723 0.898297 0.876115 0.881185 \n", - "730295 0.023584 0.014677 0.008968 0.005719 0.008481 0.009276 0.016865 \n", - "730296 0.033744 0.018661 0.011457 0.011255 0.023139 0.020177 0.014928 \n", - "730297 0.940120 0.940749 0.945274 0.963318 0.948381 0.951894 0.860762 \n", - "730298 0.021591 0.011124 0.005157 0.011635 0.012188 0.008102 0.027524 \n", - "\n", - " 199_x \n", - "0 0.908973 \n", - "1 0.946057 \n", - "2 0.031266 \n", - "3 0.961352 \n", - "4 0.027372 \n", - "... ... \n", - "730294 0.874934 \n", - "730295 0.016004 \n", - "730296 0.022536 \n", - "730297 0.892109 \n", - "730298 0.019300 \n", - "\n", - "[730299 rows x 419 columns]" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_mix_train = df_beta_train\n", - "df_mix_train" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Unnamed: 0403_x435_x293_x393_x275_x415_x459_x465_x287_y...233_y169_x153_x93_x129_y2011_y29_x87_x39_x
0cg078810410.9253960.9473030.9389540.9399750.9224420.9494390.9393030.9370670.931057...0.9478270.9372460.9339270.9470290.9531740.9616020.9440830.9269230.9219470.969780
1cg035138740.9331640.9449110.9562210.9480100.9442390.9707510.9437130.9529010.945893...0.9476470.9448910.9341900.9539340.9426260.9822560.9432960.9493770.9537430.952016
2cg054518420.0305780.0446310.0284410.0286370.0470840.0300670.0390090.0460110.030951...0.0200060.0268900.0356000.0192640.0253690.0346290.0125830.0346150.0342040.021382
3cg147970420.9612470.9744820.9807080.9757870.9701410.9648990.9836230.9832320.980500...0.9829130.9016770.9792600.9772940.9869770.9791320.9890790.9758110.9832980.986134
4cg098385620.0322000.0235810.0134230.0109730.0262290.0178950.0233790.0258630.010268...0.0165720.0210440.0168590.0140870.0108630.0174230.0096690.0170600.0222280.007662
..................................................................
730294cg198129380.8528150.9033330.8977620.8852460.8741310.8678780.8670810.8799540.883569...0.8873070.8822530.8727110.8841560.8735840.8688280.8816700.9027750.8893480.879664
730295cg062720540.0169530.0247170.0090950.0143410.0134130.0130330.0228020.0137710.008347...0.0127880.0162330.0071490.0173090.0096250.0083540.0085300.0111380.0163000.004846
730296cg072553560.0380070.0352570.0220100.0250080.0334870.0285280.0297840.0204120.012821...0.0218080.0281650.0237400.0262540.0113870.0231850.0132670.0254800.0257270.011394
730297cg242208970.8983440.9387140.9398350.9009010.9007200.9159280.9090810.9211050.929455...0.9219870.8924950.9193800.9318180.8629110.9583490.9344710.9436550.9199630.943813
730298cg123255880.0418630.0190650.0120270.0197120.0293540.0226300.0282940.0187760.013149...0.0125880.0107530.0296690.0074270.0125010.0129810.0091910.0054220.0150080.008226
\n", - "

730299 rows × 106 columns

\n", - "
" - ], - "text/plain": [ - " Unnamed: 0 403_x 435_x 293_x 393_x 275_x \\\n", - "0 cg07881041 0.925396 0.947303 0.938954 0.939975 0.922442 \n", - "1 cg03513874 0.933164 0.944911 0.956221 0.948010 0.944239 \n", - "2 cg05451842 0.030578 0.044631 0.028441 0.028637 0.047084 \n", - "3 cg14797042 0.961247 0.974482 0.980708 0.975787 0.970141 \n", - "4 cg09838562 0.032200 0.023581 0.013423 0.010973 0.026229 \n", - "... ... ... ... ... ... ... \n", - "730294 cg19812938 0.852815 0.903333 0.897762 0.885246 0.874131 \n", - "730295 cg06272054 0.016953 0.024717 0.009095 0.014341 0.013413 \n", - "730296 cg07255356 0.038007 0.035257 0.022010 0.025008 0.033487 \n", - "730297 cg24220897 0.898344 0.938714 0.939835 0.900901 0.900720 \n", - "730298 cg12325588 0.041863 0.019065 0.012027 0.019712 0.029354 \n", - "\n", - " 415_x 459_x 465_x 287_y ... 233_y 169_x \\\n", - "0 0.949439 0.939303 0.937067 0.931057 ... 0.947827 0.937246 \n", - "1 0.970751 0.943713 0.952901 0.945893 ... 0.947647 0.944891 \n", - "2 0.030067 0.039009 0.046011 0.030951 ... 0.020006 0.026890 \n", - "3 0.964899 0.983623 0.983232 0.980500 ... 0.982913 0.901677 \n", - "4 0.017895 0.023379 0.025863 0.010268 ... 0.016572 0.021044 \n", - "... ... ... ... ... ... ... ... \n", - "730294 0.867878 0.867081 0.879954 0.883569 ... 0.887307 0.882253 \n", - "730295 0.013033 0.022802 0.013771 0.008347 ... 0.012788 0.016233 \n", - "730296 0.028528 0.029784 0.020412 0.012821 ... 0.021808 0.028165 \n", - "730297 0.915928 0.909081 0.921105 0.929455 ... 0.921987 0.892495 \n", - "730298 0.022630 0.028294 0.018776 0.013149 ... 0.012588 0.010753 \n", - "\n", - " 153_x 93_x 129_y 201 1_y 29_x 87_x \\\n", - "0 0.933927 0.947029 0.953174 0.961602 0.944083 0.926923 0.921947 \n", - "1 0.934190 0.953934 0.942626 0.982256 0.943296 0.949377 0.953743 \n", - "2 0.035600 0.019264 0.025369 0.034629 0.012583 0.034615 0.034204 \n", - "3 0.979260 0.977294 0.986977 0.979132 0.989079 0.975811 0.983298 \n", - "4 0.016859 0.014087 0.010863 0.017423 0.009669 0.017060 0.022228 \n", - "... ... ... ... ... ... ... ... \n", - "730294 0.872711 0.884156 0.873584 0.868828 0.881670 0.902775 0.889348 \n", - "730295 0.007149 0.017309 0.009625 0.008354 0.008530 0.011138 0.016300 \n", - "730296 0.023740 0.026254 0.011387 0.023185 0.013267 0.025480 0.025727 \n", - "730297 0.919380 0.931818 0.862911 0.958349 0.934471 0.943655 0.919963 \n", - "730298 0.029669 0.007427 0.012501 0.012981 0.009191 0.005422 0.015008 \n", - "\n", - " 39_x \n", - "0 0.969780 \n", - "1 0.952016 \n", - "2 0.021382 \n", - "3 0.986134 \n", - "4 0.007662 \n", - "... ... \n", - "730294 0.879664 \n", - "730295 0.004846 \n", - "730296 0.011394 \n", - "730297 0.943813 \n", - "730298 0.008226 \n", - "\n", - "[730299 rows x 106 columns]" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_beta_test = pd.read_csv(\"result/GSE243529_aba/X_test_sorted_0.2.csv\")\n", - "df_beta_test" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Unnamed: 0403_x435_x293_x393_x275_x415_x459_x465_x287_y...233_y169_x153_x93_x129_y2011_y29_x87_x39_x
0cg078810410.9253960.9473030.9389540.9399750.9224420.9494390.9393030.9370670.931057...0.9478270.9372460.9339270.9470290.9531740.9616020.9440830.9269230.9219470.969780
1cg035138740.9331640.9449110.9562210.9480100.9442390.9707510.9437130.9529010.945893...0.9476470.9448910.9341900.9539340.9426260.9822560.9432960.9493770.9537430.952016
2cg054518420.0305780.0446310.0284410.0286370.0470840.0300670.0390090.0460110.030951...0.0200060.0268900.0356000.0192640.0253690.0346290.0125830.0346150.0342040.021382
3cg147970420.9612470.9744820.9807080.9757870.9701410.9648990.9836230.9832320.980500...0.9829130.9016770.9792600.9772940.9869770.9791320.9890790.9758110.9832980.986134
4cg098385620.0322000.0235810.0134230.0109730.0262290.0178950.0233790.0258630.010268...0.0165720.0210440.0168590.0140870.0108630.0174230.0096690.0170600.0222280.007662
..................................................................
730294cg198129380.8528150.9033330.8977620.8852460.8741310.8678780.8670810.8799540.883569...0.8873070.8822530.8727110.8841560.8735840.8688280.8816700.9027750.8893480.879664
730295cg062720540.0169530.0247170.0090950.0143410.0134130.0130330.0228020.0137710.008347...0.0127880.0162330.0071490.0173090.0096250.0083540.0085300.0111380.0163000.004846
730296cg072553560.0380070.0352570.0220100.0250080.0334870.0285280.0297840.0204120.012821...0.0218080.0281650.0237400.0262540.0113870.0231850.0132670.0254800.0257270.011394
730297cg242208970.8983440.9387140.9398350.9009010.9007200.9159280.9090810.9211050.929455...0.9219870.8924950.9193800.9318180.8629110.9583490.9344710.9436550.9199630.943813
730298cg123255880.0418630.0190650.0120270.0197120.0293540.0226300.0282940.0187760.013149...0.0125880.0107530.0296690.0074270.0125010.0129810.0091910.0054220.0150080.008226
\n", - "

730299 rows × 106 columns

\n", - "
" - ], - "text/plain": [ - " Unnamed: 0 403_x 435_x 293_x 393_x 275_x \\\n", - "0 cg07881041 0.925396 0.947303 0.938954 0.939975 0.922442 \n", - "1 cg03513874 0.933164 0.944911 0.956221 0.948010 0.944239 \n", - "2 cg05451842 0.030578 0.044631 0.028441 0.028637 0.047084 \n", - "3 cg14797042 0.961247 0.974482 0.980708 0.975787 0.970141 \n", - "4 cg09838562 0.032200 0.023581 0.013423 0.010973 0.026229 \n", - "... ... ... ... ... ... ... \n", - "730294 cg19812938 0.852815 0.903333 0.897762 0.885246 0.874131 \n", - "730295 cg06272054 0.016953 0.024717 0.009095 0.014341 0.013413 \n", - "730296 cg07255356 0.038007 0.035257 0.022010 0.025008 0.033487 \n", - "730297 cg24220897 0.898344 0.938714 0.939835 0.900901 0.900720 \n", - "730298 cg12325588 0.041863 0.019065 0.012027 0.019712 0.029354 \n", - "\n", - " 415_x 459_x 465_x 287_y ... 233_y 169_x \\\n", - "0 0.949439 0.939303 0.937067 0.931057 ... 0.947827 0.937246 \n", - "1 0.970751 0.943713 0.952901 0.945893 ... 0.947647 0.944891 \n", - "2 0.030067 0.039009 0.046011 0.030951 ... 0.020006 0.026890 \n", - "3 0.964899 0.983623 0.983232 0.980500 ... 0.982913 0.901677 \n", - "4 0.017895 0.023379 0.025863 0.010268 ... 0.016572 0.021044 \n", - "... ... ... ... ... ... ... ... \n", - "730294 0.867878 0.867081 0.879954 0.883569 ... 0.887307 0.882253 \n", - "730295 0.013033 0.022802 0.013771 0.008347 ... 0.012788 0.016233 \n", - "730296 0.028528 0.029784 0.020412 0.012821 ... 0.021808 0.028165 \n", - "730297 0.915928 0.909081 0.921105 0.929455 ... 0.921987 0.892495 \n", - "730298 0.022630 0.028294 0.018776 0.013149 ... 0.012588 0.010753 \n", - "\n", - " 153_x 93_x 129_y 201 1_y 29_x 87_x \\\n", - "0 0.933927 0.947029 0.953174 0.961602 0.944083 0.926923 0.921947 \n", - "1 0.934190 0.953934 0.942626 0.982256 0.943296 0.949377 0.953743 \n", - "2 0.035600 0.019264 0.025369 0.034629 0.012583 0.034615 0.034204 \n", - "3 0.979260 0.977294 0.986977 0.979132 0.989079 0.975811 0.983298 \n", - "4 0.016859 0.014087 0.010863 0.017423 0.009669 0.017060 0.022228 \n", - "... ... ... ... ... ... ... ... \n", - "730294 0.872711 0.884156 0.873584 0.868828 0.881670 0.902775 0.889348 \n", - "730295 0.007149 0.017309 0.009625 0.008354 0.008530 0.011138 0.016300 \n", - "730296 0.023740 0.026254 0.011387 0.023185 0.013267 0.025480 0.025727 \n", - "730297 0.919380 0.931818 0.862911 0.958349 0.934471 0.943655 0.919963 \n", - "730298 0.029669 0.007427 0.012501 0.012981 0.009191 0.005422 0.015008 \n", - "\n", - " 39_x \n", - "0 0.969780 \n", - "1 0.952016 \n", - "2 0.021382 \n", - "3 0.986134 \n", - "4 0.007662 \n", - "... ... \n", - "730294 0.879664 \n", - "730295 0.004846 \n", - "730296 0.011394 \n", - "730297 0.943813 \n", - "730298 0.008226 \n", - "\n", - "[730299 rows x 106 columns]" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\n", - "df_mix_test = df_beta_test\n", - "df_mix_test" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Unnamed: 0cg07881041cg03513874cg05451842cg14797042cg09838562cg25458538cg09261072cg02404579cg04118974cg01236347...cg23020486cg10295858cg11606463cg04767756cg05166473cg19812938cg06272054cg07255356cg24220897cg12325588
461_x0.9369640.9627190.0256800.9624760.0170290.9517550.6976160.8571800.5539330.552993...0.0184090.9166730.9164450.9579350.8653650.8723710.0175870.0200570.9015990.014632
487_y0.9494280.9522010.0298570.9815260.0173770.9598610.7151940.8678540.6053770.562242...0.0173520.9154970.9190450.9457060.8385620.8871970.0116510.0190630.8946740.015572
325_x0.9318670.9344610.0214940.9700980.0229060.9573120.6619960.9085780.5468830.603278...0.0172680.9135350.9214820.9396480.8934980.8948710.0079930.0248120.9341780.021971
333_x0.9275040.9354500.0426520.9787890.0213990.9624580.6630410.8635560.6043820.611538...0.0074890.9202780.9200770.9565430.8647720.9029360.0161880.0257760.9464100.024834
417_x0.9408760.9535760.0365310.9746920.0296930.9678380.6150060.8296320.5539010.608524...0.0105810.8950360.9085820.9415020.8694740.8753690.0142880.0305280.9369240.017136
..................................................................
39_y0.9464320.9561530.0272730.9733120.0080680.9727540.6357960.8853580.5477710.616187...0.0078760.9058250.9278690.9544960.8988070.8867230.0057190.0112550.9633180.011635
151_y0.9390400.9597710.0259660.9732610.0115140.9696520.7349020.9104290.7033830.732262...0.0129930.9231330.9331970.9670270.9486620.8982970.0084810.0231390.9483810.012188
225_x0.9479150.9680140.0248160.9760110.0125200.9739320.6477340.9116900.5994660.567957...0.0146210.8969270.9341780.9574080.8284060.8761150.0092760.0201770.9518940.008102
85_y0.9251480.9389310.0505230.9737310.0213040.9465690.6722420.8918350.6195010.564449...0.0234340.9094210.9220700.9427390.8511900.8811850.0168650.0149280.8607620.027524
199_x0.9089730.9460570.0312660.9613520.0273720.9693110.6331440.9618960.7633990.842941...0.0129990.8850160.8985170.9555160.4785840.8749340.0160040.0225360.8921090.019300
\n", - "

418 rows × 730299 columns

\n", - "
" - ], - "text/plain": [ - "Unnamed: 0 cg07881041 cg03513874 cg05451842 cg14797042 cg09838562 \\\n", - "461_x 0.936964 0.962719 0.025680 0.962476 0.017029 \n", - "487_y 0.949428 0.952201 0.029857 0.981526 0.017377 \n", - "325_x 0.931867 0.934461 0.021494 0.970098 0.022906 \n", - "333_x 0.927504 0.935450 0.042652 0.978789 0.021399 \n", - "417_x 0.940876 0.953576 0.036531 0.974692 0.029693 \n", - "... ... ... ... ... ... \n", - "39_y 0.946432 0.956153 0.027273 0.973312 0.008068 \n", - "151_y 0.939040 0.959771 0.025966 0.973261 0.011514 \n", - "225_x 0.947915 0.968014 0.024816 0.976011 0.012520 \n", - "85_y 0.925148 0.938931 0.050523 0.973731 0.021304 \n", - "199_x 0.908973 0.946057 0.031266 0.961352 0.027372 \n", - "\n", - "Unnamed: 0 cg25458538 cg09261072 cg02404579 cg04118974 cg01236347 ... \\\n", - "461_x 0.951755 0.697616 0.857180 0.553933 0.552993 ... \n", - "487_y 0.959861 0.715194 0.867854 0.605377 0.562242 ... \n", - "325_x 0.957312 0.661996 0.908578 0.546883 0.603278 ... \n", - "333_x 0.962458 0.663041 0.863556 0.604382 0.611538 ... \n", - "417_x 0.967838 0.615006 0.829632 0.553901 0.608524 ... \n", - "... ... ... ... ... ... ... \n", - "39_y 0.972754 0.635796 0.885358 0.547771 0.616187 ... \n", - "151_y 0.969652 0.734902 0.910429 0.703383 0.732262 ... \n", - "225_x 0.973932 0.647734 0.911690 0.599466 0.567957 ... \n", - "85_y 0.946569 0.672242 0.891835 0.619501 0.564449 ... \n", - "199_x 0.969311 0.633144 0.961896 0.763399 0.842941 ... \n", - "\n", - "Unnamed: 0 cg23020486 cg10295858 cg11606463 cg04767756 cg05166473 \\\n", - "461_x 0.018409 0.916673 0.916445 0.957935 0.865365 \n", - "487_y 0.017352 0.915497 0.919045 0.945706 0.838562 \n", - "325_x 0.017268 0.913535 0.921482 0.939648 0.893498 \n", - "333_x 0.007489 0.920278 0.920077 0.956543 0.864772 \n", - "417_x 0.010581 0.895036 0.908582 0.941502 0.869474 \n", - "... ... ... ... ... ... \n", - "39_y 0.007876 0.905825 0.927869 0.954496 0.898807 \n", - "151_y 0.012993 0.923133 0.933197 0.967027 0.948662 \n", - "225_x 0.014621 0.896927 0.934178 0.957408 0.828406 \n", - "85_y 0.023434 0.909421 0.922070 0.942739 0.851190 \n", - "199_x 0.012999 0.885016 0.898517 0.955516 0.478584 \n", - "\n", - "Unnamed: 0 cg19812938 cg06272054 cg07255356 cg24220897 cg12325588 \n", - "461_x 0.872371 0.017587 0.020057 0.901599 0.014632 \n", - "487_y 0.887197 0.011651 0.019063 0.894674 0.015572 \n", - "325_x 0.894871 0.007993 0.024812 0.934178 0.021971 \n", - "333_x 0.902936 0.016188 0.025776 0.946410 0.024834 \n", - "417_x 0.875369 0.014288 0.030528 0.936924 0.017136 \n", - "... ... ... ... ... ... \n", - "39_y 0.886723 0.005719 0.011255 0.963318 0.011635 \n", - "151_y 0.898297 0.008481 0.023139 0.948381 0.012188 \n", - "225_x 0.876115 0.009276 0.020177 0.951894 0.008102 \n", - "85_y 0.881185 0.016865 0.014928 0.860762 0.027524 \n", - "199_x 0.874934 0.016004 0.022536 0.892109 0.019300 \n", - "\n", - "[418 rows x 730299 columns]" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\n", - "\n", - "from sklearn.model_selection import train_test_split\n", - "\n", - "\n", - "df_mix_train.set_index(\"Unnamed: 0\", inplace=True)\n", - "\n", - "X_train = df_mix_train.T\n", - "\n", - "X_train_normal_count = 210\n", - "\n", - "if (X_train_normal_count):\n", - " y_train = [(0 if i < (X_train_normal_count) else 1) for i in range(len(X_train))]\n", - "\n", - "X_train" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Unnamed: 0cg07881041cg03513874cg05451842cg14797042cg09838562cg25458538cg09261072cg02404579cg04118974cg01236347...cg23020486cg10295858cg11606463cg04767756cg05166473cg19812938cg06272054cg07255356cg24220897cg12325588
403_x0.9253960.9331640.0305780.9612470.0322000.9541600.6204480.8862580.6225480.677705...0.0236920.8755570.9065900.9243240.8390780.8528150.0169530.0380070.8983440.041863
435_x0.9473030.9449110.0446310.9744820.0235810.9714990.6421020.8760760.5806360.722798...0.0159320.8826030.9217480.9491780.8351640.9033330.0247170.0352570.9387140.019065
293_x0.9389540.9562210.0284410.9807080.0134230.9527430.6107810.8975370.5391510.510294...0.0112430.9136890.9301460.9450780.8492390.8977620.0090950.0220100.9398350.012027
393_x0.9399750.9480100.0286370.9757870.0109730.9554140.6407660.8727560.4948780.547792...0.0241170.8695890.9304110.9419760.8563040.8852460.0143410.0250080.9009010.019712
275_x0.9224420.9442390.0470840.9701410.0262290.9620070.6189690.8523950.6112680.690184...0.0159000.8866800.9250640.9320110.8303090.8741310.0134130.0334870.9007200.029354
..................................................................
2010.9616020.9822560.0346290.9791320.0174230.9617350.6501390.8840480.5412060.580289...0.0142510.8935540.9179190.9552440.8594810.8688280.0083540.0231850.9583490.012981
1_y0.9440830.9432960.0125830.9890790.0096690.9667410.6221880.8798090.5664740.580040...0.0064860.9156140.9335900.9614540.8890100.8816700.0085300.0132670.9344710.009191
29_x0.9269230.9493770.0346150.9758110.0170600.9732520.5987330.8664560.6283200.658063...0.0191040.8893530.9215440.9569140.8416470.9027750.0111380.0254800.9436550.005422
87_x0.9219470.9537430.0342040.9832980.0222280.9596610.6861730.8242800.5400910.502476...0.0128020.8934530.9388170.9508990.8651880.8893480.0163000.0257270.9199630.015008
39_x0.9697800.9520160.0213820.9861340.0076620.9618330.6368730.8416550.5414270.551256...0.0089440.9123050.9376150.9665830.9207070.8796640.0048460.0113940.9438130.008226
\n", - "

105 rows × 730299 columns

\n", - "
" - ], - "text/plain": [ - "Unnamed: 0 cg07881041 cg03513874 cg05451842 cg14797042 cg09838562 \\\n", - "403_x 0.925396 0.933164 0.030578 0.961247 0.032200 \n", - "435_x 0.947303 0.944911 0.044631 0.974482 0.023581 \n", - "293_x 0.938954 0.956221 0.028441 0.980708 0.013423 \n", - "393_x 0.939975 0.948010 0.028637 0.975787 0.010973 \n", - "275_x 0.922442 0.944239 0.047084 0.970141 0.026229 \n", - "... ... ... ... ... ... \n", - "201 0.961602 0.982256 0.034629 0.979132 0.017423 \n", - "1_y 0.944083 0.943296 0.012583 0.989079 0.009669 \n", - "29_x 0.926923 0.949377 0.034615 0.975811 0.017060 \n", - "87_x 0.921947 0.953743 0.034204 0.983298 0.022228 \n", - "39_x 0.969780 0.952016 0.021382 0.986134 0.007662 \n", - "\n", - "Unnamed: 0 cg25458538 cg09261072 cg02404579 cg04118974 cg01236347 ... \\\n", - "403_x 0.954160 0.620448 0.886258 0.622548 0.677705 ... \n", - "435_x 0.971499 0.642102 0.876076 0.580636 0.722798 ... \n", - "293_x 0.952743 0.610781 0.897537 0.539151 0.510294 ... \n", - "393_x 0.955414 0.640766 0.872756 0.494878 0.547792 ... \n", - "275_x 0.962007 0.618969 0.852395 0.611268 0.690184 ... \n", - "... ... ... ... ... ... ... \n", - "201 0.961735 0.650139 0.884048 0.541206 0.580289 ... \n", - "1_y 0.966741 0.622188 0.879809 0.566474 0.580040 ... \n", - "29_x 0.973252 0.598733 0.866456 0.628320 0.658063 ... \n", - "87_x 0.959661 0.686173 0.824280 0.540091 0.502476 ... \n", - "39_x 0.961833 0.636873 0.841655 0.541427 0.551256 ... \n", - "\n", - "Unnamed: 0 cg23020486 cg10295858 cg11606463 cg04767756 cg05166473 \\\n", - "403_x 0.023692 0.875557 0.906590 0.924324 0.839078 \n", - "435_x 0.015932 0.882603 0.921748 0.949178 0.835164 \n", - "293_x 0.011243 0.913689 0.930146 0.945078 0.849239 \n", - "393_x 0.024117 0.869589 0.930411 0.941976 0.856304 \n", - "275_x 0.015900 0.886680 0.925064 0.932011 0.830309 \n", - "... ... ... ... ... ... \n", - "201 0.014251 0.893554 0.917919 0.955244 0.859481 \n", - "1_y 0.006486 0.915614 0.933590 0.961454 0.889010 \n", - "29_x 0.019104 0.889353 0.921544 0.956914 0.841647 \n", - "87_x 0.012802 0.893453 0.938817 0.950899 0.865188 \n", - "39_x 0.008944 0.912305 0.937615 0.966583 0.920707 \n", - "\n", - "Unnamed: 0 cg19812938 cg06272054 cg07255356 cg24220897 cg12325588 \n", - "403_x 0.852815 0.016953 0.038007 0.898344 0.041863 \n", - "435_x 0.903333 0.024717 0.035257 0.938714 0.019065 \n", - "293_x 0.897762 0.009095 0.022010 0.939835 0.012027 \n", - "393_x 0.885246 0.014341 0.025008 0.900901 0.019712 \n", - "275_x 0.874131 0.013413 0.033487 0.900720 0.029354 \n", - "... ... ... ... ... ... \n", - "201 0.868828 0.008354 0.023185 0.958349 0.012981 \n", - "1_y 0.881670 0.008530 0.013267 0.934471 0.009191 \n", - "29_x 0.902775 0.011138 0.025480 0.943655 0.005422 \n", - "87_x 0.889348 0.016300 0.025727 0.919963 0.015008 \n", - "39_x 0.879664 0.004846 0.011394 0.943813 0.008226 \n", - "\n", - "[105 rows x 730299 columns]" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\n", - "\n", - "from sklearn.model_selection import train_test_split\n", - "\n", - "df_mix_test.set_index(\"Unnamed: 0\", inplace=True)\n", - "\n", - "X_test = df_mix_test.T\n", - "\n", - "X_test_normal_count = 58\n", - "\n", - "if (X_test_normal_count):\n", - " y_test= [(0 if i < (X_test_normal_count) else 1) for i in range(len(X_test))]\n", - "\n", - "X_test" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 0 1 2\n", - "0 cg19935065 cg02355304 cg25707994\n", - "1 cg19935065 cg02355304 cg13379236\n", - "2 cg19935065 cg02355304 cg02676175\n", - "3 cg19935065 cg02355304 cg11207300\n", - "4 cg19935065 cg02355304 cg00603498\n", - "5 cg19935065 cg02355304 cg15100599\n", - "6 cg19935065 cg24911721 cg25707994\n", - "7 cg19935065 cg24911721 cg13379236\n", - "8 cg19935065 cg24911721 cg02676175\n", - "9 cg19935065 cg24911721 cg11207300\n", - "10 cg19935065 cg24911721 cg00603498\n", - "11 cg19935065 cg24911721 cg15100599\n", - "12 cg02547394 cg02355304 cg25707994\n", - "13 cg02547394 cg02355304 cg13379236\n", - "14 cg02547394 cg02355304 cg02676175\n", - "15 cg02547394 cg02355304 cg11207300\n", - "16 cg02547394 cg02355304 cg00603498\n", - "17 cg02547394 cg02355304 cg15100599\n", - "18 cg02547394 cg24911721 cg25707994\n", - "19 cg02547394 cg24911721 cg13379236\n", - "20 cg02547394 cg24911721 cg02676175\n", - "21 cg02547394 cg24911721 cg11207300\n", - "22 cg02547394 cg24911721 cg00603498\n", - "23 cg02547394 cg24911721 cg15100599\n" - ] - } - ], - "source": [ - "file_path = \"result/GSE243529_aba/group.csv\" # 替換為你的文件路徑\n", - "\n", - "# 使用 read_csv 讀取,指定分隔符為空格\n", - "df = pd.read_csv(file_path, sep=\" \", header=None)\n", - "\n", - "df = pd.read_csv(file_path, header=None)\n", - "\n", - "# 將 DataFrame 轉換為列表列表\n", - "cg_list = df.values.tolist()\n", - "\n", - "print(df)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['cg25707994', 'cg19935065', 'cg13379236', 'cg02676175', 'cg11207300', 'cg02355304', 'cg24911721', 'cg00603498', 'cg02547394', 'cg15100599']\n" - ] - } - ], - "source": [ - "clustering = \"result/GSE243529_aba/boruta_average_clustering_result_aba.csv\" # 替換為你的文件路徑\n", - "\n", - "# 使用 read_csv 讀取,指定分隔符為空格\n", - "df_clustering = pd.read_csv(clustering)\n", - "\n", - "clustering = df_clustering[\"Unnamed: 0\"].to_list()\n", - "print(clustering)" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Train accuracy (Random Forest): 0.7805\n", - "Test accuracy (Random Forest): 0.7321\n" - ] - } - ], - "source": [ - "from sklearn.ensemble import RandomForestClassifier\n", - "from sklearn.model_selection import cross_validate\n", - "\n", - "# 初始化隨機森林模型\n", - "random_forest = RandomForestClassifier(random_state=42)\n", - "\n", - "# 手動調整隨機森林模型參數\n", - "random_forest.set_params(n_estimators=120, max_depth=3, min_samples_split=2, min_samples_leaf=8)\n", - "# (n_estimators=150, max_depth=3, min_samples_split=2, min_samples_leaf=8)\n", - "X_train_try_param = X_train[clustering]\n", - "\n", - "\n", - "cv_results = cross_validate(random_forest, X_train_try_param, y_train, cv=5, scoring='accuracy', return_train_score=True)\n", - "\n", - "# 輸出調整後的訓練集和測試集的交叉驗證平均準確率\n", - "print(f\"Train accuracy (Random Forest): {cv_results['train_score'].mean():.4f}\")\n", - "print(f\"Test accuracy (Random Forest): {cv_results['test_score'].mean():.4f}\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Train accuracy (Logistic Regression): 0.7326\n", - "Test accuracy (Logistic Regression): 0.7201\n" - ] - } - ], - "source": [ - "\n", - "from sklearn.linear_model import LogisticRegression\n", - "\n", - "logistic_regression = LogisticRegression(random_state=42, max_iter=300)\n", - "logistic_regression.set_params(C=1000, penalty='l2', solver='liblinear')\n", - "cv_results_lr = cross_validate(logistic_regression, X_train_try_param, y_train, cv=5, scoring='accuracy', return_train_score=True)\n", - "print(f\"Train accuracy (Logistic Regression): {cv_results_lr['train_score'].mean():.4f}\")\n", - "print(f\"Test accuracy (Logistic Regression): {cv_results_lr['test_score'].mean():.4f}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Train accuracy (SVM): 0.7572\n", - "Test accuracy (SVM): 0.7392\n" - ] - } - ], - "source": [ - "\n", - "from sklearn.svm import SVC\n", - "\n", - "svm = SVC(random_state=42, probability=True)\n", - "svm.set_params(C=10, kernel='rbf', gamma='scale')\n", - "cv_results_svm = cross_validate(svm, X_train_try_param, y_train, cv=5, scoring='accuracy', return_train_score=True)\n", - "print(f\"Train accuracy (SVM): {cv_results_svm['train_score'].mean():.4f}\")\n", - "print(f\"Test accuracy (SVM): {cv_results_svm['test_score'].mean():.4f}\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Train accuracy (XGBoost): 0.7817\n", - "Test accuracy (XGBoost): 0.7127\n" - ] - } - ], - "source": [ - "from xgboost import XGBClassifier\n", - "\n", - "xgboost = XGBClassifier(random_state=42, eval_metric='logloss')\n", - "xgboost.set_params(n_estimators=10, learning_rate=0.05, max_depth=2, subsample=0.8)\n", - "cv_results_xgb = cross_validate(xgboost, X_train_try_param, y_train, cv=5, scoring='accuracy', return_train_score=True)\n", - "print(f\"Train accuracy (XGBoost): {cv_results_xgb['train_score'].mean():.4f}\")\n", - "print(f\"Test accuracy (XGBoost): {cv_results_xgb['test_score'].mean():.4f}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Requirement already satisfied: boruta in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (0.3)\n", - "Requirement already satisfied: numpy>=1.10.4 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from boruta) (1.23.5)\n", - "Requirement already satisfied: scikit-learn>=0.17.1 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from boruta) (1.3.2)\n", - "Requirement already satisfied: scipy>=0.17.0 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from boruta) (1.10.1)\n", - "Requirement already satisfied: joblib>=1.1.1 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-learn>=0.17.1->boruta) (1.3.2)\n", - "Requirement already satisfied: threadpoolctl>=2.0.0 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-learn>=0.17.1->boruta) (3.2.0)\n", - "Note: you may need to restart the kernel to use updated packages.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING: Ignoring invalid distribution -uggingface-hub (c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages)\n", - "WARNING: Ignoring invalid distribution -uggingface-hub (c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages)\n", - "\n", - "[notice] A new release of pip is available: 24.0 -> 24.2\n", - "[notice] To update, run: python.exe -m pip install --upgrade pip\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Requirement already satisfied: scikit-optimize in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (0.10.2)\n", - "Requirement already satisfied: joblib>=0.11 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-optimize) (1.3.2)\n", - "Requirement already satisfied: pyaml>=16.9 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-optimize) (24.7.0)\n", - "Requirement already satisfied: numpy>=1.20.3 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-optimize) (1.23.5)\n", - "Requirement already satisfied: scipy>=1.1.0 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-optimize) (1.10.1)\n", - "Requirement already satisfied: scikit-learn>=1.0.0 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-optimize) (1.3.2)\n", - "Requirement already satisfied: packaging>=21.3 in c:\\users\\user\\appdata\\roaming\\python\\python310\\site-packages (from scikit-optimize) (21.3)\n", - "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in c:\\users\\user\\appdata\\roaming\\python\\python310\\site-packages (from packaging>=21.3->scikit-optimize) (3.0.9)\n", - "Requirement already satisfied: PyYAML in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from pyaml>=16.9->scikit-optimize) (6.0)\n", - "Requirement already satisfied: threadpoolctl>=2.0.0 in c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from scikit-learn>=1.0.0->scikit-optimize) (3.2.0)\n", - "Note: you may need to restart the kernel to use updated packages.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING: Ignoring invalid distribution -uggingface-hub (c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages)\n", - "WARNING: Ignoring invalid distribution -uggingface-hub (c:\\users\\user\\appdata\\local\\programs\\python\\python310\\lib\\site-packages)\n", - "\n", - "[notice] A new release of pip is available: 24.0 -> 24.2\n", - "[notice] To update, run: python.exe -m pip install --upgrade pip\n" - ] - } - ], - "source": [ - "%pip install boruta\n", - "%pip install scikit-optimize\n" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ModelID1ID2ID3train_accuracytest_accuracytrain - test accuracyAUCf1-scoresensitivityspecificityprecisionsen+spef1+preAVG_(sen+spe)AVG_(f1+pre)AVG_(avg(sen+spe)+avg(f1+pre))
0Decision Treecg19935065cg02355304cg257079940.6842110.6285710.0556390.6863540.6880000.9148940.3965520.5512821.3114451.2392820.6557230.6196410.637682
1Logistic Regressioncg19935065cg02355304cg257079940.6483250.6190480.0292780.6636100.6000000.6382980.6034480.5660381.2417461.1660380.6208730.5830190.601946
2Random Forestcg19935065cg02355304cg257079940.7511960.6095240.1416720.6892880.5858590.6170210.6034480.5576921.2204701.1435510.6102350.5717750.591005
3SVMcg19935065cg02355304cg257079940.6985650.6380950.0604690.7201030.6346150.7021280.5862070.5789471.2883351.2135630.6441670.6067810.625474
4XGBoostcg19935065cg02355304cg257079940.7200960.5809520.1391430.6735140.5686270.6170210.5517240.5272731.1687451.0959000.5843730.5479500.566161
......................................................
115Decision Treecg02547394cg24911721cg151005990.6937800.5714290.1223510.6250920.6153850.7659570.4137930.5142861.1797511.1296700.5898750.5648350.577355
116Logistic Regressioncg02547394cg24911721cg151005990.6339710.647619-0.0136480.6581070.6407770.7021280.6034480.5892861.3055761.2300620.6527880.6150310.633910
117Random Forestcg02547394cg24911721cg151005990.7296650.6190480.1106170.6735140.6078430.6595740.5862070.5636361.2457811.1714800.6228910.5857400.604315
118SVMcg02547394cg24911721cg151005990.6746410.6095240.0651170.6942410.6306310.7446810.5000000.5468751.2446811.1775060.6223400.5887530.605547
119XGBoostcg02547394cg24911721cg151005990.7153110.6476190.0676920.6546220.6336630.6808510.6206900.5925931.3015411.2262560.6507700.6131280.631949
\n", - "

120 rows × 17 columns

\n", - "
" - ], - "text/plain": [ - " Model ID1 ID2 ID3 train_accuracy \\\n", - "0 Decision Tree cg19935065 cg02355304 cg25707994 0.684211 \n", - "1 Logistic Regression cg19935065 cg02355304 cg25707994 0.648325 \n", - "2 Random Forest cg19935065 cg02355304 cg25707994 0.751196 \n", - "3 SVM cg19935065 cg02355304 cg25707994 0.698565 \n", - "4 XGBoost cg19935065 cg02355304 cg25707994 0.720096 \n", - ".. ... ... ... ... ... \n", - "115 Decision Tree cg02547394 cg24911721 cg15100599 0.693780 \n", - "116 Logistic Regression cg02547394 cg24911721 cg15100599 0.633971 \n", - "117 Random Forest cg02547394 cg24911721 cg15100599 0.729665 \n", - "118 SVM cg02547394 cg24911721 cg15100599 0.674641 \n", - "119 XGBoost cg02547394 cg24911721 cg15100599 0.715311 \n", - "\n", - " test_accuracy train - test accuracy AUC f1-score sensitivity \\\n", - "0 0.628571 0.055639 0.686354 0.688000 0.914894 \n", - "1 0.619048 0.029278 0.663610 0.600000 0.638298 \n", - "2 0.609524 0.141672 0.689288 0.585859 0.617021 \n", - "3 0.638095 0.060469 0.720103 0.634615 0.702128 \n", - "4 0.580952 0.139143 0.673514 0.568627 0.617021 \n", - ".. ... ... ... ... ... \n", - "115 0.571429 0.122351 0.625092 0.615385 0.765957 \n", - "116 0.647619 -0.013648 0.658107 0.640777 0.702128 \n", - "117 0.619048 0.110617 0.673514 0.607843 0.659574 \n", - "118 0.609524 0.065117 0.694241 0.630631 0.744681 \n", - "119 0.647619 0.067692 0.654622 0.633663 0.680851 \n", - "\n", - " specificity precision sen+spe f1+pre AVG_(sen+spe) AVG_(f1+pre) \\\n", - "0 0.396552 0.551282 1.311445 1.239282 0.655723 0.619641 \n", - "1 0.603448 0.566038 1.241746 1.166038 0.620873 0.583019 \n", - "2 0.603448 0.557692 1.220470 1.143551 0.610235 0.571775 \n", - "3 0.586207 0.578947 1.288335 1.213563 0.644167 0.606781 \n", - "4 0.551724 0.527273 1.168745 1.095900 0.584373 0.547950 \n", - ".. ... ... ... ... ... ... \n", - "115 0.413793 0.514286 1.179751 1.129670 0.589875 0.564835 \n", - "116 0.603448 0.589286 1.305576 1.230062 0.652788 0.615031 \n", - "117 0.586207 0.563636 1.245781 1.171480 0.622891 0.585740 \n", - "118 0.500000 0.546875 1.244681 1.177506 0.622340 0.588753 \n", - "119 0.620690 0.592593 1.301541 1.226256 0.650770 0.613128 \n", - "\n", - " AVG_(avg(sen+spe)+avg(f1+pre)) \n", - "0 0.637682 \n", - "1 0.601946 \n", - "2 0.591005 \n", - "3 0.625474 \n", - "4 0.566161 \n", - ".. ... \n", - "115 0.577355 \n", - "116 0.633910 \n", - "117 0.604315 \n", - "118 0.605547 \n", - "119 0.631949 \n", - "\n", - "[120 rows x 17 columns]" - ] - }, - "execution_count": 75, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import pandas as pd\n", - "from sklearn.svm import SVC\n", - "from sklearn.tree import DecisionTreeClassifier\n", - "from sklearn.ensemble import RandomForestClassifier\n", - "import xgboost as xgb\n", - "from sklearn.linear_model import LogisticRegression\n", - "from sklearn.metrics import classification_report, roc_auc_score, accuracy_score, precision_score, recall_score, f1_score\n", - "from sklearn.model_selection import train_test_split\n", - "from xgboost import XGBClassifier\n", - "from sklearn.model_selection import RandomizedSearchCV\n", - "from sklearn.model_selection import GridSearchCV\n", - "from skopt import BayesSearchCV\n", - "from skopt.space import Categorical, Real\n", - "\n", - "\n", - "tree_params = {\n", - " 'max_depth': [3, 5, 10, None],\n", - " 'min_samples_split': [2, 5, 10],\n", - " 'min_samples_leaf': [1, 2, 4],\n", - " 'criterion': ['gini', 'entropy']\n", - "}\n", - "\n", - "clf_tree = DecisionTreeClassifier()\n", - "\n", - "lr_params = [\n", - " {'penalty': ['l1', 'l2'], 'C': [0.1,1, 10, 100], 'solver': ['liblinear'], 'max_iter': [100, 200, 300]},\n", - " {'penalty': ['elasticnet'], 'C': [ 0.1,1, 10, 100], 'solver': ['saga'], 'max_iter': [100, 200, 300], 'l1_ratio': [0, 0.5, 1]},\n", - " {'penalty': ['l1', 'l2'], 'C': [0.1,1, 10, 100], 'solver': ['saga'], 'max_iter': [100, 200, 300]},\n", - " {'penalty': [None], 'solver': ['saga'], 'max_iter': [100, 200, 300]}\n", - "]\n", - "\n", - "clf_lr = LogisticRegression(max_iter=500) \n", - "\n", - "\n", - "rf_params = {\n", - " 'n_estimators': Categorical([100, 130,170, 200]), # 使用 Categorical 表示離散值\n", - " 'max_depth': Categorical([1, 3, 5]),\n", - " 'min_samples_split': Categorical([2, 5, 10]),\n", - " 'min_samples_leaf': Categorical([2, 5, 10]),\n", - " 'max_features': Categorical(['sqrt', 'log2', 0.2, 0.5]),\n", - " 'bootstrap': [True], # 這個值是布林值,不需要變更\n", - " 'max_samples': Categorical([0.6, 0.8]) # 明確為 Categorical\n", - "}\n", - "clf_rf = RandomForestClassifier()\n", - "\n", - "svm_params = {\n", - " 'C': [1, 10, 100],\n", - " 'gamma': ['scale', 'auto'],\n", - " 'kernel': ['linear', 'poly', 'rbf', 'sigmoid']\n", - "}\n", - "\n", - "clf_svm = SVC(probability=True)\n", - "\n", - "\n", - "xgb_params = {\n", - " 'n_estimators': Categorical([10, 15, 20]),\n", - " 'learning_rate': Real(0.01, 0.05),\n", - " 'max_depth': Categorical([2, 3, 5]),\n", - " 'subsample': Categorical([0.6, 0.8]), \n", - " 'colsample_bytree': Categorical([0.6, 0.8]), \n", - " 'gamma': Real(0.1, 0.3),\n", - " 'lambda': Real(1, 1.5, prior='uniform'), \n", - " 'alpha': Real(0, 0.1, prior='uniform') \n", - "}\n", - "\n", - "clf_xgb = XGBClassifier( eval_metric='logloss')\n", - "\n", - "results = []\n", - "\n", - "model_list = [clf_tree,clf_lr,clf_rf,clf_svm,clf_xgb]\n", - "model_param = [tree_params,lr_params,rf_params,svm_params,xgb_params]\n", - "model_names = ['Decision Tree', 'Logistic Regression', 'Random Forest', 'SVM', 'XGBoost']\n", - "\n", - "for cg in cg_list:\n", - " X_train_c = X_train[cg]\n", - " X_test_c = X_test[cg]\n", - " \n", - " for model,param, model_name in zip(model_list,model_param, model_names):\n", - " \n", - " model = BayesSearchCV(\n", - " estimator=model, \n", - " search_spaces=param, \n", - " n_iter=10, # 優化的疊代次數,可以調整\n", - " cv=5, # 5 折交叉驗證\n", - " n_jobs=-1, \n", - " verbose=0, \n", - " random_state=42, # 設定隨機種子\n", - " scoring='f1'\n", - " )\n", - " model.fit(X_train_c, y_train)\n", - " \n", - " y_pred = model.predict(X_test_c)\n", - " y_pred_prob = model.predict_proba(X_test_c)[:, 1]\n", - " \n", - " y_pred_train = model.predict(X_train_c)\n", - " y_pred_prob_train = model.predict_proba(X_train_c)[:, 1]\n", - " # report = classification_report(y_test, y_pred, output_dict=True)\n", - " auc = roc_auc_score(y_test, y_pred_prob)\n", - " \n", - " train_accuracy = accuracy_score(y_train, y_pred_train)\n", - " test_accuracy = accuracy_score(y_test, y_pred)\n", - " precision = precision_score(y_test, y_pred)\n", - " sensitivity = recall_score(y_test, y_pred)\n", - " specificity = recall_score(y_test, y_pred, pos_label=0)\n", - " f1 = f1_score(y_test, y_pred)\n", - " \n", - " results.append( {\n", - " 'Model': model_name,\n", - " 'ID1': cg[0],\n", - " 'ID2': cg[1],\n", - " 'ID3': cg[2],\n", - " # 'ID4': cg[3],\n", - " 'train_accuracy': train_accuracy,\n", - " 'test_accuracy': test_accuracy,\n", - " 'train - test accuracy' : train_accuracy - test_accuracy,\n", - " 'AUC': auc,\n", - " 'f1-score': f1,\n", - " 'sensitivity': sensitivity,\n", - " 'specificity': specificity,\n", - " 'precision': precision,\n", - " 'sen+spe': sensitivity + specificity,\n", - " 'f1+pre': f1 + precision,\n", - " 'AVG_(sen+spe)': (sensitivity + specificity)/2,\n", - " 'AVG_(f1+pre)': (f1 + precision)/2,\n", - " 'AVG_(avg(sen+spe)+avg(f1+pre))': ((f1 + precision)/2+ (sensitivity + specificity)/2)/2\n", - " })\n", - "df = pd.DataFrame(results)\n", - "\n", - "df\n", - "\n", - "# df.to_csv(\"../../result/GSE243529/ics_mthod1_0706/train75/test_with_5model_0904_test_rc.csv\",index=False)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 78, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Unnamed: 0gene
0cg10523679ACADM
1cg20707765ACSL5
2cg19536664ALOX12
3cg14904662ANK1
4cg01699630ARG1
.........
87cg16688533STC1
88cg03681335SULT1C2
89cg15100599SUSD4
90cg02569115TIMP2
91cg09276451VASN
\n", - "

92 rows × 2 columns

\n", - "
" - ], - "text/plain": [ - " Unnamed: 0 gene\n", - "0 cg10523679 ACADM\n", - "1 cg20707765 ACSL5\n", - "2 cg19536664 ALOX12\n", - "3 cg14904662 ANK1\n", - "4 cg01699630 ARG1\n", - ".. ... ...\n", - "87 cg16688533 STC1\n", - "88 cg03681335 SULT1C2\n", - "89 cg15100599 SUSD4\n", - "90 cg02569115 TIMP2\n", - "91 cg09276451 VASN\n", - "\n", - "[92 rows x 2 columns]" - ] - }, - "execution_count": 78, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_gene = pd.read_csv(\"result/GSE243529_aba/dbeta_0.8_abs_0.02_hyper_TSS.csv\")\n", - "\n", - "df_gene = df_gene[['Unnamed: 0','gene']]\n", - "df_gene" - ] - }, - { - "cell_type": "code", - "execution_count": 84, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ModelID1ID2ID3train_accuracytest_accuracytrain - test accuracyAUCf1-scoresensitivityspecificityprecisionsen+spef1+preAVG_(sen+spe)AVG_(f1+pre)AVG_(avg(sen+spe)+avg(f1+pre))genegene_2gene_3
0Decision Treecg19935065cg02355304cg257079940.6842110.6285710.0556390.6863540.6880000.9148940.3965520.5512821.3114451.2392820.6557230.6196410.637682DNTTMIR589DNAJB6
1Logistic Regressioncg19935065cg02355304cg257079940.6483250.6190480.0292780.6636100.6000000.6382980.6034480.5660381.2417461.1660380.6208730.5830190.601946DNTTMIR589DNAJB6
2Random Forestcg19935065cg02355304cg257079940.7511960.6095240.1416720.6892880.5858590.6170210.6034480.5576921.2204701.1435510.6102350.5717750.591005DNTTMIR589DNAJB6
3SVMcg19935065cg02355304cg257079940.6985650.6380950.0604690.7201030.6346150.7021280.5862070.5789471.2883351.2135630.6441670.6067810.625474DNTTMIR589DNAJB6
4XGBoostcg19935065cg02355304cg257079940.7200960.5809520.1391430.6735140.5686270.6170210.5517240.5272731.1687451.0959000.5843730.5479500.566161DNTTMIR589DNAJB6
...............................................................
115Decision Treecg02547394cg24911721cg151005990.6937800.5714290.1223510.6250920.6153850.7659570.4137930.5142861.1797511.1296700.5898750.5648350.577355SOX1MIRLET7A3SUSD4
116Logistic Regressioncg02547394cg24911721cg151005990.6339710.647619-0.0136480.6581070.6407770.7021280.6034480.5892861.3055761.2300620.6527880.6150310.633910SOX1MIRLET7A3SUSD4
117Random Forestcg02547394cg24911721cg151005990.7296650.6190480.1106170.6735140.6078430.6595740.5862070.5636361.2457811.1714800.6228910.5857400.604315SOX1MIRLET7A3SUSD4
118SVMcg02547394cg24911721cg151005990.6746410.6095240.0651170.6942410.6306310.7446810.5000000.5468751.2446811.1775060.6223400.5887530.605547SOX1MIRLET7A3SUSD4
119XGBoostcg02547394cg24911721cg151005990.7153110.6476190.0676920.6546220.6336630.6808510.6206900.5925931.3015411.2262560.6507700.6131280.631949SOX1MIRLET7A3SUSD4
\n", - "

120 rows × 20 columns

\n", - "
" - ], - "text/plain": [ - " Model ID1 ID2 ID3 train_accuracy \\\n", - "0 Decision Tree cg19935065 cg02355304 cg25707994 0.684211 \n", - "1 Logistic Regression cg19935065 cg02355304 cg25707994 0.648325 \n", - "2 Random Forest cg19935065 cg02355304 cg25707994 0.751196 \n", - "3 SVM cg19935065 cg02355304 cg25707994 0.698565 \n", - "4 XGBoost cg19935065 cg02355304 cg25707994 0.720096 \n", - ".. ... ... ... ... ... \n", - "115 Decision Tree cg02547394 cg24911721 cg15100599 0.693780 \n", - "116 Logistic Regression cg02547394 cg24911721 cg15100599 0.633971 \n", - "117 Random Forest cg02547394 cg24911721 cg15100599 0.729665 \n", - "118 SVM cg02547394 cg24911721 cg15100599 0.674641 \n", - "119 XGBoost cg02547394 cg24911721 cg15100599 0.715311 \n", - "\n", - " test_accuracy train - test accuracy AUC f1-score sensitivity \\\n", - "0 0.628571 0.055639 0.686354 0.688000 0.914894 \n", - "1 0.619048 0.029278 0.663610 0.600000 0.638298 \n", - "2 0.609524 0.141672 0.689288 0.585859 0.617021 \n", - "3 0.638095 0.060469 0.720103 0.634615 0.702128 \n", - "4 0.580952 0.139143 0.673514 0.568627 0.617021 \n", - ".. ... ... ... ... ... \n", - "115 0.571429 0.122351 0.625092 0.615385 0.765957 \n", - "116 0.647619 -0.013648 0.658107 0.640777 0.702128 \n", - "117 0.619048 0.110617 0.673514 0.607843 0.659574 \n", - "118 0.609524 0.065117 0.694241 0.630631 0.744681 \n", - "119 0.647619 0.067692 0.654622 0.633663 0.680851 \n", - "\n", - " specificity precision sen+spe f1+pre AVG_(sen+spe) AVG_(f1+pre) \\\n", - "0 0.396552 0.551282 1.311445 1.239282 0.655723 0.619641 \n", - "1 0.603448 0.566038 1.241746 1.166038 0.620873 0.583019 \n", - "2 0.603448 0.557692 1.220470 1.143551 0.610235 0.571775 \n", - "3 0.586207 0.578947 1.288335 1.213563 0.644167 0.606781 \n", - "4 0.551724 0.527273 1.168745 1.095900 0.584373 0.547950 \n", - ".. ... ... ... ... ... ... \n", - "115 0.413793 0.514286 1.179751 1.129670 0.589875 0.564835 \n", - "116 0.603448 0.589286 1.305576 1.230062 0.652788 0.615031 \n", - "117 0.586207 0.563636 1.245781 1.171480 0.622891 0.585740 \n", - "118 0.500000 0.546875 1.244681 1.177506 0.622340 0.588753 \n", - "119 0.620690 0.592593 1.301541 1.226256 0.650770 0.613128 \n", - "\n", - " AVG_(avg(sen+spe)+avg(f1+pre)) gene gene_2 gene_3 \n", - "0 0.637682 DNTT MIR589 DNAJB6 \n", - "1 0.601946 DNTT MIR589 DNAJB6 \n", - "2 0.591005 DNTT MIR589 DNAJB6 \n", - "3 0.625474 DNTT MIR589 DNAJB6 \n", - "4 0.566161 DNTT MIR589 DNAJB6 \n", - ".. ... ... ... ... \n", - "115 0.577355 SOX1 MIRLET7A3 SUSD4 \n", - "116 0.633910 SOX1 MIRLET7A3 SUSD4 \n", - "117 0.604315 SOX1 MIRLET7A3 SUSD4 \n", - "118 0.605547 SOX1 MIRLET7A3 SUSD4 \n", - "119 0.631949 SOX1 MIRLET7A3 SUSD4 \n", - "\n", - "[120 rows x 20 columns]" - ] - }, - "execution_count": 84, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\n", - "df_with_gene = df\n", - "\n", - "df_with_gene = pd.merge(left = df_with_gene ,right=df_gene,left_on=\"ID1\",right_on=\"Unnamed: 0\",how=\"left\",suffixes=('', '_1'))\n", - "df_with_gene = df_with_gene.drop(columns=['Unnamed: 0'])\n", - "\n", - "\n", - "df_with_gene = pd.merge(left = df_with_gene ,right=df_gene,left_on=\"ID2\",right_on=\"Unnamed: 0\",how=\"left\",suffixes=('', '_2'))\n", - "df_with_gene = df_with_gene.drop(columns=['Unnamed: 0'])\n", - "\n", - "\n", - "\n", - "df_with_gene = pd.merge(left = df_with_gene ,right=df_gene,left_on=\"ID3\",right_on=\"Unnamed: 0\",how=\"left\",suffixes=('', '_3'))\n", - "df_with_gene = df_with_gene.drop(columns=['Unnamed: 0'])\n", - "\n", - "\n", - "df_with_gene" - ] - }, - { - "cell_type": "code", - "execution_count": 86, - "metadata": {}, - "outputs": [], - "source": [ - "df_with_gene.to_csv(\"result/GSE243529_aba/result_5model.csv\",index=False)\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.7" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} From 2bac53e52f4e8ede1a6ee0bc8b16795261c5b9c0 Mon Sep 17 00:00:00 2001 From: OuChiaYun Date: Thu, 12 Sep 2024 15:42:20 +0800 Subject: [PATCH 3/4] [run] process --- process/set_dbeta_threshold.ipynb | 2 +- process/split_dataset.ipynb | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/process/set_dbeta_threshold.ipynb b/process/set_dbeta_threshold.ipynb index ce07a78..af18a42 100644 --- a/process/set_dbeta_threshold.ipynb +++ b/process/set_dbeta_threshold.ipynb @@ -744,7 +744,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.10.7" } }, "nbformat": 4, diff --git a/process/split_dataset.ipynb b/process/split_dataset.ipynb index c4296b5..dd0c896 100644 --- a/process/split_dataset.ipynb +++ b/process/split_dataset.ipynb @@ -545,7 +545,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.10.7" } }, "nbformat": 4, From 76be03e48d07af4ee025bce5be127e433368ec5d Mon Sep 17 00:00:00 2001 From: OuChiaYun Date: Thu, 12 Sep 2024 15:43:16 +0800 Subject: [PATCH 4/4] [add] val 5 fold + val --- breast/ml/combination_5_fold.ipynb | 5123 ++++++++++++++++++++++++++++ 1 file changed, 5123 insertions(+) create mode 100644 breast/ml/combination_5_fold.ipynb diff --git a/breast/ml/combination_5_fold.ipynb b/breast/ml/combination_5_fold.ipynb new file mode 100644 index 0000000..eaf1c47 --- /dev/null +++ b/breast/ml/combination_5_fold.ipynb @@ -0,0 +1,5123 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 850k GSE237036" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0123456789...151152153154155156157158159160
0cg078810410.9430350.9430350.9286950.9286950.9417900.9417900.9542230.9542230.964751...0.9360650.9360650.9133820.9133820.9388070.9388070.9025280.9025280.9288550.928855
1cg035138740.9725190.9725190.9593570.9593570.9473000.9473000.9698350.9698350.976845...0.9567620.9567620.9626740.9626740.9515830.9515830.9567510.9567510.9443230.944323
2cg054518420.0216660.0216660.0216580.0216580.0144630.0144630.0108130.0108130.018068...0.0161410.0161410.0281140.0281140.0149310.0149310.0169140.0169140.0371600.037160
3cg147970420.9355280.9355280.9139680.9139680.9282620.9282620.9021120.9021120.907727...0.9053640.9053640.9226660.9226660.9314470.9314470.9117590.9117590.9234860.923486
4cg098385620.0447160.0447160.0435900.0435900.0292640.0292640.0437560.0437560.064916...0.0385660.0385660.0428000.0428000.0413020.0413020.0230600.0230600.0374690.037469
..................................................................
722691cg198129380.9129990.9129990.8914360.8914360.9163240.9163240.9080140.9080140.909659...0.8988390.8988390.9131860.9131860.8975860.8975860.9028740.9028740.9049170.904917
722692cg062720540.0078950.0078950.0159010.0159010.0058380.0058380.0031030.0031030.011144...0.0098140.0098140.0095270.0095270.0068640.0068640.0107920.0107920.0108320.010832
722693cg072553560.0220790.0220790.0034880.0034880.0060690.0060690.0073040.0073040.013703...0.0079520.0079520.0139180.0139180.0232360.0232360.0215880.0215880.0194150.019415
722694cg242208970.9578470.9578470.9414080.9414080.9480180.9480180.9637310.9637310.979047...0.9481780.9481780.9529190.9529190.9280630.9280630.9917330.9917330.9523880.952388
722695cg123255880.0123000.0123000.0160420.0160420.0019810.0019810.0061490.0061490.009990...0.0075740.0075740.0181680.0181680.0124960.0124960.0074230.0074230.0182300.018230
\n", + "

722696 rows × 161 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 1 2 3 4 5 \\\n", + "0 cg07881041 0.943035 0.943035 0.928695 0.928695 0.941790 \n", + "1 cg03513874 0.972519 0.972519 0.959357 0.959357 0.947300 \n", + "2 cg05451842 0.021666 0.021666 0.021658 0.021658 0.014463 \n", + "3 cg14797042 0.935528 0.935528 0.913968 0.913968 0.928262 \n", + "4 cg09838562 0.044716 0.044716 0.043590 0.043590 0.029264 \n", + "... ... ... ... ... ... ... \n", + "722691 cg19812938 0.912999 0.912999 0.891436 0.891436 0.916324 \n", + "722692 cg06272054 0.007895 0.007895 0.015901 0.015901 0.005838 \n", + "722693 cg07255356 0.022079 0.022079 0.003488 0.003488 0.006069 \n", + "722694 cg24220897 0.957847 0.957847 0.941408 0.941408 0.948018 \n", + "722695 cg12325588 0.012300 0.012300 0.016042 0.016042 0.001981 \n", + "\n", + " 6 7 8 9 ... 151 152 \\\n", + "0 0.941790 0.954223 0.954223 0.964751 ... 0.936065 0.936065 \n", + "1 0.947300 0.969835 0.969835 0.976845 ... 0.956762 0.956762 \n", + "2 0.014463 0.010813 0.010813 0.018068 ... 0.016141 0.016141 \n", + "3 0.928262 0.902112 0.902112 0.907727 ... 0.905364 0.905364 \n", + "4 0.029264 0.043756 0.043756 0.064916 ... 0.038566 0.038566 \n", + "... ... ... ... ... ... ... ... \n", + "722691 0.916324 0.908014 0.908014 0.909659 ... 0.898839 0.898839 \n", + "722692 0.005838 0.003103 0.003103 0.011144 ... 0.009814 0.009814 \n", + "722693 0.006069 0.007304 0.007304 0.013703 ... 0.007952 0.007952 \n", + "722694 0.948018 0.963731 0.963731 0.979047 ... 0.948178 0.948178 \n", + "722695 0.001981 0.006149 0.006149 0.009990 ... 0.007574 0.007574 \n", + "\n", + " 153 154 155 156 157 158 159 \\\n", + "0 0.913382 0.913382 0.938807 0.938807 0.902528 0.902528 0.928855 \n", + "1 0.962674 0.962674 0.951583 0.951583 0.956751 0.956751 0.944323 \n", + "2 0.028114 0.028114 0.014931 0.014931 0.016914 0.016914 0.037160 \n", + "3 0.922666 0.922666 0.931447 0.931447 0.911759 0.911759 0.923486 \n", + "4 0.042800 0.042800 0.041302 0.041302 0.023060 0.023060 0.037469 \n", + "... ... ... ... ... ... ... ... \n", + "722691 0.913186 0.913186 0.897586 0.897586 0.902874 0.902874 0.904917 \n", + "722692 0.009527 0.009527 0.006864 0.006864 0.010792 0.010792 0.010832 \n", + "722693 0.013918 0.013918 0.023236 0.023236 0.021588 0.021588 0.019415 \n", + "722694 0.952919 0.952919 0.928063 0.928063 0.991733 0.991733 0.952388 \n", + "722695 0.018168 0.018168 0.012496 0.012496 0.007423 0.007423 0.018230 \n", + "\n", + " 160 \n", + "0 0.928855 \n", + "1 0.944323 \n", + "2 0.037160 \n", + "3 0.923486 \n", + "4 0.037469 \n", + "... ... \n", + "722691 0.904917 \n", + "722692 0.010832 \n", + "722693 0.019415 \n", + "722694 0.952388 \n", + "722695 0.018230 \n", + "\n", + "[722696 rows x 161 columns]" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd \n", + "import numpy as np\n", + "\n", + "df_beta_train = pd.read_csv(\"source/GSE237036/all_beta_normalized.csv\")\n", + "df_beta_train\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0123456789...151152153154155156157158159160
0cg078810410.9430350.9430350.9286950.9286950.9417900.9417900.9542230.9542230.964751...0.9360650.9360650.9133820.9133820.9388070.9388070.9025280.9025280.9288550.928855
1cg035138740.9725190.9725190.9593570.9593570.9473000.9473000.9698350.9698350.976845...0.9567620.9567620.9626740.9626740.9515830.9515830.9567510.9567510.9443230.944323
2cg054518420.0216660.0216660.0216580.0216580.0144630.0144630.0108130.0108130.018068...0.0161410.0161410.0281140.0281140.0149310.0149310.0169140.0169140.0371600.037160
3cg147970420.9355280.9355280.9139680.9139680.9282620.9282620.9021120.9021120.907727...0.9053640.9053640.9226660.9226660.9314470.9314470.9117590.9117590.9234860.923486
4cg098385620.0447160.0447160.0435900.0435900.0292640.0292640.0437560.0437560.064916...0.0385660.0385660.0428000.0428000.0413020.0413020.0230600.0230600.0374690.037469
..................................................................
722691cg198129380.9129990.9129990.8914360.8914360.9163240.9163240.9080140.9080140.909659...0.8988390.8988390.9131860.9131860.8975860.8975860.9028740.9028740.9049170.904917
722692cg062720540.0078950.0078950.0159010.0159010.0058380.0058380.0031030.0031030.011144...0.0098140.0098140.0095270.0095270.0068640.0068640.0107920.0107920.0108320.010832
722693cg072553560.0220790.0220790.0034880.0034880.0060690.0060690.0073040.0073040.013703...0.0079520.0079520.0139180.0139180.0232360.0232360.0215880.0215880.0194150.019415
722694cg242208970.9578470.9578470.9414080.9414080.9480180.9480180.9637310.9637310.979047...0.9481780.9481780.9529190.9529190.9280630.9280630.9917330.9917330.9523880.952388
722695cg123255880.0123000.0123000.0160420.0160420.0019810.0019810.0061490.0061490.009990...0.0075740.0075740.0181680.0181680.0124960.0124960.0074230.0074230.0182300.018230
\n", + "

722696 rows × 161 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 1 2 3 4 5 \\\n", + "0 cg07881041 0.943035 0.943035 0.928695 0.928695 0.941790 \n", + "1 cg03513874 0.972519 0.972519 0.959357 0.959357 0.947300 \n", + "2 cg05451842 0.021666 0.021666 0.021658 0.021658 0.014463 \n", + "3 cg14797042 0.935528 0.935528 0.913968 0.913968 0.928262 \n", + "4 cg09838562 0.044716 0.044716 0.043590 0.043590 0.029264 \n", + "... ... ... ... ... ... ... \n", + "722691 cg19812938 0.912999 0.912999 0.891436 0.891436 0.916324 \n", + "722692 cg06272054 0.007895 0.007895 0.015901 0.015901 0.005838 \n", + "722693 cg07255356 0.022079 0.022079 0.003488 0.003488 0.006069 \n", + "722694 cg24220897 0.957847 0.957847 0.941408 0.941408 0.948018 \n", + "722695 cg12325588 0.012300 0.012300 0.016042 0.016042 0.001981 \n", + "\n", + " 6 7 8 9 ... 151 152 \\\n", + "0 0.941790 0.954223 0.954223 0.964751 ... 0.936065 0.936065 \n", + "1 0.947300 0.969835 0.969835 0.976845 ... 0.956762 0.956762 \n", + "2 0.014463 0.010813 0.010813 0.018068 ... 0.016141 0.016141 \n", + "3 0.928262 0.902112 0.902112 0.907727 ... 0.905364 0.905364 \n", + "4 0.029264 0.043756 0.043756 0.064916 ... 0.038566 0.038566 \n", + "... ... ... ... ... ... ... ... \n", + "722691 0.916324 0.908014 0.908014 0.909659 ... 0.898839 0.898839 \n", + "722692 0.005838 0.003103 0.003103 0.011144 ... 0.009814 0.009814 \n", + "722693 0.006069 0.007304 0.007304 0.013703 ... 0.007952 0.007952 \n", + "722694 0.948018 0.963731 0.963731 0.979047 ... 0.948178 0.948178 \n", + "722695 0.001981 0.006149 0.006149 0.009990 ... 0.007574 0.007574 \n", + "\n", + " 153 154 155 156 157 158 159 \\\n", + "0 0.913382 0.913382 0.938807 0.938807 0.902528 0.902528 0.928855 \n", + "1 0.962674 0.962674 0.951583 0.951583 0.956751 0.956751 0.944323 \n", + "2 0.028114 0.028114 0.014931 0.014931 0.016914 0.016914 0.037160 \n", + "3 0.922666 0.922666 0.931447 0.931447 0.911759 0.911759 0.923486 \n", + "4 0.042800 0.042800 0.041302 0.041302 0.023060 0.023060 0.037469 \n", + "... ... ... ... ... ... ... ... \n", + "722691 0.913186 0.913186 0.897586 0.897586 0.902874 0.902874 0.904917 \n", + "722692 0.009527 0.009527 0.006864 0.006864 0.010792 0.010792 0.010832 \n", + "722693 0.013918 0.013918 0.023236 0.023236 0.021588 0.021588 0.019415 \n", + "722694 0.952919 0.952919 0.928063 0.928063 0.991733 0.991733 0.952388 \n", + "722695 0.018168 0.018168 0.012496 0.012496 0.007423 0.007423 0.018230 \n", + "\n", + " 160 \n", + "0 0.928855 \n", + "1 0.944323 \n", + "2 0.037160 \n", + "3 0.923486 \n", + "4 0.037469 \n", + "... ... \n", + "722691 0.904917 \n", + "722692 0.010832 \n", + "722693 0.019415 \n", + "722694 0.952388 \n", + "722695 0.018230 \n", + "\n", + "[722696 rows x 161 columns]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_mix_train = df_beta_train\n", + "df_mix_train" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0cg07881041cg03513874cg05451842cg14797042cg09838562cg25458538cg09261072cg02404579cg04118974cg01236347...cg23020486cg10295858cg11606463cg04767756cg05166473cg19812938cg06272054cg07255356cg24220897cg12325588
10.9430350.9725190.0216660.9355280.0447160.8447930.5716960.8275400.6399790.659230...0.0603160.9415760.9565490.9717370.8602060.9129990.0078950.0220790.9578470.012300
30.9286950.9593570.0216580.9139680.0435900.8721920.5021460.8792080.7765550.714857...0.0303650.9399980.9657050.9739950.8024550.8914360.0159010.0034880.9414080.016042
50.9417900.9473000.0144630.9282620.0292640.8977420.6042680.8693540.7382190.708490...0.0177730.9448720.9538910.9701520.8180880.9163240.0058380.0060690.9480180.001981
70.9542230.9698350.0108130.9021120.0437560.8916140.6276300.8182160.6671620.650270...0.0096910.9729590.9694280.9749480.8686510.9080140.0031030.0073040.9637310.006149
90.9647510.9768450.0180680.9077270.0649160.9181150.6825680.8675100.6674780.613951...0.0160760.9599850.9714840.9784490.7836820.9096590.0111440.0137030.9790470.009990
..................................................................
1510.9360650.9567620.0161410.9053640.0385660.8544240.5357920.8520400.6780750.660842...0.0152080.9494630.9579160.9727750.8530730.8988390.0098140.0079520.9481780.007574
1530.9133820.9626740.0281140.9226660.0428000.8631980.5531730.8322800.6788280.668299...0.0091100.9526420.9615140.9871250.8640200.9131860.0095270.0139180.9529190.018168
1550.9388070.9515830.0149310.9314470.0413020.8697380.5639840.8527180.6858300.637114...0.0261230.9497750.9770500.9729490.8361720.8975860.0068640.0232360.9280630.012496
1570.9025280.9567510.0169140.9117590.0230600.8584360.5989130.8502690.7141540.650321...0.0095210.9560290.9619330.9734310.8124550.9028740.0107920.0215880.9917330.007423
1590.9288550.9443230.0371600.9234860.0374690.8755500.5997730.7927220.6695370.687345...0.0142880.9473100.9676830.9749590.8889350.9049170.0108320.0194150.9523880.018230
\n", + "

80 rows × 722696 columns

\n", + "
" + ], + "text/plain": [ + "Unnamed: 0 cg07881041 cg03513874 cg05451842 cg14797042 cg09838562 \\\n", + "1 0.943035 0.972519 0.021666 0.935528 0.044716 \n", + "3 0.928695 0.959357 0.021658 0.913968 0.043590 \n", + "5 0.941790 0.947300 0.014463 0.928262 0.029264 \n", + "7 0.954223 0.969835 0.010813 0.902112 0.043756 \n", + "9 0.964751 0.976845 0.018068 0.907727 0.064916 \n", + ".. ... ... ... ... ... \n", + "151 0.936065 0.956762 0.016141 0.905364 0.038566 \n", + "153 0.913382 0.962674 0.028114 0.922666 0.042800 \n", + "155 0.938807 0.951583 0.014931 0.931447 0.041302 \n", + "157 0.902528 0.956751 0.016914 0.911759 0.023060 \n", + "159 0.928855 0.944323 0.037160 0.923486 0.037469 \n", + "\n", + "Unnamed: 0 cg25458538 cg09261072 cg02404579 cg04118974 cg01236347 ... \\\n", + "1 0.844793 0.571696 0.827540 0.639979 0.659230 ... \n", + "3 0.872192 0.502146 0.879208 0.776555 0.714857 ... \n", + "5 0.897742 0.604268 0.869354 0.738219 0.708490 ... \n", + "7 0.891614 0.627630 0.818216 0.667162 0.650270 ... \n", + "9 0.918115 0.682568 0.867510 0.667478 0.613951 ... \n", + ".. ... ... ... ... ... ... \n", + "151 0.854424 0.535792 0.852040 0.678075 0.660842 ... \n", + "153 0.863198 0.553173 0.832280 0.678828 0.668299 ... \n", + "155 0.869738 0.563984 0.852718 0.685830 0.637114 ... \n", + "157 0.858436 0.598913 0.850269 0.714154 0.650321 ... \n", + "159 0.875550 0.599773 0.792722 0.669537 0.687345 ... \n", + "\n", + "Unnamed: 0 cg23020486 cg10295858 cg11606463 cg04767756 cg05166473 \\\n", + "1 0.060316 0.941576 0.956549 0.971737 0.860206 \n", + "3 0.030365 0.939998 0.965705 0.973995 0.802455 \n", + "5 0.017773 0.944872 0.953891 0.970152 0.818088 \n", + "7 0.009691 0.972959 0.969428 0.974948 0.868651 \n", + "9 0.016076 0.959985 0.971484 0.978449 0.783682 \n", + ".. ... ... ... ... ... \n", + "151 0.015208 0.949463 0.957916 0.972775 0.853073 \n", + "153 0.009110 0.952642 0.961514 0.987125 0.864020 \n", + "155 0.026123 0.949775 0.977050 0.972949 0.836172 \n", + "157 0.009521 0.956029 0.961933 0.973431 0.812455 \n", + "159 0.014288 0.947310 0.967683 0.974959 0.888935 \n", + "\n", + "Unnamed: 0 cg19812938 cg06272054 cg07255356 cg24220897 cg12325588 \n", + "1 0.912999 0.007895 0.022079 0.957847 0.012300 \n", + "3 0.891436 0.015901 0.003488 0.941408 0.016042 \n", + "5 0.916324 0.005838 0.006069 0.948018 0.001981 \n", + "7 0.908014 0.003103 0.007304 0.963731 0.006149 \n", + "9 0.909659 0.011144 0.013703 0.979047 0.009990 \n", + ".. ... ... ... ... ... \n", + "151 0.898839 0.009814 0.007952 0.948178 0.007574 \n", + "153 0.913186 0.009527 0.013918 0.952919 0.018168 \n", + "155 0.897586 0.006864 0.023236 0.928063 0.012496 \n", + "157 0.902874 0.010792 0.021588 0.991733 0.007423 \n", + "159 0.904917 0.010832 0.019415 0.952388 0.018230 \n", + "\n", + "[80 rows x 722696 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "df_mix_train.set_index(\"Unnamed: 0\", inplace=True)\n", + "df_mix_train\n", + "\n", + "df_mix_train = df_mix_train.iloc[:, ::2]\n", + "df_mix_train\n", + "\n", + "X_train = df_mix_train.T\n", + "\n", + "X_train_normal_count = 30\n", + "\n", + "if (X_train_normal_count):\n", + " y_train = [(0 if i < (X_train_normal_count) else 1) for i in range(len(X_train))]\n", + "\n", + "X_train" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "訓練集類別分佈:\n", + " Class Count Percentage\n", + "0 0 23 35.9375\n", + "1 1 41 64.0625\n", + "\n", + "測試集類別分佈:\n", + " Class Count Percentage\n", + "0 0 7 43.75\n", + "1 1 9 56.25\n", + "\n", + "訓練集和測試集的大小:\n", + "訓練集大小: 64\n", + "測試集大小: 16\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0cg07881041cg03513874cg05451842cg14797042cg09838562cg25458538cg09261072cg02404579cg04118974cg01236347...cg23020486cg10295858cg11606463cg04767756cg05166473cg19812938cg06272054cg07255356cg24220897cg12325588
1470.9298690.9378540.0258360.9232180.0392960.8744940.5803540.8482200.7322720.729814...0.0108670.9347950.9649800.9772910.8777550.9096220.0075540.0159030.9621750.012816
1230.9498000.9803820.0152010.9156600.0413360.8986420.6729700.8720050.7093390.703964...0.0061620.9550880.9677710.9730180.8714260.9108100.0012730.0040060.9642920.004801
1110.9198330.9456570.0210010.9309320.0710660.9118340.5869780.8744400.7476790.725431...0.0035280.9508900.9562820.9624830.8384580.9193600.0102930.0134620.9670210.019233
810.9338050.9580040.0283730.9086950.0536700.8601320.5595420.8104880.6626180.601927...0.0119770.9518100.9566890.9688490.7523600.8882310.0142880.0161570.9634590.001869
190.9374120.9776230.0354840.9149170.0629810.8894540.6144110.8402860.7322610.719624...0.0119120.9512090.9616750.9739220.8301710.9096840.0041340.0088140.9622500.009267
..................................................................
410.9530170.9636620.0209920.9190310.0384090.9072130.6485100.8641500.6322620.634195...0.0479000.9512200.9619970.9617760.7993640.9114160.0119630.0137170.9441110.013061
1210.9494700.9545060.0260740.9261190.0418850.9076560.5909560.8531720.7708500.777764...0.0568220.9442440.9551280.9663640.8666100.8939510.0114420.0153640.9386030.012846
1430.9462950.9600320.0274820.9258750.0418500.8748720.6065280.8376730.7217310.651609...0.0090740.9519210.9658350.9680340.8242600.8938820.0150320.0086540.9670880.009491
290.9401910.9559490.0111890.9227940.0240960.9014560.6530310.8829880.7447460.733421...0.0026400.9633130.9684390.9697570.8769190.9030550.0081230.0096240.9779870.002156
1030.9403090.9770690.0219700.9116370.0283950.8737480.5478990.8192650.6898620.643268...0.0054530.9520670.9647820.9683740.8014230.9012590.0105290.0029350.9116800.015609
\n", + "

64 rows × 722696 columns

\n", + "
" + ], + "text/plain": [ + "Unnamed: 0 cg07881041 cg03513874 cg05451842 cg14797042 cg09838562 \\\n", + "147 0.929869 0.937854 0.025836 0.923218 0.039296 \n", + "123 0.949800 0.980382 0.015201 0.915660 0.041336 \n", + "111 0.919833 0.945657 0.021001 0.930932 0.071066 \n", + "81 0.933805 0.958004 0.028373 0.908695 0.053670 \n", + "19 0.937412 0.977623 0.035484 0.914917 0.062981 \n", + ".. ... ... ... ... ... \n", + "41 0.953017 0.963662 0.020992 0.919031 0.038409 \n", + "121 0.949470 0.954506 0.026074 0.926119 0.041885 \n", + "143 0.946295 0.960032 0.027482 0.925875 0.041850 \n", + "29 0.940191 0.955949 0.011189 0.922794 0.024096 \n", + "103 0.940309 0.977069 0.021970 0.911637 0.028395 \n", + "\n", + "Unnamed: 0 cg25458538 cg09261072 cg02404579 cg04118974 cg01236347 ... \\\n", + "147 0.874494 0.580354 0.848220 0.732272 0.729814 ... \n", + "123 0.898642 0.672970 0.872005 0.709339 0.703964 ... \n", + "111 0.911834 0.586978 0.874440 0.747679 0.725431 ... \n", + "81 0.860132 0.559542 0.810488 0.662618 0.601927 ... \n", + "19 0.889454 0.614411 0.840286 0.732261 0.719624 ... \n", + ".. ... ... ... ... ... ... \n", + "41 0.907213 0.648510 0.864150 0.632262 0.634195 ... \n", + "121 0.907656 0.590956 0.853172 0.770850 0.777764 ... \n", + "143 0.874872 0.606528 0.837673 0.721731 0.651609 ... \n", + "29 0.901456 0.653031 0.882988 0.744746 0.733421 ... \n", + "103 0.873748 0.547899 0.819265 0.689862 0.643268 ... \n", + "\n", + "Unnamed: 0 cg23020486 cg10295858 cg11606463 cg04767756 cg05166473 \\\n", + "147 0.010867 0.934795 0.964980 0.977291 0.877755 \n", + "123 0.006162 0.955088 0.967771 0.973018 0.871426 \n", + "111 0.003528 0.950890 0.956282 0.962483 0.838458 \n", + "81 0.011977 0.951810 0.956689 0.968849 0.752360 \n", + "19 0.011912 0.951209 0.961675 0.973922 0.830171 \n", + ".. ... ... ... ... ... \n", + "41 0.047900 0.951220 0.961997 0.961776 0.799364 \n", + "121 0.056822 0.944244 0.955128 0.966364 0.866610 \n", + "143 0.009074 0.951921 0.965835 0.968034 0.824260 \n", + "29 0.002640 0.963313 0.968439 0.969757 0.876919 \n", + "103 0.005453 0.952067 0.964782 0.968374 0.801423 \n", + "\n", + "Unnamed: 0 cg19812938 cg06272054 cg07255356 cg24220897 cg12325588 \n", + "147 0.909622 0.007554 0.015903 0.962175 0.012816 \n", + "123 0.910810 0.001273 0.004006 0.964292 0.004801 \n", + "111 0.919360 0.010293 0.013462 0.967021 0.019233 \n", + "81 0.888231 0.014288 0.016157 0.963459 0.001869 \n", + "19 0.909684 0.004134 0.008814 0.962250 0.009267 \n", + ".. ... ... ... ... ... \n", + "41 0.911416 0.011963 0.013717 0.944111 0.013061 \n", + "121 0.893951 0.011442 0.015364 0.938603 0.012846 \n", + "143 0.893882 0.015032 0.008654 0.967088 0.009491 \n", + "29 0.903055 0.008123 0.009624 0.977987 0.002156 \n", + "103 0.901259 0.010529 0.002935 0.911680 0.015609 \n", + "\n", + "[64 rows x 722696 columns]" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X = X_train \n", + "y = y_train\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "def class_distribution(y):\n", + " counts = np.bincount(y)\n", + " labels = np.arange(len(counts))\n", + " return pd.DataFrame({\n", + " 'Class': labels,\n", + " 'Count': counts,\n", + " 'Percentage': counts / len(y) * 100\n", + " })\n", + "\n", + "# 訓練集類別分佈\n", + "train_dist = class_distribution(y_train)\n", + "print(\"訓練集類別分佈:\")\n", + "print(train_dist)\n", + "\n", + "# 測試集類別分佈\n", + "test_dist = class_distribution(y_test)\n", + "print(\"\\n測試集類別分佈:\")\n", + "print(test_dist)\n", + "\n", + "# 也可以顯示總數量\n", + "print(\"\\n訓練集和測試集的大小:\")\n", + "print(f\"訓練集大小: {len(X_train)}\")\n", + "print(f\"測試集大小: {len(X_test)}\")\n", + "X_train" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
genedbetafeatureIDcluster
2CMTM50.172075TSS200cg236319302
3CX3CL10.198136TSS1500cg057241972
5CYP1A10.195047TSS1500cg002131234
15MIR11800.157648TSS200cg191576471
16MIR124-30.177844TSS1500cg049270041
20NEFM0.227250TSS1500cg075528033
21PCYT20.154787TSS1500cg202488664
23PTF1A0.189984TSS1500cg227460584
25SALL30.151857TSS200cg058840324
28SOX10.228038TSS200cg025473944
29SPAG60.281363TSS200cg126104712
32TP730.209996TSS1500cg240731224
\n", + "
" + ], + "text/plain": [ + " gene dbeta feature ID cluster\n", + "2 CMTM5 0.172075 TSS200 cg23631930 2\n", + "3 CX3CL1 0.198136 TSS1500 cg05724197 2\n", + "5 CYP1A1 0.195047 TSS1500 cg00213123 4\n", + "15 MIR1180 0.157648 TSS200 cg19157647 1\n", + "16 MIR124-3 0.177844 TSS1500 cg04927004 1\n", + "20 NEFM 0.227250 TSS1500 cg07552803 3\n", + "21 PCYT2 0.154787 TSS1500 cg20248866 4\n", + "23 PTF1A 0.189984 TSS1500 cg22746058 4\n", + "25 SALL3 0.151857 TSS200 cg05884032 4\n", + "28 SOX1 0.228038 TSS200 cg02547394 4\n", + "29 SPAG6 0.281363 TSS200 cg12610471 2\n", + "32 TP73 0.209996 TSS1500 cg24073122 4" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "input_path = (\n", + " \"result/final_xzh/boruta_consensus_clustering_result_xzh_correct_cluster.csv\" # example\n", + ")\n", + "final_gene = pd.read_csv(input_path)\n", + "# final_gene = pd.merge(final_gene, dbeta, on=\"gene\", how=\"inner\")\n", + "final_gene = final_gene[final_gene['dbeta'] > 0]\n", + "final_gene\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[['cg19157647', 'cg23631930', 'cg07552803', 'cg00213123'],\n", + " ['cg19157647', 'cg23631930', 'cg07552803', 'cg20248866'],\n", + " ['cg19157647', 'cg23631930', 'cg07552803', 'cg22746058'],\n", + " ['cg19157647', 'cg23631930', 'cg07552803', 'cg05884032'],\n", + " ['cg19157647', 'cg23631930', 'cg07552803', 'cg02547394'],\n", + " ['cg19157647', 'cg23631930', 'cg07552803', 'cg24073122'],\n", + " ['cg19157647', 'cg05724197', 'cg07552803', 'cg00213123'],\n", + " ['cg19157647', 'cg05724197', 'cg07552803', 'cg20248866'],\n", + " ['cg19157647', 'cg05724197', 'cg07552803', 'cg22746058'],\n", + " ['cg19157647', 'cg05724197', 'cg07552803', 'cg05884032'],\n", + " ['cg19157647', 'cg05724197', 'cg07552803', 'cg02547394'],\n", + " ['cg19157647', 'cg05724197', 'cg07552803', 'cg24073122'],\n", + " ['cg19157647', 'cg12610471', 'cg07552803', 'cg00213123'],\n", + " ['cg19157647', 'cg12610471', 'cg07552803', 'cg20248866'],\n", + " ['cg19157647', 'cg12610471', 'cg07552803', 'cg22746058'],\n", + " ['cg19157647', 'cg12610471', 'cg07552803', 'cg05884032'],\n", + " ['cg19157647', 'cg12610471', 'cg07552803', 'cg02547394'],\n", + " ['cg19157647', 'cg12610471', 'cg07552803', 'cg24073122'],\n", + " ['cg04927004', 'cg23631930', 'cg07552803', 'cg00213123'],\n", + " ['cg04927004', 'cg23631930', 'cg07552803', 'cg20248866'],\n", + " ['cg04927004', 'cg23631930', 'cg07552803', 'cg22746058'],\n", + " ['cg04927004', 'cg23631930', 'cg07552803', 'cg05884032'],\n", + " ['cg04927004', 'cg23631930', 'cg07552803', 'cg02547394'],\n", + " ['cg04927004', 'cg23631930', 'cg07552803', 'cg24073122'],\n", + " ['cg04927004', 'cg05724197', 'cg07552803', 'cg00213123'],\n", + " ['cg04927004', 'cg05724197', 'cg07552803', 'cg20248866'],\n", + " ['cg04927004', 'cg05724197', 'cg07552803', 'cg22746058'],\n", + " ['cg04927004', 'cg05724197', 'cg07552803', 'cg05884032'],\n", + " ['cg04927004', 'cg05724197', 'cg07552803', 'cg02547394'],\n", + " ['cg04927004', 'cg05724197', 'cg07552803', 'cg24073122'],\n", + " ['cg04927004', 'cg12610471', 'cg07552803', 'cg00213123'],\n", + " ['cg04927004', 'cg12610471', 'cg07552803', 'cg20248866'],\n", + " ['cg04927004', 'cg12610471', 'cg07552803', 'cg22746058'],\n", + " ['cg04927004', 'cg12610471', 'cg07552803', 'cg05884032'],\n", + " ['cg04927004', 'cg12610471', 'cg07552803', 'cg02547394'],\n", + " ['cg04927004', 'cg12610471', 'cg07552803', 'cg24073122']]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# 須包含ID和cluster欄位\n", + "\n", + "# 根據 Cluster 分組\n", + "import pandas as pd\n", + "import itertools\n", + "grouped = final_gene.groupby('cluster')\n", + "\n", + "# 生成排列組合\n", + "combinations = list(itertools.product(*[group.values.tolist() for _, group in grouped]))\n", + "# print(combinations)\n", + "# 將結果轉換為所需格式\n", + "result = []\n", + "for combo in combinations:\n", + " result.append([row[3] for row in combo]) # row[0] 對應的是 Gene 列\n", + "\n", + "cg_list = result\n", + "cg_list" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "from sklearn.svm import SVC\n", + "from sklearn.tree import DecisionTreeClassifier\n", + "from sklearn.ensemble import RandomForestClassifier\n", + "import xgboost as xgb\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.metrics import classification_report, roc_auc_score, accuracy_score, precision_score, recall_score, f1_score\n", + "from sklearn.model_selection import train_test_split\n", + "from xgboost import XGBClassifier\n", + "from sklearn.model_selection import RandomizedSearchCV\n", + "from sklearn.model_selection import GridSearchCV\n", + "from skopt import BayesSearchCV\n", + "from skopt.space import Categorical, Real\n", + "from sklearn.metrics import (\n", + " confusion_matrix,\n", + " precision_score,\n", + " accuracy_score,\n", + " matthews_corrcoef,\n", + " f1_score,\n", + ")\n", + "\n", + "\n", + "tree_params = {\"max_depth\": [3, 5, 7], \"min_samples_split\": [2, 5, 10]}\n", + "\n", + "clf_tree = DecisionTreeClassifier()\n", + "\n", + "lr_params = [\n", + " {\"C\": [0.001,0.01,0.1, 1, 10], \"solver\": [\"liblinear\"]}\n", + "]\n", + "\n", + "clf_lr = LogisticRegression(max_iter=500) \n", + "\n", + "\n", + "rf_params = {\n", + " \"n_estimators\": [100,150, 200],\n", + " \"max_depth\": [1,3, 5, 7],\n", + " \"min_samples_split\": [2, 5, 10],\n", + " }\n", + "clf_rf = RandomForestClassifier()\n", + "\n", + "svm_params = {\"C\": [0.001,0.1, 1, 10,100,1000], \"kernel\": [\"linear\", \"rbf\"]}\n", + "\n", + "clf_svm = SVC(probability=True)\n", + "\n", + "\n", + "xgb_params = {\n", + " \"n_estimators\": [100,150, 200],\n", + " \"max_depth\": [3, 5, 7],\n", + " \"learning_rate\": [0.01, 0.1, 0.2],\n", + " }\n", + "\n", + "clf_xgb = XGBClassifier( eval_metric='logloss')\n", + "\n", + "results = []\n", + "\n", + "model_list = [clf_tree,clf_lr,clf_rf,clf_svm,clf_xgb]\n", + "model_param = [tree_params,lr_params,rf_params,svm_params,xgb_params]\n", + "model_names = ['Decision Tree', 'Logistic Regression', 'Random Forest', 'SVM', 'XGBoost']\n", + "\n", + "for cg in cg_list:\n", + " X_train_c = X_train[cg]\n", + " X_test_c = X_test[cg]\n", + " \n", + " for model,param, model_name in zip(model_list,model_param, model_names):\n", + " \n", + " model = GridSearchCV(\n", + " estimator=model, param_grid=param, cv=5, n_jobs=-1\n", + " )\n", + " model.fit(X_train_c, y_train)\n", + " \n", + " y_pred = model.predict(X_test_c)\n", + " y_pred_prob = model.predict_proba(X_test_c)[:, 1]\n", + " \n", + " y_pred_train = model.predict(X_train_c)\n", + " y_pred_prob_train = model.predict_proba(X_train_c)[:, 1]\n", + " # report = classification_report(y_test, y_pred, output_dict=True)\n", + " auc = roc_auc_score(y_test, y_pred_prob)\n", + " \n", + " train_accuracy = accuracy_score(y_train, y_pred_train)\n", + " test_accuracy = accuracy_score(y_test, y_pred)\n", + " precision = precision_score(y_test, y_pred)\n", + " sensitivity = recall_score(y_test, y_pred)\n", + " specificity = recall_score(y_test, y_pred, pos_label=0)\n", + " f1 = f1_score(y_test, y_pred)\n", + " mcc = matthews_corrcoef(y_test, y_pred)\n", + "\n", + " # 計算複合指標\\\n", + " \n", + " results.append( {\n", + " 'Model': model_name,\n", + " 'ID1': cg[0],\n", + " 'ID2': cg[1],\n", + " 'ID3': cg[2],\n", + " 'ID4': cg[3],\n", + " 'train_accuracy': train_accuracy,\n", + " 'test_accuracy': test_accuracy,\n", + " 'train - test accuracy' : train_accuracy - test_accuracy,\n", + " 'AUC': auc,\n", + " 'f1-score': f1,\n", + " 'sensitivity': sensitivity,\n", + " 'specificity': specificity,\n", + " 'precision': precision,\n", + " 'mcc' : mcc\n", + " })\n", + "df = pd.DataFrame(results)\n", + "\n", + "df\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "df.to_csv(\"result/test_aba2/5_fold_850k_hyper.csv\",index=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 89093" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": {}, + "outputs": [], + "source": [ + "beta_normalized_89093 = \"source/GSE89093/GSE89093.csv\"\n", + "label_89093 = \"source/GSE89093/phenotype.csv\"\n", + "\n", + "data_89093 = pd.read_csv(beta_normalized_89093)\n", + "data_89093_label = pd.read_csv(label_89093)" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0123456789...82838485868788899091
ID_REF
cg002131230.1926410.2260330.1920030.1507120.2359210.2578510.2602240.2479070.2213430.139146...0.2298280.2043230.1782840.2015620.2217460.2739570.2046950.2363910.2462100.220037
cg025473940.2095220.2185040.1567730.1354190.2186010.1447280.1901890.1899590.1515220.095937...0.1686890.1770060.1403060.1521260.1398170.4350370.1828900.1490190.1639370.177328
cg049270040.1837000.2718880.2538450.3290690.2765570.2633080.2371920.3088820.2678550.184488...0.2439530.2317320.2344020.2187560.2441290.2623750.2312480.2484550.2550940.250802
cg057241970.8814700.7819560.7915050.8276580.8271680.8161000.7971560.8179100.8671920.862168...0.7932640.8937960.8590820.8589640.7869860.7877800.8281010.7712310.7473460.826932
cg058840320.0357730.1287220.1837180.1175180.1299570.0849050.0975920.1004340.0579970.080908...0.1234270.0792210.0533970.0556390.0789750.1163590.0818600.1192910.1111240.128325
cg075528030.1117950.1398620.1293280.1162140.1500560.1171230.1551820.1290480.1186830.084462...0.1641910.1586660.1144390.1086140.1258770.2115280.1285820.1015100.1517590.142964
cg126104710.1904690.2110510.1931130.2221550.1952860.1787230.2229410.2151480.1492990.124172...0.1641750.1825780.1388070.1766000.1677140.2167160.1834220.1904600.1777180.143805
cg191576470.9365290.9180740.9326040.9445880.9538950.9518620.9260350.9273000.9778460.975092...0.9360310.9549180.9446550.9499020.9242360.9130460.9295750.9300650.9149980.934900
cg202488660.3878970.4654360.4972810.4583280.4196800.5022830.4922270.4901150.4409840.436178...0.5524420.4926070.3768050.4237280.4686670.5415420.3957360.4605660.5078080.571862
cg227460580.0975180.1476840.1284280.1198290.1640120.1322100.1220860.1416260.1391380.098904...0.1169530.1318210.1229280.1148420.1575440.1962180.1537280.1386760.1824500.123431
cg236319300.8423560.8331170.8487550.8818450.9376110.8903350.8630960.8350160.9341520.940110...0.8545750.8370460.8388970.8789130.8402060.8006600.8126030.8130230.8201740.859444
cg240731220.0742940.1516380.1423620.0942270.1100800.1058530.1429960.1429740.0847210.049366...0.1234410.1233340.1095230.1241840.1015310.2092950.1239790.1332710.1424490.119534
\n", + "

12 rows × 92 columns

\n", + "
" + ], + "text/plain": [ + " 0 1 2 3 4 5 \\\n", + "ID_REF \n", + "cg00213123 0.192641 0.226033 0.192003 0.150712 0.235921 0.257851 \n", + "cg02547394 0.209522 0.218504 0.156773 0.135419 0.218601 0.144728 \n", + "cg04927004 0.183700 0.271888 0.253845 0.329069 0.276557 0.263308 \n", + "cg05724197 0.881470 0.781956 0.791505 0.827658 0.827168 0.816100 \n", + "cg05884032 0.035773 0.128722 0.183718 0.117518 0.129957 0.084905 \n", + "cg07552803 0.111795 0.139862 0.129328 0.116214 0.150056 0.117123 \n", + "cg12610471 0.190469 0.211051 0.193113 0.222155 0.195286 0.178723 \n", + "cg19157647 0.936529 0.918074 0.932604 0.944588 0.953895 0.951862 \n", + "cg20248866 0.387897 0.465436 0.497281 0.458328 0.419680 0.502283 \n", + "cg22746058 0.097518 0.147684 0.128428 0.119829 0.164012 0.132210 \n", + "cg23631930 0.842356 0.833117 0.848755 0.881845 0.937611 0.890335 \n", + "cg24073122 0.074294 0.151638 0.142362 0.094227 0.110080 0.105853 \n", + "\n", + " 6 7 8 9 ... 82 83 \\\n", + "ID_REF ... \n", + "cg00213123 0.260224 0.247907 0.221343 0.139146 ... 0.229828 0.204323 \n", + "cg02547394 0.190189 0.189959 0.151522 0.095937 ... 0.168689 0.177006 \n", + "cg04927004 0.237192 0.308882 0.267855 0.184488 ... 0.243953 0.231732 \n", + "cg05724197 0.797156 0.817910 0.867192 0.862168 ... 0.793264 0.893796 \n", + "cg05884032 0.097592 0.100434 0.057997 0.080908 ... 0.123427 0.079221 \n", + "cg07552803 0.155182 0.129048 0.118683 0.084462 ... 0.164191 0.158666 \n", + "cg12610471 0.222941 0.215148 0.149299 0.124172 ... 0.164175 0.182578 \n", + "cg19157647 0.926035 0.927300 0.977846 0.975092 ... 0.936031 0.954918 \n", + "cg20248866 0.492227 0.490115 0.440984 0.436178 ... 0.552442 0.492607 \n", + "cg22746058 0.122086 0.141626 0.139138 0.098904 ... 0.116953 0.131821 \n", + "cg23631930 0.863096 0.835016 0.934152 0.940110 ... 0.854575 0.837046 \n", + "cg24073122 0.142996 0.142974 0.084721 0.049366 ... 0.123441 0.123334 \n", + "\n", + " 84 85 86 87 88 89 \\\n", + "ID_REF \n", + "cg00213123 0.178284 0.201562 0.221746 0.273957 0.204695 0.236391 \n", + "cg02547394 0.140306 0.152126 0.139817 0.435037 0.182890 0.149019 \n", + "cg04927004 0.234402 0.218756 0.244129 0.262375 0.231248 0.248455 \n", + "cg05724197 0.859082 0.858964 0.786986 0.787780 0.828101 0.771231 \n", + "cg05884032 0.053397 0.055639 0.078975 0.116359 0.081860 0.119291 \n", + "cg07552803 0.114439 0.108614 0.125877 0.211528 0.128582 0.101510 \n", + "cg12610471 0.138807 0.176600 0.167714 0.216716 0.183422 0.190460 \n", + "cg19157647 0.944655 0.949902 0.924236 0.913046 0.929575 0.930065 \n", + "cg20248866 0.376805 0.423728 0.468667 0.541542 0.395736 0.460566 \n", + "cg22746058 0.122928 0.114842 0.157544 0.196218 0.153728 0.138676 \n", + "cg23631930 0.838897 0.878913 0.840206 0.800660 0.812603 0.813023 \n", + "cg24073122 0.109523 0.124184 0.101531 0.209295 0.123979 0.133271 \n", + "\n", + " 90 91 \n", + "ID_REF \n", + "cg00213123 0.246210 0.220037 \n", + "cg02547394 0.163937 0.177328 \n", + "cg04927004 0.255094 0.250802 \n", + "cg05724197 0.747346 0.826932 \n", + "cg05884032 0.111124 0.128325 \n", + "cg07552803 0.151759 0.142964 \n", + "cg12610471 0.177718 0.143805 \n", + "cg19157647 0.914998 0.934900 \n", + "cg20248866 0.507808 0.571862 \n", + "cg22746058 0.182450 0.123431 \n", + "cg23631930 0.820174 0.859444 \n", + "cg24073122 0.142449 0.119534 \n", + "\n", + "[12 rows x 92 columns]" + ] + }, + "execution_count": 93, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_89093_label = pd.DataFrame(data_89093_label[\"cancer_status\"])\n", + "\n", + "# 檢查挑選出的特徵是否都有出現\n", + "data_89093 = data_89093[data_89093[\"ID_REF\"].isin(final_gene[\"ID\"])]\n", + "data_89093.set_index(\"ID_REF\", inplace=True)\n", + "data_89093" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [], + "source": [ + "y_test_89093 = [\n", + " 0 if data_89093_label.iloc[i, 0] == \"healthy\" else 1\n", + " for i in range(data_89093_label.shape[0])\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(92, 12) 92\n", + "訓練集類別分佈:\n", + " Class Count Percentage\n", + "0 0 36 49.315068\n", + "1 1 37 50.684932\n", + "\n", + "測試集類別分佈:\n", + " Class Count Percentage\n", + "0 0 10 52.631579\n", + "1 1 9 47.368421\n", + "\n", + "訓練集和測試集的大小:\n", + "訓練集大小: 73\n", + "測試集大小: 19\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ID_REFcg00213123cg02547394cg04927004cg05724197cg05884032cg07552803cg12610471cg19157647cg20248866cg22746058cg23631930cg24073122
650.2767340.1902270.2265290.8581880.1052760.2310190.2004200.9568410.5806200.1860080.8601970.198897
150.2538250.2414730.2085820.8382840.1127080.1706080.1645550.9671480.5261620.1586940.8719270.134052
680.2951460.2960800.2777910.7720050.1037340.2058040.2154150.9313020.5085050.2411130.7800400.190257
780.2827190.2545730.2605400.7695230.0890740.1736210.1700450.9353340.4582270.1919080.7867920.174281
300.1531800.1441240.2446480.8633340.0766470.1624440.2085470.9513250.4860250.1259140.8868760.118644
.......................................
200.2284840.1714010.2436770.8904510.0593690.1285490.1585810.9256040.4406040.1189900.8524240.124386
600.1972950.1361450.1817290.9218770.0559180.1247480.1489350.9561170.5736820.1095470.8881130.091460
710.2375120.2087860.2797510.8376310.0331140.1092430.1729910.9022720.4804800.1247300.8510960.117423
140.1731330.1292680.2464790.8448350.0805510.0888340.1640100.9762790.4135390.1105160.9331830.076993
510.2823600.1600410.1924850.8257120.0625580.1292280.1801360.9415800.4932130.1496720.8808770.124818
\n", + "

73 rows × 12 columns

\n", + "
" + ], + "text/plain": [ + "ID_REF cg00213123 cg02547394 cg04927004 cg05724197 cg05884032 \\\n", + "65 0.276734 0.190227 0.226529 0.858188 0.105276 \n", + "15 0.253825 0.241473 0.208582 0.838284 0.112708 \n", + "68 0.295146 0.296080 0.277791 0.772005 0.103734 \n", + "78 0.282719 0.254573 0.260540 0.769523 0.089074 \n", + "30 0.153180 0.144124 0.244648 0.863334 0.076647 \n", + ".. ... ... ... ... ... \n", + "20 0.228484 0.171401 0.243677 0.890451 0.059369 \n", + "60 0.197295 0.136145 0.181729 0.921877 0.055918 \n", + "71 0.237512 0.208786 0.279751 0.837631 0.033114 \n", + "14 0.173133 0.129268 0.246479 0.844835 0.080551 \n", + "51 0.282360 0.160041 0.192485 0.825712 0.062558 \n", + "\n", + "ID_REF cg07552803 cg12610471 cg19157647 cg20248866 cg22746058 \\\n", + "65 0.231019 0.200420 0.956841 0.580620 0.186008 \n", + "15 0.170608 0.164555 0.967148 0.526162 0.158694 \n", + "68 0.205804 0.215415 0.931302 0.508505 0.241113 \n", + "78 0.173621 0.170045 0.935334 0.458227 0.191908 \n", + "30 0.162444 0.208547 0.951325 0.486025 0.125914 \n", + ".. ... ... ... ... ... \n", + "20 0.128549 0.158581 0.925604 0.440604 0.118990 \n", + "60 0.124748 0.148935 0.956117 0.573682 0.109547 \n", + "71 0.109243 0.172991 0.902272 0.480480 0.124730 \n", + "14 0.088834 0.164010 0.976279 0.413539 0.110516 \n", + "51 0.129228 0.180136 0.941580 0.493213 0.149672 \n", + "\n", + "ID_REF cg23631930 cg24073122 \n", + "65 0.860197 0.198897 \n", + "15 0.871927 0.134052 \n", + "68 0.780040 0.190257 \n", + "78 0.786792 0.174281 \n", + "30 0.886876 0.118644 \n", + ".. ... ... \n", + "20 0.852424 0.124386 \n", + "60 0.888113 0.091460 \n", + "71 0.851096 0.117423 \n", + "14 0.933183 0.076993 \n", + "51 0.880877 0.124818 \n", + "\n", + "[73 rows x 12 columns]" + ] + }, + "execution_count": 95, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X = data_89093.T \n", + "y = y_test_89093\n", + "print(X.shape,len(y))\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "def class_distribution(y):\n", + " counts = np.bincount(y)\n", + " labels = np.arange(len(counts))\n", + " return pd.DataFrame({\n", + " 'Class': labels,\n", + " 'Count': counts,\n", + " 'Percentage': counts / len(y) * 100\n", + " })\n", + "\n", + "# 訓練集類別分佈\n", + "train_dist = class_distribution(y_train)\n", + "print(\"訓練集類別分佈:\")\n", + "print(train_dist)\n", + "\n", + "# 測試集類別分佈\n", + "test_dist = class_distribution(y_test)\n", + "print(\"\\n測試集類別分佈:\")\n", + "print(test_dist)\n", + "\n", + "# 也可以顯示總數量\n", + "print(\"\\n訓練集和測試集的大小:\")\n", + "print(f\"訓練集大小: {len(X_train)}\")\n", + "print(f\"測試集大小: {len(X_test)}\")\n", + "X_train" + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
geneclusterIDdbetafeature_x
2CMTM52cg236319300.172075TSS200
3CX3CL12cg057241970.198136TSS1500
5CYP1A14cg002131230.195047TSS1500
15MIR11801cg191576470.157648TSS200
16MIR124-31cg049270040.177844TSS1500
20NEFM4cg075528030.227250TSS1500
21PCYT24cg202488660.154787TSS1500
23PTF1A3cg227460580.189984TSS1500
25SALL33cg058840320.151857TSS200
28SOX13cg025473940.228038TSS200
29SPAG64cg126104710.281363TSS200
32TP733cg240731220.209996TSS1500
\n", + "
" + ], + "text/plain": [ + " gene cluster ID dbeta feature_x\n", + "2 CMTM5 2 cg23631930 0.172075 TSS200\n", + "3 CX3CL1 2 cg05724197 0.198136 TSS1500\n", + "5 CYP1A1 4 cg00213123 0.195047 TSS1500\n", + "15 MIR1180 1 cg19157647 0.157648 TSS200\n", + "16 MIR124-3 1 cg04927004 0.177844 TSS1500\n", + "20 NEFM 4 cg07552803 0.227250 TSS1500\n", + "21 PCYT2 4 cg20248866 0.154787 TSS1500\n", + "23 PTF1A 3 cg22746058 0.189984 TSS1500\n", + "25 SALL3 3 cg05884032 0.151857 TSS200\n", + "28 SOX1 3 cg02547394 0.228038 TSS200\n", + "29 SPAG6 4 cg12610471 0.281363 TSS200\n", + "32 TP73 3 cg24073122 0.209996 TSS1500" + ] + }, + "execution_count": 96, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "input_path = (\n", + " \"result/final_xzh/boruta_consensus_clustering_result_xzh_correct_cluster.csv\" # example\n", + ")\n", + "final_gene = pd.read_csv(input_path)\n", + "# final_gene = pd.merge(final_gene, dbeta, on=\"gene\", how=\"inner\")\n", + "final_gene = final_gene[final_gene['dbeta'] > 0]\n", + "final_gene\n" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[['cg19157647', 'cg23631930', 'cg22746058', 'cg00213123'],\n", + " ['cg19157647', 'cg23631930', 'cg22746058', 'cg07552803'],\n", + " ['cg19157647', 'cg23631930', 'cg22746058', 'cg20248866'],\n", + " ['cg19157647', 'cg23631930', 'cg22746058', 'cg12610471'],\n", + " ['cg19157647', 'cg23631930', 'cg05884032', 'cg00213123'],\n", + " ['cg19157647', 'cg23631930', 'cg05884032', 'cg07552803'],\n", + " ['cg19157647', 'cg23631930', 'cg05884032', 'cg20248866'],\n", + " ['cg19157647', 'cg23631930', 'cg05884032', 'cg12610471'],\n", + " ['cg19157647', 'cg23631930', 'cg02547394', 'cg00213123'],\n", + " ['cg19157647', 'cg23631930', 'cg02547394', 'cg07552803'],\n", + " ['cg19157647', 'cg23631930', 'cg02547394', 'cg20248866'],\n", + " ['cg19157647', 'cg23631930', 'cg02547394', 'cg12610471'],\n", + " ['cg19157647', 'cg23631930', 'cg24073122', 'cg00213123'],\n", + " ['cg19157647', 'cg23631930', 'cg24073122', 'cg07552803'],\n", + " ['cg19157647', 'cg23631930', 'cg24073122', 'cg20248866'],\n", + " ['cg19157647', 'cg23631930', 'cg24073122', 'cg12610471'],\n", + " ['cg19157647', 'cg05724197', 'cg22746058', 'cg00213123'],\n", + " ['cg19157647', 'cg05724197', 'cg22746058', 'cg07552803'],\n", + " ['cg19157647', 'cg05724197', 'cg22746058', 'cg20248866'],\n", + " ['cg19157647', 'cg05724197', 'cg22746058', 'cg12610471'],\n", + " ['cg19157647', 'cg05724197', 'cg05884032', 'cg00213123'],\n", + " ['cg19157647', 'cg05724197', 'cg05884032', 'cg07552803'],\n", + " ['cg19157647', 'cg05724197', 'cg05884032', 'cg20248866'],\n", + " ['cg19157647', 'cg05724197', 'cg05884032', 'cg12610471'],\n", + " ['cg19157647', 'cg05724197', 'cg02547394', 'cg00213123'],\n", + " ['cg19157647', 'cg05724197', 'cg02547394', 'cg07552803'],\n", + " ['cg19157647', 'cg05724197', 'cg02547394', 'cg20248866'],\n", + " ['cg19157647', 'cg05724197', 'cg02547394', 'cg12610471'],\n", + " ['cg19157647', 'cg05724197', 'cg24073122', 'cg00213123'],\n", + " ['cg19157647', 'cg05724197', 'cg24073122', 'cg07552803'],\n", + " ['cg19157647', 'cg05724197', 'cg24073122', 'cg20248866'],\n", + " ['cg19157647', 'cg05724197', 'cg24073122', 'cg12610471'],\n", + " ['cg04927004', 'cg23631930', 'cg22746058', 'cg00213123'],\n", + " ['cg04927004', 'cg23631930', 'cg22746058', 'cg07552803'],\n", + " ['cg04927004', 'cg23631930', 'cg22746058', 'cg20248866'],\n", + " ['cg04927004', 'cg23631930', 'cg22746058', 'cg12610471'],\n", + " ['cg04927004', 'cg23631930', 'cg05884032', 'cg00213123'],\n", + " ['cg04927004', 'cg23631930', 'cg05884032', 'cg07552803'],\n", + " ['cg04927004', 'cg23631930', 'cg05884032', 'cg20248866'],\n", + " ['cg04927004', 'cg23631930', 'cg05884032', 'cg12610471'],\n", + " ['cg04927004', 'cg23631930', 'cg02547394', 'cg00213123'],\n", + " ['cg04927004', 'cg23631930', 'cg02547394', 'cg07552803'],\n", + " ['cg04927004', 'cg23631930', 'cg02547394', 'cg20248866'],\n", + " ['cg04927004', 'cg23631930', 'cg02547394', 'cg12610471'],\n", + " ['cg04927004', 'cg23631930', 'cg24073122', 'cg00213123'],\n", + " ['cg04927004', 'cg23631930', 'cg24073122', 'cg07552803'],\n", + " ['cg04927004', 'cg23631930', 'cg24073122', 'cg20248866'],\n", + " ['cg04927004', 'cg23631930', 'cg24073122', 'cg12610471'],\n", + " ['cg04927004', 'cg05724197', 'cg22746058', 'cg00213123'],\n", + " ['cg04927004', 'cg05724197', 'cg22746058', 'cg07552803'],\n", + " ['cg04927004', 'cg05724197', 'cg22746058', 'cg20248866'],\n", + " ['cg04927004', 'cg05724197', 'cg22746058', 'cg12610471'],\n", + " ['cg04927004', 'cg05724197', 'cg05884032', 'cg00213123'],\n", + " ['cg04927004', 'cg05724197', 'cg05884032', 'cg07552803'],\n", + " ['cg04927004', 'cg05724197', 'cg05884032', 'cg20248866'],\n", + " ['cg04927004', 'cg05724197', 'cg05884032', 'cg12610471'],\n", + " ['cg04927004', 'cg05724197', 'cg02547394', 'cg00213123'],\n", + " ['cg04927004', 'cg05724197', 'cg02547394', 'cg07552803'],\n", + " ['cg04927004', 'cg05724197', 'cg02547394', 'cg20248866'],\n", + " ['cg04927004', 'cg05724197', 'cg02547394', 'cg12610471'],\n", + " ['cg04927004', 'cg05724197', 'cg24073122', 'cg00213123'],\n", + " ['cg04927004', 'cg05724197', 'cg24073122', 'cg07552803'],\n", + " ['cg04927004', 'cg05724197', 'cg24073122', 'cg20248866'],\n", + " ['cg04927004', 'cg05724197', 'cg24073122', 'cg12610471']]" + ] + }, + "execution_count": 97, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# 須包含ID和cluster欄位\n", + "\n", + "# 根據 Cluster 分組\n", + "import pandas as pd\n", + "import itertools\n", + "grouped = final_gene.groupby('cluster')\n", + "\n", + "# 生成排列組合\n", + "combinations = list(itertools.product(*[group.values.tolist() for _, group in grouped]))\n", + "# print(combinations)\n", + "# 將結果轉換為所需格式\n", + "result = []\n", + "for combo in combinations:\n", + " result.append([row[3] for row in combo]) # row[0] 對應的是 Gene 列\n", + "\n", + "cg_list = result\n", + "cg_list" + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ModelID1ID2ID3ID4train_accuracytest_accuracytrain - test accuracyAUCf1-scoresensitivityspecificityprecisionmcc
0Decision Treecg19157647cg23631930cg22746058cg002131230.6712330.3684210.3028120.3500000.1428570.1111110.60.200000-0.327569
1Logistic Regressioncg19157647cg23631930cg22746058cg002131230.5068490.4736840.0331650.6666670.6428571.0000000.00.4736840.000000
2Random Forestcg19157647cg23631930cg22746058cg002131230.6986300.3157890.3828410.3111110.3809520.4444440.20.333333-0.368035
3SVMcg19157647cg23631930cg22746058cg002131230.5068490.4736840.0331650.4222220.6428571.0000000.00.4736840.000000
4XGBoostcg19157647cg23631930cg22746058cg002131230.8767120.3684210.5082910.2944440.0000000.0000000.70.000000-0.410792
.............................................
315Decision Treecg04927004cg05724197cg24073122cg126104710.6986300.5263160.1723140.6333330.4000000.3333330.70.5000000.035806
316Logistic Regressioncg04927004cg05724197cg24073122cg126104710.5068490.4736840.0331650.5000000.6428571.0000000.00.4736840.000000
317Random Forestcg04927004cg05724197cg24073122cg126104710.9726030.6315790.3410240.7333330.6315790.6666670.60.6000000.266667
318SVMcg04927004cg05724197cg24073122cg126104710.5753420.631579-0.0562360.3888890.6666670.7777780.50.5833330.287527
319XGBoostcg04927004cg05724197cg24073122cg126104711.0000000.5789470.4210530.6222220.5555560.5555560.60.5555560.155556
\n", + "

320 rows × 14 columns

\n", + "
" + ], + "text/plain": [ + " Model ID1 ID2 ID3 ID4 \\\n", + "0 Decision Tree cg19157647 cg23631930 cg22746058 cg00213123 \n", + "1 Logistic Regression cg19157647 cg23631930 cg22746058 cg00213123 \n", + "2 Random Forest cg19157647 cg23631930 cg22746058 cg00213123 \n", + "3 SVM cg19157647 cg23631930 cg22746058 cg00213123 \n", + "4 XGBoost cg19157647 cg23631930 cg22746058 cg00213123 \n", + ".. ... ... ... ... ... \n", + "315 Decision Tree cg04927004 cg05724197 cg24073122 cg12610471 \n", + "316 Logistic Regression cg04927004 cg05724197 cg24073122 cg12610471 \n", + "317 Random Forest cg04927004 cg05724197 cg24073122 cg12610471 \n", + "318 SVM cg04927004 cg05724197 cg24073122 cg12610471 \n", + "319 XGBoost cg04927004 cg05724197 cg24073122 cg12610471 \n", + "\n", + " train_accuracy test_accuracy train - test accuracy AUC f1-score \\\n", + "0 0.671233 0.368421 0.302812 0.350000 0.142857 \n", + "1 0.506849 0.473684 0.033165 0.666667 0.642857 \n", + "2 0.698630 0.315789 0.382841 0.311111 0.380952 \n", + "3 0.506849 0.473684 0.033165 0.422222 0.642857 \n", + "4 0.876712 0.368421 0.508291 0.294444 0.000000 \n", + ".. ... ... ... ... ... \n", + "315 0.698630 0.526316 0.172314 0.633333 0.400000 \n", + "316 0.506849 0.473684 0.033165 0.500000 0.642857 \n", + "317 0.972603 0.631579 0.341024 0.733333 0.631579 \n", + "318 0.575342 0.631579 -0.056236 0.388889 0.666667 \n", + "319 1.000000 0.578947 0.421053 0.622222 0.555556 \n", + "\n", + " sensitivity specificity precision mcc \n", + "0 0.111111 0.6 0.200000 -0.327569 \n", + "1 1.000000 0.0 0.473684 0.000000 \n", + "2 0.444444 0.2 0.333333 -0.368035 \n", + "3 1.000000 0.0 0.473684 0.000000 \n", + "4 0.000000 0.7 0.000000 -0.410792 \n", + ".. ... ... ... ... \n", + "315 0.333333 0.7 0.500000 0.035806 \n", + "316 1.000000 0.0 0.473684 0.000000 \n", + "317 0.666667 0.6 0.600000 0.266667 \n", + "318 0.777778 0.5 0.583333 0.287527 \n", + "319 0.555556 0.6 0.555556 0.155556 \n", + "\n", + "[320 rows x 14 columns]" + ] + }, + "execution_count": 99, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "from sklearn.svm import SVC\n", + "from sklearn.tree import DecisionTreeClassifier\n", + "from sklearn.ensemble import RandomForestClassifier\n", + "import xgboost as xgb\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.metrics import classification_report, roc_auc_score, accuracy_score, precision_score, recall_score, f1_score\n", + "from sklearn.model_selection import train_test_split\n", + "from xgboost import XGBClassifier\n", + "from sklearn.model_selection import RandomizedSearchCV\n", + "from sklearn.model_selection import GridSearchCV\n", + "from skopt import BayesSearchCV\n", + "from skopt.space import Categorical, Real\n", + "from sklearn.metrics import (\n", + " confusion_matrix,\n", + " precision_score,\n", + " accuracy_score,\n", + " matthews_corrcoef,\n", + " f1_score,\n", + ")\n", + "\n", + "\n", + "tree_params = {\"max_depth\": [3, 5, 7], \"min_samples_split\": [2, 5, 10]}\n", + "\n", + "clf_tree = DecisionTreeClassifier()\n", + "\n", + "lr_params = [\n", + " {\"C\": [0.001,0.01,0.1, 1, 10], \"solver\": [\"liblinear\"]}\n", + "]\n", + "\n", + "clf_lr = LogisticRegression(max_iter=500) \n", + "\n", + "\n", + "rf_params = {\n", + " \"n_estimators\": [100,150, 200],\n", + " \"max_depth\": [1,3, 5, 7],\n", + " \"min_samples_split\": [2, 5, 10],\n", + " }\n", + "clf_rf = RandomForestClassifier()\n", + "\n", + "svm_params = {\"C\": [0.001,0.1, 1, 10,100,1000], \"kernel\": [\"linear\", \"rbf\"]}\n", + "\n", + "clf_svm = SVC(probability=True)\n", + "\n", + "\n", + "xgb_params = {\n", + " \"n_estimators\": [100,150, 200],\n", + " \"max_depth\": [3, 5, 7],\n", + " \"learning_rate\": [0.01, 0.1, 0.2],\n", + " }\n", + "\n", + "clf_xgb = XGBClassifier( eval_metric='logloss')\n", + "\n", + "results = []\n", + "\n", + "model_list = [clf_tree,clf_lr,clf_rf,clf_svm,clf_xgb]\n", + "model_param = [tree_params,lr_params,rf_params,svm_params,xgb_params]\n", + "model_names = ['Decision Tree', 'Logistic Regression', 'Random Forest', 'SVM', 'XGBoost']\n", + "\n", + "for cg in cg_list:\n", + " X_train_c = X_train[cg]\n", + " X_test_c = X_test[cg]\n", + " \n", + " for model,param, model_name in zip(model_list,model_param, model_names):\n", + " \n", + " model = GridSearchCV(\n", + " estimator=model, param_grid=param, cv=5, n_jobs=-1\n", + " )\n", + " model.fit(X_train_c, y_train)\n", + " \n", + " y_pred = model.predict(X_test_c)\n", + " y_pred_prob = model.predict_proba(X_test_c)[:, 1]\n", + " \n", + " y_pred_train = model.predict(X_train_c)\n", + " y_pred_prob_train = model.predict_proba(X_train_c)[:, 1]\n", + " # report = classification_report(y_test, y_pred, output_dict=True)\n", + " auc = roc_auc_score(y_test, y_pred_prob)\n", + " \n", + " train_accuracy = accuracy_score(y_train, y_pred_train)\n", + " test_accuracy = accuracy_score(y_test, y_pred)\n", + " precision = precision_score(y_test, y_pred,zero_division=0)\n", + " sensitivity = recall_score(y_test, y_pred)\n", + " specificity = recall_score(y_test, y_pred, pos_label=0)\n", + " f1 = f1_score(y_test, y_pred)\n", + " mcc = matthews_corrcoef(y_test, y_pred)\n", + "\n", + "\n", + " # 計算複合指標\\\n", + " \n", + " results.append( {\n", + " 'Model': model_name,\n", + " 'ID1': cg[0],\n", + " 'ID2': cg[1],\n", + " 'ID3': cg[2],\n", + " 'ID4': cg[3],\n", + " 'train_accuracy': train_accuracy,\n", + " 'test_accuracy': test_accuracy,\n", + " 'train - test accuracy' : train_accuracy - test_accuracy,\n", + " 'AUC': auc,\n", + " 'f1-score': f1,\n", + " 'sensitivity': sensitivity,\n", + " 'specificity': specificity,\n", + " 'precision': precision,\n", + " 'mcc' : mcc\n", + " })\n", + "df = pd.DataFrame(results)\n", + "\n", + "df\n" + ] + }, + { + "cell_type": "code", + "execution_count": 100, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "df.to_csv(\"result/test_aba2/5_fold_GSE89093_hyper.csv\",index=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 148663" + ] + }, + { + "cell_type": "code", + "execution_count": 130, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0123456789...55565758596061626364
0cg000009570.8604520.8604520.8493850.8493850.8341300.8341300.8506060.8506060.861816...0.8298530.8298530.8585150.8585150.8437670.8437670.8270380.8270380.8242230.824223
1cg000013490.6512370.6512370.7324710.7324710.6505200.6505200.7143590.7143590.689401...0.7437160.7437160.7400310.7400310.7354150.7354150.6913700.6913700.6413790.641379
2cg000015830.1055780.1055780.1510540.1510540.1374550.1374550.1380430.1380430.145586...0.1493780.1493780.1279760.1279760.1336890.1336890.1465300.1465300.1398910.139891
3cg000020280.0891190.0891190.0959750.0959750.0925230.0925230.0989600.0989600.081822...0.1154290.1154290.1351410.1351410.1132610.1132610.1179210.1179210.1070230.107023
4cg000027190.0551260.0551260.0507420.0507420.0708880.0708880.0611520.0611520.066180...0.0529780.0529780.0527560.0527560.0499430.0499430.0604140.0604140.0602970.060297
..................................................................
410742cg276565730.9440120.9440120.9446950.9446950.9369540.9369540.9319520.9319520.943306...0.9390210.9390210.9341660.9341660.9352790.9352790.9238420.9238420.9376560.937656
410743cg276573630.8792660.8792660.8642610.8642610.8787800.8787800.8623900.8623900.900482...0.8729200.8729200.8555320.8555320.8653870.8653870.8474140.8474140.8491450.849145
410744cg276575370.0817130.0817130.1315230.1315230.1030040.1030040.1096160.1096160.098497...0.1115020.1115020.1046870.1046870.1162310.1162310.1313040.1313040.0851850.085185
410745cg276626110.0947780.0947780.0641470.0641470.0975720.0975720.0863220.0863220.085894...0.0618590.0618590.0669060.0669060.0774380.0774380.0634760.0634760.0724370.072437
410746cg276656480.9058990.9058990.8798930.8798930.8850730.8850730.8748950.8748950.883834...0.8705250.8705250.8850720.8850720.8764300.8764300.8938510.8938510.8555680.855568
\n", + "

410747 rows × 65 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 1 2 3 4 5 \\\n", + "0 cg00000957 0.860452 0.860452 0.849385 0.849385 0.834130 \n", + "1 cg00001349 0.651237 0.651237 0.732471 0.732471 0.650520 \n", + "2 cg00001583 0.105578 0.105578 0.151054 0.151054 0.137455 \n", + "3 cg00002028 0.089119 0.089119 0.095975 0.095975 0.092523 \n", + "4 cg00002719 0.055126 0.055126 0.050742 0.050742 0.070888 \n", + "... ... ... ... ... ... ... \n", + "410742 cg27656573 0.944012 0.944012 0.944695 0.944695 0.936954 \n", + "410743 cg27657363 0.879266 0.879266 0.864261 0.864261 0.878780 \n", + "410744 cg27657537 0.081713 0.081713 0.131523 0.131523 0.103004 \n", + "410745 cg27662611 0.094778 0.094778 0.064147 0.064147 0.097572 \n", + "410746 cg27665648 0.905899 0.905899 0.879893 0.879893 0.885073 \n", + "\n", + " 6 7 8 9 ... 55 56 \\\n", + "0 0.834130 0.850606 0.850606 0.861816 ... 0.829853 0.829853 \n", + "1 0.650520 0.714359 0.714359 0.689401 ... 0.743716 0.743716 \n", + "2 0.137455 0.138043 0.138043 0.145586 ... 0.149378 0.149378 \n", + "3 0.092523 0.098960 0.098960 0.081822 ... 0.115429 0.115429 \n", + "4 0.070888 0.061152 0.061152 0.066180 ... 0.052978 0.052978 \n", + "... ... ... ... ... ... ... ... \n", + "410742 0.936954 0.931952 0.931952 0.943306 ... 0.939021 0.939021 \n", + "410743 0.878780 0.862390 0.862390 0.900482 ... 0.872920 0.872920 \n", + "410744 0.103004 0.109616 0.109616 0.098497 ... 0.111502 0.111502 \n", + "410745 0.097572 0.086322 0.086322 0.085894 ... 0.061859 0.061859 \n", + "410746 0.885073 0.874895 0.874895 0.883834 ... 0.870525 0.870525 \n", + "\n", + " 57 58 59 60 61 62 63 \\\n", + "0 0.858515 0.858515 0.843767 0.843767 0.827038 0.827038 0.824223 \n", + "1 0.740031 0.740031 0.735415 0.735415 0.691370 0.691370 0.641379 \n", + "2 0.127976 0.127976 0.133689 0.133689 0.146530 0.146530 0.139891 \n", + "3 0.135141 0.135141 0.113261 0.113261 0.117921 0.117921 0.107023 \n", + "4 0.052756 0.052756 0.049943 0.049943 0.060414 0.060414 0.060297 \n", + "... ... ... ... ... ... ... ... \n", + "410742 0.934166 0.934166 0.935279 0.935279 0.923842 0.923842 0.937656 \n", + "410743 0.855532 0.855532 0.865387 0.865387 0.847414 0.847414 0.849145 \n", + "410744 0.104687 0.104687 0.116231 0.116231 0.131304 0.131304 0.085185 \n", + "410745 0.066906 0.066906 0.077438 0.077438 0.063476 0.063476 0.072437 \n", + "410746 0.885072 0.885072 0.876430 0.876430 0.893851 0.893851 0.855568 \n", + "\n", + " 64 \n", + "0 0.824223 \n", + "1 0.641379 \n", + "2 0.139891 \n", + "3 0.107023 \n", + "4 0.060297 \n", + "... ... \n", + "410742 0.937656 \n", + "410743 0.849145 \n", + "410744 0.085185 \n", + "410745 0.072437 \n", + "410746 0.855568 \n", + "\n", + "[410747 rows x 65 columns]" + ] + }, + "execution_count": 130, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "beta_normalized_148663 = \"source/GSE148663/all_beta_normalized_breast_liquid.csv\" #使用無oversampling之原始資料\n", + "data_148663 = pd.read_csv(beta_normalized_148663)\n", + "data_148663" + ] + }, + { + "cell_type": "code", + "execution_count": 131, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
135791113151719...45474951535557596163
Unnamed: 0
cg124400620.6783920.7365430.5294230.7506100.4478200.6852640.6792930.8074140.7839050.578240...0.7140030.6811260.7673680.7355470.6639740.8163470.7553330.6913310.6102720.796604
cg261067780.3396270.3339920.2983330.3546170.3214480.3505490.4575640.4095790.4250810.375744...0.2976370.3156040.3314470.2559990.3275560.3533100.3750390.3600410.3404700.297169
cg227460580.2408430.2148810.2088920.2206450.2589420.1396000.2526460.2946750.2661060.283940...0.1868700.2116620.1375340.1626510.1538170.1858280.1615540.1891550.2094020.188544
cg117755210.3405370.3742790.3335750.3821660.3630070.3921320.5803030.4720130.5099740.498385...0.3695520.3413040.3968850.2206240.3646260.4363150.4324470.4353440.3965110.353510
cg057241970.7569700.7444420.8173120.7385670.8124360.7679830.6399790.7433540.7086660.725989...0.7663500.7269850.8030370.7463330.7334560.7378620.7391960.7238850.7259210.699362
cg058840320.1403660.1535820.1171490.1538370.1535740.1365230.1435670.1018030.1324750.167759...0.1152060.1250560.1282940.1575060.1018660.1679340.1279740.1467760.1384780.156235
cg049270040.3291770.3628400.3313040.2957510.3176370.2985960.4195540.3236780.3743530.349252...0.3355400.3294500.3089860.2912370.2725210.3232000.3030310.3105860.3152410.296926
cg072112590.3085660.2299450.3796680.1594070.2740110.3035630.3093490.1966330.3306860.340288...0.3032350.3407610.3518340.2715780.2160200.1966940.2261540.2939700.2684590.322834
cg042250880.6461100.6647240.6027690.7438080.6991910.7544600.8718580.8200770.8156310.831151...0.6634120.6057830.6617020.4262380.6243970.6776410.6724400.7192820.6201090.658940
cg236319300.8662500.8536230.8654870.8518340.8694770.8839310.8291800.8669200.8228050.844901...0.8776580.8573880.8626860.8612140.8419070.8484970.8601560.8558460.8428870.853995
\n", + "

10 rows × 32 columns

\n", + "
" + ], + "text/plain": [ + " 1 3 5 7 9 11 \\\n", + "Unnamed: 0 \n", + "cg12440062 0.678392 0.736543 0.529423 0.750610 0.447820 0.685264 \n", + "cg26106778 0.339627 0.333992 0.298333 0.354617 0.321448 0.350549 \n", + "cg22746058 0.240843 0.214881 0.208892 0.220645 0.258942 0.139600 \n", + "cg11775521 0.340537 0.374279 0.333575 0.382166 0.363007 0.392132 \n", + "cg05724197 0.756970 0.744442 0.817312 0.738567 0.812436 0.767983 \n", + "cg05884032 0.140366 0.153582 0.117149 0.153837 0.153574 0.136523 \n", + "cg04927004 0.329177 0.362840 0.331304 0.295751 0.317637 0.298596 \n", + "cg07211259 0.308566 0.229945 0.379668 0.159407 0.274011 0.303563 \n", + "cg04225088 0.646110 0.664724 0.602769 0.743808 0.699191 0.754460 \n", + "cg23631930 0.866250 0.853623 0.865487 0.851834 0.869477 0.883931 \n", + "\n", + " 13 15 17 19 ... 45 47 \\\n", + "Unnamed: 0 ... \n", + "cg12440062 0.679293 0.807414 0.783905 0.578240 ... 0.714003 0.681126 \n", + "cg26106778 0.457564 0.409579 0.425081 0.375744 ... 0.297637 0.315604 \n", + "cg22746058 0.252646 0.294675 0.266106 0.283940 ... 0.186870 0.211662 \n", + "cg11775521 0.580303 0.472013 0.509974 0.498385 ... 0.369552 0.341304 \n", + "cg05724197 0.639979 0.743354 0.708666 0.725989 ... 0.766350 0.726985 \n", + "cg05884032 0.143567 0.101803 0.132475 0.167759 ... 0.115206 0.125056 \n", + "cg04927004 0.419554 0.323678 0.374353 0.349252 ... 0.335540 0.329450 \n", + "cg07211259 0.309349 0.196633 0.330686 0.340288 ... 0.303235 0.340761 \n", + "cg04225088 0.871858 0.820077 0.815631 0.831151 ... 0.663412 0.605783 \n", + "cg23631930 0.829180 0.866920 0.822805 0.844901 ... 0.877658 0.857388 \n", + "\n", + " 49 51 53 55 57 59 \\\n", + "Unnamed: 0 \n", + "cg12440062 0.767368 0.735547 0.663974 0.816347 0.755333 0.691331 \n", + "cg26106778 0.331447 0.255999 0.327556 0.353310 0.375039 0.360041 \n", + "cg22746058 0.137534 0.162651 0.153817 0.185828 0.161554 0.189155 \n", + "cg11775521 0.396885 0.220624 0.364626 0.436315 0.432447 0.435344 \n", + "cg05724197 0.803037 0.746333 0.733456 0.737862 0.739196 0.723885 \n", + "cg05884032 0.128294 0.157506 0.101866 0.167934 0.127974 0.146776 \n", + "cg04927004 0.308986 0.291237 0.272521 0.323200 0.303031 0.310586 \n", + "cg07211259 0.351834 0.271578 0.216020 0.196694 0.226154 0.293970 \n", + "cg04225088 0.661702 0.426238 0.624397 0.677641 0.672440 0.719282 \n", + "cg23631930 0.862686 0.861214 0.841907 0.848497 0.860156 0.855846 \n", + "\n", + " 61 63 \n", + "Unnamed: 0 \n", + "cg12440062 0.610272 0.796604 \n", + "cg26106778 0.340470 0.297169 \n", + "cg22746058 0.209402 0.188544 \n", + "cg11775521 0.396511 0.353510 \n", + "cg05724197 0.725921 0.699362 \n", + "cg05884032 0.138478 0.156235 \n", + "cg04927004 0.315241 0.296926 \n", + "cg07211259 0.268459 0.322834 \n", + "cg04225088 0.620109 0.658940 \n", + "cg23631930 0.842887 0.853995 \n", + "\n", + "[10 rows x 32 columns]" + ] + }, + "execution_count": 131, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_test_148663 = [(0 if i < 10 else 1) for i in range(32)]\n", + "\n", + "# 檢查挑選出的特徵是否都有出現\n", + "\n", + "data_148663 = data_148663[data_148663[\"Unnamed: 0\"].isin(final_gene[\"ID\"])]\n", + "\n", + "data_148663.set_index(\"Unnamed: 0\", inplace=True)\n", + "\n", + "data_148663 = data_148663.iloc[:, ::2]\n", + "# data_450K = pd.merge(data_450K_0, data_450K_1, on=\"Unnamed: 0\")\n", + "data_148663" + ] + }, + { + "cell_type": "code", + "execution_count": 132, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "訓練集類別分佈:\n", + " Class Count Percentage\n", + "0 0 8 32.0\n", + "1 1 17 68.0\n", + "\n", + "測試集類別分佈:\n", + " Class Count Percentage\n", + "0 0 2 28.571429\n", + "1 1 5 71.428571\n", + "\n", + "訓練集和測試集的大小:\n", + "訓練集大小: 25\n", + "測試集大小: 7\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0cg12440062cg26106778cg22746058cg11775521cg05724197cg05884032cg04927004cg07211259cg04225088cg23631930
510.7355470.2559990.1626510.2206240.7463330.1575060.2912370.2715780.4262380.861214
250.8137200.2698050.1340800.2821900.7897890.1323110.3116970.2129000.4776280.867339
10.6783920.3396270.2408430.3405370.7569700.1403660.3291770.3085660.6461100.866250
90.4478200.3214480.2589420.3630070.8124360.1535740.3176370.2740110.6991910.869477
330.6917790.2246650.1980900.2671660.7945020.1161100.3091700.2931670.6397470.868581
110.6852640.3505490.1396000.3921320.7679830.1365230.2985960.3035630.7544600.883931
270.6749000.2429290.1877550.2623790.7764820.1657170.3086480.3990380.5429040.871608
230.6837460.2762570.1312120.2326150.7440220.1093920.2703530.4604170.5641360.865420
470.6811260.3156040.2116620.3413040.7269850.1250560.3294500.3407610.6057830.857388
30.7365430.3339920.2148810.3742790.7444420.1535820.3628400.2299450.6647240.853623
50.5294230.2983330.2088920.3335750.8173120.1171490.3313040.3796680.6027690.865487
530.6639740.3275560.1538170.3646260.7334560.1018660.2725210.2160200.6243970.841907
70.7506100.3546170.2206450.3821660.7385670.1538370.2957510.1594070.7438080.851834
430.7498980.1979950.1448940.1931280.8343170.1009310.2766330.2861450.4094250.875360
550.8163470.3533100.1858280.4363150.7378620.1679340.3232000.1966940.6776410.848497
450.7140030.2976370.1868700.3695520.7663500.1152060.3355400.3032350.6634120.877658
370.6104220.2292680.1435790.2690610.8244740.1078280.2725710.3578280.5377410.864665
630.7966040.2971690.1885440.3535100.6993620.1562350.2969260.3228340.6589400.853995
410.7442900.3830360.2707090.4128080.7390700.1687750.3314350.1565660.6900140.848442
150.8074140.4095790.2946750.4720130.7433540.1018030.3236780.1966330.8200770.866920
210.6759430.2848110.1982060.2491460.8059830.1391510.2781620.3379460.6281550.856257
290.7906560.4041740.2200560.4583720.7699680.1420000.3322580.3356930.7628920.852804
570.7553330.3750390.1615540.4324470.7391960.1279740.3030310.2261540.6724400.860156
390.7477940.3255980.2019690.4014920.7641570.1605520.3096080.3636770.7034510.874326
130.6792930.4575640.2526460.5803030.6399790.1435670.4195540.3093490.8718580.829180
\n", + "
" + ], + "text/plain": [ + "Unnamed: 0 cg12440062 cg26106778 cg22746058 cg11775521 cg05724197 \\\n", + "51 0.735547 0.255999 0.162651 0.220624 0.746333 \n", + "25 0.813720 0.269805 0.134080 0.282190 0.789789 \n", + "1 0.678392 0.339627 0.240843 0.340537 0.756970 \n", + "9 0.447820 0.321448 0.258942 0.363007 0.812436 \n", + "33 0.691779 0.224665 0.198090 0.267166 0.794502 \n", + "11 0.685264 0.350549 0.139600 0.392132 0.767983 \n", + "27 0.674900 0.242929 0.187755 0.262379 0.776482 \n", + "23 0.683746 0.276257 0.131212 0.232615 0.744022 \n", + "47 0.681126 0.315604 0.211662 0.341304 0.726985 \n", + "3 0.736543 0.333992 0.214881 0.374279 0.744442 \n", + "5 0.529423 0.298333 0.208892 0.333575 0.817312 \n", + "53 0.663974 0.327556 0.153817 0.364626 0.733456 \n", + "7 0.750610 0.354617 0.220645 0.382166 0.738567 \n", + "43 0.749898 0.197995 0.144894 0.193128 0.834317 \n", + "55 0.816347 0.353310 0.185828 0.436315 0.737862 \n", + "45 0.714003 0.297637 0.186870 0.369552 0.766350 \n", + "37 0.610422 0.229268 0.143579 0.269061 0.824474 \n", + "63 0.796604 0.297169 0.188544 0.353510 0.699362 \n", + "41 0.744290 0.383036 0.270709 0.412808 0.739070 \n", + "15 0.807414 0.409579 0.294675 0.472013 0.743354 \n", + "21 0.675943 0.284811 0.198206 0.249146 0.805983 \n", + "29 0.790656 0.404174 0.220056 0.458372 0.769968 \n", + "57 0.755333 0.375039 0.161554 0.432447 0.739196 \n", + "39 0.747794 0.325598 0.201969 0.401492 0.764157 \n", + "13 0.679293 0.457564 0.252646 0.580303 0.639979 \n", + "\n", + "Unnamed: 0 cg05884032 cg04927004 cg07211259 cg04225088 cg23631930 \n", + "51 0.157506 0.291237 0.271578 0.426238 0.861214 \n", + "25 0.132311 0.311697 0.212900 0.477628 0.867339 \n", + "1 0.140366 0.329177 0.308566 0.646110 0.866250 \n", + "9 0.153574 0.317637 0.274011 0.699191 0.869477 \n", + "33 0.116110 0.309170 0.293167 0.639747 0.868581 \n", + "11 0.136523 0.298596 0.303563 0.754460 0.883931 \n", + "27 0.165717 0.308648 0.399038 0.542904 0.871608 \n", + "23 0.109392 0.270353 0.460417 0.564136 0.865420 \n", + "47 0.125056 0.329450 0.340761 0.605783 0.857388 \n", + "3 0.153582 0.362840 0.229945 0.664724 0.853623 \n", + "5 0.117149 0.331304 0.379668 0.602769 0.865487 \n", + "53 0.101866 0.272521 0.216020 0.624397 0.841907 \n", + "7 0.153837 0.295751 0.159407 0.743808 0.851834 \n", + "43 0.100931 0.276633 0.286145 0.409425 0.875360 \n", + "55 0.167934 0.323200 0.196694 0.677641 0.848497 \n", + "45 0.115206 0.335540 0.303235 0.663412 0.877658 \n", + "37 0.107828 0.272571 0.357828 0.537741 0.864665 \n", + "63 0.156235 0.296926 0.322834 0.658940 0.853995 \n", + "41 0.168775 0.331435 0.156566 0.690014 0.848442 \n", + "15 0.101803 0.323678 0.196633 0.820077 0.866920 \n", + "21 0.139151 0.278162 0.337946 0.628155 0.856257 \n", + "29 0.142000 0.332258 0.335693 0.762892 0.852804 \n", + "57 0.127974 0.303031 0.226154 0.672440 0.860156 \n", + "39 0.160552 0.309608 0.363677 0.703451 0.874326 \n", + "13 0.143567 0.419554 0.309349 0.871858 0.829180 " + ] + }, + "execution_count": 132, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X = data_148663.T \n", + "y = y_test_148663\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "def class_distribution(y):\n", + " counts = np.bincount(y)\n", + " labels = np.arange(len(counts))\n", + " return pd.DataFrame({\n", + " 'Class': labels,\n", + " 'Count': counts,\n", + " 'Percentage': counts / len(y) * 100\n", + " })\n", + "\n", + "# 訓練集類別分佈\n", + "train_dist = class_distribution(y_train)\n", + "print(\"訓練集類別分佈:\")\n", + "print(train_dist)\n", + "\n", + "# 測試集類別分佈\n", + "test_dist = class_distribution(y_test)\n", + "print(\"\\n測試集類別分佈:\")\n", + "print(test_dist)\n", + "\n", + "# 也可以顯示總數量\n", + "print(\"\\n訓練集和測試集的大小:\")\n", + "print(f\"訓練集大小: {len(X_train)}\")\n", + "print(f\"測試集大小: {len(X_test)}\")\n", + "X_train" + ] + }, + { + "cell_type": "code", + "execution_count": 133, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ModelID1ID2ID3ID4train_accuracytest_accuracytrain - test accuracyAUCf1-scoresensitivityspecificityprecisionmcc
0Decision Treecg04927004cg23631930cg11775521cg042250880.960.8571430.1028570.90.8888890.81.01.0000000.730297
1Logistic Regressioncg04927004cg23631930cg11775521cg042250880.721.000000-0.2800001.01.0000001.01.01.0000001.000000
2Random Forestcg04927004cg23631930cg11775521cg042250880.721.000000-0.2800001.01.0000001.01.01.0000001.000000
3SVMcg04927004cg23631930cg11775521cg042250880.920.8571430.0628571.00.9090911.00.50.8333330.645497
4XGBoostcg04927004cg23631930cg11775521cg042250880.800.857143-0.0571430.90.8888890.81.01.0000000.730297
.............................................
115Decision Treecg04927004cg05724197cg07211259cg058840320.841.000000-0.1600001.01.0000001.01.01.0000001.000000
116Logistic Regressioncg04927004cg05724197cg07211259cg058840320.680.714286-0.0342860.40.8333331.00.00.7142860.000000
117Random Forestcg04927004cg05724197cg07211259cg058840320.880.7142860.1657141.00.8333331.00.00.7142860.000000
118SVMcg04927004cg05724197cg07211259cg058840320.680.714286-0.0342860.00.8333331.00.00.7142860.000000
119XGBoostcg04927004cg05724197cg07211259cg058840320.800.7142860.0857140.40.8333331.00.00.7142860.000000
\n", + "

120 rows × 14 columns

\n", + "
" + ], + "text/plain": [ + " Model ID1 ID2 ID3 ID4 \\\n", + "0 Decision Tree cg04927004 cg23631930 cg11775521 cg04225088 \n", + "1 Logistic Regression cg04927004 cg23631930 cg11775521 cg04225088 \n", + "2 Random Forest cg04927004 cg23631930 cg11775521 cg04225088 \n", + "3 SVM cg04927004 cg23631930 cg11775521 cg04225088 \n", + "4 XGBoost cg04927004 cg23631930 cg11775521 cg04225088 \n", + ".. ... ... ... ... ... \n", + "115 Decision Tree cg04927004 cg05724197 cg07211259 cg05884032 \n", + "116 Logistic Regression cg04927004 cg05724197 cg07211259 cg05884032 \n", + "117 Random Forest cg04927004 cg05724197 cg07211259 cg05884032 \n", + "118 SVM cg04927004 cg05724197 cg07211259 cg05884032 \n", + "119 XGBoost cg04927004 cg05724197 cg07211259 cg05884032 \n", + "\n", + " train_accuracy test_accuracy train - test accuracy AUC f1-score \\\n", + "0 0.96 0.857143 0.102857 0.9 0.888889 \n", + "1 0.72 1.000000 -0.280000 1.0 1.000000 \n", + "2 0.72 1.000000 -0.280000 1.0 1.000000 \n", + "3 0.92 0.857143 0.062857 1.0 0.909091 \n", + "4 0.80 0.857143 -0.057143 0.9 0.888889 \n", + ".. ... ... ... ... ... \n", + "115 0.84 1.000000 -0.160000 1.0 1.000000 \n", + "116 0.68 0.714286 -0.034286 0.4 0.833333 \n", + "117 0.88 0.714286 0.165714 1.0 0.833333 \n", + "118 0.68 0.714286 -0.034286 0.0 0.833333 \n", + "119 0.80 0.714286 0.085714 0.4 0.833333 \n", + "\n", + " sensitivity specificity precision mcc \n", + "0 0.8 1.0 1.000000 0.730297 \n", + "1 1.0 1.0 1.000000 1.000000 \n", + "2 1.0 1.0 1.000000 1.000000 \n", + "3 1.0 0.5 0.833333 0.645497 \n", + "4 0.8 1.0 1.000000 0.730297 \n", + ".. ... ... ... ... \n", + "115 1.0 1.0 1.000000 1.000000 \n", + "116 1.0 0.0 0.714286 0.000000 \n", + "117 1.0 0.0 0.714286 0.000000 \n", + "118 1.0 0.0 0.714286 0.000000 \n", + "119 1.0 0.0 0.714286 0.000000 \n", + "\n", + "[120 rows x 14 columns]" + ] + }, + "execution_count": 133, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "from sklearn.svm import SVC\n", + "from sklearn.tree import DecisionTreeClassifier\n", + "from sklearn.ensemble import RandomForestClassifier\n", + "import xgboost as xgb\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.metrics import classification_report, roc_auc_score, accuracy_score, precision_score, recall_score, f1_score\n", + "from sklearn.model_selection import train_test_split\n", + "from xgboost import XGBClassifier\n", + "from sklearn.model_selection import RandomizedSearchCV\n", + "from sklearn.model_selection import GridSearchCV\n", + "from skopt import BayesSearchCV\n", + "from skopt.space import Categorical, Real\n", + "from sklearn.metrics import (\n", + " confusion_matrix,\n", + " precision_score,\n", + " accuracy_score,\n", + " matthews_corrcoef,\n", + " f1_score,\n", + ")\n", + "\n", + "\n", + "tree_params = {\"max_depth\": [3, 5, 7], \"min_samples_split\": [2, 5, 10]}\n", + "\n", + "clf_tree = DecisionTreeClassifier()\n", + "\n", + "lr_params = [\n", + " {\"C\": [0.001,0.01,0.1, 1, 10], \"solver\": [\"liblinear\"]}\n", + "]\n", + "\n", + "clf_lr = LogisticRegression(max_iter=500) \n", + "\n", + "\n", + "rf_params = {\n", + " \"n_estimators\": [100,150, 200],\n", + " \"max_depth\": [1,3, 5, 7],\n", + " \"min_samples_split\": [2, 5, 10],\n", + " }\n", + "clf_rf = RandomForestClassifier()\n", + "\n", + "svm_params = {\"C\": [0.001,0.1, 1, 10,100,1000], \"kernel\": [\"linear\", \"rbf\"]}\n", + "\n", + "clf_svm = SVC(probability=True)\n", + "\n", + "\n", + "xgb_params = {\n", + " \"n_estimators\": [100,150, 200],\n", + " \"max_depth\": [3, 5, 7],\n", + " \"learning_rate\": [0.01, 0.1, 0.2],\n", + " }\n", + "\n", + "clf_xgb = XGBClassifier( eval_metric='logloss')\n", + "\n", + "results = []\n", + "\n", + "model_list = [clf_tree,clf_lr,clf_rf,clf_svm,clf_xgb]\n", + "model_param = [tree_params,lr_params,rf_params,svm_params,xgb_params]\n", + "model_names = ['Decision Tree', 'Logistic Regression', 'Random Forest', 'SVM', 'XGBoost']\n", + "\n", + "for cg in cg_list:\n", + " X_train_c = X_train[cg]\n", + " X_test_c = X_test[cg]\n", + " \n", + " for model,param, model_name in zip(model_list,model_param, model_names):\n", + " \n", + " model = GridSearchCV(\n", + " estimator=model, param_grid=param, cv=5, n_jobs=-1\n", + " )\n", + " model.fit(X_train_c, y_train)\n", + " \n", + " y_pred = model.predict(X_test_c)\n", + " y_pred_prob = model.predict_proba(X_test_c)[:, 1]\n", + " \n", + " y_pred_train = model.predict(X_train_c)\n", + " y_pred_prob_train = model.predict_proba(X_train_c)[:, 1]\n", + " # report = classification_report(y_test, y_pred, output_dict=True)\n", + " auc = roc_auc_score(y_test, y_pred_prob)\n", + " \n", + " train_accuracy = accuracy_score(y_train, y_pred_train)\n", + " test_accuracy = accuracy_score(y_test, y_pred)\n", + " precision = precision_score(y_test, y_pred,zero_division=0)\n", + " sensitivity = recall_score(y_test, y_pred)\n", + " specificity = recall_score(y_test, y_pred, pos_label=0)\n", + " f1 = f1_score(y_test, y_pred)\n", + " mcc = matthews_corrcoef(y_test, y_pred)\n", + "\n", + "\n", + " # 計算複合指標\\\n", + " \n", + " results.append( {\n", + " 'Model': model_name,\n", + " 'ID1': cg[0],\n", + " 'ID2': cg[1],\n", + " 'ID3': cg[2],\n", + " 'ID4': cg[3],\n", + " 'train_accuracy': train_accuracy,\n", + " 'test_accuracy': test_accuracy,\n", + " 'train - test accuracy' : train_accuracy - test_accuracy,\n", + " 'AUC': auc,\n", + " 'f1-score': f1,\n", + " 'sensitivity': sensitivity,\n", + " 'specificity': specificity,\n", + " 'precision': precision,\n", + " 'mcc' : mcc\n", + " })\n", + "df = pd.DataFrame(results)\n", + "\n", + "df\n" + ] + }, + { + "cell_type": "code", + "execution_count": 134, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "df.to_csv(\"result/test_aba2/5_fold_148663_hyper.csv\",index=False)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.7" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}